CN1746775A - 光刻设备和器件制造方法 - Google Patents

光刻设备和器件制造方法 Download PDF

Info

Publication number
CN1746775A
CN1746775A CNA2005101132352A CN200510113235A CN1746775A CN 1746775 A CN1746775 A CN 1746775A CN A2005101132352 A CNA2005101132352 A CN A2005101132352A CN 200510113235 A CN200510113235 A CN 200510113235A CN 1746775 A CN1746775 A CN 1746775A
Authority
CN
China
Prior art keywords
substrate
temperature
gas
radiation beam
containment member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005101132352A
Other languages
English (en)
Other versions
CN1746775B (zh
Inventor
T·P·M·卡迪
J·H·W·贾科布斯
N·坦卡特
E·R·鲁普斯特拉
A·L·H·J·范米尔
J·J·S·M·梅坦斯
C·G·M·德莫
M·J·E·H·米特詹斯
A·J·范德内特
J·J·奥坦斯
J·A·夸伊达克斯
M·E·鲁曼-休斯肯
M·K·斯塔温加
P·A·J·廷内曼斯
M·C·M·维哈根
J·J·L·H·维斯帕
F·E·德荣格
K·戈尔曼
B·门奇奇科夫
H·博姆
S·尼蒂亚诺夫
R·莫尔曼
M·F·P·斯米特斯
B·L·P·小恩德马克
F·J·J·詹斯森
M·里伊彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34981965&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1746775(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN1746775A publication Critical patent/CN1746775A/zh
Application granted granted Critical
Publication of CN1746775B publication Critical patent/CN1746775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70841Constructional issues related to vacuum environment, e.g. load-lock chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Abstract

一种光刻设备包括:调节辐射束的照明系统;支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;支撑衬底的衬底台;把已构图的辐射束投影到衬底的目标部分的投影系统;利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;在投影系统的所述最后元件和述衬底之间的所述间隙中基本包含所述液体的密封构件;和控制和/或补偿浸渍液体从所述衬底蒸发的元件。

Description

光刻设备和器件制造方法
技术领域
本发明涉及光刻设备和用于制造器件的方法。
背景技术
光刻设备是把希望的图案应用到衬底上,通常是在衬底的目标部分上的机器。光刻设备可以在例如集成电路(IC)的制造中使用。在那种情况下,可以使用构图器件,其选择性地称作掩模或标线,以产生要在IC的单独层上形成的电路图案。这个图案可以转移到衬底(例如硅晶片)上的目标部分(例如,包括一个或几个管芯的部分)。图案的转移典型地是通过成像到设置在衬底上的辐射敏感材料(抗蚀剂)层。通常,单个衬底会包含成功构图的邻接目标部分的电路。已知的光刻设备包括所谓的分档器(stepper),其中每个目标部分通过同时曝光整个图案到目标部分而被辐照,和所谓的扫描器,其中通过在给定方向(扫描方向)上的辐射束扫描图案来照射每个目标部分,并同时地扫描平行或反平行这个方向的衬底。也可能通过在衬底上印下图案,把图案从构图器件转移到衬底上。
建议使在光刻投影设备中的衬底浸渍到具有相对高的折射率的液体中,例如水,以填充在投影系统最后元件和衬底之间的间隔。由于曝光辐照在液体中具有更短波长,这一点的目的是使得更小特征成像。(液体的效果也可以认为增加系统的有效NA和也增加聚焦深度。)已经提出其他的浸渍液体,包括具有悬浮在其中的固体颗粒(例如石英)的水。
然而,把衬底或衬底与衬底台浸渍到液体容器中(见例如US4509852,这里引入其整个内容作为参考),意为存在在扫描曝光期间必须被加速的大量液体。这需要附加的或更加有力的发动机,和液体中的紊流可以导致不希望和不可预料的影响。
其中一个建议的解决方法是对于液体供应系统,仅在衬底的局部区域上和在投影系统的最后元件和衬底之间使用液体限定系统提供液体(衬底通常具有比投影系统的最后元件更大的表面区域)。已经提出的用于它的设置的一种方式在WO99/49504中公开了,这里引入其整个内容作为参考。如图2和3中所述,通过至少一个进口IN把液体供应到衬底上,优选沿着衬底相对于最后元件移动的方向,并在已经在投影系统下通过之后,通过至少一个出口OUT去除。即,由于在X方向上的元件下扫描衬底,液体在元件的+X侧供应并在-X侧取走。图2概略地示出了液体经过进口IN供应并且通过出口OUT在元件的另一侧取出的设置,该出口OUT连接到低压源。在图2的图解中,液体沿着衬底相对于最后元件的移动方向供应,虽然这并不需要是这种情况。位于在最后元件周围的多个方向和数量的进口和出口都是可能的,一个例子是在图3中说明的,在最后元件的周围以规则图案提供四组在任一侧具有出口的进口。
提出的另一解决方案是为液体供应系统提供密封构件,该密封构件沿着投影系统的最后元件和衬底台之间间隔的至少一部分界限延伸。在图4a和4b中说明了这样的解决方法。封装构件相对于在XY平面中的投影系统基本上是固定的,虽然在Z方向(在光学轴的方向)有一些相对移动。密封形成在密封构件和衬底表面之间。优选地,密封可以是无接触密封,如气体密封。在欧洲专利申请No.03252955.4中公开了这样的具有气体密封的系统,这里引入其整个内容作为参考。
图4b示出了用于密封构件12的示例设置,设置该密封构件12以在投影透镜PL下的局部区域25中包含浸渍液体。密封构件12具有设置成通过滤网GZ从局部区域25萃取液体的萃取器EX。该萃取器EX可以提取液体和气体或仅仅提取液体。凹陷RE呈放射状地提供在萃取器EX的外部,气体密封27呈放射状地提供在凹陷RE的外部。气体密封27形成用于干燥衬底W表面和/或减少从密封构件12透出的液体的量的一股气体JE。
在欧洲专利申请No.03257072.3中公开了孪生或双台浸渍光刻装置的构思。这种设备具有用于支撑衬底的两个台。利用一个台在第一位置处在没有浸渍液体的情况下进沙水准测量,利用一个台在存在浸渍液体的第二位置处进行曝光。可选择地,该装置仅具有一个台。
虽然提供了改良的解决方法,但是已经发现浸渍液体的引入在衬底上产生的图像中导致了误差,包括在一层和下一层之间的对准误差(即覆盖错误)、散焦和偏差。
发明内容
希望提供一种减小由于浸渍液体产生的光刻误差的系统。
根据本发明的一个方面,提供一种光刻设备包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以利用液体至少部分地填充所述投影系统和所述衬底之间间隙的液体供应系统;设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本地包含所述液体的密封构件;和设置以控制由所述液体供应系统提供的液体蒸发净速率的液体蒸发控制器。
根据本发明的另一方面,提供一种光刻设备,包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本地包含所述液体的密封构件;衬底台扫描系统,设置以相对于所述密封构件沿着预定扫描路径移动所述衬底台,由此在所述衬底的表面上扫描所述目标部分;和设置以依照位置、速度、加速度和所述衬底台相对于所述密封构件的扫描路径、局部衬底温度和局部衬底台温度的至少一个加热所述衬底的至少一部分的衬底加热器。
根据本发明的另一方面,提供一种光刻设备包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本地包含所述液体的密封构件;设置以控制从所述密封构件经过缝隙逃出的液体的量的气体密封,该缝隙限定在所述密封构件的边界的一侧面上和在所述衬底的第二侧面上,所述气体密封包括气体出口,通过它气体供应到所述缝隙内的区,和真空排气进口,通过它将由所述气体出口供应的气体从所述缝隙内的区去除,所述气体出口和真空排气进口分别连接到嵌入到所述密封构件中的气体出口管和真空排气进口管,其中所述密封构件进一步包括密封构件温度稳定器。
根据本发明的另一方面,提供一种光刻设备包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本地包含所述液体的密封构件;用于控制设置成流过嵌入在所述衬底台中的沟道网络的热交换液体的温度和的流速的衬底台热交换液体控制器。
根据本发明的另一方面,提供一种光刻设备包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统,其中所述衬底台包括至少一个集成的局部温度控制系统,该控制系统包括:与加热器耦合的温度传感器,设置所述加热器以当通过所述温度传感器测量的局部温度低于预定参考值时产生热量,当所述局部温度升高到所述预定参考值以上时停止产生热量。
根据本发明的另一方面,提供一种光刻设备包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度的至少一个温度传感器;和投影系统控制器,设置以响应由所述至少一个温度传感器测量的所述温度来调节所述已构图辐射束的属性。
根据本发明的另一方面,提供一种光刻设备,包括:设置以调节辐射束的照明系统;支撑构图器件的支持物,构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;构造以支撑衬底的衬底台;设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本地包含所述液体的密封构件;衬底台转移系统,设置以沿着相对于所述密封构件的预定路径移动所述衬底,由此在所述衬底的表面上移动所述目标部分;和微波源和微波容器器件(microwavecontainment device),一起设置以向在所述衬底表面上的液体供热。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;提供设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本包含所述液体的密封构件;和控制由所述液体供应系统提供的液体蒸发的净速率。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;提供设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本包含所述液体的密封构件;提供衬底台移位系统,设置以相对于所述密封构件沿着预定扫描路径移动所述衬底台,由此在所述衬底的表面上移动所述目标部分;和依照位置、速度、加速度和所述衬底台相对于所述密封构件的预定路径、局部衬底温度和局部衬底台温度的至少一个来加热所述衬底的一部分。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;提供设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本包含所述液体的密封构件;提供设置以控制从所述密封构件经过缝隙逃出的液体的量的气体密封,该缝隙限定在所述密封构件的边界的一侧和在所述衬底的第二侧面上,提供气体密封,其包括气体进口,通过它气体供应到所述缝隙内的区,和真空排气出口,通过它由所述气体进口供应的气体从所述缝隙内的区去除,所述气体进口和所述真空排气出口分别连接到嵌入到所述密封构件中的气体进口管和真空排气出口管,并稳定所述密封构件的温度。
根据本发明的另一方面,提供一种光刻器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;提供设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本包含所述液体的密封构件;提供嵌入在所述衬底台中的沟道网络,并控制设置成流过所属沟道网络的热交换液体的温度和热交换液体的流速。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;其中所述衬底台包括至少一个集成的局部温度控制系统,该控制系统包括:与加热器耦合的温度传感器,设置所述加热器以当如通过所述温度传感器所测量的局部温度降到低于预定参考值时产生热量,和当所述局部温度升高到所述预定参考值以上时停止产生热量。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够利将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供至少一个温度传感器,该温度传感器测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度;和响应由所述至少一个温度传感器测量的所述温度来调节所述已构图辐射束的属性。
根据本发明的另一方面,提供一种器件的制造方法,包括:提供设置以调节辐射束的照明系统;提供支撑构图器件的支持物,该构图器件能够将在其截面上的图案赋予辐射束以形成已构图的辐射束;提供构造以支撑衬底的衬底台;提供设置以把已构图的辐射束投影到衬底的目标部分上的投影系统;提供设置以利用液体至少部分地填充所述投影系统的最后元件和所述衬底之间间隙的液体供应系统;提供设置以在投影系统的所述最后元件和所述衬底之间的所述间隙内基本包含所述液体的密封构件;提供衬底台转移系统,设置以沿着相对于所述密封构件的预定路径移动所述衬底,由此在所述衬底的表面上移动所述目标部分;并使用微波源和微波容器器件为在所述衬底表面上的液体供热。
附图说明
下面将参考所附示意图仅通过示例的方式描述本发明的实施例,图中相应的参考符号代表相应的部分,其中:
图1描述了根据本发明实施例的光刻设备;
图2和3描述了在现有技术的光刻投影设备中使用的液体供应系统;
图4a和4b描述了根据另一个现有技术的光刻投影设备的液体供应系统;
图5描述了根据本发明实施例的密封构件,示出了与加压气体湿度控制器的相互作应,浸渍液体温度控制器和加压气体温度控制器;
图6描述了根据本发明实施例的密封构件,气体簇射出口和气体簇射出口控制器;
图7描述了根据本发明实施例的包括局部加热器和衬底温度控制器的系统的衬底台的顶视图;
图8描述了图7的衬底台的侧视图,也示出了多个温度传感器,衬底台路径限定器件和位于密封构件内的衬底加热器;
图9描述了衬底台的顶视图,该顶视图示出了设置衬底加热器的几何尺寸以在衬底台的下方区域比上方区域消耗更多的能量;
图10描述了根据本发明实施例的独立可控制的衬底加热器阵列;
图11描述了图10结构的侧视图,也示出了加热器阵列控制器和预定算法输入器件的相互作用;
图12描述了根据本发明实施例的密封构件的局部视图,示出了用于真空排气进口和真空排气管的热隔离套管和密封构件加热器;
图13描述了根据本发明实施例在密封构件和密封构件温度稳定器之间的相互作用;
图14描述了根据本发明实施例的包括液体运输沟道网络和液体供应系统的密封构件;
图15描述了密封构件和包括液体运输沟网络和独立可控制加热器阵列的衬底台,该独立可控制加热器由衬底温度控制器控制,该衬底温度控制器包括衬底台热交换液体控制器和衬底加热器控制器;
图16描述了根据本发明实施例的具有沟道网络和循环沟槽的衬底台;
图17和18描述了根据图16的具有循环沟槽的衬底台,由根据本发明实施例的密封环密封;
图19描述了示出了根据本发明实施例的衬底台中和密封构件中温度传感器位置的光刻设备;
图20描述了根据本发明实施例在示出了微观温度控制系统设置的衬底区域中的衬底台的放大图;
图21描述了根据本发明实施例的投影系统控制器和热感应形变计算器;
图22描述了用于加热衬底表面上的浸渍液体的微波源和微波容器罩(microwave containment cage);
图23描述了电阻加热带和有关的电流的设置;
图24描述了用作用于局部加热器系统的局部温度传感器的单电阻带;
图25描述了用于衬底台WT的感应加热的设置;
图26描述了用于利用控制了的湿度级别来产生气流的设备;
图27描述了用于控制气流温度的热交换器;
图28描述了用于能够使得加湿器盒的操作稳定的通风系统;
具体实施方式
图1简要描述了根据本发明的一实施例的光刻设备。该设备包括:
设置的照明系统(照明装置)IL,以调节辐射束B(例如UV辐射或DUV辐射)。
设置的支撑结构(例如掩模台)MT,以支持构图器件(例如掩模)MA并连接到根据特定参数精确定位构图器件的第一定位器PM。
设置的衬底台(例如晶片台)WT,以支撑衬底(例如涂敷抗蚀剂的晶片)W并连接到根据特定参数精确定位衬底的第二定位器PW;和
设置的投影系统(例如折射投影透镜系统)PS,以把通过构图器件MA赋予到辐射束B的图案投影到衬底W的目标部分C(例如包括一个或多个管芯)上。
照明系统可以包括多种光学元件,例如折射、反射、磁性、电磁、静电或其他类型的光学元件,或任何它们的组合,用于导引、成形或控制辐射。
支撑结构支撑构图器件,即承受构图器件的重量。它以依赖于构图器件的方向、光刻设备的设计和其他条件的方式支撑构图器件,其它条件例如是否构图器件被固定在真空环境中。该支撑结构可以使用机械、真空、静电或其他夹紧技术以固定构图器件。该支撑结构可以是框架或台,例如,如需要其可以是固定的或可移动的。支撑结构可以保证构图器件位于例如关于投影系统的所希望的位置。这里术语“标线”或“掩模”的任何使用可以认为是与更通用的术语“构图器件”同义的。
这里使用的术语“构图器件”应该广义地解释为指能够用于将它的截面中的图案赋予到辐射束的任何器件,例如以在衬底的目标区域中产生图案。应该注意到,例如如果图案包括相移特性或所谓的辅助特性,那么赋予到辐射束的图案可以不正好与衬底目标区域中的图案对应。通常,赋予到辐射束的图案将对应于在目标部分中产生的器件中的特殊功能层,如集成电路。
构图器件可以是透射的或反射的。构图器件的例子包括掩模、可编程镜面阵列和可编程LCD面板。掩模在光刻中是众所周知的,包括例如双元、交互相移和衰减相移和多种混合掩模型的掩模类型。可编程镜面阵列的例子采用小镜面矩阵排列,每个镜面可以单独地倾斜以反射在不同方向上的入射辐射束。倾斜镜面在被镜面阵列反射的辐射束中赋予了图案。
这里使用的术语“投影系统”应该广义地解释为包含任何类型的投影系统,包括如适合于所使用的曝光辐射或适合于用于其他因素如浸渍液体的使用或者真空的使用的折射、反射、折反射、磁、电磁和静电的光学系统,或者他们的任何组合。这里的术语“投影透镜”的任何使用可以认为与更加通用的术语“投影系统”同义。
如这里所述,设备是透射型(例如采用透射掩模)。可选择地,设备可以是反射型(如采用如上所述的可编程镜面阵列,或采用反射掩模)。
该光刻设备可以是具有两个(双台)或多个衬底台(和/或两个或更多掩模台)的类型。在这样的“多台”机器中,当使用一个或多个其它的台用于曝光时,附加的台可以平行地使用,或者可以在一个或多个台上进行准备性步骤。可以通过衬底台WT(有时称作镜面块)直接固定衬底W且可以通过衬底固定器(有时称作节盘或卡盘)固定衬底W,其依次由衬底台WT固定。
参考图1,照明装置IL从辐射源SO接收辐射束。例如当源是准分子激光时,该源和光刻设备可以是分开的机构。在这种情况下,不认为源形成了光刻设备的一部分,辐射束借助于分束系统BD从源SO传送到照明装置IL,该分束系统包括例如,适当的导引镜和/或束扩展器。在其他情况下源可以是光刻设备的集成部分,例如当源是汞灯时。源SO和照明装置IL,如果需要的的话还有分束系统BD,一起可以称作辐射系统。
照明装置IL可以包括用于调节辐射束的角强度分布的调节器AD。一般,至少可以调整在照明装置射的光孔面中的强度分布的外部和/或内部辐射范围(通常分别指б-外部和б-内部)。另外,照明装置IL可以包含多种其他元件,如积分器IN和聚光器CO。该照明装置可以用作调节辐射束以在其截面具有所希望的均匀度和强度分布。
辐射束B入射到构图器件(例如掩模MA)上,其固定在支撑结构(例如掩模台MT)上,并通过构图器件构图。穿过掩模MA后,辐射束B经过投影系统PS,其把辐射束聚焦到衬底W的目标部分C上。利用第二定位器PW和定位传感器IF(例如干涉仪器件、线性编码器或电容传感器),可以精确地移动衬底台WT,例如在辐射束B的路径中定位不同的目标部分C。类似地,例如在从掩模库机械修复后,或在扫描期间,可以使用第一定位器PM和另一定位传感器(其没有在图1中明确地描述)以精确地使掩模MA对于辐射束B的路径定位。通常,掩模台MT的移动可以利用长冲程组件(粗糙定位)和短冲程组件(精确定位)来实现,其形成第一定位器PM的一部分。类似地,衬底台WT的移动可以使用长冲程组件和短冲程组件实现,其形成第二定位器PW的一部分。在分档器(与扫描器相对)的情况下,掩模台MT可以仅连接到短冲程激励器,或可以被固定。掩模MA和衬底W可以利用掩模对准标记M1、M2和衬底对准标记P1、P2对准。虽然所述的衬底对准标记占用了专用的目标部分,他们可以位于目标部分(这里是已知的划线对准标记)之间的间隙中。类似地,在掩模MA上提供多于一个管芯的情况下,掩模对准标记可以位于管芯之间。
在下述模式的至少一种中可以使用所述装置:
1.在步进模式,掩模台MT和衬底台WT保持基本静止,而给予辐射束的整个图案同时一次投影到目标部分C(即单个静态曝光)。然后该衬底台WT转移到X和/或Y方向,以使得可以曝光不同的目标部分C。在步进模式中,曝光区域的最大尺寸限制了在单个静态曝光中成像的目标部分C的尺寸。
2.在扫描模式中,当给予辐射束的图案投影到目标部分C(即单动态曝光)上时,同时扫描掩模台MT和衬底台WT。衬底台WT相对于掩模台MT的速度和方向可以由投影系统PS的放大(缩小)和反成像特性决定。在扫描模式中,曝光区域的最大尺寸限制了在单动态曝光中目标部分的宽度(在非扫描方向),反之扫描移动的长度确定了(在扫描方向上)目标部分的高度。
3.在其他模式中,当赋予辐射束的图案投影到目标部分C上时,支撑可编程构图器件的掩模台MT保持基本静止,移动或扫描衬底台WT。在这个模式中,通常采用脉冲辐射源,并且在衬底台WT的每个移动后或在扫描期间的连续辐射脉冲之间,根据需要可以修正可编程构图器件。这个操作模式可以很容易地应用到无掩模光刻中,该光刻利用可编程构图器件,例如上述的可编程镜面阵列。
也可以使用利用上述模式的基础上的组合和/或变形,或利用完全不同的模式。
根据本发明的一个方面,覆盖误差和与浸渍液体和密封构件12的存在相关的其它问题通过液体蒸发控制器解决,其标的并控制在衬底区域中的浸渍液体的蒸发率。为了蒸发,液体分子从周围吸收能量,特别地如果用泵抽走,导致的制冷可以造成关键元件如衬底W的温度的显著和非均匀变化。热感应形变可以导致最终写入到衬底的图像中的误差。例如,在密封构件12经过后,残留在衬底上浸渍液体的蒸发能够导致局部温度降低到3K。作为这样的结果,典型地可以产生超过20nm的单机械覆盖误差。
图5示出了根据本发明的一个或多个实施例的密封构件12的设置。浸渍液体包含在位于投影系统PL的最后元件和衬底W之间的浸渍容器25内。浸渍液体通过密封构件12的主体和在其下面周围上的气体密封27包含在浸渍容器25内,气体密封27限制了从浸渍容器25经过缝隙22逃走的浸渍液体的量。气体密封27连接到加压气体供应系统30,其经过加压气体出口18和加压气体供应管15供应加压气体到气体密封27。气体经过真空排气进口17和真空排气管14抽走。在气体密封27的区域中蒸发的浸渍液体可以经过真空排气进口17抽走。可选择地,逃出气体密封27的液体要么可以进入在缝隙22中密封构件12下面的区域,要么超出密封构件12的外部边缘,蒸发到密封构件12外的衬底W外部的环境中。
物质既以液体形式存在也以气体形式存在,通常地情况是在液体蒸发率和蒸汽凝结率平衡时存在的动态平衡。由蒸发产生的冷却量由此被凝结产生的热量抵消(其中随着部分转变到低能量液体状态,高能量气体分子对它们周围的环境产生热量)。由此冷却能量依赖于蒸发的净速率(即单位时间从液体进入到气体状态的分子数量和单位时间从气体进入液体状态的分子数量的差)。凝结和蒸发都是统计效应,增加涉及的分子数量将会增加任一过程的速率。因此,增加蒸汽浓度将会增加凝结率并导致蒸发净速率的减小。蒸汽由水分子组成,浓度可以与相对湿度直接相关,被限定为以在给定温度下存在的最大量百分比存在的水蒸汽的量。
根据本发明实施例采用这个理解以控制由浸渍液体蒸发产生的冷却。如图5中所示,加压气体湿度控制器50,提供它以与加压气体供应系统30相互作用,为气体密封27提供加压气体,其相对湿度被控制到大于10%。增加气体的相对湿度增加了凝结率并由此减小了蒸发的净速率和由此产生的冷却。优选地相对湿度设置在由参考校准量测确定的预定范围内。为了控制冷却的目的,相对湿度越高越好。然而,对于非常高的相对湿度,密封构件12可以在其尾迹(wake)剩余过量的水。并且,如果为靠近密封构件的外直径的潮湿气体取出提供不充分机械,湿气会残留并会干扰定位传感器IF的操作。因此,通常上限会取决于密封构件构造和/或设置的细节。另外地或可选地,预定范围可以大于40%。例如这些的高相对湿度可以通过使用比仅为了得到优化密封性能(典型地可以使用6bar)的目的而可能选择的另外的压力更低的工作压力来实现。理想地,应当选择工作压力以尽可能地接近大气压力,同时仍为气体轴承27提供足够的流速以实施其功能。当加压气体在离开加压气体供应系统30膨胀时,工作压力越低,相对湿度就减小得越低。
可以设置加压气体湿度控制器50以响应衬底W和/或衬底台WT的温度改变。这些温度改变可以经过一个或多个设置例如在衬底台WT中的温度传感器60确定。根据本发明的实施例,设置加压气体湿度控制器50以比较通过温度传感器60在一个或多个点测量的衬底W和/或衬底台WT和/或衬底固定器的温度和目标温度或温度Tt。也就是说,存在单个温度传感器60时,加压气体温度控制器50把这一个温度读数与单个目标温度Tt比较。当存在多个温度传感器60时,加压气体温度控制器50把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度相应于例如衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,因此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。为了减小在所测量和目标温度之间的差别,加压气体湿度控制器50此时调节加压气体的相对湿度,该过程的效果由反馈控制器如PID系统控制。
对于由在气体密封27的区域中,特别是在真空排气入口18和真空排气管14周围的蒸发引起的冷却,调节供应到气体密封27的气体湿度是最有效的。优选具有附加的机械装置来控制超出气体密封27和密封构件12的外部的液体的净蒸发。在图6中说明了根据本发明实施例的这样的设置。这里,提供能够提供具有相对湿度被控制成大于10%的气体流的气体簇射出口70。提供气体簇射湿度控制器75,该控制器能根据校准测量、计算或测量在衬底W和/或衬底台/衬底固定器上的一个或多个点的温度中的任一种来调整相对湿度,如通过一个或多个温度传感器60所提供的,并与目标温度或温度Tt比较。在这种情况下的优选相对湿度的范围是40至50%。在这种情况下设置气体簇射湿度控制器75以响应温度测量,为了减小在所测量的和目标温度Tt之间的差,它可以调节气体的相对湿度。也就是说,存在单个温度传感器60时,气体簇射湿度控制器75把这一个温度读数与单个目标温度Tt比较。当存在多个温度传感器60时,气体簇射湿度控制器75把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度相应于例如衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,因此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。反馈控制器如PID系统可以控制该过程的效率。
气体簇射湿度控制器75可以设置以与加压气体湿度控制器50相互作用,以确保由气体密封27提供的气体相对湿度和气体簇射出口70匹配。这个特征提供了一个机械装置,通过该机械装置可以控制在气体密封27外部的相对湿度中的变化,并避免对诸如用于可能另外发生的测量衬底台WT位置的干涉仪的系统的干扰。
正常地设置衬底台WT以通过衬底台移位系统100相对于投影系统PL和密封构件12移动(见图8),以使得衬底W的连续目标区域可以通过构图的辐射束曝光。这个过程可以促进少量的浸渍液体离开浸渍容器25的限制,尽管有气体密封27的操作。上面已经讨论了设置以减小由减小浸渍液体蒸发导致的元件冷却的实施例。根据本发明的可选的方面,由蒸发浸渍液体的冷却效应引起的误差可以通过提供衬底加热器解决,该加热器根据位置、速度、加速度和衬底台WT相对于密封构件12的预定路径、和局部衬底W和/或衬底台WT的温度的至少一个来加热衬底W的至少一部分。衬底加热器可以通过多个机械装置加热。这些可以包括下列的一个或者多个:红外辐射源,热灯丝电阻加热器和热气喷射。当确定使用何种类型的加热器时的重要因素包括发热量需要怎样精确和快速地调节,以及怎样有效地生产微型形状的加热器。根据加热器是否要嵌入到材料内或在材料附近(如热灯丝,例如,嵌入到衬底台WT中),其中倾向于调节该材料的温度,或加热器是否在一定距离上工作(例如红外辐射源或温度控制气体喷射源),后者因素将或多或少的成为重要性。在辐射源的情况下,辐射的波长分布被选择成不与衬底W上的抗蚀剂成分反应(对于所关心的大部分的抗蚀剂红外辐射应当是安全的)。辐射强度的选择取决于抗蚀剂的光学性能(如它的反射率)。这可以通过在光刻设备的安装顺序期间的校准测量确定。在可能存在处理阶段相关性处(例如由于在反射率中的改变),也可以在生产顺序中执行校准作为用于每块衬底的额外测量阶段。如下所述,本发明的几个实施例以下列规则操作,该规则中,在衬底曝光程序期间,即,在密封构件12经过衬底W上方时,启动存在的衬底加热器的至少一子集。然而,在曝光前加热衬底W以便补偿不得不发生但也是预期发生的冷却的系统也落在发明的范围之内。
图7和图8示出了根据本发明实施例的设置,包括嵌入在衬底台作为“局部加热器”85,或嵌入在密封构件12中作为“远程加热器”86,或者两者都包括的加热器85/86系统。设置每个局部加热器85以主要加热衬底W的特殊区域,并可以一起用来控制衬底W的至少一部分的温度曲线。远程加热器86将依据密封构件12相对于衬底W的位置加热衬底W的不同部分。
根据包括局部加热器85的第一操作模式,在衬底曝光循环开始之前,可以调节每个加热器的发热量和相对时限以在已知时间内为衬底W建立开始温度曲线。参考由光刻设备产生的校准测量和/或测试图案分析,可以选择开始温度曲线,以基本补偿由于在曝光循环期间的浸渍液体蒸发产生的冷却。
根据包括局部加热器85的第二操作模式,仅仅当经过定位加热的区域上的密封构件12时,可以设置这些加热器85的每一个以转换到加热发射状态,。例如,如图7中所示在密封构件12(由此目标区域)沿着在初始管芯(或目标区域)160到最后管芯170之间的路径150相对于衬底W移动的情况下,局部加热器85也可以以基本沿着同样的路径150的渐进方式切换。这可以通过编程衬底温度控制器110得到,以提供一系列的时间延迟启动信号,该信号对于每个局部加热器85接近地滞后于密封构件12相对于衬底台WT的预定路径。预定路径可以存储在衬底台路径确定器件90中。作为可选择或另外的方法,局部加热器85的启动顺序可以从衬底台路径确定器件90的进一步功能得出。例如衬底台路径确定器件90可以包括用于测量衬底台WT的位置、速度和/或加速度和用于馈送这个信息到衬底温度控制器110的装置(例如在干涉量度的基础上),当启动每个局部加热器85时,该装置可以在这个点计算。例如,当识别到密封构件12从特定加热器移开或移过时,路径确定器件90可以设置成为给定的加热器传送启动信号。通过每个局部加热器85提供的能量可以设置成以恒定或随时间变化,并与其它局部加热器85相同或者不同。用于每个加热器的最优化设置是最好地补偿由于有关区域的蒸发产生的能量损失。在从密封构件12的液体损失率为恒定的情况下,一旦启动就由每个加热器85供应基本相同的能量(因为一旦密封构件12经过,可以发现残留在衬底W上将要蒸发的液体量大致恒定)。可选择地,可以发现在特定区域中需要更多热量,如当密封构件12相对于衬底台WT改变方向时。可以进行作为特定衬底台所需路径和速率的函数的校准测量以确定操作加热器能量最有效的方法。
如图8所示,在密封构件12中的远程加热器86可以优选地定位于密封构件12的周围。这个设置使得要操作的加热器邻近于蒸发过程可以吸取最多热量的区域。布局选择在外径附近设置作为折衷以避开直接在气体密封27周围的区域,该气体密封27实际上已经被孔、管和灰尘占据。因为它们在距离衬底W一定距离操作,加热机械装置如那些基于辐射或热气喷射会是比较适合的。在密封构件12的基础上产生热表面是一个方法,通过该方法可以实施辐射源。这种器件与密封构件12的剩余部分的热隔离将会改善这种特征的性能。可选择地或附加地,可以使用红外灯泡。
如对于上述局部加热器85所设置的,可依据衬底台的移动方向来控制远程加热器86的能量。例如,可以设置其以从密封构件12的一侧提供比另一侧更多的热量。在冷却的一个方面,涉及到从密封构件12逃出的蒸发液体,可以设置在密封构件86的尾缘(浸渍液体在这里可能逃出)上的远程加热器86以发射比位于密封构件12(衬底W在这里仍然是干的)的前边缘上的那些远程加热器更高的热量。远程加热器86的效率可以应要求通过改变能量和/或在密封构件12的圆周周围的加热器86的宽度而改变。这个后者的参数可以改变,例如,通过依次地启动分段加热器86的不同段,或多个加热器86中的一个加热器86。
虽然显示嵌入在衬底台WT或密封构件12中,可以理解加热器85/86可以位于它们能够影响衬底W的温度的任何位置。例如,可以将辐射发射加热器定位在不同于衬底台WT和密封构件12的分离体中。在曝光前加热衬底W时,这可以发生在远离用于曝光的区域中,以更加容易地实施远程加热器86。
光刻设备也可以包括局部温度传感器60,在图8中说明的例子中该传感器嵌入到衬底台WT中。根据本发明的实施例,设置这些温度传感器60以测量衬底W的每个区的温度和/或由每个局部加热器85影响的衬底台/衬底固定器的相应区域。信息输入到衬底温度控制器110,其然后可以计算怎样控制局部加热器85和/或远程加热器86的输出,以减小在目标温度Tt和由局部温度传感器60测量的温度之间的差。优选地,在这个实施例中,可以为加热器85和/或86设置以具有除了固定输出的变化输出。在任何情况下,可以使用反馈控制器(例如PID)以优化会聚过程的效率。
调制由液体供应系统130供应的液体的温度也可以控制衬底W和/或衬底台/衬底固定器的温度。例如,可以加热浸渍液体至大于295K的控制温度。图5示出了本发明的实施例,包括设置浸渍液体温度控制器120以与液体供应系统130协作实施该功能。为了选择有效补偿蒸发热损失的浸渍液体温度,可以根据校准测量或根据从一个或多个温度传感器60的读数来实现浸渍液体的温度控制。在后一种情况中,可以控制浸渍液体温度控制器120的输出以最小化在目标温度Tt和由温度传感器60提供的温度之间的差,该会聚过程通过反馈控制器如PID控制器被控制。也就是说,存在单个温度传感器60时,浸渍液体温度控制器120把这一个温度读数与单个目标温度Tt比较。当存在多个温度传感器60时,浸渍液体温度控制器120把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度例如相应于衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,由此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。
调节由加压气体供应系统30供应的气体的温度也可以控制衬底W和/或衬底台/衬底固定器的温度。例如,加压气体可以加热到大于300K的控制温度。由于气体相对于液体有更低的比热,这里温度下限比上述的浸渍液体温度控制器120要求的更高。根据本发明的一个实施例,在300至320K的范围内的温度下提供加压气体。图5示出了本发明的实施例,包括设置的加压气体温度控制器140以结合加压气体供应系统30执行温度控制功能。可以关根据校准测量或根据从一个或者多个温度传感器60的读数来实现加压气体的温度控制。在后者的情况下,可以控制加压气体温度控制器140的输出以最小化在目标温度Tt和由温度传感器60提供的温度之间的差,会聚过程受反馈控制器控制,例如PID控制器。也就是说,存在单个温度传感器60时,加压气体控制器140把这一个温度读数与单个目标温度Tt比较。当存在多个温度传感器60时,加压气体控制器140把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度例如相应于衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,且由此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。
如上所讨论的,衬底加热需求具有位置相关性,该位置相关性至少部分由在衬底W上的密封构件12的路径决定。至少两种过程被认为对冷却过程有贡献:在衬底W和密封构件12之间的缝隙22中的液体的蒸发,和如果曝露区域是湿的,在曝光后残留在衬底W上的残留液体的蒸发。密封构件12的冷却能量(即从第一过程冷却)在时间上是恒定的,虽然在其它因素中它依赖密封构件12相对于衬底W的速度。在其它因素中第二过程的冷却能量依赖于留在衬底W上的液体的量。需要被补偿的冷却量通常是两种过程的复变函数,导致具有复合位置相关性的冷却能量。在衬底W中的热导率也是一个重要因素,由于在衬底W的曝露部分中的冷却,即使在密封构件12到达它们之前,就意味着衬底W的未曝露区域将开始冷却。一次进行一个过程,然而,可以进行估计。例如,仅仅考虑从衬底W上的残留浸渍液体蒸发的直接冷却,设置衬底曝光达大约30秒,在最后曝光和约5秒钟的衬底卸载之间的时间内,和如在图7中所标示的曝光顺序150,期望通过这个机械装置在第一曝光的位置160处比最后曝光的位置170多抽取大约20%至30%的热量。在上述的特定实施例中,包括衬底加热器85/86,通过延迟沿着密封构件12的路径的独立加热器的启动来考虑这个效果。类似效果也可以通过设置衬底加热器以在衬底W上的目标区域(其中设置投影系统以在第一时间投影已构图辐射束)和渐进地在衬底W上的目标区域处提供更低的热量(其中设置投影系统PL以在随后的时间中投影已构图辐射束)提供更高的热量来实现。这个设置可以变化以依赖于要被补偿的特殊的设置的冷却特性来给出更多复合位置相关的加热。
虽然技术上有可能在衬底W上的许多不同位置处定位多个局部加热器85,但既实际又有效而且显著减小花费的方法是提供更有限数量的加热器并把它们基本沿着密封构件12的路径设置。图7中描述了这种类型的设置。这里,设置拉长衬底加热器85,如热灯丝,使得一个独立的可控制元件与在衬底W上的密封构件12的主要扫描或分档轴181-187(每个对应于一行管芯)之一对准。在示出的这个例子中,设置每个热灯丝85以在单位长度发射恒定热量,并设置其以使得与主要扫描或分挡轴187对准的热灯丝具有最大的发热量,其对准186下一个最高的发热量等,其渐进地减小直到到达与主要扫描或分档轴181对应的最终的热灯丝,其分配最低的发热量。
其中在不同位置处(例如在每个衬底100和700之间)提供大量的局部加热器,优选尽可能靠近衬底W表面的定位加热器。然而在图7和8中所示的设置中,提供了很少的加热器,优选基本更远地定位加热器以使得每个加热器将会具有在衬底W的更大部分上的有效控制。
图9示出了其中提供连续热灯丝加热器85以加热衬底W的设置。在示出的例子中,设置热灯丝加热器85以在一定程度上跟随密封构件12的路径它具有基本平行于密封构件12(如图7中所示)的主扫描轴181-187(即垂直于扫描方向)的更长部分195。然而,设置在这些更长部件之间的节距191-193以朝向衬底W的底端变得越来越短,如图所示,其对应于其中衬底W将要被首先曝光的的区域(即节距191>节距192>节距193)。这意味着热灯丝加热器85能给出最简单和最坚固的结构(其中单位长度的发热量是恒定的,实际上可以对应于相等截面的伸长电阻元件),并仍然提供朝向其中的衬底将首先曝光的的区域变大的发热量,其是需要用于冷却效果最大修正的衬底W的区域。作为可选择的/或另外的设置,可以设置热灯丝加热器85以提供单位长度的发热量,该发热量沿着其长度(例如,在所示方向上朝衬底W的底端增加)改变。在热灯丝通过与经过其长度的电流相关的电力消散操作的情况下,可以通过改变截面(例如,提供变得需要更多能量的更薄的热灯丝)或通过改变使用的材料而得到变化的发热量。在后者的设置中,必须当心以避开在不同成分的材料之间制得的结处的高电阻的点。
图10和图11示出了其中衬底加热器包括独立可控加热器85的系统的设置。在图10中示出的实施例中,设置独立可控制的加热器85作为基本平行于主扫描轴181-187(即垂直于扫描方向)的延伸构件,并限制独立可控制加热器85以在衬底W的几何界限内部加热。然而,加热器的可选择设置也应当可以与本发明的实施例兼容,只要它们可以被独立地控制即可。加热阵列控制器180通过地址总线控制每个独立可控加热器85。加热器阵列控制器180依次地从预定算法190接收输入,该算法描述了应当怎样控制每个独立的加热器的发热量作为时间的函数(和由此作为密封构件12相对于在考虑中的独立加热器的位置的函数)。适当算法的使用可以从校准测量和/或计算(例如,在时间量的基础上,预期残留在衬底W上的液体的预期的量)。这个方法具有不需要温度传感器的优点,其大大简化了构造。
浸渍液体的蒸发也可以导致密封构件12自身的冷却。例如通过冷却浸渍液体和/或加压气体,通过对流,和/或通过辐射效应,这个效应反过来导致了衬底W的冷却。根据本发明的一个方面,提供密封构件温度稳定器以通过这个机械装置减小衬底W的冷却。
具体涉及的区域位于真空排气入口17的周围和真空排气管14内。浸渍液体存在于这些区域中,当蒸汽浓度通过真空系统保持得较低(蒸发液体被立即用泵抽走)时,特别地产生净蒸发,。由于这个机械装置,可以控制密封构件12的整体冷却的一种方式在图12中进行了描述,其中可以将由热隔离套管210影响的密封构件温度稳定器设置在真空排气管14周围。热隔离套管210优选由在光刻设备预期的操作温度下具有低导热率的材料形成。通常目的的塑料,PTFE等是用作热隔离套管210的适当材料。可选择地或另外地,密封构件本身整体地或部分地由热绝缘材料构成。这个方法比仅具有热隔离套管210更有效和更容易实施,虽然可以限制选择具有适当的机械特性的材料。
另外和/或可选择的方法是提供一个专用的密封构件加热器220,设置其以对由浸渍液体蒸发冷却的密封构件12的那些区域提供补偿加热。虽然在一方面直接加热密封构件12本身,但是因此,间接地加热衬底W,可以设置密封构件加热器220以直接加热衬底W。这可以通过使用辐射发射加热器如红外加热器得到,该红外加热器在前文中的可能的衬底加热器85/88中已经描述过。在图12中所示的设置中,把密封构件加热器220设置在真空排气入口周围并沿着在垂直于密封构件12的轴的平面(向所示方向上的页里面)中的真空排气进口的几何尺寸。
密封构件加热器220的发热量根据从许多可能源的一个或多个入口被密封构件温度稳定器控制。例如,密封构件加热器能量可以根据在真空排气管14中的流速调节,其可以通过加压气体供应系统30提供。这里,希望更高的发热量将需要更高的流速。
密封构件加热器220也可以参考衬底W和/或衬底台/衬底固定器的温度被控制,其可以通过一个或更多的温度传感器60在一个或更多位置被测量。如前述实施例中,可以采用反馈控制器以减小在测量的衬底温度和一个或多个预定义的目标温度Tt之间的差。
也可以响应于通过加压气体出口18供应的气体的相对湿度来控制密封构件加热器220。这个信息可以通过湿度传感器提供,其可以设置位于密封构件内或作为加压气体供应系统30的一部分(在图13中说明了后一种情况)。
最后,密封构件温度稳定器200可以参考需要修正的校准表230来控制密封构件加热器220的输出,从密封构件温度的测量建立作为下列一个或多个的函数:衬底温度,加压气体流速,加压气体流温度,真空排气流速,真空排气温度,加压气体相对湿度和浸渍液体温度。虽然必须承担校准测量,但是这个方法大大地减小了在运送给顾客的最终光刻设备中的结合额外功能元件的需要。
当考虑到与冷却的密封构件12相关的衬底冷却问题时,密封构件12的最重要的区域是最靠近和/或面对衬底W的区域。根据在图14中描述的本发明的实施例,密封构件12由在最靠近衬底W的密封构件12的部分中的层400中分布的沟道网络构成。设置密封构件温度稳定器200以控制热交换液体供应系统410,该系统以控制的温度和/或流速提供热交换液体到所述网络。如前面实施例所述,能够提供反馈控制器从而以更有效的方式帮助控制衬底温度。在这种情况下,可以调节由液体供应系统400提供的热交换液体的温度和/或流速,以减小在一个或更多如通过局部温度传感器60系统所测量的衬底温度和/或衬底台温度与目标温度Tt之间的差。也就是说,存在单个温度传感器60时,液体供应系统400把这一个温度读数与单个目标温度Tt比较,当存在多个温度传感器60时,液体供应系统400把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度相应于衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,因此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。可以参考需要校正的校准表230来控制液体的温度和/或流速,从密封构件温度的测量建立作为下列一个或多个的函数:衬底温度,加压气体流速,加压气体流温度,真空排气流速,真空排气温度,加压气体相对湿度和浸渍液体温度。虽然必须承担校准测量,但是这个方法大大地减小了在运送给顾客的最终光刻设备中的结合额外功能元件的需要。
依靠位于密封构件12中的机械装置的上述这些实施例的总的优点在于其可以在不影响衬底台WT(对于液体基的或电系统都是成立的)的动力特性的情况下实施。密封构件温度条件也不仅改善了在衬底W中短期(管芯到管芯)的温度变化,也改善了从一个衬底W到下一个衬底的长期温度变化。更通常地,与密封构件改善相关的开发成本(和开发时间)有可能显著低于包括衬底台WT的那些。除了与控制衬底台WT的动力相关的问题之外,有利于在密封构件12上而不是衬底台WT上的工作的另一因素涉及平坦需求,其对于密封构件12缓和了大约是100倍之多。这可以是很重要的,例如,沟道被机械加工到密封构件12中。随着热交换液体的压力的变化(由于在密封构件的外表面和内沟道边缘之间残留的材料的窄的宽度的减小的硬度),靠近表面(在那里它们是最有效的)引入孔倾向于引入表面不规则(凸出部分)。
图15至18描述了包括液体运输沟道网络的设置,这次位于衬底台WT中靠近衬底W的位置。设置沟道的布局以控制衬底W的温度,其可能受到来自其顶部表面的浸渍液体蒸发不利地影响。
在本实施例中,提供用于控制热交换液体温度和流速的衬底台热交换液体控制器510,该热交换液体流过沟道网络500。
如前面实施例所述,能够提供反馈控制器从而以更有效的方式帮助控制衬底温度。在这种情况下,可以调节衬底台热交换液体的温度和/或流速,以减小在一个或更多通过局部温度传感器60的系统测量的衬底温度和/或衬底台/衬底固定器温度与目标温度Tt之间的差。
如果局部衬底加热器,如热灯丝也被包括以实施“推挽式的”的温度控制原理,则该设置可以特别有效率地工作。根据这个实施例,衬底温度控制器520控制衬底加热器控制器430和衬底台热交换液体控制器510的操作。可以包括反馈控制器作为衬底温度控制器520的一部分,以最小化在衬底温度和目标温度Tt之间的差,其中衬底温度如通过局部温度传感器60在衬底W和/或衬底台/衬底固定器上的一个或者多个位置进行测量。也就是说,存在单个温度传感器60时,衬底温度控制器520把这一个温度读数与单个目标温度Tt比较。当存在多个温度传感器60时,衬底温度控制器520把多个读数和单个目标温度Tt比较,或与多个目标温度Tt比较,该多个目标温度相应于例如衬底W的特殊区域,和/或衬底台/衬底固定器的相应区域,因此相应于温度传感器读数(其内部可以使用平均读数)的特殊组。可选择地,如果热流可以计算为密封构件12相对于衬底W的速度和位置的函数,则可以使用前馈回路。根据“推挽式的”原理,热交换液体控制器510可以设置成在低于目标温度Tt的温度下提供液体,有效地起到冷却衬底W的作用。可以是如上所述的电阻加热器(热灯丝)的局部衬底加热器对于突然的蒸发率的增加比热交换液体控制器反应得更快。另外它们的反应速度通过设定热交换液体控制器的冷却作用而改善。并且,应该发生衬底温度的过调节,然后供应冷却的热交换液体,将比没有额外的冷却机械装置提供的情况更迅速地回复到平衡。
为了机械加工的简便(在其它原因中),沟道500的网络包括基本在衬底台的平面内取向的垂直孔(其可以是钻孔的)的阵列,如图16中所述。这些垂直孔的末端必须连接并接近不透水的。这可以通过在这些孔中的插塞完成。然而,包括4mm孔和8mm节距的典型的设置中,可能需要大于80个插塞。除了需要建立许多独立元件的这个问题之外,存在这种设置中存在产生闭塞不通的端部的可能性,其中液体完全无法到达或液体无法循环。根据本发明的实施例,通过在衬底台WT的边缘提供循环沟槽420(如图16至18中所示)克服了这些问题,在衬底台内部所有的通孔可以整齐地连接,而没有闭塞不通的端部。这个设置具有另一优点在于:可以使得液体更靠近衬底台WT的边缘循环。该循环沟槽420可以使用更小数量的元件密封。在所示实施例中,使用密封环410,为了安装的简便其可以分成两个元件并通过胶或一些其它的标准粘结技术粘附到沟槽。改善的液体分布为衬底台WT提供了更均匀和受控制的冷却,使得热量管理更有效并改善了覆盖。
在上述实施例中,已经示出了所包括的局部衬底温度传感器60嵌入在靠近衬底W的衬底台WT中。这些传感器可以基于多个原理工作,这些原理通常以校准测量和可重复的温度相关属性(如电阻)为基础。虽然所示的嵌入在衬底中,局部温度传感器也可以定位在如图19中所示的密封构件12中。由于跨过缝隙22的热连接相对较差(不像在衬底W和嵌入在衬底台WT中的传感器之间,其中更容易设置高的导热率),优选位于密封构件12内的传感器60通过分析从衬底W发射的辐射来操作。根据本发明的实施例,提供这个类型的传感器60,其包括能够确定在波长范围上的俘获的辐射的强度谱的辐射俘获和分析器件。通常,如果选择更广范围的波长,可以最精确地确定温度。然而,对于在本申请中的感兴趣的温度,选择包含和/或在红外辐射波段中间的受限的波长范围是节约成本的。
图20示出了本发明的实施例,其中局部微小温度控制系统600建立在衬底台WT中。在所示的例子中,这些控制系统600定位在衬底台WT(斑点顶(burltops)640)的上升部位的顶附近,其反过来与衬底W接触。每个微型控制系统600包括微型温度传感器610,其可以作为微能量集成电路温度传感器来实现,和微型加热器620,其可以作为集成电路加热器(有阻力地分散热量)来实现。设置微型控制系统600以使得启动加热器元件620以当如由微型温度传感器610测量的衬底局部温度下降到预定阈值以下时发热。一旦温度升高以至于它超过了阈值,设置微型控制系统以关闭微型加热器。由于控制系统600的微型尺寸和不需要分开的外部控制系统以控制加热器620,因此这个设置具有能够提供高度局域化的温度控制的优点。将需要仅仅两条导线(连接线630)来为在衬底台WT中的所有微型控制系统600提供电压。在斑点顶640中的微型温度传感器600的建立可以通过从硅晶片形成衬底台WT来进行。可以使用微制造技术如MEMS(微机电系统)和CMOS(互补金属氧化物半导体)技术以提供标准衬底台WT构造的完全复制,同时也在每个斑点顶640上加上集成电路温度传感器/加热器610/620,并提供将它们电连接到外部(连接630)的方法。
图21描述了包括投影系统控制器710的本发明的实施例,设置以根据由温度传感器60测量的衬底和/或衬底台温度来调节已构图的辐射束的属性。在所示实施例中,多个温度传感器60嵌入在衬底台WT中。然而,它也应该在本发明的范围内,以在别处提供温度传感器,例如在密封构件12内,和/或仅仅提供单个温度传感器。
如上所述,在衬底W上的浸渍液体的蒸发可以导致衬底冷却,所得的形变导致覆盖误差,散焦,色差等。根据本实施例,投影系统控制器710能够调节已构图的投影束的参数,如它的整体缩放比例,定位偏移量等,以对衬底W的热感应形变进行补偿。作为简单的例子,如果投影系统控制器710接收来自温度传感器60的输入,表明衬底W在第一近似下均匀地在目标温度下,可以配置以通过因子缩放已构图的投影束,以减小在冷却的衬底W上产生的图像尺寸。衬底W和/或衬底台WT的温度通过多个温度传感器60测量以获得温度曲线时,为了减小误差如层叠误差,散焦和色差,可以通过投影系统控制器710进行更复杂的修正。这个方法对响应温度的突然改变提供了快速的方法,而不需要在密封构件12或衬底台WT中结合加热元件,其执行和/或与衬底台WT的动态性能干扰是昂贵的。补偿的这个形式具有不需要依赖特殊的冷却机制工作的附加优点,并且可应用于在由于除了浸渍液体蒸发之外的处理对衬底W温度的改变起到了至少一定作用的情况。
在图21中所示的实施例中,也提供了热感应形变校准器以把从温度传感器60得到的读数传送到衬底W的预计形变。这通过首先导出衬底W的温度曲线,然后利用已知的衬底W的例如衬底材料的热膨胀系数的热属性来得到以计算热感应形变。对于第一近似,衬底W部分的相对形变与该部分的温度和参考操作温度(与零相对形变对应)之间的温度差成正比。在所示实施例中,温度传感器60嵌入在衬底台WT中,以使得需要进行另外的校准以从温度传感器读数中导出衬底温度曲线。在下面的这个和本发明的其它实施例描述了这个可以怎样得到。
根据上述的几个实施例衬底W的温度测量通过定位在衬底台WT中的温度传感器60确定。因为对于定位传感器存在相对大的空间,这个设置具有结构上的优点,它们可以坚固而精确地定位,并且它们可以通过任何需要的电连接更容易地工作。如前面所讨论的,在距离在衬底台WT中的衬底W的距离定位传感器也为每个传感器60采用更大的衬底区域提供了有效的手段。然而,应当理解直接在温度传感器60周围的材料的温度可以给出衬底W温度的近似值,有可能通过下述的进一步分析得到衬底温度曲线的更加精确的图。这个分析可以作为任何上述的实施例的一部分实施,该实施例包括位于衬底台WT内的温度传感器60。
假定从衬底表面到其中具有温度传感器60的衬底台WT中的水平面的热传输可以被描述为:
T ∞ chuck - T current chuck = f ( Δ T substrate ) ,
其中,T chuck是衬底W的初始温度,Tcurrent chuck是由嵌入到衬底台WT中的传感器60所测量的衬底的区域的当前温度,而ΔTsubstrate是用于正在讨论的区域的衬底级别处的温度差。在该关系的基础上可以得到作为一个整体(如果需要)的衬底区域温度和用于衬底的温度曲线。例如,可以使用下面的模型:
T ∞ chuck - T current chuck = k . e - Δ T substrate / τ ,
其后跟随着:
Δ T substrate = - τ ln ( ( T ∞ chuck - T current chuck ) / k ) ,
其提供了用于在仅仅基于参数τ和k的衬底级别处的温度差的表达,其反过来能从测试数据估计。
可以使用类似的分析以从红外温度传感信号导出衬底温度的更好的测量。这里,问题是硅(其经常用作衬底材料)对于红外线是透明的,因此定位在在衬底W上“往下看”的密封构件12中的红外传感器将会收到从衬底W和直接在它下面的衬底台WT发出的辐射的混合。
如上所述,由于密封构件12相对于衬底W移动,在密封构件12的尾迹中,在衬底W的顶部表面上会留下液体的薄膜。如果不采取足够有效的措施,这些液体的蒸发会从衬底W和/或衬底台WT抽取热量。获得的在衬底W和/或衬底台WT的温度中的降低能导致收缩,其反过来会导致覆盖误差,要生产的集成电路的性能/分辨率/或和产量的损失的总的损失。以上讨论了对这个问题的几个解决方法,包括提供衬底加热沟道网络和/或独立控制的电加热器的阵列。然而,以热量仅仅在发生蒸发的地方产生的这种方式调整这些加热机械装置的操作是很困难的。因此,很难确保在衬底W内的温度梯度是最小化的。
根据本发明的实施例,提供具有使用微波辐射加热残留在密封构件12的尾迹中的浸渍液体的装置的光刻设备。微波辐射的频率可调以主要直接加热浸渍液体,而不与周围设备的元件(如衬底台WT,衬底W,密封构件12等)耦合。因此发热量能直接精确地施加到需要的地方,而温度梯度能够被最小化。大体上,需要蒸发液体的热量可以完全由微波源提供,以使得不从衬底W吸取热量。
图22示出了示例设置,包括微波源800,设置以提供用于加热使用的浸渍液体的微波辐射,和微波容器罩810,设计以在感兴趣的区域内包含微波辐射(对于保护区域,例如浸渍液体容器25,在那里加热是不期望的)。在所示的实施例中,感兴趣的区域基本覆盖了在密封构件12周围的衬底W的环形区域。在密封构件12相对于衬底台WT移动得足够远以便该液体将会留在暴露在微波下的区域之前,可以选择由微波容器罩810覆盖的区域尺寸足够大,以至于微波辐射能完全蒸发在密封构件12的尾迹中残留的浸渍液体。微波容器罩810的尺寸将会因此是保留在容器罩810中的微波辐射强度、密封构件12通过衬底台WT的速度和期望残留在密封构件12的尾迹中的液体量的函数。
微波容器罩810可以由金属材料形成,具有确保微波的基本全反射的适合尺寸的开口。在微波容器罩810内的微波辐射的传播由箭头830示意性示出。可以在校准测量的基础上选择微波源800的功率,其确定在衬底上残留的液体被加热的速率。例如,为了确定哪个电源导致最小的覆盖误差,对许多不同的微波源功率进行了测试。可选择地,可以提供温度传感器60并经过数据连接850结合到反馈回路中。当密封构件12的速度随着时间改变和/或当从密封构件12逃出的浸渍液体的量改变时这个设置是有优势的。当微波加热装置结合其他温度补偿方法使用时,反馈机制也是有用的,其有效地随着时间改变。如上所述地反馈设置中,这里的反馈回路可以包括调节微波源800的功率,以便由温度传感器60测量的温度朝一个或多个目标温度聚合。可以预计,微波源800将会发射微波波长辐射。然而,如果最有效地耦合所使用的浸渍液体的辐射的波长正好在与微波有关的通常波长范围之外,则可以理解,源800适合于发射适当波长的辐射(例如在红外或者可见光中)。
图23示出了根据在衬底温度中的空间变化能够调节热量输出的空间变化,而不需要温度传感器和/或外部控制系统的复杂设置的衬底加热器设置。这可以通过形成靠近衬底台WT表面的导电带900而实现,与衬底W有良好的热接触。例如,导电带900可以通过在衬底台WT的顶表面上涂敷导电材料而形成。在所示的实施例中,提供外部电流源920(未示出),以使得相等的电流910经过每个导电带900。根据第一变化,提供相同电流经过每个导电带900的单个电流源920。可选择地,可以提供多个电流源920,设置其以使得不同的电流经过导电带900。在另一种情况下,经过每个导电带的电流保持恒定,以使得单位长度的电阻发热产生的热率仅仅依赖于形成导电带900的材料的局部电阻。根据本实施例,选择的材料具有负温度相关性(即温度的增加导致电阻减小),优选具有强烈的负温度相关性,以使得在每个导电带900的较冷区域(其具有较高的电阻)中产生比相对较热的区域中产生明显更多的热量。在这种情况下,更多的热量自然地导入到那些最需要加热的区域,因此减小了温度梯度。特别地,可以改变电流910直到在更冷区域和更热区域之间的发热量的差基本补偿了由在衬底W的表面上的液体蒸发带走的热量(其如上所述,期望对衬底温度的非均匀性作出了主要贡献)。在导电带中的一个的任何给定段产生的热量期望与由电流乘以该段的电阻的平方成正比。
在上述实施例中,直接使用导电带900的温度相关电阻率以提供温度相关衬底,该衬底通过使用本身作为加热器的导电带加热。根据本发明的可选择的实施例,可以使用导电带900作为温度传感器,可以与他们作为加热元件的功能相结合。图24示出了根据这个实施例的设置。再一次,电流910经过导电带900,其设置成具有温度相关电阻率。优选地,如前所述,温度相关电阻是强烈负的,但较弱的温度相关和/或正的温度相关也是可以容忍的。根据这个实施例,提供分开的局部衬底加热器930,其通过局域化的电源/放大器950为每一个提供能量。供给每个衬底加热器930的电源通过参考在导电带900的段中的局部电阻率的测量来控制,该导电带900最靠近讨论中的衬底加热器930。例如可以通过测量在最近的一对电极940之间的电势差而得到这个,如图24中所示。如前所述,导电带900的局部电阻率是局部温度的函数。
可以使用校准测量以确定在电阻率和衬底W的局部温度之间的关系,可以设置电源/放大器950以在测量的电阻率和与所希望温度对应的电阻率之间的差别的基础上调节衬底加热器930的功率。
上述设置具有不被导电带900的电阻率的温度相关性的强度限制的优点,并能够主要提供更强烈的空间相关加热能量给衬底W。提供大量成对的电源/放大器950和衬底加热器930允许高的空间分辨率。另外,因为提供给衬底加热器930的加热能量通过导电带900段附近的电阻率的简单测量确定,对于在衬底台不需要平面处的复杂且庞大电子设备或是外部提供的复杂控制电子设备。由电源/放大器950提供的放大因子(或放大函数:描述局部加热器功率应该怎样随着从所希望温度的偏移量变化而变化)可以参考校准测量预先被确定,并能在硬件上提供。
图25示出了本发明的实施例,其中衬底W由感应加热器加热。这个方法具有主要在需要加热的地方提供加热的优点(例如在密封构件12的周围)。感应源960启动以通过与形成在衬底台WT内部的感应元件970耦合来提供感应加热能量,并优选处于能与衬底W良好热接触的位置。感应源960的功率输出反过来被感应控制器980控制。感应控制器980可以根据预先设定的路线改变感应源960的能量(例如,为了主要加热密封构件12最近通过其上的衬底W的区域)。可以提供多个空间分开的感应源和/或元件:例如,每个可配置以提供相同或不同的加热量,以便可以以减小温度梯度的方式为衬底W提供热量。可选择地,感应控制器980可以使用反馈模型。这可以配置以改变感应源960的输出功率,以使得由一个或多个温度传感器60所测量的温度与一个或多个对应的目标温度会聚。加热衬底台WT的感应加热的使用具有另外的优点,其在于仅仅需要对衬底台WT(例如加入感应元件970)作少量的改变。因此,衬底台WT的机械操作不会被显著地干扰。感应源960从感应元件970机械分离的事实是有优势的,也从可升级性来说:每个元件在较大程度上适合于独立于其他元件。
如上所述,减小由浸渍液体从衬底W表面蒸发引起的冷却的一个方法,是为气体密封27提供潮湿气体(潮湿气体在广义上理解为包含很大一部分以蒸汽形式存在的浸渍液体的气体)。在衬底W上的气体包含更高比例的浸渍液体蒸汽,在从衬底W的液体蒸发和液体蒸汽凝结到衬底W之间建立了动态平衡,以至于净蒸发率低于如果在衬底W上方的气体是干燥的情况(即不包含任何大量的浸渍液体蒸汽)。为了这个机制以可重复和恒定的方式工作,有必要为使得供应到气体密封27的气体潮湿提供可靠的方法。根据实施例,如在图26中示意性所示,为了这个目的提供了增湿部件1000。气体从干净气体源(例如)经过导管1005到蒸发容器1010输入到增湿部件1000中。蒸发容器1010包括内部加热元件,为了产生浸渍液体蒸汽该内部加热元件加热一个或者多个浸渍液体容器。由此产生的浸渍液体蒸汽与经过导管1005提供的干净气体混合,并从蒸发容器1010经过导管1015输出。部分饱和的气体然后输入到凝结容器1020中(也称作“冷却容器”),其中它冷却到气体和浸渍液体蒸汽的混合物达到过饱和并且浸渍液体从混合物中凝结出来的程度。以气体形式残留的是在凝结容器1020的工作温度下非常接近或正好100%饱和的浸渍液体蒸汽。这个100%的饱和气体供应然后经过导管1025输入到混合室1040中,在这里它可以与以控制的比例从干燥气体源1030经导管1035输入的干燥气体源混合,以便使得输出气体经过导管1045以控制的温度和/或控制的饱和度输出,例如其可以然后供应给气体密封27。
用于增湿气体的可选择的系统是将它通过所谓的起泡器,其是浸渍在包含液体和液体蒸汽的容器中的多孔器件。随着它的通过气体变得逐渐的饱和。在这个设置中控制产生的气体的饱和度或湿度是困难的。流速、容器温度或液面的变化都会影响离开该系统的气体中保留的液体蒸汽的量。特别地,使用这个方法很难达到100%饱和。优化这样系统的性能可以得到相对复杂的装置设计,例如保证在液体和气体之间的足够和可重复的接触。
如上所述,从衬底W的浸渍液体的蒸发对于光刻设备的性能有不利效果。在液体中的污染可以导致衬底W上的颗粒污染(也称作水污染)。因为冷却效应,蒸发也可以不利地影响覆盖性能、聚焦和光学性能。可以使用在气体密封27中的增湿气体以最小化蒸发。根据一个方法,需要100%的饱和气体以达到从衬底W的表面的零净蒸发。上面已经讨论了以可控制的方式产生100%饱和气体的实施例。然而,由于气体地膨胀,随着它从气体密封27输出,气体的相对湿度不可避免地降低了。实际上,这可以意味着当气体在衬底W的工作温度导出时(例如22℃),接近使用最大可达到的湿度可以基本低于100%,例如约60%。如果小于100%相对湿度的气体保留在衬底表面上方,就会发生一定程度的净蒸发。
根据在图27中简要说明的实施例,在气体离开气体密封27并已经膨胀后,气体的湿度通过增加供应到气体密封的气体的温度来被控制。
在这种情况下,离开气体密封27的热气体突然暴露在更低温度的环境中(即光刻设备的正常工作温度)并冷却。冷却倾向于增加饱和度或相对湿度。可以控制整体温度下降以对气体的膨胀和饱和率的相关减小作出补偿。
对于保持在22℃的工作温度并具有供应到气体密封27的接近饱和(例如90-100%的相对湿度)的气体的典型系统,典型的密封构件压力下降0.4巴,在1和5K之间的温度偏移量对于在气体密封27外残留在衬底W上方的气体中保持接近100%的相对湿度是足够的。需要对系统认真的设计以在气体离开气体密封27之前阻止高度饱和的气体的凝结。例如,经过密封构件12导引到气体密封27的导管壁应当是热绝缘的,以把热气体与冷却的密封构件12隔开并防止在导管壁上凝结。
图27,如上所述,示出了用于控制供应到气体密封27的气体温度的设置,其可以位于例如在增湿部件1000和气体密封27之间。相关的冷却饱和气体通过导管1045供应到热交换器1100,其通过由加热器1110提供的热交换液体的热交换来加热饱和气体到目标温度。加热器1110在温度T1下通过输入线1120提供热交换液体,并在温度T2下接收经过输入管1130的热交换液体,其中T1大于T2。例如,加热器1110可以通过Peltier加热器对热交换液体加热。根据示例设置,提供Peltier加热器,其工作在500瓦至1500瓦的范围内以产生温度控制在27℃设定点精确到±0.01℃的水。
根据在图28中简要描述的本发明的实施例,使用增湿柜1200产生潮湿气体的高纯气流,其中几个平行的蒸发单元1220用来蒸发液体。产生的潮湿气体的温度通过由导管1205为每个蒸发器1220提供温度受控制的热交换液体流而被控制。可以通过热交换液体源1110提供热交换液体,也可以使用它以控制在如上所述的供给气体密封27之前的饱和气体的温度。可选择地,可以提供分开的热交换液体源。在经过热交换器1100到达密封构件27之前,湿度和温度受控制的气体经过憎水过滤器1210到达输出阀1250。
改变或甚至停止来自增湿柜1200的潮湿气流改变了平衡,在潮湿气流以良好地受控温度和饱和度再次供应到气体密封27之前,可能需要很长的稳定时间。然而,由于由密封构件12和气体密封27实施的任务的动态特性,气体密封27需要的气体速率可以相当大地随着时间变化:例如,可能短时间内存在气体密封27不工作的情况。除了调节系统使得它能更快速稳定之外,其需要牢固且复杂的额外装置,本实施例包括可变的通风系统1240,其允许气体以可控制速率通风到外部容器或排出。该通风系统1240可以设置以使得从增湿柜1200的流速保持恒定。这实际上通过确保经过主阀1250和通风系统1240的总的流速保持恒定可以实现。这可以通过设置通风系统1240以具有对应于压力计1230的读数的流动阻抗而实施,其相应于由增湿柜1200“感觉”的背压。特别的,这个压力应该保持恒定。因为可以避免对在不同的气体密封27的操作阶段之间的稳定时间的需要,所以这个设置不仅仅提供了更好的稳定性,也提供了更高生产量。
所有以上的特点能以任何组合结合,并能应用到与包括在上面的背景技术部分提到的那些的所有类型的液体供应系统相关的地方。
虽然在本文中作出了对在IC制造中光刻设备使用的具体描述,但是应该理解这里描述的光刻设备可以具有其他应用,如集成光学系统的制造,用于磁领域存储器的图案的引导和检测,平板显示器,液晶显示器(LCD),薄膜磁头等。本领域的技术人员应当清楚在可选择的应用的前文中,这里对术语“晶片”或“管芯”的任何使用被认为分别是更通用术语“衬底”或“目标部分”的同义词。在曝光前或曝光后,这里的衬底可以在例如轨迹(典型的涂敷抗蚀剂层到衬底并显影曝光的抗蚀剂的工具)中、计量工具和/或观察工具中被加工。可应用的,这里的公开内容可以应用到这样的或其他的衬底加工工具。并且,衬底可以不止加工一次,例如为了建立多层IC,以使得这里使用的术语衬底也可以指已经包含多个已加工层的衬底。
虽然上面已经对利用光刻技术的上下文中的本发明实施例作了具体参考,可以理解本发明也可以应用到其他应用中,例如印刷光刻,且上下文允许的,并不局限于光刻。在印刷光刻中,构图器件中的形状限定了在衬底上产生的图案。构图器件的形状可以被压印到提供到衬底的抗蚀剂层中,在衬底上抗蚀剂通过施加电磁辐射、热、压力或者它们的组合来硬化。在抗蚀剂硬化后,构图器件从抗蚀剂移开并在其中留下图案。
这里使用的术语“辐射”和“束”包括了电磁辐射的所有类型,包括紫外(UV)辐射(即具有约365、248、193、157或126nm的波长)和超紫外(EUV)辐射(例如具有5-20nm范围内的波长),和粒子束,如离子束或电子束。
术语“透镜”,本文中允许其指代任何一种或多种类型光学元件的组合,包括折射、反射、磁、电磁和静电光学元件。
由于上面已经描述了本发明的具体实施例,应当理解除了所述之外,本发明也能实施。例如,本发明可以采用包含一个或多个描述了上面公开的方法的机器可读指令序列的计算机程序的形式,或具有这样的计算机程序存储在其中的数据存储媒介(例如半导体存储器,磁或光盘)。
本发明可以应用到任何浸渍光刻设备,特别是但不是排他性的,可以应用到上述的那些类型。
上面的描述倾向于是说明性的,而不是限制性的。因此,对于本领域的技术人员可以对所述的本发明作出修改,而不超出下面的权利要求书的范围。

Claims (63)

1、一种光刻设备,包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
将已构图的辐射束投影到衬底的目标部分的投影系统;
用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
在投影系统的所述最后元件和所述衬底之间的间隙基本包含所述液体的密封构件;和
控制由所述液体供应系统提供的液体蒸发的净速率的液体蒸发控制器。
2、如权利要求1所述的光刻设备,进一步包括连接到气体源的气体密封,其控制通过所述密封构件的边界的一侧面上和所述衬底的第二侧面上的缝隙从所述密封构件逃出的液体的量,其中所述液体蒸发控制器包括与所述气体源相互作用以便为气体提供大于10%的受控制的相对湿度的气体湿度控制器。
3、如权利要求2所述的光刻设备,其中所述气体湿度控制器被设置成以恒定的流速产生湿度受控的气体流,并且所述气体源包括气体密封流速控制器,其被设置成接收来自所述湿度控制器的恒定气流,并通过选择性地排出由所述湿度控制器提供的恒定气流的一部分到外部容器来改变气体流速。
4、如权利要求2所述的光刻设备,其中所述湿度控制器包括使气体增湿到受控程度的增湿部件,所述增湿部件包括:
接收相对干躁的气体流并利用从至少一个槽蒸发的液体蒸汽至少部分地增湿所述气体流的蒸发容器;和
冷却容器,被控制在基本低于蒸发容器的温度的温度,并接收和冷却所述至少部分潮湿的气体流以得到完全饱和的气体流。
5、如权利要求4所述的光刻设备,其中所述增湿部件进一步包括可连接到所述凝结容器的饱和气体输出的干躁气体源,其中所述气体湿度控制器能调节干躁气体与从所述凝结容器输出的饱和气体流混合的比例,以得到具有受控制的相对湿度的气体流。
6、如权利要求2所述的光刻设备,其中所述气体源包括与所述气体源相互作用以控制供应给所述气体密封的气体的温度的气体温度控制器,其中所述气体在进入密封之前的温度设置成比衬底的平均温度高。
7、如权利要求6所述的光刻设备,其中所述气体在进入气体密封之前的温度设置在高于衬底的平均温度的1和5K之间。
8、如权利要求6所述的光刻设备,其中供应到密封的所述潮湿气体的温度在该气体气体密封中膨胀后达到所希望的潮湿程度。
9、如权利要求2所述的光刻设备,其中所述气体源提供大于40%的相对湿度的气体。
10、根据权利要求2的光刻设备,进一步包括:
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分处的温度,其中
所述湿度控制器能够调节由所述气体源提供的气体的相对湿度,以减小在由所述至少一个温度传感器测量的温度和至少一个目标温度之间的差。
11、根据权利要求1的光刻设备,其中所述蒸发控制器包括向所述密封构件的外部区域提供超过10%的受控制的相对湿度的气体的气体簇射出口,该密封构件在所述衬底和所述投影系统的最后元件之间。
12、根据权利要求11的光刻设备,其中所述气体簇射出口被设置成提供在40%至50%范围内的相对湿度的气体。
13、根据权利要求11的光刻设备,进一步包括:
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分处的温度;和
能够调节由气体簇射出口供应的气体的相对湿度以减小在由所述至少一个温度传感器测量的温度和至少一个目标温度之间的差的气体簇射出口控制器。
14、根据权利要求1的光刻设备,进一步包括:
连接到气体源的气体密封,用于控制从所述密封构件经过缝隙逃出的液体量,该缝隙通过所述密封构件的边界限定在一个侧面上和通过所述衬底限定在第二侧面上,其中所述气体源提供超过10%的受控制的相对湿度的气体;和
提供受控制的相对湿度的气体到在所述衬底和所述投影系统的最后元件之间的所述密封构件的外部区域的气体簇射出口,该相对湿度基本等于由所述气体源提供的气体的相对湿度。
15、一种光刻设备,包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
在投影系统的所述最后元件和述衬底之间的所述间隙中基本包含所述液体的密封构件;和
衬底台移位系统,沿着相对于所述密封构件的预定路径移动所述衬底台,由此在所述衬底的表面上移动所述目标部分;和
微波源和微波容器器件,一起被设置成为所述衬底表面上的液体供热。
16、根据权利要求15的光刻设备,其中所述微波容器器件包括金属罩并限定在其中所述微波源产生的微波辐射传播的体积。
17、根据权利要求15的光刻设备,其中所述微波容器器件相对于所述密封构件是固定的,在任何时候所述体积延伸以仅仅覆盖所述密封构件周围的所述衬底表面的子区域。
18、一种光刻设备,包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
在投影系统的所述最后元件和述衬底之间的间隙基本包含所述液体的密封构件;和
衬底台移位系统,沿着相对于所述密封构件的预定路径移动所述衬底台,由此在所述衬底的表面上移动所述目标部分;和
根据位置、速度、加速度和所述衬底台相对于所述密封构件的预定路径、局部衬底温度、和局部衬底台温度的至少一个来加热所述衬底的至少一部分的衬底加热器。
19.根据权利要求18的光刻设备,其中所述衬底加热器包括下面的至少一个:感应加热器,可见光源、红外发射源、热灯丝电阻加热器和温度控制气体喷射器。
20、根据权利要求19的光刻设备,其中所述感应加热器被设置成经过与衬底台相关的并由适合于感应加热的材料形成的感应板来加热所述衬底。
21、根据权利要求18的光刻设备,其中所述衬底加热器包括多个局部加热器,每一个都能够基本上加热衬底的单独部分,其中所述局部加热器被设置成当定位以加热所述密封构件已经经过的所述衬底的区域时切换到发热状态,而当定位以加热所述密封构件还未经过的所述衬底的区域时切换到非发热状态。
22、根据权利要求18的光刻设备,进一步包括衬底台路径确定器件,用于确定位置、速度、加速度和所述衬底台的预定路径的至少一个。
23、根据权利要求18的光刻设备,其中所述衬底加热器包括位于在所述密封构件的圆周周围的多个远程加热器。
24、根据权利要求23的光刻设备,其中所述远程加热器的能量输出依靠所述密封构件相对于所述衬底台的移动方向来控制,与由衬底台路径确定器件所确定的相同。
25、根据权利要求24的光刻设备,其中最靠近所述密封构件的前缘的位置处的远程加热器提供比最接近所述密封构件的尾缘的位置处的远程加热器更低的能量输出。
26、根据权利要求23的光刻设备,进一步包括
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度;和
衬底温度控制器,用于控制所述多个远程加热器的每一个的输出以便减小在由所述至少一个温度传感器测量的温度和至少一个目标温度之间的差。
27、根据权利要求26的光刻设备,其中所述至少一个温度传感器中的至少一个包括能够确定在包括红外的波长范围中的俘获的辐射的强度谱的辐射俘获和分析器件。
28、根据权利要求18的光刻设备,其中所述衬底加热器包括主要加热所述衬底的不同部分的至少一个局部加热器,所述光刻设备进一步包括:
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度;和
衬底温度控制器,用于控制所述至少一个局部加热器的输出,以减小在由所述至少一个温度传感器测量的温度和所述目标温度之间的差。
29、根据权利要求18的光刻设备,其中所述衬底加热器包括浸渍液体温度控制器,其被设置成与所述液体供应系统相互作用以控制填充所述投影系统的所述最后元件和所述衬底之间的所述间隙的所述液体的温度,其中所述液体具有大于295K的温度。
30、根据权利要求18的光刻设备,进一步包括:气体密封,其被设置成控制从所述密封构件经过缝隙逃出的液体量,该缝隙通过所述密封构件的边界限定在一侧面上和通过所述衬底限定在第二侧面上,所述气体密封通过加压气体供应系统被提供加压气体,其中所述衬底加热器包括与所述加压气体供应系统相互作用以控制供应到所述气体密封的所述加压气体的温度的气体温度控制器,其中所述气体具有大于300K的温度。
31、根据权利要求18的光刻设备,其中所述所述衬底加热器被设置成在其上投影系统第一次投影所述构图的辐射束的衬底上的目标区域处提供较高的加热量,在其上投影系统后来投影所述构图的辐射束的相同衬底上的目标区域处提供逐渐较低的加热量。
32、根据权利要求28的光刻设备,其中所述至少一个局部加热器被设置成基本跟随所述密封构件相对于所述衬底台的预定路径。
33、根据权利要求31的光刻设备,其中所述衬底加热器包括以基本平行的带设置的延长元件,所述带被定向成基本垂直于所述密封构件相对于所述衬底台的扫描方向,所述带的间隔被设置成从第一带到最后带逐渐增加,该第一带与在其中投影系统在第一时间期间投影所述辐射束的衬底区域相对应,该最后带与在其中投影系统在第一时间期间之后的时间期间投影所述辐射束的同样衬底的区域相对应。
34、根据权利要求33的光刻设备,其中每个所述平行的带沿着其长度提供每单位长度均匀的能量。
35、根据权利要求31的光刻设备,其中所述衬底加热器包括以基本平行的带设置的延长元件,所述带被定向为基本垂直于所述密封构件相对于所述衬底台的扫描方向,其中所述带被设置成提供从第一带到最后带的每单位长度逐渐减小的能量,该第一带与在其中投影系统在第一时间期间投影所述辐射束的衬底区域相对应,该最后带与投影系统在第一时间期间之后的时间期间投影所述辐射束的同样衬底的区域相对应。
36、根据权利要求18的光刻设备,其中所述衬底加热器包括独立可寻址的局部加热器阵列和适于根据预定算法控制所述独立可寻址的局部加热器的启动的加热器阵列控制器,所述预定算法关于以下的至少一个来控制启动:加热器位置、时间、产生的热量和产生热的比率。
37、根据权利要求18的光刻设备,其中所述衬底加热器包括:
与所述衬底的一部分良好热接触的至少一个导电带;和
使受控制量的电流经过所述至少一个导电带的电流源;其中:
选择所述导电带的电阻率以使从在所述衬底的相对冷的区域中的所述电流的电阻发热比在所述衬底的相对热的区域中的所述电流的电阻发热更高。
38、根据权利要求37的光刻设备,其中所述电流量最小化由自衬底表面的液体蒸发引起的温度梯度。
39、根据权利要求37的光刻设备,其中所述至少一个导电带由具有随着增加温度而减小的电阻的材料形成。
40、根据权利要求37的光刻设备,进一步包括
多个局部衬底加热器,每一个被设置成为所述衬底的局部化的子区域提供热量;
至少一个局部衬底加热器控制器,用于控制所述多个局部衬底加热器的至少一个子集的输出功率;和
多个电阻率测量器件,每一被个设置成测量所述导电带的至少一条的至少一部分的电阻率;其中
每个所述局部衬底加热器的输出功率根据最靠近局域化的要被加热的子区域的导电带的一部分的电阻率来控制,并由所述电阻率测量器件中的一个来测量。
41、根据权利要求40的光刻设备,进一步包括:
使受控制量的电流经过所述导电带的至少一个的恒定电流源;和其中
所述电阻率测量器件通过测量在所述每个导电带的至少两点之间引起的电势差而工作。
42、一种光刻设备,包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
在投影系统的所述最后元件和述衬底之间的间隙基本包含所述液体的密封构件;
控制从所述密封构件经过缝隙逃出的液体量的气体密封,该缝隙通过所述密封构件的边界限定在一侧面上和通过所述衬底限定在第二侧面上;
所述气体密封包括加压气体出口,通过它加压气体被供应到所述缝隙内的区域,和真空排气进口,通过它由所述加压气体出口供应的气体从所述缝隙内的区域去除,所述加压气体出口和真空排气进口分别连接到嵌入到所述密封构件中的加压气体管和真空排气管,其中所述密封构件进一步包括密封构件温度稳定器。
43、根据权利要求42的光刻设备,其中所述密封构件温度稳定器包括热隔离套管,该热隔离套管用于在所述真空排气管和所述密封构件之间提供基本的热隔离。
44、根据权利要求42的光刻设备,其中所述密封构件温度稳定器包括密封构件加热器,其被定位于邻近所述真空排气进口并且具有至少一部分在垂直于所述密封构件的轴的平面中基本跟随所述真空排气进口的几何尺寸。
45、根据权利要求44的光刻设备,其中所述密封构件温度稳定器进一步包括密封构件加热器控制器,其根据在所述真空排气管中的流速、在所述加压气体管中的流速和由所述加压气体进口提供的气体的相对湿度的至少一个来控制所述密封构件加热器的输出,与通过气体密封气体供应控制单元测量的一样。
46、根据权利要求45的光刻设备,进一步包括至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度,其中所述密封构件温度稳定器被设置成减小在由所述至少一个温度传感器测量的温度和至少一个目标温度之间的差。
47、根据权利要求42的光刻设备,其中所述密封构件温度稳定器参考校准表来控制所述密封构件加热器的输出,该校准表通过密封构件温度的测量结果而建立作为下列的至少一个的函数:衬底温度,衬底台温度,加压气体流速,加压气体流温度,真空排气流速,真空排气温度,加压气体相对湿度和浸渍液体温度。
48、根据权利要求42的光刻设备,进一步包括设置在所述密封构件中的沟道网络,其邻近最靠近所述衬底台的所述密封构件的边界,其中所述密封构件温度稳定器被设置成控制热交换液体供应系统从而以受控制的温度和流速为所述网络提供液体。
49、一种光刻设备包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;
用于控制流过嵌入在所述衬底台中的沟道网络的热交换液体的温度和流速的衬底台热交换液体控制器。
50、根据权利要求49的光刻设备,其中所述沟道网络包括:在衬底台的平面中被定向的基本直线的孔阵列,每一个被设置成开口到在所述衬底台的外围边缘附近提供的周围沟槽中,所述光刻设备进一步包括:
衬底台沟道关闭构件,其以合作的方式可固定到所述周围沟槽中以便将所述基本直线的孔连接在一起以形成所述沟道网络。
51、根据权利要求49的光刻设备,进一步包括:
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度,其中所述热交换液体控制器被设置成控制所述热交换液体的温度和流速的至少一个以减小在目标温度和由所述至少一个温度传感器中的每一个所测量的温度之间的差。
52、根据权利要求51的光刻设备,进一步包括:
至少一个局部衬底加热器和局部衬底加热器控制器,用于控制所述至少一个局部衬底加热器的输出以减小在所述目标温度和由所述至少一个温度传感器的每一个所测量的温度之间的差。
53、一种光刻设备包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
所述衬底台包括至少一个集成的局部温度控制系统,该系统包括:
与加热器耦合的温度传感器,所述加热器被构成为当由所述温度传感器测量的局部温度低于预定参考值时产生热量,当所述局部温度超过所述预定参考值时停止产生热量。
54、根据权利要求53的光刻设备,其中所述衬底台包括由硅晶片形成的支持元件,包括与所述衬底接触并支持该衬底的上升部分,其中所述温度传感器和所述加热器被定位在所述上升部分中。
55、一种光刻设备包括:
调节辐射束的照明系统;
支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
支撑衬底的衬底台;
把已构图的辐射束投影到衬底的目标部分的投影系统;
至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度;和
投影系统控制器,其根据由所述至少一个温度传感器测量的所述温度来调节所述已构图的辐射束的属性。
56、根据权利要求55的光刻设备,其中所述至少一个温度传感器嵌入在所述衬底台中,所述投影束控制器包括热感应形变计算器,其被设置成计算温度和由此从所述温度产生所述衬底的热感应形变,所述温度通过嵌入在所述衬底台中的所述至少一个温度传感器测量,所述投影系统控制器被设置成调节所述已构图的辐射束的属性以补偿由此计算的所述衬底的热感应形变。
57、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
提供在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;和
控制由所述液体供应系统提供的液体蒸发的净速率。
58、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
提供在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;和
提供衬底台移位系统,沿着相对于所述密封构件的预定路径移动所述衬底台,由此在所述衬底的表面上移动所述目标部分;和
根据依照位置、速度、加速度和所述衬底台相对于所述密封构件的预定路径、局部衬底温度和局部衬底台温度的至少一个来加热所述衬底的至少一部分。
59、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
提供在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;
提供控制从所述密封构件经过缝隙逃出的液体量的气体密封,该缝隙通过所述密封构件的边界限定一个侧面上在和通过所述衬底限定在第二侧面上;
提供气体密封,其包括气体进口,通过它供应气体到所述缝隙内的区域,和真空排气出口,通过它由所述气体进口供应的气体从所述缝隙内的区域去除,所述气体进口和真空排气出口分别连接到嵌入到所述密封构件中的气体进口管和真空排气出口管。
稳定所述密封构件的温度。
60、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
提供在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;
提供嵌入在所述衬底台中的沟道网络,和
控制流过所述沟道网络的热交换流体的温度和流速。
61、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;其中
所述衬底台包括至少一个集成的局部温度控制系统,其包括:
与加热器耦合的温度传感器,所述加热器被设置为当由所述温度传感器测量的局部温度低于预定参考值时产生热量,当所述局部温度超过所述预定参考值时停止产生热量。
62、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供至少一个温度传感器,用于测量所述衬底、所述衬底台和衬底固定器的至少一个的至少一部分的温度;和
根据由所述至少一个温度传感器测量的所述温度来调节所述已构图的辐射束的属性。
63、一种器件制造方法,包括:
提供调节辐射束的照明系统;
提供支撑构图器件的支架,该构图器件能够将它截面中的图案赋予辐射束以形成构图的辐射束;
提供支撑衬底的衬底台;
提供把已构图的辐射束投影到衬底的目标部分的投影系统;
提供利用液体至少部分地填充在所述投影系统的最后元件和所述衬底之间的间隙的液体供应系统;
提供在投影系统的所述最后元件和述衬底之间的间隙中基本包含所述液体的密封构件;和
提供衬底台移位系统,沿着相对于所述密封构件的预定路径移动所述衬底台,由此在所述衬底的表面上移动所述目标部分;和
使用微波源和微波容器器件以给在所述衬底的表面上的液体供热。
CN2005101132352A 2004-08-13 2005-08-12 光刻设备和器件制造方法 Active CN1746775B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/917535 2004-08-13
US10/917,535 US7304715B2 (en) 2004-08-13 2004-08-13 Lithographic apparatus and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010101865871A Division CN101923290B (zh) 2004-08-13 2005-08-12 光刻设备和器件制造方法

Publications (2)

Publication Number Publication Date
CN1746775A true CN1746775A (zh) 2006-03-15
CN1746775B CN1746775B (zh) 2010-07-07

Family

ID=34981965

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010101865871A Active CN101923290B (zh) 2004-08-13 2005-08-12 光刻设备和器件制造方法
CN2005101132352A Active CN1746775B (zh) 2004-08-13 2005-08-12 光刻设备和器件制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010101865871A Active CN101923290B (zh) 2004-08-13 2005-08-12 光刻设备和器件制造方法

Country Status (7)

Country Link
US (7) US7304715B2 (zh)
EP (1) EP1628161B1 (zh)
JP (4) JP4852278B2 (zh)
KR (1) KR100760317B1 (zh)
CN (2) CN101923290B (zh)
SG (2) SG120255A1 (zh)
TW (1) TWI322929B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968608A (zh) * 2009-07-27 2011-02-09 Asml荷兰有限公司 光刻设备和器件制造方法
CN102243446A (zh) * 2010-05-13 2011-11-16 Asml荷兰有限公司 衬底台、光刻设备、衬底边缘平坦化方法及器件制造方法
US8208116B2 (en) 2006-11-03 2012-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US8253922B2 (en) 2006-11-03 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
CN101226341B (zh) * 2006-12-08 2013-08-07 Asml荷兰有限公司 衬底支撑件和光刻工艺
CN103454769A (zh) * 2012-06-04 2013-12-18 佳能株式会社 光学系统、曝光装置以及制造器件的方法
TWI465855B (zh) * 2007-07-31 2014-12-21 尼康股份有限公司 A method of adjusting an exposure apparatus, an exposure apparatus, and an element manufacturing method
TWI467342B (zh) * 2007-08-14 2015-01-01 Applied Materials Inc 利用干涉微影之相位差來提高解析度
CN107168015B (zh) * 2016-02-29 2019-01-04 上海微电子装备(集团)股份有限公司 一种浸液限制机构及温度补偿方法
CN110501881A (zh) * 2018-05-16 2019-11-26 纽富来科技股份有限公司 带电粒子束描绘装置及带电粒子束描绘方法

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372541B2 (en) * 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3977324B2 (ja) * 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
SG150388A1 (en) 2002-12-10 2009-03-30 Nikon Corp Exposure apparatus and method for producing device
SG2013077797A (en) 2003-04-11 2017-02-27 Nippon Kogaku Kk Cleanup method for optics in immersion lithography
TW201806001A (zh) 2003-05-23 2018-02-16 尼康股份有限公司 曝光裝置及元件製造方法
KR20110110320A (ko) 2003-05-28 2011-10-06 가부시키가이샤 니콘 노광 방법, 노광 장치, 및 디바이스 제조 방법
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4843503B2 (ja) * 2004-01-20 2011-12-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
WO2005076324A1 (ja) * 2004-02-04 2005-08-18 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
CN101819386B (zh) 2004-06-09 2013-10-09 尼康股份有限公司 曝光装置及元件制造方法
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006134974A (ja) * 2004-11-04 2006-05-25 Canon Inc 露光装置、判定方法及びデバイス製造方法
SG124351A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4262252B2 (ja) * 2005-03-02 2009-05-13 キヤノン株式会社 露光装置
WO2006101120A1 (ja) * 2005-03-23 2006-09-28 Nikon Corporation 露光装置及び露光方法、並びにデバイス製造方法
US8089608B2 (en) * 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) * 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7417707B2 (en) * 2005-06-29 2008-08-26 Corbett Blaise L Introduction of an intermediary refractive layer for immersion lithography
US7426011B2 (en) 2005-09-12 2008-09-16 Asml Netherlands B.V. Method of calibrating a lithographic apparatus and device manufacturing method
TWI345685B (en) * 2005-09-06 2011-07-21 Asml Netherlands Bv Lithographic method
JP4756984B2 (ja) * 2005-10-07 2011-08-24 キヤノン株式会社 露光装置、露光装置の制御方法およびデバイスの製造方法
JP4125315B2 (ja) * 2005-10-11 2008-07-30 キヤノン株式会社 露光装置及びデバイス製造方法
US7420188B2 (en) * 2005-10-14 2008-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Exposure method and apparatus for immersion lithography
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
EP1965414A4 (en) 2005-12-06 2010-08-25 Nikon Corp EXPOSURE METHOD, EXPOSURE DEVICE AND METHOD FOR MANUFACTURING COMPONENTS
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7649611B2 (en) * 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2007080779A1 (ja) * 2006-01-12 2009-06-11 株式会社ニコン 物体搬送装置、露光装置、物体温調装置、物体搬送方法、及びマイクロデバイスの製造方法
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7675604B2 (en) * 2006-05-04 2010-03-09 Taiwan Semiconductor Manufacturing Company, Ltd. Hood for immersion lithography
DE102006021797A1 (de) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optische Abbildungseinrichtung mit thermischer Dämpfung
US7877895B2 (en) * 2006-06-26 2011-02-01 Tokyo Electron Limited Substrate processing apparatus
US8564759B2 (en) * 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography
US7804582B2 (en) 2006-07-28 2010-09-28 Asml Netherlands B.V. Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
US7932019B2 (en) * 2006-11-13 2011-04-26 Samsung Electronics Co., Ltd. Gettering members, methods of forming the same, and methods of performing immersion lithography using the same
US8068208B2 (en) * 2006-12-01 2011-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for improving immersion scanner overlay performance
US7791709B2 (en) * 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US8416383B2 (en) * 2006-12-13 2013-04-09 Asml Netherlands B.V. Lithographic apparatus and method
US7866637B2 (en) * 2007-01-26 2011-01-11 Asml Netherlands B.V. Humidifying apparatus, lithographic apparatus and humidifying method
US8011377B2 (en) * 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) * 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8264662B2 (en) 2007-06-18 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. In-line particle detection for immersion lithography
TWI541615B (zh) 2007-07-13 2016-07-11 瑪波微影Ip公司 在微影裝置中交換晶圓的方法
US8705010B2 (en) * 2007-07-13 2014-04-22 Mapper Lithography Ip B.V. Lithography system, method of clamping and wafer table
NL1036009A1 (nl) * 2007-10-05 2009-04-07 Asml Netherlands Bv An Immersion Lithography Apparatus.
JP5369443B2 (ja) * 2008-02-05 2013-12-18 株式会社ニコン ステージ装置、露光装置、露光方法、及びデバイス製造方法
NL1036835A1 (nl) * 2008-05-08 2009-11-11 Asml Netherlands Bv Lithographic Apparatus and Method.
NL2002964A1 (nl) * 2008-06-16 2009-12-17 Asml Netherlands Bv Lithographic Apparatus, a Metrology Apparatus and a Method of Using the Apparatus.
EP2136250A1 (en) * 2008-06-18 2009-12-23 ASML Netherlands B.V. Lithographic apparatus and method
EP2172766A1 (en) * 2008-10-03 2010-04-07 ASML Netherlands B.V. Lithographic apparatus and humidity measurement system
NL2003758A (en) * 2008-12-04 2010-06-07 Asml Netherlands Bv A member with a cleaning surface and a method of removing contamination.
US8739383B2 (en) * 2009-04-20 2014-06-03 Nikon Corporation Method and apparatus for aligning mirror blocks of a multi-element mirror assembly
NL2004547A (en) * 2009-05-14 2010-11-18 Asml Netherlands Bv An immersion lithographic apparatus and a device manufacturing method.
NL2004808A (en) * 2009-06-30 2011-01-12 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
NL2004980A (en) * 2009-07-13 2011-01-17 Asml Netherlands Bv Heat transfers assembly, lithographic apparatus and manufacturing method.
NL2005207A (en) * 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
JP2011192991A (ja) * 2010-03-12 2011-09-29 Asml Netherlands Bv リソグラフィ装置および方法
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
NL2006913A (en) 2010-07-16 2012-01-17 Asml Netherlands Bv Lithographic apparatus and method.
WO2012013746A1 (en) * 2010-07-30 2012-02-02 Carl Zeiss Smt Gmbh Euv exposure apparatus
NL2007768A (en) * 2010-12-14 2012-06-18 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
NL2007834A (en) * 2010-12-23 2012-06-27 Asml Netherlands Bv Lithographic apparatus and removable member.
EP2490073B1 (en) * 2011-02-18 2015-09-23 ASML Netherlands BV Substrate holder, lithographic apparatus, and method of manufacturing a substrate holder
NL2008630A (en) * 2011-04-27 2012-10-30 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.
NL2009189A (en) 2011-08-17 2013-02-19 Asml Netherlands Bv Support table for a lithographic apparatus, lithographic apparatus and device manufacturing method.
SG188036A1 (en) * 2011-08-18 2013-03-28 Asml Netherlands Bv Lithographic apparatus, support table for a lithographic apparatus and device manufacturing method
NL2009272A (en) * 2011-08-31 2013-03-04 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
JP5686779B2 (ja) 2011-10-14 2015-03-18 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
US9778579B2 (en) 2011-11-10 2017-10-03 Nikon Corporation System and method for controlling a temperature of a reaction assembly
CN107885044B (zh) 2011-11-17 2020-07-03 Asml荷兰有限公司 光刻设备及器件制造方法
CN109254501A (zh) 2012-02-03 2019-01-22 Asml荷兰有限公司 衬底支架、光刻装置、器件制造方法和制造衬底保持器的方法
CN104520770B (zh) * 2012-04-23 2017-01-18 Asml荷兰有限公司 静电夹持装置、光刻设备和方法
JP6122252B2 (ja) 2012-05-01 2017-04-26 キヤノン株式会社 露光装置及びデバイスの製造方法
JP6006406B2 (ja) 2012-05-29 2016-10-12 エーエスエムエル ネザーランズ ビー.ブイ. オブジェクトホルダ及びリソグラフィ装置
JP2014086701A (ja) * 2012-10-26 2014-05-12 Canon Inc 保持装置、リソグラフィ装置及び物品の製造方法
US20150331338A1 (en) * 2012-12-17 2015-11-19 Asml Netherlands B.V. Substrate Support for a Lithographic Apparatus and Lithographic Apparatus
JP6526575B2 (ja) 2013-02-07 2019-06-05 エーエスエムエル ホールディング エヌ.ブイ. リソグラフィ装置及び方法
US10216095B2 (en) 2013-08-30 2019-02-26 Asml Netherlands B.V. Immersion lithographic apparatus
US9541846B2 (en) 2013-09-06 2017-01-10 Taiwan Semiconductor Manufacturing Co., Ltd. Homogeneous thermal equalization with active device
JP6244454B2 (ja) 2013-09-27 2017-12-06 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための支持テーブル、リソグラフィ装置、及び、デバイス製造方法
JP6336275B2 (ja) * 2013-12-26 2018-06-06 キヤノン株式会社 インプリント装置、および物品の製造方法
CN103757591B (zh) * 2013-12-31 2016-03-30 深圳市华星光电技术有限公司 一种坩埚设备及其在液晶面板生产中的应用
US9575415B2 (en) * 2014-05-22 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer stage temperature control
US10018926B2 (en) * 2014-06-10 2018-07-10 Asml Netherlands, B.V. Lithographic apparatus and method of manufacturing a lithographic apparatus
US10409174B2 (en) * 2014-06-16 2019-09-10 Asml Netherlands B.V. Lithographic apparatus, method of transferring a substrate and device manufacturing method
KR101895018B1 (ko) * 2014-06-19 2018-09-04 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치, 대상물 위치설정 시스템 및 디바이스 제조 방법
JP6525567B2 (ja) * 2014-12-02 2019-06-05 キヤノン株式会社 インプリント装置及び物品の製造方法
CN107771303B (zh) * 2015-04-21 2021-06-04 Asml荷兰有限公司 光刻设备
JP2017183397A (ja) * 2016-03-29 2017-10-05 株式会社東芝 パターン転写装置及びパターン転写方法
US9933314B2 (en) 2016-06-30 2018-04-03 Varian Semiconductor Equipment Associates, Inc. Semiconductor workpiece temperature measurement system
CN109416406B (zh) * 2016-07-05 2023-06-20 深圳帧观德芯科技有限公司 具有不同热膨胀系数的接合材料
KR102458061B1 (ko) * 2016-09-02 2022-10-24 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치
WO2018091189A2 (en) * 2016-11-15 2018-05-24 Asml Netherlands B.V. Radiation analysis system
US10503085B2 (en) * 2017-11-16 2019-12-10 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography apparatus and method
KR102511272B1 (ko) * 2018-02-23 2023-03-16 삼성전자주식회사 노광 장치 및 이를 이용하는 반도체 장치의 제조 방법
KR101924174B1 (ko) * 2018-04-04 2019-02-22 (주)유티아이 근적외선 필터 및 그 필터의 제조방법
US10788762B2 (en) * 2019-02-25 2020-09-29 Applied Materials, Inc. Dynamic cooling control for thermal stabilization for lithography system
CN115023655A (zh) * 2020-02-06 2022-09-06 Asml荷兰有限公司 使用双平台光刻设备的方法以及光刻设备
JP6842225B1 (ja) * 2020-11-12 2021-03-17 ハイソル株式会社 チャックユニット及びチャックユニットの温度制御方法
CN114264889B (zh) * 2021-12-16 2023-07-21 中国工程物理研究院应用电子学研究所 一种高功率毫米波功率测量校准装置
DE102021214981A1 (de) * 2021-12-23 2023-06-29 Carl Zeiss Smt Gmbh Verfahren und trockenvorrichtung

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221563C (zh)
DE206607C (zh)
DE242880C (zh)
DE224448C (zh)
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) * 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
US4213698A (en) * 1978-12-01 1980-07-22 Bell Telephone Laboratories, Incorporated Apparatus and method for holding and planarizing thin workpieces
ATE1462T1 (de) 1979-07-27 1982-08-15 Werner W. Dr. Tabarelli Optisches lithographieverfahren und einrichtung zum kopieren eines musters auf eine halbleiterscheibe.
FR2474708B1 (fr) 1980-01-24 1987-02-20 Dme Procede de microphotolithographie a haute resolution de traits
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4390273A (en) * 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS57169244A (en) * 1981-04-13 1982-10-18 Canon Inc Temperature controller for mask and wafer
DD160756A3 (de) * 1981-04-24 1984-02-29 Gudrun Dietz Anordnung zur verbesserung fotochemischer umsetzungsprozesse in fotoresistschichten
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
DD206607A1 (de) 1982-06-16 1984-02-01 Mikroelektronik Zt Forsch Tech Verfahren und vorrichtung zur beseitigung von interferenzeffekten
DD242880A1 (de) 1983-01-31 1987-02-11 Kuch Karl Heinz Einrichtung zur fotolithografischen strukturuebertragung
JPS59144127A (ja) 1983-02-07 1984-08-18 Canon Inc 像調整された光学装置
JPS6018680U (ja) 1983-07-13 1985-02-08 愛知電機株式会社 無整流子電動機
US4564284A (en) * 1983-09-12 1986-01-14 Canon Kabushiki Kaisha Semiconductor exposure apparatus
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
JPS60163046A (ja) 1984-02-03 1985-08-24 Nippon Kogaku Kk <Nikon> 投影露光光学装置及び投影露光方法
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS6265326U (zh) 1985-10-16 1987-04-23
JPS62121417A (ja) 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPS62121417U (zh) 1986-01-24 1987-08-01
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JPH033222Y2 (zh) 1986-12-23 1991-01-28
JPH07106317B2 (ja) 1987-02-13 1995-11-15 触媒化成工業株式会社 炭化水素油の接触分解用触媒組成物の製造方法
US4825247A (en) 1987-02-16 1989-04-25 Canon Kabushiki Kaisha Projection exposure apparatus
JPS63157419U (zh) 1987-03-31 1988-10-14
JPH01152639A (ja) 1987-12-10 1989-06-15 Canon Inc 吸着保持装置
US5040020A (en) * 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
FR2631165B1 (fr) * 1988-05-05 1992-02-21 Moulene Daniel Support conditionneur de temperature pour petits objets tels que des composants semi-conducteurs et procede de regulation thermique utilisant ce support
DE68921687T2 (de) 1988-09-02 1995-08-03 Canon Kk Belichtungseinrichtung.
JP2774574B2 (ja) * 1989-05-30 1998-07-09 キヤノン株式会社 露光装置
DE68922061T2 (de) 1988-10-03 1995-08-31 Canon Kk Vorrichtung zum Regeln der Temperatur.
US5231291A (en) 1989-08-01 1993-07-27 Canon Kabushiki Kaisha Wafer table and exposure apparatus with the same
JPH03209479A (ja) 1989-09-06 1991-09-12 Sanee Giken Kk 露光方法
JPH03198320A (ja) 1989-12-27 1991-08-29 Nikon Corp 投影光学装置
JPH0428216A (ja) 1990-05-23 1992-01-30 Matsushita Electric Ind Co Ltd 露光装置
NL9002077A (nl) 1990-09-22 1992-04-16 Imec Inter Uni Micro Electr Sensor.
US5142132A (en) 1990-11-05 1992-08-25 Litel Instruments Adaptive optic wafer stepper illumination system
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JP3210029B2 (ja) 1991-06-11 2001-09-17 キヤノン株式会社 画像処理装置及びその方法
JP3218478B2 (ja) 1992-09-04 2001-10-15 株式会社ニコン 投影露光装置及び方法
US5294778A (en) 1991-09-11 1994-03-15 Lam Research Corporation CVD platen heater system utilizing concentric electric heating elements
US5402224A (en) 1992-09-25 1995-03-28 Nikon Corporation Distortion inspecting method for projection optical system
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP2520833B2 (ja) 1992-12-21 1996-07-31 東京エレクトロン株式会社 浸漬式の液処理装置
US6753948B2 (en) 1993-04-27 2004-06-22 Nikon Corporation Scanning exposure method and apparatus
JPH0684757U (ja) 1993-05-06 1994-12-02 太陽誘電株式会社 電源切替回路
JPH07106317A (ja) 1993-10-08 1995-04-21 Sony Corp 試料台
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US5612683A (en) * 1994-08-26 1997-03-18 Trempala; Dohn J. Security key holder
JPH08124873A (ja) 1994-10-24 1996-05-17 Sony Corp コンタクトホールの形成方法
US5638687A (en) 1994-11-21 1997-06-17 Dainippon Screen Mfg. Co., Ltd. Substrate cooling method and apparatus
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH09270384A (ja) 1996-03-29 1997-10-14 Nikon Corp 温度制御装置及び露光装置
US6104687A (en) * 1996-08-26 2000-08-15 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10189242A (ja) 1996-12-20 1998-07-21 Sanyo Electric Co Ltd 波長変換型発光装置
JP3612920B2 (ja) 1997-02-14 2005-01-26 ソニー株式会社 光学記録媒体の原盤作製用露光装置
TW404063B (en) * 1997-02-27 2000-09-01 Toshiba Corp Semiconductor integrated circuit apparatus and semiconductor memory apparatus
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3849822B2 (ja) 1997-04-07 2006-11-22 株式会社ニコン リソク゛ラフィシステム
US6882403B1 (en) * 1997-04-07 2005-04-19 Nikon Corporation Lithography system and method
JP3747566B2 (ja) 1997-04-23 2006-02-22 株式会社ニコン 液浸型露光装置
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH11195602A (ja) 1997-10-07 1999-07-21 Nikon Corp 投影露光方法及び装置
KR19990034784A (ko) 1997-10-30 1999-05-15 윤종용 노광장비의 척부
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
EP1039511A4 (en) 1997-12-12 2005-03-02 Nikon Corp PROJECTION EXPOSURE PROCESSING METHOD AND PROJECTION APPARATUS
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP3745167B2 (ja) * 1998-07-29 2006-02-15 キヤノン株式会社 ステージ装置、露光装置およびデバイス製造方法ならびにステージ駆動方法
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
US6623639B2 (en) * 1999-03-19 2003-09-23 Bend Research, Inc. Solvent-resistant microporous polybenzimidazole membranes
KR200224439Y1 (ko) 1999-04-16 2001-05-15 나재흠 파일직기에 있어서 침포롤러
TWI242111B (en) * 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
US6225224B1 (en) 1999-05-19 2001-05-01 Infineon Technologies Norht America Corp. System for dispensing polishing liquid during chemical mechanical polishing of a semiconductor wafer
US6430841B1 (en) 1999-05-27 2002-08-13 Lam Research Corporation Apparatus for drying batches of wafers
US6322626B1 (en) * 1999-06-08 2001-11-27 Micron Technology, Inc. Apparatus for controlling a temperature of a microelectronics substrate
JP4504479B2 (ja) 1999-09-21 2010-07-14 オリンパス株式会社 顕微鏡用液浸対物レンズ
JP2001118783A (ja) 1999-10-21 2001-04-27 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2001272604A (ja) * 2000-03-27 2001-10-05 Olympus Optical Co Ltd 液浸対物レンズおよびそれを用いた光学装置
JP3870002B2 (ja) * 2000-04-07 2007-01-17 キヤノン株式会社 露光装置
JP3531914B2 (ja) 2000-04-14 2004-05-31 キヤノン株式会社 光学装置、露光装置及びデバイス製造方法
JP3859937B2 (ja) * 2000-06-02 2006-12-20 住友大阪セメント株式会社 静電チャック
US6699630B2 (en) 2000-07-07 2004-03-02 Nikon Corporation Method and apparatus for exposure, and device manufacturing method
TW591653B (en) * 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
JP4606600B2 (ja) * 2001-01-09 2011-01-05 東京エレクトロン株式会社 処理空気供給装置及び方法
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
US6954255B2 (en) 2001-06-15 2005-10-11 Canon Kabushiki Kaisha Exposure apparatus
JP4302376B2 (ja) 2001-09-03 2009-07-22 東京エレクトロン株式会社 液処理方法及び液処理装置
US6600547B2 (en) * 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
US6696887B2 (en) 2001-09-27 2004-02-24 Matthew S. Taubman Transistor-based interface circuitry
EP1446703A2 (en) * 2001-11-07 2004-08-18 Applied Materials, Inc. Optical spot grid array printer
JP4028216B2 (ja) 2001-11-19 2007-12-26 大日本印刷株式会社 減容化可能なボトル
JP2003195476A (ja) 2001-12-27 2003-07-09 Toshiba Corp パターン形成装置およびパターン形成方法
DE10229818A1 (de) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
DE10210899A1 (de) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
TWI242691B (en) 2002-08-23 2005-11-01 Nikon Corp Projection optical system and method for photolithography and exposure apparatus and method using same
JP3767815B2 (ja) * 2002-08-26 2006-04-19 京楽産業株式会社 メダル研磨装置
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420298B1 (en) 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
DE60335595D1 (de) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
CN101349876B (zh) 2002-11-12 2010-12-01 Asml荷兰有限公司 光刻装置和器件制造方法
JP3977324B2 (ja) * 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101713932B (zh) 2002-11-12 2012-09-26 Asml荷兰有限公司 光刻装置和器件制造方法
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI255971B (en) 2002-11-29 2006-06-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258718A1 (de) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
JP4232449B2 (ja) 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
EP1571698A4 (en) 2002-12-10 2006-06-21 Nikon Corp EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD
EP1571694A4 (en) 2002-12-10 2008-10-15 Nikon Corp EXPOSURE APPARATUS AND METHOD FOR MANUFACTURING THE DEVICE
US6992750B2 (en) * 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
KR101157002B1 (ko) 2002-12-10 2012-06-21 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
SG2011031200A (en) 2002-12-10 2014-09-26 Nippon Kogaku Kk Exposure apparatus and device manufacturing method
SG150388A1 (en) 2002-12-10 2009-03-30 Nikon Corp Exposure apparatus and method for producing device
AU2003302831A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
WO2004053950A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP4352874B2 (ja) 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
DE10257766A1 (de) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
WO2004053957A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 面位置検出装置、露光方法、及びデバイス製造方法
KR20050085026A (ko) 2002-12-10 2005-08-29 가부시키가이샤 니콘 광학 소자 및 그 광학 소자를 사용한 투영 노광 장치
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
ATE335272T1 (de) 2002-12-19 2006-08-15 Koninkl Philips Electronics Nv Verfahren und anordnung zum bestrahlen einer schicht mittels eines lichtpunkts
USRE46433E1 (en) 2002-12-19 2017-06-13 Asml Netherlands B.V. Method and device for irradiating spots on a layer
EP1431825A1 (en) * 2002-12-20 2004-06-23 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and substrate holder
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
KR101345474B1 (ko) * 2003-03-25 2013-12-27 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
ATE426914T1 (de) * 2003-04-07 2009-04-15 Nikon Corp Belichtungsgerat und verfahren zur herstellung einer vorrichtung
WO2004090634A2 (en) 2003-04-10 2004-10-21 Nikon Corporation Environmental system including vaccum scavange for an immersion lithography apparatus
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP5143331B2 (ja) 2003-05-28 2013-02-13 株式会社ニコン 露光方法及び露光装置、並びにデバイス製造方法
KR20110110320A (ko) 2003-05-28 2011-10-06 가부시키가이샤 니콘 노광 방법, 노광 장치, 및 디바이스 제조 방법
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4429023B2 (ja) * 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
JP4843503B2 (ja) 2004-01-20 2011-12-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
WO2005076324A1 (ja) 2004-02-04 2005-08-18 Nikon Corporation 露光装置、露光方法及びデバイス製造方法
JP5167572B2 (ja) 2004-02-04 2013-03-21 株式会社ニコン 露光装置、露光方法及びデバイス製造方法
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4479269B2 (ja) * 2004-02-20 2010-06-09 株式会社ニコン 露光装置及びデバイス製造方法
US7561251B2 (en) * 2004-03-29 2009-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4510494B2 (ja) * 2004-03-29 2010-07-21 キヤノン株式会社 露光装置
US20050229854A1 (en) * 2004-04-15 2005-10-20 Tokyo Electron Limited Method and apparatus for temperature change and control
JP2005310933A (ja) * 2004-04-20 2005-11-04 Nikon Corp 基板保持部材、露光装置及びデバイス製造方法
US7501226B2 (en) * 2004-06-23 2009-03-10 Taiwan Semiconductor Manufacturing Co., Ltd. Immersion lithography system with wafer sealing mechanisms
US8769126B2 (en) * 2004-06-24 2014-07-01 International Business Machines Corporation Expanded membership access control in a collaborative environment
JP2006013130A (ja) * 2004-06-25 2006-01-12 Nikon Corp 露光装置、露光方法、及びデバイスの製造方法
US20060001851A1 (en) * 2004-07-01 2006-01-05 Grant Robert B Immersion photolithography system
US7304715B2 (en) * 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7532310B2 (en) 2004-10-22 2009-05-12 Asml Netherlands B.V. Apparatus, method for supporting and/or thermally conditioning a substrate, a support table, and a chuck
US20060228632A1 (en) * 2005-04-11 2006-10-12 Boyer James L Treated filler and process for producing
US7652746B2 (en) * 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070007316A1 (en) 2005-07-08 2007-01-11 John Witczak Bicycle carrier
JP2010034605A (ja) 2009-11-17 2010-02-12 Canon Inc 露光装置及びデバイス製造方法
NL2007768A (en) * 2010-12-14 2012-06-18 Asml Netherlands Bv Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder.

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11003097B2 (en) 2006-11-03 2021-05-11 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US8208116B2 (en) 2006-11-03 2012-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US8253922B2 (en) 2006-11-03 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US10520836B2 (en) 2006-11-03 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US10168625B2 (en) 2006-11-03 2019-01-01 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US8767178B2 (en) 2006-11-03 2014-07-01 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using direction-controlling fluid inlets
US9696634B2 (en) 2006-11-03 2017-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
US9046789B2 (en) 2006-11-03 2015-06-02 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography system using a sealed wafer bath
CN101226341B (zh) * 2006-12-08 2013-08-07 Asml荷兰有限公司 衬底支撑件和光刻工艺
US9025126B2 (en) 2007-07-31 2015-05-05 Nikon Corporation Exposure apparatus adjusting method, exposure apparatus, and device fabricating method
TWI465855B (zh) * 2007-07-31 2014-12-21 尼康股份有限公司 A method of adjusting an exposure apparatus, an exposure apparatus, and an element manufacturing method
TWI467342B (zh) * 2007-08-14 2015-01-01 Applied Materials Inc 利用干涉微影之相位差來提高解析度
CN101968608A (zh) * 2009-07-27 2011-02-09 Asml荷兰有限公司 光刻设备和器件制造方法
CN101968608B (zh) * 2009-07-27 2013-10-09 Asml荷兰有限公司 光刻设备和器件制造方法
CN102243446B (zh) * 2010-05-13 2014-08-06 Asml荷兰有限公司 衬底台、光刻设备、衬底边缘平坦化方法及器件制造方法
CN102243446A (zh) * 2010-05-13 2011-11-16 Asml荷兰有限公司 衬底台、光刻设备、衬底边缘平坦化方法及器件制造方法
CN103454769B (zh) * 2012-06-04 2016-05-04 佳能株式会社 光学系统、曝光装置以及制造器件的方法
CN103454769A (zh) * 2012-06-04 2013-12-18 佳能株式会社 光学系统、曝光装置以及制造器件的方法
CN107168015B (zh) * 2016-02-29 2019-01-04 上海微电子装备(集团)股份有限公司 一种浸液限制机构及温度补偿方法
CN110501881A (zh) * 2018-05-16 2019-11-26 纽富来科技股份有限公司 带电粒子束描绘装置及带电粒子束描绘方法
CN110501881B (zh) * 2018-05-16 2021-12-03 纽富来科技股份有限公司 带电粒子束描绘装置及带电粒子束描绘方法

Also Published As

Publication number Publication date
US7304715B2 (en) 2007-12-04
KR20060050451A (ko) 2006-05-19
JP2006054468A (ja) 2006-02-23
CN1746775B (zh) 2010-07-07
JP5275067B2 (ja) 2013-08-28
US7804575B2 (en) 2010-09-28
TWI322929B (en) 2010-04-01
US20060033892A1 (en) 2006-02-16
US9268242B2 (en) 2016-02-23
US10838310B2 (en) 2020-11-17
US20190235397A1 (en) 2019-08-01
US10254663B2 (en) 2019-04-09
JP5699197B2 (ja) 2015-04-08
EP1628161A3 (en) 2006-06-07
US11378893B2 (en) 2022-07-05
SG120255A1 (en) 2006-03-28
JP4852278B2 (ja) 2012-01-11
US20210063898A1 (en) 2021-03-04
SG131107A1 (en) 2007-04-26
US20100321650A1 (en) 2010-12-23
US20160048085A1 (en) 2016-02-18
JP2014027308A (ja) 2014-02-06
EP1628161B1 (en) 2012-11-28
US9188880B2 (en) 2015-11-17
US20060033898A1 (en) 2006-02-16
JP2012064982A (ja) 2012-03-29
EP1628161A2 (en) 2006-02-22
US20120113402A1 (en) 2012-05-10
KR100760317B1 (ko) 2007-09-20
TW200617616A (en) 2006-06-01
CN101923290A (zh) 2010-12-22
JP2009105443A (ja) 2009-05-14
JP5699072B2 (ja) 2015-04-08
CN101923290B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
CN1746775A (zh) 光刻设备和器件制造方法
TWI420258B (zh) 微影裝置及元件製造方法
TWI242697B (en) Lithographic apparatus and device manufacturing method
CN1290155C (zh) 曝光装置、表面位置调节单元、掩模和器件制造方法
US7751027B2 (en) Lithographic apparatus and device manufacturing method
US20050280790A1 (en) Processing apparatus for processing object in vessel
CN1991591A (zh) 光刻装置和器件制造方法
CN1795535A (zh) 曝光方法、曝光装置以及器件制造方法
CN1617048A (zh) 光刻装置和器件制造方法
KR102482213B1 (ko) 광 처리 장치, 도포, 현상 장치, 광 처리 방법 및 기억 매체
US20130105108A1 (en) Heat Removal From Substrates In Vacuum
CN101038443A (zh) 光刻装置、控制系统和器件制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant