CN1675763A - 使用碳纳米管和cvd增加热界面的导热率 - Google Patents

使用碳纳米管和cvd增加热界面的导热率 Download PDF

Info

Publication number
CN1675763A
CN1675763A CN03818825.2A CN03818825A CN1675763A CN 1675763 A CN1675763 A CN 1675763A CN 03818825 A CN03818825 A CN 03818825A CN 1675763 A CN1675763 A CN 1675763A
Authority
CN
China
Prior art keywords
array
vapour deposition
chemical vapour
tube
thermal management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03818825.2A
Other languages
English (en)
Other versions
CN100452370C (zh
Inventor
戴维·德洛伦佐
斯蒂芬·蒙哥马利
罗伯特·法特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1675763A publication Critical patent/CN1675763A/zh
Application granted granted Critical
Publication of CN100452370C publication Critical patent/CN100452370C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Abstract

本发明涉及形成集成电路封装的结构和方法,所述封装使用了热界面材料层,所述热界面材料层具有附着到所述层表面的定向排列碳纳米管阵列。所述热界面材料是通过化学气相沉积法沉积的金刚石。碳纳米管通过等离子放电方法形成在CVDD表面上,并且还可以形成在管芯的表面上。

Description

使用碳纳米管和CVD增加热界面的导热率
一种集成电路封装,通过在热管理装置(thermal management solution)(比如,热散器(heat spreader)或散热器(heat sink))上形成化学气相沉积的金刚石表面以及在CVDD层或电路管芯表面上生长碳纳米管阵列,为电路管芯和热管理装置之间的热界面提供增大的导热率。
附图说明
为了得到本发明的实施方案的实现方式,将参考本发明特定的实施方案对上面简述的本发明提供更加具体的说明,这些特定的实施方案在附图中进行了图示说明。应当理解的是,这些图像所描述的仅仅是本发明典型的实施方案,这些实施方案不一定是按比例绘制的,并且不应因此被认为是对本发明范围的限制,通过使用附图,对本发明进行更详细及更明确的说明和解释,其中:
图1是冷却装置的现有技术堆叠的示意图的正面剖视图,该冷却装置用于集成电路封装;
图2是CVDD增强的现有技术堆叠的正面剖视图;
图3是图2中所描述的CVDD增强的现有技术堆叠的正面剖视图的局部详图,示出了位于所述CVDD层和所述管芯之间的热界面材料;
图4是本发明实施方案的正面剖视图的局部详图,其中CVDD增强的堆叠利用了在所述管芯表面上生长的纳米管;
图5是CVDD增强的堆叠的正面剖视图的局部详图,示出了在所述管芯表面和所述CVDD层上生长的纳米管;
图6是CVDD增强的堆叠的正面剖视图的局部详图,示出了在所述集成热散器的CVDD层上生长的纳米管;
图7是用于将电路管芯耦合到热管理辅助设备(thermal management aid)的方法的流程图;以及
图8是用于将电路管芯耦合到热管理辅助设备的另一种方法的流程图。
具体实施方式
本发明涉及形成集成电路封装的结构和方法,所述的封装利用了热界面材料层,该热界面材料层具有从其表面突出的定向排列的(aligned)碳纳米管阵列。
为了冷却比如电子管芯的电子封装,裸的硅管芯被集成热散器所覆盖,所述集成热散器是由热传导材料(比如,铜)形成的,并且所述集成热散器可以横向分散由所述管芯上的热点所产生的热载荷,这些热点例如对应于具有最高晶体管活动的区域。
在图1中,示出了具有插入构件(interposer)或基底(substrate)12的集成电路封装10,管芯14在基底12上邻近基底12放置并且通过焊球16热耦合到基底12上,焊球16被结合到管芯14邻近基底12的表面。在相邻焊球16之间以及在管芯14的表面与基底12之间的空间通常填充有导热凝胶体(gel)18。焊球16和导热凝胶体18的导热率的组合为管芯14所产生的部分热量提供了冷却路径。
如图1和图2所示,铜集成热散器20被放置到邻近管芯14的另一个表面,该表面与紧邻基底12的管芯14的表面是相对的。在现有技术的封装(比如图1和图2所示的封装)中,热散器20的内表面22通过第一热界面材料层24被耦合到管芯14的表面,所述第一热界面材料层24是热传导材料,比如热脂(thermal grease)或某种类似的材料。最终,热散器20通过第二热界面28与铜散热器(heat sink)26热接触。环境空气30流经散热器26以对其进行冷却。
在现有技术中,已经众所周知的是,在管芯和集成热散器20之间提供化学气相沉积的金刚石(chemical vapor deposited diamond)(CVDD)层32来提高热散器20或硅管芯14的横向导热率。如图2和图3所示,CVDD层32被施加到集成热散器20的内表面22上。
集成热散器的铜的导热率大约是395W/mK,而硅管芯的导热率大约是100W/mK。CVDD层的导热率预期超过1000W/mK。已经通过模拟发现,以总的结面至环境(junction-to-ambient)热阻的下降来测量,厚度大约为450微米的CVDD层能够提供这样的热效益,即是施加到集成热散器的CVDD层总值的约10%,是施加到管芯的CVDD层总值的20%,以及是在管芯和集成热散器二者上的组合CVDD层的约30%。
利用施加到管芯和热散器上的CVDD层所呈现的困难之一就是未抛光的沉积金刚石表面34所固有的粗糙度,这可以由凹凸不平36或突出来表征,这些凹凸比平或突出具有以微米计的尺寸。虽然可以通过在CVD处理之后进行抛光操作来略微减小粗糙度,但是这样的抛光操作预期将构成产品制造成本的一个主要部分,特别是因为CVDD处理本身的成本下降了。遗憾的是,而且看起来真实的情况是,尽管增加CVDD层厚度提高了这些层的热效率,但是CVDD层的粗糙度随着CVDD层的厚度增加而增加。在现有技术中,调节管芯14不平坦的表面或集成热散器20的内表面22以及CVDD层的缺乏平滑性,无论它被施加到管芯或整体热散器;填隙热界面材料38被插入到二者之间。
无论纳米管是单壁的还是双壁的,向热界面添加定向排列的纳米管增加了管芯和整体热散器之间的导热率,同时允许从CVDD方法中排除抛光步骤。下面基于向管芯和集成热散器之间的热界面添加纳米管,描述了热处理装置(thermal solutions)的实施方案。
图4示出了本发明的一个实施方案,其中单壁或双壁的碳纳米管40通过本领域中可以采用的等离子放电沉积方法生长在管芯14上。一旦纳米管40生长在管芯14的表面,阵列中的纳米管的一端牢固地附着于管芯14。在这个实施方案中,与典型的导热率约为1-7W/mK的热脂热界面材料相比,纳米管40的导热率在约1000到6000W/mK的范围内。在所示出的实施方案中,纳米管的长度通常是约100微米或更少,使得该层的热阻可以被忽略不计。在管芯14表而生长纳米管40填充了表面粗糙的凹陷,从而提供近乎一致的界面层。有限地挤压(crush)纳米管40使得在管芯14的表面和热散器20内表面22上的CVDD涂层32之间具有优异的热连接。在一个实施方案中,热脂可以被施加到纳米管40的阵列。在另一个实施方案中,没有使用热脂。在又一个实施方案中,CVDD涂层32可以形成在散热器26而非热散器20的表面上。
图5图示了本发明另一个实施方案,其中,所述结构具有纳米管40,这些纳米管40是使用等离子放电方法从热散器20的CVDD表面和管芯14的表面上生长的。在这个实施方案中,从相对的表面生长并且附着的纳米管40在所述表面配合时相互啮合(intermesh),从而提供优良的热界面,即使没有使用热脂38。在另一个实施方案中,热脂38可以结合碳纳米管40使用。
图6示出了本发明的实施方案,其中使用等离子放电方法,单壁或双壁的碳纳米管40生长在集成热散器20的CVDD层32上并附着于其上。同样,所生长的纳米管40填充在表面粗糙的凹陷和凹凸不平36中,并对它们进行抵消。突出的纳米管40易于被有限地挤压到管芯14的峰粗糙特征42中。同样,在一个实施方案中,脂38不是形成热界面所必须的。在另一个实施方案中,热脂38与所述纳米管40结合。
图7是本发明方法的实施方案的流程图,该方法用于增强从电路管芯到热管理辅助设备(比如,热散器或散热器)的热流动。该方法的第一阶段72是在热管理辅助设备的表面上形成CVDD层。在形成CVDD层之后,在更进一步的阶段74基本定向排列的纳米管阵列被生长在电路管芯的一个表面上或在热管理辅助设备上的CVDD层上。在阶段76中,热管理辅助设备被安装到管芯,其中纳米管层将电路管芯的表面热耦合到热管理辅助设备的CVDD层。
图8是本发明方法的另一个实施方案的流程图,该方法将电路管芯热耦合到热管理辅助设备(比如,热散器或散热器)。在起始的阶段82,在热管理辅助设备上形成CVDD层。在阶段84,纳米管层被生长在CVDD层上。在阶段86中,热管理辅助设备被安装到管芯上,其中纳米管层将管芯的表面热耦合到热管理辅助设备的CVDD层。
对于本领域普通技术人员将容易理解到,在不背离于随后所附的权利要求书中所表述的本发明的范围和原则的情况下,可以对细节、材料和各个部件的布置以及方法的阶段进行各种改变,所述细节、材料和各个部件的布置以及方法的阶段进行各种改变都已经被说明和图示以解释本发明的本质。

Claims (23)

1.一种用于冷却电路管芯的装置,包括:
具有化学气相沉积金刚石表面的热管理辅助设备,以及
基本定向排列的碳纳米管的阵列,所述碳纳米管的阵列将所述电路管芯的表面耦合到所述热管理辅助设备的所述化学气相沉积金刚石表面,所述纳米管阵列被附着到所述管芯的表面或所述热管理辅助设备的化学气相沉积金刚石表面。
2.如权利要求1的装置,其中所述碳纳米管阵列的碳纳米管主要被附着到所述热管理辅助设备的化学气相沉积金刚石层。
3.如权利要求1的装置,其中所述碳纳米管阵列的碳纳米管主要被附着到所述电路管芯的表面。
4.如权利要求1的装置,其中所述碳纳米管阵列的碳纳米管被附着到所述电路管芯的表面和所述热管理辅助设备的化学气相沉积金刚石表面。
5.如权利要求1的装置,其中所述热管理辅助设备是集成热散器。
6.如权利要求1的装置,其中所述热管理辅助设备是散热器。
7.如权利要求1的装置,其中所述基本定向排列的碳纳米管阵列也包括热界面材料。
8.如权利要求7的装置,其中所述热界面材料包括导热脂。
9.一种用于冷却电路管芯的装置,包括:
具有化学气相沉积金刚石表面的热管理辅助设备,以及
基本定向排列的碳纳米管的阵列,所述碳纳米管的阵列将所述电路管芯的表面耦合到所述热管理辅助设备的所述化学气相沉积金刚石表面,所述纳米管阵列被附着到所述管芯的表面。
10.如权利要求9的装置,其中所述阵列也被附着到所述化学气相沉积金刚石表面。
11.如权利要求9的装置,其中所述阵列也包括导热脂。
12.一种用于冷却电路管芯的装置,包括:
具有化学气相沉积金刚石表面的热管理辅助设备,以及
基本定向排列的碳纳米管的阵列,所述碳纳米管的阵列将所述电路管芯的表面耦合到所述热管理辅助设备的化学气相沉积金刚石表面,所述纳米管阵列被附着到所述热管理辅助设备的化学气相沉积金刚石表面。
13.如权利要求12的装置,其中所述装置也包括导热脂。
14.如权利要求12的装置,其中所述阵列也被附着到所述管芯。
15.一种集成电路封装,包括:
基底;
安装在所述基底上的电路管芯;
散热器;
热耦合到所述散热器并具有化学气相沉积金刚石表面的热散器;以及
基本定向排列的碳纳米管的阵列,所述碳纳米管的阵列将所述电路管芯的表面耦合到所述热散器的化学气相沉积金刚石表面,所述纳米管阵列被附着到所述电路管芯的表面或所述热散器的化学气相沉积金刚石表面。
16.如权利要求15的集成电路封装,其中所述阵列被附着到所述电路管芯的表面和所述热散器的化学气相沉积金刚石表面。
17.如权利要求15的集成电路封装,其中所述阵列也包括热脂。
18.一种用于增强从电路管芯到热管理辅助设备传热的方法,包括:
在热管理辅助设备上形成化学气相沉积金刚石层;
在所述电路管芯的表面或化学气相沉积金刚石层之一上生长纳米管的阵列;以及
通过定向排列的纳米管层将所述热管理辅助设备安装到所述电路管芯,所述纳米管层将所述电路管芯的表面热耦合到所述热管理辅助设备的化学气相沉积金刚石层。
19.如权利要求18的方法,其中所述生长纳米管层的步骤包括通过等离子放电方法在所述管芯的表面上形成纳米管。
20.如权利要求18的方法,其中生长纳米管层的步骤包括通过等离子放电方法在所述化学气相沉积金刚石层形成所述纳米管。
21.一种用于将电路管芯热耦合到热管理辅助设备的方法,包括:
在热管理辅助设备上形成化学气相沉积金刚石层;
在所述化学气相沉积金刚石层上生长纳米管层;以及
通过所述纳米管层将所述热管理辅助设备安装到所述管芯,所述纳米管层将所述管芯的表面热耦合到所述热管理辅助设备的化学气相沉积金刚石层。
22.如权利要求21的方法,其中所述生长操作还包括向所述纳米管层添加热界面材料。
23.如权利要求21的方法,所述方法还包括在所述管芯的表面上生长纳米管层,并且将所述热管理层安装到所述管芯的步骤还包括使所述纳米管层相互啮合。
CNB038188252A 2002-06-12 2003-06-10 使用碳纳米管和cvd增加热界面的导热率 Expired - Fee Related CN100452370C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/170,313 US6891724B2 (en) 2002-06-12 2002-06-12 Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD
US10/170,313 2002-06-12

Publications (2)

Publication Number Publication Date
CN1675763A true CN1675763A (zh) 2005-09-28
CN100452370C CN100452370C (zh) 2009-01-14

Family

ID=29732468

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB038188252A Expired - Fee Related CN100452370C (zh) 2002-06-12 2003-06-10 使用碳纳米管和cvd增加热界面的导热率

Country Status (4)

Country Link
US (2) US6891724B2 (zh)
CN (1) CN100452370C (zh)
AU (1) AU2003237548A1 (zh)
WO (1) WO2003107419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100517661C (zh) * 2005-11-26 2009-07-22 鸿富锦精密工业(深圳)有限公司 散热装置的制备方法

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6921462B2 (en) 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6994584B1 (en) * 2002-08-30 2006-02-07 Advanced Micro Devices, Inc. Thermally conductive integrated circuit mounting structures
US20040152240A1 (en) * 2003-01-24 2004-08-05 Carlos Dangelo Method and apparatus for the use of self-assembled nanowires for the removal of heat from integrated circuits
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
US7094679B1 (en) 2003-03-11 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube interconnect
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US20050016714A1 (en) * 2003-07-09 2005-01-27 Chung Deborah D.L. Thermal paste for improving thermal contacts
WO2005052179A2 (en) * 2003-08-13 2005-06-09 The Johns Hopkins University Method of making carbon nanotube arrays, and thermal interfaces using same
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7477527B2 (en) 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US20070114658A1 (en) * 2004-08-24 2007-05-24 Carlos Dangelo Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8048688B2 (en) 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US7538422B2 (en) 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US20070126116A1 (en) * 2004-08-24 2007-06-07 Carlos Dangelo Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
KR100581863B1 (ko) * 2003-10-09 2006-05-22 삼성에스디아이 주식회사 플라즈마 디스플레이 장치
US7186020B2 (en) * 2003-12-12 2007-03-06 University Of Washington Thermal interface material (TIM) with carbon nanotubes (CNT) and low thermal impedance
US7242073B2 (en) * 2003-12-23 2007-07-10 Intel Corporation Capacitor having an anodic metal oxide substrate
US7019346B2 (en) * 2003-12-23 2006-03-28 Intel Corporation Capacitor having an anodic metal oxide substrate
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
US20050169831A1 (en) * 2004-02-04 2005-08-04 Montgomery Stephen W. Three-dimensional nanotube structure
US20050255304A1 (en) * 2004-05-14 2005-11-17 Damon Brink Aligned nanostructure thermal interface material
TWI244370B (en) * 2004-07-30 2005-11-21 Ind Tech Res Inst Bonding structure of heat sink fin and heat spreader
TWI309877B (en) * 2004-08-13 2009-05-11 Hon Hai Prec Ind Co Ltd Integrated circuit package
JP4167212B2 (ja) * 2004-10-05 2008-10-15 富士通株式会社 カーボンナノチューブ構造体、半導体装置、および半導体パッケージ
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI247060B (en) * 2004-12-31 2006-01-11 Yonyu Plastics Co Ltd Method producing vapor-grown carbon fibers having 3-d linkage structure
CN1837147B (zh) * 2005-03-24 2010-05-05 清华大学 热界面材料及其制备方法
DE102005020453B4 (de) * 2005-04-29 2009-07-02 Infineon Technologies Ag Halbleiterbauteil mit einer Flachleiterstruktur und Verfahren zur Herstellung einer Flachleiterstruktur und Verfahren zur Herstellung eines Halbleiterbauteils
US7898079B2 (en) * 2005-05-26 2011-03-01 Nanocomp Technologies, Inc. Nanotube materials for thermal management of electronic components
US7763353B2 (en) * 2005-06-10 2010-07-27 Ut-Battelle, Llc Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites
US7269008B2 (en) * 2005-06-29 2007-09-11 Intel Corporation Cooling apparatus and method
US7328508B2 (en) * 2005-07-05 2008-02-12 International Business Machines Corporation Anisotropic heat spreading apparatus and method for semiconductor devices
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US7433191B2 (en) * 2005-09-30 2008-10-07 Apple Inc. Thermal contact arrangement
US9771264B2 (en) * 2005-10-25 2017-09-26 Massachusetts Institute Of Technology Controlled-orientation films and nanocomposites including nanotubes or other nanostructures
DE102006001792B8 (de) 2006-01-12 2013-09-26 Infineon Technologies Ag Halbleitermodul mit Halbleiterchipstapel und Verfahren zur Herstellung desselben
US7440281B2 (en) * 2006-02-01 2008-10-21 Apple Inc. Thermal interface apparatus
US8663495B1 (en) 2006-02-22 2014-03-04 William Marsh Rice University Gelled nanotube-containing heat transfer medium
JP2009537339A (ja) 2006-05-19 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー ナノ構造強化された複合体およびナノ構造強化方法
US8337979B2 (en) * 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US8890312B2 (en) * 2006-05-26 2014-11-18 The Hong Kong University Of Science And Technology Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
US8220530B2 (en) * 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
US20080193693A1 (en) * 2007-02-14 2008-08-14 Us Armor Corporation Anti-stab and antiballistic foraminous structures
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US8262835B2 (en) * 2007-12-19 2012-09-11 Purdue Research Foundation Method of bonding carbon nanotubes
US8525840B2 (en) * 2008-05-15 2013-09-03 Apple Inc. Thermal management of graphics processing units
US20090323276A1 (en) * 2008-06-25 2009-12-31 Mongia Rajiv K High performance spreader for lid cooling applications
CN101626674B (zh) * 2008-07-11 2015-07-01 清华大学 散热结构及其制备方法
US9063713B2 (en) * 2008-10-28 2015-06-23 Apple Inc. Graphics controllers with increased thermal management granularity
US20100128439A1 (en) * 2008-11-24 2010-05-27 General Electric Company Thermal management system with graphene-based thermal interface material
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US7961469B2 (en) * 2009-03-31 2011-06-14 Apple Inc. Method and apparatus for distributing a thermal interface material
WO2011111112A1 (ja) * 2010-03-12 2011-09-15 富士通株式会社 放熱構造体およびその製造方法
US8431048B2 (en) 2010-07-23 2013-04-30 International Business Machines Corporation Method and system for alignment of graphite nanofibers for enhanced thermal interface material performance
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
US8661810B2 (en) * 2011-03-16 2014-03-04 GM Global Technology Operations LLC Shape memory alloy actuator with enhanced heat transfer characteristics
WO2012140927A1 (ja) * 2011-04-12 2012-10-18 日本碍子株式会社 ヒートフロースイッチ
WO2012142613A1 (en) 2011-04-14 2012-10-18 Ada Technologies, Inc. Thermal interface materials and systems and devices containing the same
US8477490B2 (en) 2011-05-02 2013-07-02 Apple Inc. Cooling system for mobile electronic devices
US9257359B2 (en) 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
US9111899B2 (en) 2012-09-13 2015-08-18 Lenovo Horizontally and vertically aligned graphite nanofibers thermal interface material for use in chip stacks
US9125299B2 (en) 2012-12-06 2015-09-01 Apple Inc. Cooling for electronic components
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
JP6373284B2 (ja) 2013-02-28 2018-08-15 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. ナノ構造フィルムのカートリッジベース払い出し
US9223167B2 (en) 2013-06-26 2015-12-29 Apple Inc. Liquid crystal switching barrier thermal control
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US9389029B2 (en) 2013-09-30 2016-07-12 Apple Inc. Heat transfer structure
JP6405914B2 (ja) * 2014-11-11 2018-10-17 株式会社デンソー 熱交換装置及び熱交換装置の製造方法
US9674986B2 (en) 2015-08-03 2017-06-06 Apple Inc. Parallel heat spreader
US20170156240A1 (en) * 2015-11-30 2017-06-01 Abb Technology Oy Cooled power electronic assembly
CN109311239A (zh) 2016-05-31 2019-02-05 麻省理工学院 包括非线性细长纳米结构的复合制品以及相关的方法
EP3681942A4 (en) 2017-09-15 2021-05-05 Massachusetts Institute of Technology LOW DEFAULT MANUFACTURING OF COMPOSITE MATERIALS
JP2021501997A (ja) 2017-11-03 2021-01-21 イェノプティック オプティカル システムズ ゲーエムベーハー ダイオードレーザ
WO2019108616A1 (en) 2017-11-28 2019-06-06 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods for energy storage and/or use
CN111417282B (zh) * 2019-01-04 2021-07-30 清华大学 散热片以及利用该散热片的电子装置
US11488888B2 (en) 2019-11-08 2022-11-01 Microchip Technology Caldicot Limited Chemical vapor deposition diamond (CVDD) wires for thermal transport

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316080A (en) 1990-03-30 1994-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Heat transfer device
JP3028660B2 (ja) 1991-10-21 2000-04-04 住友電気工業株式会社 ダイヤモンドヒートシンクの製造方法
US5837081A (en) 1993-04-07 1998-11-17 Applied Sciences, Inc. Method for making a carbon-carbon composite
US5389400A (en) 1993-04-07 1995-02-14 Applied Sciences, Inc. Method for making a diamond/carbon/carbon composite useful as an integral dielectric heat sink
US5494753A (en) 1994-06-20 1996-02-27 General Electric Company Articles having thermal conductors of graphite
US5566752A (en) * 1994-10-20 1996-10-22 Lockheed Fort Worth Company High heat density transfer device
US5780101A (en) * 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US20030135971A1 (en) * 1997-11-12 2003-07-24 Michael Liberman Bundle draw based processing of nanofibers and method of making
JPH11263916A (ja) * 1998-03-17 1999-09-28 Fujitsu Ltd 低誘電率の回路配線用絶縁材料及びこれを用いた電子部品
US6504292B1 (en) * 1999-07-15 2003-01-07 Agere Systems Inc. Field emitting device comprising metallized nanostructures and method for making the same
DE10006964C2 (de) * 2000-02-16 2002-01-31 Infineon Technologies Ag Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US6653730B2 (en) * 2000-12-14 2003-11-25 Intel Corporation Electronic assembly with high capacity thermal interface
CN1174917C (zh) * 2001-06-02 2004-11-10 太原理工大学 一种纳米碳管类材料及制备
US6651736B2 (en) * 2001-06-28 2003-11-25 Intel Corporation Short carbon fiber enhanced thermal grease
US7316061B2 (en) * 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100517661C (zh) * 2005-11-26 2009-07-22 鸿富锦精密工业(深圳)有限公司 散热装置的制备方法

Also Published As

Publication number Publication date
US20030231471A1 (en) 2003-12-18
US20040184241A1 (en) 2004-09-23
WO2003107419A1 (en) 2003-12-24
CN100452370C (zh) 2009-01-14
US6891724B2 (en) 2005-05-10
AU2003237548A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
CN100452370C (zh) 使用碳纳米管和cvd增加热界面的导热率
Hansson et al. Novel nanostructured thermal interface materials: a review
CN101083234B (zh) 具有排列整齐的碳纳米管阵列的散热结构及其制造和应用
CN100416781C (zh) 在集成电路微冷却器的设计和制造中使用自组装纳米结构的系统和方法
US7609520B2 (en) Heat spreader with vapor chamber defined therein
CN103547441B (zh) 高导热性/低热膨胀系数的复合物
EP2546871B1 (en) Method for producing a heat dissipating structure
US8546935B2 (en) Semiconductor packages
Schelling et al. Managing heat for electronics
TWI253467B (en) Thermal interface material and method for making same
US20050116336A1 (en) Nano-composite materials for thermal management applications
US8106510B2 (en) Nano-tube thermal interface structure
US7569425B2 (en) Method for manufacturing thermal interface material with carbon nanotubes
US20050255304A1 (en) Aligned nanostructure thermal interface material
CN101346054B (zh) 热界面材料、其制备方法及具有该热界面材料的封装体
US20080128116A1 (en) Vapor chamber heat sink having a carbon nanotube fluid interface
CN202443965U (zh) 一种金属石墨复合散热设备
WO2005028549A2 (en) Nano-composite materials for thermal management applications
WO2004090944A2 (en) Pcm/aligned fiber composite thermal interface
US20110269271A1 (en) Nanotube based vapor chamber for die level cooling
CN101864280A (zh) 芯片封装与散热用热界面材料及其制法
US20140374897A1 (en) Thermal interface material for integrated circuit package and method of making the same
Xie et al. Epitaxial ultrathin Au films on transparent mica with oxide wetting layer applied to organic light-emitting devices
US8808857B1 (en) Carbon nanotube array interface material and methods
CN2694491Y (zh) 散热装置和散热模组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090114

Termination date: 20180610