CN1672281A - 金属支撑的管状燃料电池 - Google Patents

金属支撑的管状燃料电池 Download PDF

Info

Publication number
CN1672281A
CN1672281A CNA038179423A CN03817942A CN1672281A CN 1672281 A CN1672281 A CN 1672281A CN A038179423 A CNA038179423 A CN A038179423A CN 03817942 A CN03817942 A CN 03817942A CN 1672281 A CN1672281 A CN 1672281A
Authority
CN
China
Prior art keywords
layer
fuel cell
electrolyte
electrode layer
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038179423A
Other languages
English (en)
Inventor
帕索·萨卡尔
洪桑·罗
洛恩·约翰松
路易斯·雅玛特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alberta Research Council
Original Assignee
Alberta Research Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alberta Research Council filed Critical Alberta Research Council
Publication of CN1672281A publication Critical patent/CN1672281A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/12Electroforming by electrophoresis
    • C25D1/14Electroforming by electrophoresis of inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/14Tubes; Rings; Hollow bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0252Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及制造金属支撑的管状微固体氧化物燃料电池的方法及用该方法制造的燃料电池。该方法包括步骤:用传导的衬底层涂覆木制衬底元件;用内电极层涂覆衬底层;用电解质层涂覆内电极层;干燥并烧结所涂覆的衬底元件使得衬底元件燃烧;用外电极层涂覆电解质层;及干燥并烧结这些层。

Description

金属支撑的管状燃料电池
技术领域
本发明涉及燃料电池,特别是涉及金属支撑的管状固体氧化物燃料电池及在非传导可燃衬底上制造管状固体氧化物燃料电池的方法。
背景技术
通常,固体氧化物燃料电池(SOFC)包括一对由陶瓷固相电解质分隔的电极(阳极和阴极)。为在这样的陶瓷电解质中获得足够的离子电导性,SOFC在提高的温度下工作,通常在约750℃到1000℃之间。在典型的SOFC电解质中的材料是完全密集(非多孔)的氧化钇稳定的氧化锆(YSZ),其在高温下是极好的带负电的氧(氧化物)离子的导体。典型的SOFC阳极由多孔镍/氧化锆金属陶瓷制成,而典型的阴极由掺镁的锰酸镧(LaMnO3)或掺锶的锰酸镧(也被称作锰酸锶镧(LSM))制成。在工作中,在阳极上通过的燃料流中的氢或一氧化碳(CO)与通过电解质传导的氧化物离子反应以产生水和/或CO2及电子。电子经外电路从阳极传递到燃料电池的外面,经过电路上的负载,并回到阴极,在阴极来自空气流的氧接收电子并被转化为氧化物离子,其被注入电解质中。SOFC发生的反应包括:
阳极反应:
          
          
阴极反应:
方法包括多个同心管状层,即内电极层、中间电解质层、和外电极层。内电极层和外电极层可分别合适地作为阳极和阴极,在这种情况下,燃料可通过使其通过管而提供给阳极,空气可通过使其在管的外表面上通过而提供给阴极。
如所提及的,固体氧化物燃料电池在高温下工作。众所周知,减小壁厚或增加电解质的传导率将使燃料电池能够在较低的温度下工作。减小燃料电池的整个壁厚还具有另外的好处,如降低热质量并增加燃料电池的耐热冲击性,其有利于减少燃料电池的起动/停工时间。此外,连同整个燃料电池直径一起减小壁厚,则减小了燃料电池的大小并使其能够在小规模电力应用中工作,如膝上型电脑、移动电话及其它小的便携电子设备。目前正开发的小规模燃料电池系统,通常被称为“微燃料电池”系统,通常采用直接甲醇燃料电池(DMFC)或聚合物电解质薄膜(PEM)技术。固体氧化物燃料电池具有使它们成为微燃料电池应用的极好选择的特征,如在所有燃料电池技术中其具有最高的能量转换效率,通常在35-60%级。然而,减小SOFC的壁厚则减小了其机械强度,并增加了其脆性。公知的管状SOFC组设计均采用相对大的燃料电池,通常具有大于5mm的直径。这样的燃料电池还具有至少一相对较厚的层—例如“阳极支撑的”燃料电池中的阳极层—其向燃料电池提供结构支撑和结构完整性。这样的大直径厚壁SOFC管并不特别适于小规模应用。
因此,需要提供一种具有减小的壁厚的燃料电池。还需要提供一种适于小规模电力应用的小直径、薄壁燃料电池。
发明内容
根据本发明的一方面,提供了一种管状固体氧化物燃料电池,包括管状、实质的金属多孔支撑层;及与支撑层同心邻接的管状功能层组件。功能层组件以同心排列方式包括:实质的陶瓷或金属陶瓷内电极层、实质的陶瓷中间电解质层、及实质的陶瓷或金属陶瓷外电极层。功能层组件具有小于或等于80μm的壁厚。特别地,功能层组件可具有小于或等于5mm的直径及小于或等于65μm的壁厚。更特别地,功能层组件可具有小于或等于2mm的直径及小于或等于20μm的壁厚。
支撑层具有足够的支撑强度以支撑功能层组件,并具有足够的孔隙率以允许反应物从其流过。要支撑具有小于或等于80μm壁厚的功能层组件,支撑层可具有在20到500μm之间的厚度。支撑层可由选自下组的材料制成:不锈钢、铁素体钢、高温合金、铜、镍、铜合金、镍合金、铜镍混合物、铜/陶瓷金属陶瓷、铜合金/陶瓷金属陶瓷、铜-银、及铜-银-镍。支撑层可与功能层组件电接触和机械接触,在这种情况下,支撑层具有足够的电传导性以在燃料电池工作期间收集电流。支撑层或可在功能层组件之内,或可在功能层组件的外面。在前者的情况下,支撑层与内电极层机械接触,在后者的情况下,支撑层与外电极层机械接触。
内电极层为阳极并具有1到20μm之间的厚度。外电极层为阴极并具有1到30μm之间的厚度。
电解质由选自下组的材料制成:氧化钇稳定的氧化锆及掺Gd2O3的CeO2。当由氧化钇稳定的氧化锆制成时,电解质可具有小于或等于5μm的厚度。当由掺Gd2O3的CeO2制成时,电解质可具有小于或等于15μm的厚度。电解质可包含一定百分比(0-30%)的纳米大小(小于或等于50nm)的电解质粉末粒级及亚微电解质粉末,以降低电解质的烧结温度。或者,电解质可包含其它烧结添加剂;例如,在CeO2系统中,添加剂可以是CoO或CoO与氧化铁的混合物,或CoO及氧化铜混合物,或CoO、氧化铜和氧化铁的混合物,或钴和铁的混合物,或钴和铜的混合物,或钴、铜和铁的混合物,氧化铋,基于铋(Bi-Sr-Ca-Cu-O)的陶瓷超导体或Bi-Sr-Ca-Cu-O混合物,YBa2Cu3Ox-陶瓷超导体或Y-Ba-Cu-O混合物,以降低烧结或致密化温度。这些烧结混合物被期望具有较单一材料烧结添加剂更低的熔化温度。
具有这样的尺寸和成分的燃料电池组件为小直径薄壁管状燃料电池组件,其应该具有较大直径厚壁陶瓷管状燃料电池更好的耐热冲击性和机械挠性。这样的燃料电池在微燃料电池应用中应该特别有用。
上述的燃料电池组件可与其它燃料电池组件组合以形成燃料电池组。特别地,燃料电池组包括上述的燃料电池组件,及连续固相支撑基体,基体嵌入燃料电池并具有足以使反应物通过其流到所嵌入的燃料电池的外表面的孔隙率。
根据本发明的另一方面,提供了一种制造管状固体氧化物燃料电池组件的方法,包括:
(a)用陶瓷或金属陶瓷内电极层涂覆管状金属多孔支撑层;
(b)用陶瓷电解质层涂覆内电极层;
(c)干燥并烧结这些层(可选);
(d)用陶瓷或金属陶瓷外电极层涂覆电解质层;及
(e)干燥并烧结外电极层,从而产生柔韧的中空管状金属支撑的燃料电池;
电极和电解质层具有80μm或更小的总壁厚,及支撑层具有足够的机械强度以支撑电极和电解质层,并具有足够的孔隙率以使反应物从其流过。
内电极层可通过下述方法之一涂覆在支撑层上:电泳沉积、浸涂和喷涂。电解质层可通过下述方法之一涂覆在内电极层上:电泳沉积、浸涂、溶胶-凝胶涂覆、及喷涂。金属支撑层可包含可燃的添加剂,其在烧结期间燃烧以产生多孔金属支撑层。内和外电解质还可包含可燃添加剂,其在烧结期间燃烧以产生多孔电极层。
根据本发明的另一方面,提供了一种制造管状固体氧化物燃料电池的方法,包括下述步骤:
(a)用传导性衬底层涂覆可燃的非传导衬底元件;
(b)通过电泳沉积用内电极层涂覆衬底层;
(c)用电解质层涂覆内电极层;
(d)干燥并烧结所涂覆的衬底元件,使得衬底元件燃烧(可选);
(e)用外电极层涂覆电解质层;及
(f)干燥并烧结这些层(如果可选步骤(d)未被执行,则藉此燃烧衬底元件);
从而产生中空管状燃料电池。
衬底元件成分可实质上包括选自下组的材料:木材、聚合物、纸、及黄麻纤维、聚合物纤维或细丝。传导的衬底层成分可实质上包括选自下组的材料:金属、碳、及石墨。
当传导的衬底层实质上是金属时,其在烧结期间不燃烧,因而该方法产生具有中空管状燃料电池的燃料电池组件,中空管状燃料电池衬以金属内层。为使反应物能够到达燃料电池的内电极,足够的可燃添加剂在步骤(a)被添加到金属衬底层以产生足够多孔的金属层。金属可选自下面的组:不锈钢、铁素体钢、高温合金、Cu、Ni、Cu合金、Ni合金、Cu-Ni混合物、Cu(或Cu合金)/陶瓷金属陶瓷、Cu-Ni/陶瓷金属陶瓷、Cu-Ag、及Cu-Ni-Ag。可施加足够的金属到衬底上以产生金属衬底层,其可在燃料电池工作期间机械支撑电极和电解质层。可选地,烧结可在步骤(a)和(b)之间进行以燃烧衬底;接下来,金属衬底层可在燃料电池层施加在其上之前被定形。
当传导的衬底是碳或石墨或另一可燃材料时,其在烧结期间燃烧。在步骤(a)和(b)之间,可燃衬底层可通过电泳沉积而被涂以金属支撑层;该支撑层衬在燃料电池的内侧。另外,或者,外电极可被涂以金属支撑层。在两种情况下,支撑层具有足够的支撑强度以在燃料电池工作期间支撑电极和电解质层。特别地,二支撑层均具有20到500μm之间的厚度以提供所述机械强度。同样,二支撑层均包括可燃添加剂,其在烧结期间燃烧以产生具有足够孔隙率的支撑层,以使反应物能够从其流过。
附图说明
图1是使用木制杆状衬底产生金属支撑的管状SOFC的步骤的流程图。
图2为使用木制杆状衬底产生金属支撑的管状SOFC的步骤的流程图,衬底首先通过喷涂被涂以第一金属层,接着通过电泳沉积涂以第二金属层。
图3为使用木制杆状衬底产生金属支撑的管状SOFC的步骤的流程图,其中衬底被涂以碳或石墨层。
图4为产生金属支撑的管状SOFC的步骤的流程图,其包括在非拉伸结构中成形燃料电池。
图5为产生金属支撑的管状SOFC的步骤的流程图,其使用挤压成形的金属管作为燃料电池的支撑层。
图6为由图1中所示的方法产生的燃料电池的示意性的截面图。
图7(a)和(b)为具有多个图6所示的燃料电池的燃料电池组的俯视图和侧视图。
具体实施方式
当描述本发明时,除非特别指出,下述术语具有下述含义。所有未在此定义的术语具有普通的、为本领域公认的含义。
术语“陶瓷”指具有普遍的(prevalent)共价或离子键的无机非金属固体材料,共价或离子键包括但不限于金属氧化物(如铝、硅、镁、锆、钛、铬、镧、铪、钇的氧化物及其混合物),及非氧化物化合物包括但不限于碳化物(如钛钨、硼、硅的碳化物)、硅化物(如二硅化钼)、氮化物(如硼、铝、钛、硅的氮化物)、及硼化物(钨、钛、铀的硼化物)、及其混合物;尖晶石,钛酸盐(如钛酸钡、钛酸铅、钛酸锆铅、钛酸锶、钛酸铁),陶瓷超导体、沸石、及陶瓷固体离子导体(如三氧化二钇稳定的氧化锆、β-氧化铝、及铈酸盐)。
术语“金属陶瓷”指包含陶瓷与金属结合的复合材料,金属通常是但不限于烧结金属,其通常展现出高抗温性、抗腐蚀性、抗磨蚀性。
在中空陶瓷、金属、及金属陶瓷隔膜和基体的上下文中的术语“多孔”指材料包含气孔(空隙)。因此,多孔材料的密度低于材料的理论密度。多孔隔膜和基体中的空隙可被连接(即,通道型)或分离的(即,隔离的)。在多孔中空隔膜或基体中,气孔的大部分被连接。对于在此使用的多孔,隔膜的气孔密度至多为材料的理论密度的95%。孔隙度的数量可通过测量多孔体的堆密度及源于多孔体中的材料的理论密度而确定。多孔体中的气孔大小及其分布可通过现有技术中的水银或非水银孔隙率计、BET或微观结构图像分析来测量。
根据本发明的一实施例,提供了制造金属支撑的管状微固体氧化物燃料电池(μ-SOFC)组件的方法。燃料电池组件具有支撑层和三个功能层,即:内电极薄膜、中间电解质薄膜、及外电极薄膜。电极用作集电器并促进电化学反应。电解质允许氧离子从一电极(阴极)传递到另一电极(阳极),且电解质不能渗透空气中的氮及电解质两侧的燃料气体流。功能层由管状金属支撑层进行机械支撑,在该实施例中,其是燃料电池组件的内层。当然,金属支撑层可位于燃料电池上的其它地方,如与功能层同心并在功能层的外面。
参考图1和6,燃料电池组件10通过在木制衬底12上涂覆连续的层而产生。衬底12用作燃料电池组件10的模板,并因而具有可选择来对应于将要产生的燃料电池组件10的形状和大小。在该实施例中,木制衬底12用于产生管状小直径SOFC,并因而是具有圆形截面的伸长的杆,且其直径在0.1到10mm的范围内。衬底12特别适于产生具有小于或等于5mm的直径的管状μ-SOFC。之所以选择木材是因为其低成本及在烧结温度下的可燃烧性。当然,其它相对廉价的可燃材料如聚合物、纸、或黄麻/聚合物纤维,具有类似的形状和大小,也可用作衬底12。
木制衬底12首先被涂以传导的金属支撑层14。适于涂覆木制衬底12的方法是在液态含金属的混合物的容器中浸涂木制衬底12,如现有技术中所公知的。或者,混合物可通过喷涂或刷涂进行施加,如现有技术中所公知的。混合物包括一种或多种传导的并能够经受典型的SOFC工作条件的金属。适合的金属包括:镍、铜、银、银合金(如银镍合金、银铜合金、银-铜-镍合金)、不锈钢、铁素体钢、及高温合金(如英科耐尔)、铜合金、镍合金、铜-镍混合物、铜(或铜合金)/陶瓷金属陶瓷、铜-镍/陶瓷金属陶瓷、及铜-镍-银/陶瓷金属陶瓷。混合物还包括3-60vol.%的可燃添加剂,其在烧结期间燃烧以产生多孔金属层14;根据所使用的可燃添加剂的量,孔隙率在20-75vol.%之间变化。这样的孔隙率使反应物(即氧化物或燃料)能够在燃料电池工作期间流过支撑层14并流到相邻的电极。特别地,具有30vol.%可燃添加剂的混合物产生具有约40vol.%孔隙率的金属支撑层。适合的可燃添加剂的例子包括:碳粒子、石墨、玉米淀粉、木薯枝、米花、木质粒子或盐粉、及聚合物粒子。
可选地,在施加支撑层14之前衬底12可被涂覆以聚合物粘合剂溶液,以增加光滑度并减小衬底表面的孔隙率。对于由黄麻或聚合物纤维制成的衬底,粘合剂溶液还可用于封闭纤维间的间隙。适当的这种聚合物粘合剂溶液包括约5vol.%聚乙烯醇缩丁醛溶解在水或酒精中的溶液或约5vol.%硝化纤维溶解在丙酮中的溶液。
可选地,混合物可包括陶瓷材料如二氧化铈。添加这样的陶瓷材料以在支撑层14中产生催化活性,如重组阳极内的烃。支撑层14中的陶瓷含量不应超出陶瓷的渗透极限,即极限值,在该值陶瓷在金属中会变成连续相,并使得支撑层14变得易碎。陶瓷渗透极限为约35vol.%。因此,支撑层成分由具有0vol.%到陶瓷渗透极限之间的陶瓷均衡的金属组成;这样的支撑层14在此被定义为“实质金属”的支撑层14。
通常,向衬底12施加足够的金属混合物以产生实质金属的支撑层14,其具有足够的机械强度以在典型的SOFC工作条件下支撑薄壁管状μ-SOFC。例如,要支撑具有2mm直径和80μm或更小的壁厚的μ-SOFC,适合的支撑层14由英科耐尔或不锈钢制成并具有20-500μm级的厚度,且最好是在200μm左右。
在木制(或聚合物或纸或黄麻/聚合物纤维)衬底12被涂覆以支撑层14之后,支撑层14被允许干燥。接着,功能层被连续施加以产生具有多个同心材料层的燃料电池组件10。“功能层”意为燃料电池组件10的电极和电解质,特别是不包括支撑层14。支撑层14对功能层提供结构支撑,并收集电流。
施加在支撑层14上的第一功能层是内电极层16,且该层通过电泳沉积(EPD)施加。就此而论,支撑层14用作传导表面,其使内电极层16能够通过EPD而得以施加。通过EPD涂覆的方法已在申请人的公开PCT申请PCT/CA01/00634中描述。EPD是形成功能层的特别令人满意的方法,其能够形成非常薄的层;当然,能够形成非常薄的功能层的现有技术中的其它已知方法也可被使用。内电极层16可用作燃料电池10的阳极,同样,其是多孔的,由镍(或铜)及氧化锆(或二氧化铈)金属陶瓷制成,其具有1μm到20μm之间的厚度,且最好为约5μm。在EPD之前,阳极材料为浆体的形式;浆体可包括可在烧结期间燃烧的可燃粒子,从而增加阳极结构的孔隙率。选择可燃粒子在内电极层16中的浓度和分布以产生具有大于或等于15vol.%的孔隙率的内电极层16,最好在30vol.%左右。
在内电极层16已被施加之后,第二功能层18被施加在内电极层16之上;该层18用作燃料电池组件10的电解质。为了降低燃料电池组件10的工作温度,特别地,将工作温度降低到700℃或700℃之下,可选择高传导性电解质材料,如掺Gd2O3的CeO2。具有这样的成分的电解质可通过EPD施加在阳极层的上面,其厚度为15μm或更小。或者,在不使用高传导性电解质的情况下也可获得较低的燃料电池工作温度,其是通过减小电解质层18的厚度来实现。在这种情况下,由氧化钇稳定的氧化锆(YSZ)制成的电解质层18具有小于或等于5μm的厚度,最好在2μm左右,其可用于产生可在700℃左右或更低温度下工作的燃料电池10。为施加这样的电解质薄层,可如现有技术中所知的那样,使用溶胶-凝胶浸涂技术。
在施加到内电极层16之前,电解质材料为浆体的形式;浆体包括烧结添加剂,添加剂使得电解质层18在降低的烧结温度下可获得真密度;该降低的烧结温度对于避免熔化或过烧结金属支撑层14是必要的。烧结添加剂可以是一定重量百分比(0-30%)的纳米大小(小于或等于50nm)的电解质粉末粒级,其具有亚微电解质粉末;例如,在CeO2系统中,添加剂可以是氧化钴或氧化钴与氧化铁的混合物,或氧化钴及氧化铜混合物,或氧化钴、氧化铜和氧化铁的混合物,或钴和铁的混合物,或钴和铜的混合物,或钴、铜和铁的混合物,氧化铋,基于铋(Bi-Sr-Ca-Cu-O)的陶瓷超导体或Bi-Sr-Ca-Cu-O混合物,YBa2Cu3Ox-陶瓷超导体或Y-Ba-Cu-O混合物。上述的烧结添加剂的最大重量百分比是10%。这些烧结混合物应该较单一材料的烧结添加剂具有更低的熔化温度。
在阳极和电解质层16、18已被施加之后,它们被允许干燥。接着,木制衬底12和支撑及功能层14、16、18在足以烧尽可燃木制衬底12及涂层14、16、18中的任何可燃粒子的温度下烧结,上述温度下不会熔化金属支撑层14。烧结还使电解质层18能够在保持内电极层16和支撑层14的孔隙率的同时获得真密度。氧化锆沉积的烧结周期,其中烧结气体为空气或惰性的(氮或氩)或还原的(氢或氢及惰性气体混合物),可通过以20℃/hr到300℃/hr的加热速率将温度升高到约500℃到约800℃而开始,最好在约6小时到约9小时的期间完成,在保持该温度大约3小时。温度接着可以每小时约100℃到约300℃的速率升高到约800℃到约1400℃的烧结温度,并保持该温度0.5到约5小时。温度接着以每小时约100℃到约300℃的速率降低到室温。在烧结之后,电解质层中的烧结添加剂可保持为如氧化钴、氧化铁或氧化铜的游离相。或者,它们可溶解在掺Gd2O3的CeO2电解质的CeO2中,或者它们可与CeO2进行化学反应并形成化合物。
在烧结之后,电解质层18被涂覆以第三功能层,即外电极层20。由于在该实施例中内电极层16是阳极,外电极层20用作阴极,同样,其成分可以是LSM、或LSM/掺氧化锆的混合物、或LSM/掺二氧化铈的混合物、或另外的电及离子传导的陶瓷材料。外电极层20可通过任何适当的已知手段施加到电解质层18,包括但不限于EPD(假设电解质层通过涂覆以传导层而成为传导层,如用石墨涂料喷涂电解质层)、浸涂、刷涂、喷涂或溶胶-凝胶涂覆。涂层厚度在1到30μm之间并最好在10μm左右。同阳极层16一样,可燃粒子可被添加到阴极浆体,其在烧结期间燃烧以增加多孔阴极层20的孔隙率。
在外电极层20已被施加到电解质层18之后,燃料电池组件10经历干燥阶段,其中在40℃、60℃、80℃、100℃、120℃及140℃的渐增温度下施加加热。外电极层20可在每一温度下加热10分钟到5小时。接着,应用最后的烧结阶段以部分致密外电极层20,以将外电极层20结合到电解质层18,并燃烧外电极层18中的任何可燃粒子。烧结周期,其中烧结气体为空气,可通过将温度从室温升高到约200-250℃的第一温度而开始,接着升高到约400-600℃之间的第二温度,接着升高到约800-900℃之间的第三温度,接着最后升高到800到1100℃之间的温度。每一这些烧结步骤的加热速率在约20-300℃/hr之间。外电极层20在每一这些温度保持15分钟到5小时。温度接着可以每小时约60-300℃的速率降低到室温。
通过这些步骤产生的燃料电池组件10为中空拉伸管状结构。该管状结构的横截面通常为圆形,具有其它形状的横截面也在本发明范围内,如正方形、六边形等。燃料电池组件10具有多个同心材料层,即,实质金属的内支撑层14,及与支撑层同心邻接的功能层组件;功能层组件包括具有陶瓷或金属陶瓷成分的内电极层16、具有陶瓷成分的中间电解质层18、及具有陶瓷或金属陶瓷成分的外电极层20。相比于现有技术的管状燃料电池,功能层组件非常薄,其通常具有小于或等于80μm的壁厚,特别地,在大约25μm级,同样,其给予燃料电池组件10非常高的耐热冲击性、非常快速的起动时间(即加热到工作温度的时间)、及给予燃料电池组件10较厚壁陶瓷燃料电池更好的抗机械冲击性能的弹性度。该最后一特征在燃料电池组件10将在不利条件中使用时特别重要,其中燃料电池系统的组成可能经受振动及其它机械冲击。阳极支撑的NiO(Ni)-氧化锆衬底的主要问题在于与NiO/Ni的氧化和还原相关联的尺寸变化。燃料电池的Ni的氧化导致阳极衬底上的体积膨胀并在电解质层上产生张力,从而导致微裂化出现在电解质层中。特别地,在SOFC从其工作温度冷却期间这是非常关键的;任何气体泄漏均可实质上损害燃料电池的电解质。由于本设计使用金属支撑的SOFC替代了具有相当厚的阳极壁的阳极支撑的燃料电池,与氧化-还原相关联的问题得以减少或完全避免。此外,燃料电池组件10的金属支撑层14可被焊接到燃料电池系统的其它部件,从而在设计燃料电池系统时给出进一步的设计选择。
根据本发明的另一实施例,燃料电池10可通过只具有一个烧结步骤的方法制造。该方法包括与上述的双烧结方法一样的步骤,除了第一烧结步骤被省略之外,且第二烧结步骤被修改成这样:在烧结期间,外电极层不以明显的方式与电解质层发生化学反应,且在烧结之后,外层的孔隙率大于体积的20%,且最后的燃料电池可将化学能有效地转换为电能。
参考图7,燃料电池组件10可与其它类似的燃料电池组件10一起装配成组22,其通过将燃料电池组件10排列成实质并联的、纵向延伸的紧密组装的阵列并将燃料电池组件10嵌入在连续固相多孔泡沫支撑基体24中。基体24由陶瓷或能够经受典型的SOFC工作温度的其它材料制成,如钢或高温合金。支撑基体24可由LSM制成以使其能够在高达1000℃的温度下工作并用于收集电流、将氧离子化成氧化物离子、及将这些离子引导到电解质。支撑基体24填充燃料电池组件10之间的间隔并与每一燃料电池组件10的外表面接触,即与每一燃料电池10的阴极层接触。支撑基体24可以是与阴极层一样的材料,从而用于增加阴极的有效表面面积,并增加用于收集电子的面积,并离子化氧。
代替LSM,支撑基体24可由任何适当的电子或混合(电子及离子)传导多孔固态材料制成。当由电子传导材料(如金属)制成时,支撑基体24可通过电子传输而传送电流。当由混合导体材料(如LSM或金属/陶瓷合成物)制成时,支撑基体24可通过电子和离子传输传送电流。当由离子导体材料(如掺氧化钇的氧化锆)制成时,支撑基体24可通过离子传输传送电流。用于基体的适当的备选材料包括:
掺杂的LaCrO3(如La1-XSrXCrO3、La1-XCaXCrO3、La1-XMgXCrO3、LaCr(Mg)O3、LaCa1-XCrYO3)、不锈钢(如316、316L)、金属陶瓷如:Ni-氧化钇稳定的氧化锆、Ni及掺杂的氧化锆金属陶瓷、掺Ni的CeO2金属陶瓷、掺Cu的ceria金属陶瓷、银-(Bi-Sr-Ca-Cu-O)-氧化物金属陶瓷、银-(Y-Ba-Cu-O)-氧化物金属陶瓷;银-合金-(Bi-Sr-Ca-Cu-O)-氧化物金属陶瓷;银-合金-(Y-Ba-Cu-O)-氧化物金属陶瓷;银及其合金、英科耐尔钢或任何高温合金、铁素体钢、SiC、及MoSi2
当支撑基体24完全由钢或高温合金制成时,其用于提供机械支撑以将燃料电池组件10保持在一起,并用作集电器。如果支撑基体24由涂有催化剂的钢或高温合金制成,其用于提供机械支撑、收集电流、并促进化学反应,如离子化。如果支撑基体24由涂覆有催化剂及离子或混合导体的钢或高温合金制成,其用于提供机械支撑、收集电流、促进化学反应、并提供离子传导路径。
支撑基体24是多孔的(具有通道型连接的细孔),以允许氧化剂流过电池组22,并流到每一燃料电池组件10的阴极层16。选择支撑基体24的孔隙率以提供足够的氧化剂流过率及足够的机械强度以用作燃料电池组22的支撑结构。就此而言,支撑基体24具有30-95%之间的孔隙率,最好为约60%。如下面将描述的,在该实施例中支撑基体24为通过烧结泡沫浆体而制成的固体泡沫。当然,支撑基体24也可由其它材料制成,如金属丝、或金属、陶瓷或金属陶瓷绒。
电池组22在其每一纵向端部可分别用侧板30盖住;每一侧板具有多个对应于管状燃料电池10的开口,使得燃料电池延伸通过侧板30。电池组的主体由穿孔的覆层32包围,其可渗透空气。在实践中,电池组22可被装配在燃料电池系统(未示出)中,其将空气流到电池组34的一侧、通过覆层32、通过多孔支撑基体24、并到达每一燃料电池的外表面。未使用的空气及反应产物通过电池组22的另一侧36上的覆层32而被携带出电池组。燃料通过电池组22的燃料入口端38处的每一燃料电池10馈送,并在电池组22的燃料出口端40从管出来。
燃料电池系统的泵、控制器及其它辅助设备均为现有技术中所公知的,在此不再描述。同样,燃料电池组22电连接到外部电路(未示出)也是现有技术中公知的。
有不同的方法可将燃料电池10嵌入在多孔基体中。根据一方法,提供装置(未示出)用于将多个燃料电池10浸入基体材料的浆体中。该装置包括一对由能够经受烧结的陶瓷、高温合金或其它材料制成的侧板、可燃软片、及用于提供浆体到装置的工具。每一侧板在其主要面之一上具有多个缺口;缺口为可以接受燃料电池10的端部的形状和大小。软片可由纸板或适当的塑料材料制成。在烧结的基础上(如下述),软片完全燃烧掉。或者,软片可用不可燃的蓄电池壳壁(未示出)替代,其为陶瓷如氧化铝或氧化锆,或金属。这样的蓄电池壳用于在加热处理/烧结期间包容浆体,但也可用作燃料电池组22的必备组件。
每一燃料电池10的每一端部粘以保护性的遮蔽带(未示出)或适当的易燃涂层,以使端部隔离于浆体。接着,每一侧板被夹在每一燃料电池10的每一端部,以固定每一燃料电池在合适的位置。接着,软片被包裹在燃料电池10周围;软片足够大以便能完全包裹燃料电池10并连接到每一侧板。当包裹好后,软片和侧板形成封装燃料电池10的圆柱形蓄电池壳。浆体注入口提供在一底板上。
浆体是基体材料、水或有机溶剂、分散剂、发泡剂、有机单体及引发剂的悬浮液。在该例子中,基体材料是LSM(锰酸锶镧),但也可是任何具有适当特性的陶瓷和/或金属粉末,如LaCr(Mg)O3、掺杂的LaCrO3(如La1-XSrXCrO3、La1-XCaXCrO3、La1-XMgXCrO3、LaCr(Mg)O3、LaCa1-XCrYO3、La1-xSrxCo1-yFcyO3、(LSM或LaCr(Mg)O3或掺杂的LaCrO3(La1-xSrxCrO3、La1-xCaxCrO3、La1-xMgxCrO3、LaCr(Mg)O3、LaCa1-xCryO3、La1-xSrxCo1-yFcyO3))、加上金属如银或不锈钢、铁素体钢或高温合金或英科耐尔或银加不锈钢或铁素体钢、高温合金或英科耐尔的混合物、不锈钢(316、316L)、金属陶瓷如:镍-三氧化二钇稳定的氧化锆或任何镍及掺杂的ZrO2金属陶瓷、镍及掺杂的CeO2金属陶瓷、铜及掺杂的二氧化铈金属陶瓷、Cu-Ni及掺杂的CeO2或掺杂的ZrO2金属陶瓷、银及其合金、英科耐尔钢及任何高温合金、铁素体钢、SiC及MoSi2。有机单体可以是甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酰胺、或其他丙烯酸盐。分散剂可以是聚丙烯酸。发泡剂可以是Tergiton TMN10或Triton X114。引发剂可以是过硫酸铵(APS)。在热处理的基础上,浆体将产生具有多孔结构的泡沫,其中气孔的大部分均相互连接,以提供连续的流体通道。在烧结的基础上,该泡沫变成具有泡沫状微结构的固态多孔支撑基体24。
代替发泡剂或除发泡剂之外,可在浆体中添加易燃添加剂,如聚合物粉末、有机粉末、盐粉及纤维。在足以使易燃添加剂燃烧的温度下烧结的基础上,添加剂燃烧掉,留下固态泡沫支撑基体24。
代替发泡剂及可燃添加剂或除它们以外,多孔泡沫状微结构可通过使用中空陶瓷粒子形成。球形的陶瓷粒子如商业可用的氧化铝泡(Al2O3)被首先涂以基体材料,如通过使用浆体浸涂或喷涂这些粒子,或通过将基体材料无电镀涂覆在这些粒子上。接着,所涂覆的粒子放置在具有多个管状燃料电池10的蓄电池壳中,其中管状燃料电池10以想要的电池组结构排列。蓄电池壳被塞满粒子,使得管状燃料电池10被安全地保持在适当的位置。接着,在蓄电池壳上放置盖,且填充后的蓄电池壳经历烧结过程,藉此,涂层将与粒子结合从而使粒子物理地互联。
浆体通过浆体口注入或灌入,直到蓄电池壳被填满且燃料电池10被浸入在浆体中。浆体被留下以在室温(或提高到约120℃的温度)完全干燥。
在浆体已干燥之后,蓄电池壳及其内容物均被烧结。烧结循环包括首先将温度从室温增加到200℃,并保持在该温度1-10小时,接着增加到500℃并保持在该温度1-10小时,接着增加到650℃并保持在该温度1-10小时,接着增加到800℃并保持在该温度1-10小时,最后增加到800-1250℃并保持在该温度0.25到5小时。每一步骤中温度以20-300℃之间的速率增加。温度接着以60-300℃之间的速率降到室温。
在烧结期间,易燃软片被烧掉,留下燃料电池组22,其中燃料电池10嵌入在固化的多孔支撑基体24中,使得基体包裹每一嵌入的燃料电池的10长度(因为在涂覆浆体之前燃料电池10的端部已被遮蔽,因而它们隔离于基体)。侧板接下来被移走,且电池组22准备用于与其他构件结合以产生燃料电池系统。
根据本发明的另一实施例并参考图2,金属支撑的管状SOFC以类似于第一实施例中描述的方法产生,但在施加第一功能层之前、木制(或聚合物或纸或黄麻/聚合物纤维)衬底12被首先涂覆以一薄层金属涂料(比第一实施例中的金属支撑层薄),接着在金属涂料上通过EPD而施加另一金属层14。两层金属支撑涂层的总厚度在20到500μm之间。总之,相比于金属层涂覆方法而言,通过EPD涂覆提供了更好的表面界面修整及更好的微结构同质。
根据本发明的另一实施例并参考图3,金属支撑的管状SOFC以类似于第一实施例中描述的方法产生,但在施加第一功能层之前,木制(或聚合物或纸或黄麻/聚合物纤维)衬底12被首先涂覆以一层碳或石墨涂料,接着通过EPD而被涂覆以金属支撑层。碳或石墨层使木制(或聚合物或纸或黄麻/聚合物纤维)衬底12可传导,从而使金属层14能够通过EPD施加在其上。碳或石墨层将在烧结期间与木制心一起燃烧。
根据本发明的另一实施例,管状SOFC以类似于第一实施例中描述的方法产生,但代替在衬底12上施加实质的金属层14,衬底12被涂覆以一层碳或石墨涂料。碳或石墨层使木制(或聚合物或纸或黄麻/聚合物纤维)衬底12可传导,从而使内电极层16能够通过EPD施加在其上。其它功能层18、20如第一实施例中描述的那样施加。接下来,发生烧结,且碳或石墨层将在烧结期间与木制芯一起燃烧,并留下管状燃料电池。燃料电池可以是阳极、电解质、或阴极支撑的,如现有技术中所公知的。例如,在阳极支撑的燃料电池中,NiO/掺杂的氧化锆(或掺杂的二氧化铈)阳极支撑层被施加到碳或石墨层,接着,阳极功能层被施加在阳极支撑层上,接着,电解质(掺杂的氧化锆或掺杂的二氧化铈)层被施加在阳极功能层上,接着,这些层被烧结(可选),接着,外电极施加到电解质层上,最后,这些层被烧结。或者,燃料电池可以是薄壁(小于80μm)的并在其周围具有金属支撑层14并连接到外电极。在后者的情况下,实质的金属层施加在外电极层20的外面。接着进行烧结,碳或石墨层将在烧结期间与木制芯一起燃烧,留下燃料电池组件,其在功能层16、18、20的外面具有金属支撑层14。代替碳或石墨,本领域技术人员所公知的其它传导易燃层也可施加到衬底12上,如电传导的聚合物或其它有机材料。
根据本发明的另一实施例并参考图4,金属支撑的管状SOFC以类似于第一实施例中描述的方法产生,但在施加到木制(或聚合物或纸或黄麻/聚合物纤维)衬底12的金属层14已干燥之后并在施加第一功能层之前,涂覆金属的木制(或聚合物或纸或黄麻/聚合物纤维)衬底12被烧结。这使得木制(或聚合物或纸或黄麻/聚合物纤维)衬底12被烧掉,留下一薄的管状金属层14,可选地,其可被成形为不同的燃料电池结构,如“U”形或盘形。在成形之后,功能层按如上所述被施加到金属层14上。
根据本发明的另一实施例并参考图5,金属支撑的管状SOFC以类似于第一实施例中描述的方法产生,但木制的、涂覆金属的杆状衬底12由多孔中空管状挤压成形的管(未示出)代替。金属管在直径最好在约1mm级,壁厚小于500μm,且最好在约200μm级,但这些尺寸可根据想要的燃料电池10的大小向上或向下调整。管可由具有粗糙粒子的金属粉末形成,在烧结期间,其产生具有大于或等于20vol.%级的孔隙率的多孔管,孔隙率最好为大约60vol%。或者,管可从包含易燃添加剂的混合物挤压成形,其在烧结期间燃烧以产生具有同样的孔隙率的管。管可被成形为想要的燃料电池结构。接着,内电极层16和电解质层18可根据上述的步骤通过EPD施加。其余步骤与第一实施例中描述的步骤一样。
在本发明的优选实施例已被图示和描述的同时,应该意识到的是,在不脱离本发明的范围和实质的情况下可进行许多改变。

Claims (36)

1、管状固体氧化物燃料电池组件,包括:
(a)管状金属多孔支撑层;及
(b)与支撑层同心邻接的管状功能层组件,其具有小于或等于80μm的壁厚并以同心排列方式包括:陶瓷或金属陶瓷内电极层、陶瓷中间电解质层、及陶瓷或金属陶瓷外电极层;
其中支撑层具有足够的机械强度以支撑功能层组件,并具有足够的孔隙率以允许反应物从其流过。
2、根据权利要求1所述的燃料电池组件,其中功能层组件的壁厚小于或等于65μm、直径小于或等于5mm。
3、根据权利要求2所述的燃料电池组件,其中功能层组件的直径小于或等于2mm。
4、根据权利要求2所述的燃料电池组件,其中功能层组件的壁厚小于或等于20μm。
5、根据权利要求1所述的燃料电池组件,其中电解质成分实质上包括选自下组的材料:氧化钇稳定的氧化锆及掺Gd2O3的CeO2
6、根据权利要求5所述的燃料电池组件,其中电解质成分包括氧化钇稳定的氧化锆,并具有小于或等于5μm的厚度。
7、根据权利要求5所述的燃料电池组件,其中电解质成分包括掺Gd2O3的CeO2并具有小于或等于15μm的厚度。
8、根据权利要求5所述的燃料电池组件,其中电解质成分包括选自下组的至少一烧结添加剂:氧化钴;氧化钴和氧化铁;氧化钴和氧化铜;氧化钴、氧化铜和氧化铁;钴和铁;钴和铜;钴、铜和铁;氧化铋;基于铋的(Bi-Sr-Ca-Cu-O)陶瓷超导体;及Bi-Sr-Ca-Cu-O。
9、根据权利要求1所述的燃料电池组件,其中支撑层具有20到500μm之间的厚度。
10、根据权利要求9所述的燃料电池组件,其中支撑层成分实质上由选自下组的材料组成:不锈钢、铁素体钢、银镍合金及高温合金、铜、镍、铜合金、镍合金、铜镍混合物、铜/陶瓷金属陶瓷、铜合金/陶瓷金属陶瓷、铜-镍/陶瓷金属陶瓷、铜-银、及铜-镍-银。
11、根据权利要求1所述的燃料电池组件,其中内电极层是阳极并具有1到20μm之间的厚度。
12、根据权利要求1所述的燃料电池组件,其中外电极层是阴极并具有1到30μm之间的厚度。
13、燃料电池组,包括:
(a)多个权利要求1所述的燃料电池组件;及
(b)连续固相多孔基体,基体嵌入燃料电池并具有足以使反应物通过其流到所嵌入的燃料电池的外表面的孔隙率。
14、根据权利要求1所述的燃料电池组件,其中支撑层与功能层组件电接触和机械接触,且支撑层具有足够的电传导性以在燃料电池工作期间收集电流。
15、根据权利要求1所述的燃料电池组件,其中支撑层在功能层组件之内,并与内电极层接触。
16、根据权利要求1所述的燃料电池组件,其中功能层组件在支撑层之内,且支撑层与外电极层接触。
17、一种制造管状固体氧化物燃料电池组件的方法,包括:
(a)用陶瓷或金属陶瓷内电极层涂覆管状金属支撑层;
(b)用陶瓷电解质层涂覆内电极层;
(c)用陶瓷或金属陶瓷外电极层涂覆电解质层;及
(d)烧结这些层以产生中空管状金属支撑的燃料电池;电极和电解质层具有80μm或更小的总壁厚,支撑层具有足够的机械强度以支撑电极和电解质层,并具有足够的孔隙率以使反应物从其流过。
18、根据权利要求17所述的方法,其中内电极层通过电泳沉积、浸涂及喷涂之一涂覆在支撑层上。
19、根据权利要求17所述的方法,其中电解质层通过电泳沉积、浸涂、溶胶-凝胶涂覆及喷涂之一涂覆在内电极层上。
20、根据权利要求17所述的方法,其中金属支撑层包括可燃添加剂,且其中在步骤(d),可燃添加剂被燃烧从而产生多孔金属支撑层。
21、根据权利要求17所述的方法,其中至少一电极层包括可燃添加剂,且其中在步骤(d),可燃添加剂被燃烧从而产生具有增加的孔隙率的电极层。
22、根据权利要求17所述的方法,在步骤(a)和(b)之间还包括:在施加电解质和外电极层之前,干燥并烧结内电极层和支撑层。
23、根据权利要求17所述的方法,其中在步骤(b)和(c)之间还包括:在施加外电极层之前,干燥和烧结内电极层和电解质层。
24、一种制造管状固体氧化物燃料电池的方法,包括:
(a)用传导性衬底层涂覆可燃的非传导衬底元件;
(b)通过电泳沉积用内电极层涂覆衬底层;
(c)用电解质层涂覆内电极层;
(d)用外电极层涂覆电解质层;及
(e)干燥并烧结这些层,使得衬底元件燃烧,从而产生中空管状燃料电池。
25、根据权利要求24所述的方法,其中在步骤(c)和(d)之间还包括:在施加外电极层之前干燥并烧结所涂覆的衬底,以使衬底元件燃烧。
26、根据权利要求24所述的方法,其中衬底元件成分包括选自下组的材料:木材、聚合物、纸、黄麻纤维、及聚合物纤维/细丝。
27、根据权利要求24所述的方法,其中传导衬底层成分包括选自下组的材料:金属、碳、石墨及传导性的聚合物。
28、根据权利要求27所述的方法,其中传导性的衬底层实质上包括不可燃的金属及可燃的添加剂,且其中足够的传导衬底层材料被施加以提供具有足够机械强度的传导衬底层,以在燃料电池工作期间支撑电极和电解质层,且其中在烧结期间,可燃添加剂燃烧从而产生多孔金属支撑层。
29、根据权利要求28所述的方法,其中金属选自下面的组:不锈钢、铁素体钢、高温合金、Cu、Ni、Cu合金、Ni合金、Cu-Ni混合物、Cu(或Cu合金)/陶瓷金属陶瓷、Cu-Ni/陶瓷金属陶瓷、Cu-Ag、及Cu-Ni-Ag。
30、根据权利要求24所述的方法,其中传导的衬底层可燃,并在烧结期间燃烧。
31、根据权利要求30所述的方法,其中在步骤(a)和(b)之间,传导的衬底层通过电泳沉积而被涂覆以金属支撑层,金属支撑层具有足够的机械强度以在燃料电池工作期间支撑电极和电解质层,其还具有足够的孔隙率以使反应物能够从其流过。
32、根据权利要求30所述的方法,还包括:用金属支撑层涂覆外电极层以产生多孔的金属支撑层,其具有足够的机械强度以在燃料电池工作期间支撑电极和电解质层,其还具有足够的孔隙率以使反应物能够从其流过。
33、根据权利要求30所述的方法,其中施加足够的电极材料以产生电极支撑的燃料电池。
34、根据权利要求31或32所述的方法,其中电极和电极层共具有小于或等于80μm的厚度,且支撑层具有20到500μm之间的厚度。
35、根据权利要求24所述的方法,其中衬底层材料实质上是金属,且在步骤(a)和(b)之间,所涂覆的衬底元件被干燥和烧结,使得衬底元件燃烧,接下来,所余下的金属衬底层被定形。
36、根据权利要求24所述的方法,其中在步骤(a),在施加传导的衬底层之前衬底被涂覆以聚合物粘合剂溶液,以增加光滑度并减小衬底表面的孔隙率。
CNA038179423A 2002-07-25 2003-07-24 金属支撑的管状燃料电池 Pending CN1672281A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/207,668 US6893762B2 (en) 2002-01-16 2002-07-25 Metal-supported tubular micro-fuel cell
US10/207,668 2002-07-25

Publications (1)

Publication Number Publication Date
CN1672281A true CN1672281A (zh) 2005-09-21

Family

ID=31186701

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038179423A Pending CN1672281A (zh) 2002-07-25 2003-07-24 金属支撑的管状燃料电池

Country Status (11)

Country Link
US (2) US6893762B2 (zh)
EP (1) EP1540755A2 (zh)
JP (1) JP2005534152A (zh)
KR (1) KR20050026517A (zh)
CN (1) CN1672281A (zh)
AU (1) AU2003254655A1 (zh)
BR (1) BR0312869A (zh)
CA (1) CA2493915C (zh)
NO (1) NO20050981L (zh)
RU (1) RU2005104416A (zh)
WO (1) WO2004012287A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719554B (zh) * 2009-12-08 2012-02-29 中国科学院过程工程研究所 一种试管型中温固体氧化物燃料电池
CN102460789A (zh) * 2009-06-24 2012-05-16 西门子能源公司 具有多孔金属支撑和陶瓷互连件的管状固体氧化物燃料电池
CN102549821A (zh) * 2009-08-03 2012-07-04 法国原子能及替代能源委员会 具有金属衬底的电化学电池和用于制造其的方法
CN102544565A (zh) * 2012-03-19 2012-07-04 郭丰亮 三环组合结构的管式固体氧化物燃料电池组
CN102881929A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种浸渍电极用平板式金属支撑型固体氧化物燃料电池结构
CN101689669B (zh) * 2007-07-13 2013-10-02 丰田自动车株式会社 燃料电池
CN103367783A (zh) * 2013-06-27 2013-10-23 大连理工大学 一种Ni-Cu包覆电解质材料的制备方法
CN108206293A (zh) * 2016-12-19 2018-06-26 通用电气公司 用于检测燃料电池堆的损坏和调整燃料电池系统中的操作特性的方法和设备
CN108550874A (zh) * 2018-04-26 2018-09-18 山东理工大学 一种氧化铈-铈酸钡基固体氧化物燃料电池电解质及制备方法
CN109057922A (zh) * 2018-08-10 2018-12-21 武汉理工大学 一种基于固体氧化物电解池的汽车尾气NOx分解装置

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6893762B2 (en) * 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
US6824907B2 (en) * 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack
US6846588B2 (en) * 2002-01-16 2005-01-25 Alberta Research Council Inc. Hollow inorganic membranes produced by metal or composite electrodeposition
US7736772B2 (en) * 2002-02-14 2010-06-15 Alberta Research Council, Inc. Tubular solid oxide fuel cell stack
US7670711B2 (en) 2002-05-03 2010-03-02 Battelle Memorial Institute Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US7842434B2 (en) * 2005-06-15 2010-11-30 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US7981561B2 (en) * 2005-06-15 2011-07-19 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
US8158057B2 (en) * 2005-06-15 2012-04-17 Ati Properties, Inc. Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
AU2003291044A1 (en) * 2002-11-15 2004-06-15 Battelle Memorial Institute Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrochemical devices
CA2414622A1 (en) * 2002-12-17 2004-06-17 Alberta Research Council Inc. Compact solid oxide fuel cell stack
US20040214070A1 (en) * 2003-04-28 2004-10-28 Simner Steven P. Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
JP4102877B2 (ja) * 2003-08-28 2008-06-18 独立行政法人産業技術総合研究所 混成型多孔質管体の製造方法
US7670703B2 (en) * 2003-10-15 2010-03-02 Societe De Commercialisation Des Produits De La Recherche Appliquee Socpra Sciences Et Genie S.E.C. Solid electrolyte fuel cell supported by an integrated reformer
DE10352656B4 (de) * 2003-11-11 2010-04-08 Bayerische Motoren Werke Aktiengesellschaft Tubulare Brennstoffzelle, Brennstoffzellenbündel sowie Brennstoffzellenmodul und Verfahren zum Betreiben der Brennstoffzelle und/oder des Brennstoffzellenbündels
EP1750317A4 (en) * 2004-05-17 2007-10-31 Nippon Catalytic Chem Ind Anode support substrate for a solid oxide fuel cell and manufacturing process therefor
CA2569866C (en) * 2004-06-10 2011-05-17 Risoe National Laboratory Solid oxide fuel cell
US9166214B2 (en) * 2004-07-15 2015-10-20 General Electric Company Seal ring and associated method
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
US20060024547A1 (en) * 2004-07-27 2006-02-02 David Waldbillig Anode supported sofc with an electrode multifunctional layer
EP1824630A4 (en) * 2004-11-30 2009-11-25 Univ California THERMAL EXPANSION COEFFICIENT SHIELD SYSTEM
KR20070083893A (ko) * 2004-11-30 2007-08-24 더 리전트 오브 더 유니버시티 오브 캘리포니아 전기화학적 장치를 위한 밀봉 접합 구조물
JP5466364B2 (ja) * 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
AU2005321530B2 (en) * 2004-12-28 2009-01-08 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
US8039175B2 (en) * 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
JP5651284B2 (ja) * 2005-01-18 2015-01-07 オクシス・エナジー・リミテッド リチウム−硫黄電池
RU2354013C1 (ru) * 2005-01-31 2009-04-27 Текникал Юниверсити Оф Денмарк Стойкий к окислению-восстановлению анод
WO2006082057A2 (en) * 2005-02-02 2006-08-10 Technical University Of Denmark A method for producing a reversible solid oxid fuel cell
CN1323459C (zh) * 2005-04-07 2007-06-27 天津大学 燃料电池的结构和制备方法
US8709674B2 (en) * 2005-04-29 2014-04-29 Alberta Research Council Inc. Fuel cell support structure
JP4537292B2 (ja) 2005-08-29 2010-09-01 株式会社日立製作所 円筒形燃料電池
ES2434442T3 (es) * 2005-08-31 2013-12-16 Technical University Of Denmark Apilamiento sólido reversible de pilas de combustible de óxido y método para preparar el mismo
WO2007034243A1 (en) * 2005-09-26 2007-03-29 Oxis Energy Limited Lithium-sulphur battery with high specific energy
JP2007172846A (ja) * 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology チューブ型電気化学リアクターセル及びそれらから構成される電気化学反応システム
WO2008003976A1 (en) 2006-07-07 2008-01-10 Ceres Intellectual Property Company Limited Metal substrate for fuel cells
BRPI0621912A2 (pt) * 2006-07-28 2011-12-20 Univ California método de unir estruturas tubulares concêntricas para formar uma estrutura tubular compósita e estrutura tubular compósita
US7575611B2 (en) * 2006-08-09 2009-08-18 Ultracell Corporation Fuel processor for use in a fuel cell system
GB0615870D0 (en) * 2006-08-10 2006-09-20 Oxis Energy Ltd An electrolyte for batteries with a metal lithium electrode
US8389180B2 (en) * 2006-09-11 2013-03-05 Battelle Energy Alliance, Llc Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof
TR200605864A2 (tr) * 2006-10-19 2007-03-21 Vestel Elektroni̇k Sanayi̇ Ve Ti̇caret A.Ş. Katı oksit yakıt pili için membran elektrot gurubu.
US7851103B2 (en) * 2006-10-26 2010-12-14 Toto Ltd. Solid oxide fuel cell with lanthanum-gallate oxide and having high output performance
ES2382952T3 (es) * 2006-11-23 2012-06-14 Technical University Of Denmark Método para la fabricación de pilas reversibles de óxido sólido
EP1928049A1 (en) * 2006-11-23 2008-06-04 Technical University of Denmark Thin solid oxide cell
KR100753946B1 (ko) 2007-01-31 2007-08-31 (주)휴먼나노텍 다중압출공정을 통한 마이크로 채널 원통형 고체산화물연료전지의 제조방법.
US20080254335A1 (en) * 2007-04-16 2008-10-16 Worldwide Energy, Inc. Porous bi-tubular solid state electrochemical device
RU2332754C1 (ru) 2007-05-22 2008-08-27 Общество с ограниченной ответственностью "Национальная инновационная компания "Новые энергетические проекты" (ООО "Национальная инновационная компания "НЭП") Трубчатый твердооксидный топливный элемент с металлической опорой, его трубчатый металлический пористый опорный слой и способы их изготовления
JP4093321B2 (ja) * 2007-07-20 2008-06-04 独立行政法人産業技術総合研究所 混成型多孔質管体
US20100143824A1 (en) * 2007-07-25 2010-06-10 The Regents Of The University Of California Interlocking structure for high temperature electrochemical device and method for making the same
CN101983250A (zh) * 2008-02-04 2011-03-02 加州大学评议会 用于高温燃料电池的Cu基金属陶瓷
KR101024593B1 (ko) * 2008-02-12 2011-03-31 포항공과대학교 산학협력단 다공질 금속 후막 지지체를 이용한 마이크로 고체산화물연료전지 및 이의 제조 방법
US8343684B2 (en) * 2008-03-07 2013-01-01 Alan Devoe Fuel cell device and system
US8486580B2 (en) * 2008-04-18 2013-07-16 The Regents Of The University Of California Integrated seal for high-temperature electrochemical device
US20100040861A1 (en) * 2008-08-13 2010-02-18 William Peter Addiego Ordered Mesoporous Free-Standing Carbon Films And Form Factors
US8163434B2 (en) * 2008-08-28 2012-04-24 General Electric Company Barrier coatings for interconnects; related devices, and methods of forming
DE102008049694A1 (de) * 2008-09-30 2010-04-01 Siemens Aktiengesellschaft Tubulare Hochtemperatur-Brennstoffzelle, damit aufgebaute Brennstoffzellenanlage und Verfahren zu deren Herstellung
DE102008049608A1 (de) * 2008-09-30 2010-04-01 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Interkonnektors für Hochtemperatur-Brennstoffzellen, zugehörige Hochtemperatur-Brennstoffzelle sowie damit aufgebaute Brennstoffzellenanlage
FR2938270B1 (fr) * 2008-11-12 2013-10-18 Commissariat Energie Atomique Substrat en metal ou alliage metallique poreux, son procede de preparation, et cellules d'eht ou de sofc a metal support comprenant ce substrat
US20100325878A1 (en) * 2009-06-24 2010-12-30 Gong Zhang Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs
KR101131255B1 (ko) * 2009-09-14 2012-03-30 삼성전기주식회사 고체산화물 연료전지
JP5624790B2 (ja) * 2010-04-07 2014-11-12 株式会社アツミテック 発電装置
JP5488408B2 (ja) * 2010-11-04 2014-05-14 トヨタ自動車株式会社 燃料電池の製造方法
KR101228763B1 (ko) * 2010-12-28 2013-01-31 주식회사 포스코 반응 면적이 증가된 평판형 고체산화물 연료전지 및 그의 제조방법
KR101199004B1 (ko) * 2011-01-06 2012-11-07 성균관대학교산학협력단 슈퍼커패시터용 나노다공성 전극 및 이의 제조방법
WO2012145531A2 (en) * 2011-04-21 2012-10-26 Broard Of Regents Of The University Of Texas System Ion conductive multilayer structure
FR2981370B1 (fr) * 2011-10-12 2014-09-12 Areva Cellule electrochimique a conduction protonique et procede de fabrication d'une telle cellule
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
KR101335464B1 (ko) * 2012-06-29 2013-11-29 한국과학기술연구원 산화 비스무스를 포함하는 세리아계 조성물, 세리아계 복합 전해질 분말 및 이를 이용한 소결 방법 및 소결체
CN102748758B (zh) * 2012-07-23 2015-04-29 山西科德技术陶瓷有限公司 一种蜂窝陶瓷体
DE102013203039A1 (de) * 2013-02-25 2014-08-28 Robert Bosch Gmbh Tubulare Festoxidzelle
ES2671399T3 (es) 2013-03-25 2018-06-06 Oxis Energy Limited Un método para cargar una celda de litio-azufre
EP2784851B1 (en) 2013-03-25 2015-08-19 Oxis Energy Limited A method of charging a lithium-sulphur cell
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
US9793551B2 (en) 2013-05-17 2017-10-17 Universiti Brunei Darussalam Cu-based cermet materials for solid oxide fuel cells
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
CN106537660B (zh) 2014-05-30 2020-08-14 奥克斯能源有限公司 锂硫电池
US9875987B2 (en) * 2014-10-07 2018-01-23 Nxp Usa, Inc. Electronic devices with semiconductor die attached with sintered metallic layers, and methods of formation of such devices
AU2014408260B2 (en) 2014-10-07 2020-12-17 Upstart Power Inc SCOFC-conduction
CA3040431C (en) 2015-10-20 2023-02-28 Upstart Power, Inc. Fuel reformer system
US10790523B2 (en) 2015-10-20 2020-09-29 Upstart Power, Inc. CPOX reactor control system and method
CN115566219A (zh) 2016-08-11 2023-01-03 新兴电力公司 平面固体氧化物燃料电池单元、堆、堆单元和系统
KR102052248B1 (ko) * 2017-08-24 2019-12-06 주식회사케이세라셀 저온 소결이 가능한 고체산화물연료전지 반응방지막용 전해질 복합체 및 이를 포함하는 고체산화물 연료전지
CN111837276A (zh) * 2018-02-09 2020-10-27 日产自动车株式会社 固体氧化物型燃料电池中的阳极层活化方法、及固体氧化物型燃料电池系统
CN108767250B (zh) * 2018-06-28 2021-09-17 苏州清陶新能源科技有限公司 一种泡沫金属支撑结构锂负极片的制备方法以及在全固态锂离子电池中的应用
US11611097B2 (en) 2018-11-06 2023-03-21 Utility Global, Inc. Method of making an electrochemical reactor via sintering inorganic dry particles
US11603324B2 (en) 2018-11-06 2023-03-14 Utility Global, Inc. Channeled electrodes and method of making
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
EP3877180A4 (en) 2018-11-06 2022-12-14 Utility Global, Inc. METHOD AND SYSTEM FOR MANUFACTURING A FUEL CELL
US11761100B2 (en) 2018-11-06 2023-09-19 Utility Global, Inc. Electrochemical device and method of making
EP3909088A4 (en) 2019-01-07 2022-10-19 Board Of Trustees Of Michigan State University SYSTEM AND USE FOR THE STORAGE OF RENEWABLE THERMOCHEMICAL ENERGY
WO2020146762A1 (en) * 2019-01-09 2020-07-16 Utility Global, Inc. Hydrogen production system
US11777126B2 (en) 2019-12-05 2023-10-03 Utility Global, Inc. Methods of making and using an oxide ion conducting membrane

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US454207A (en) * 1891-06-16 Electric resistance-box
US4490444A (en) 1980-12-22 1984-12-25 Westinghouse Electric Corp. High temperature solid electrolyte fuel cell configurations and interconnections
US4567117A (en) 1982-07-08 1986-01-28 Energy Research Corporation Fuel cell employing non-uniform catalyst
US4454207A (en) 1983-07-13 1984-06-12 The United States Of America As Represented By The United States Department Of Energy Steam reforming of fuel to hydrogen in fuel cells
US4664986A (en) * 1986-04-16 1987-05-12 Westinghouse Electric Corp. High thermal conductivity gas feeder system
US4728584A (en) 1986-10-21 1988-03-01 Westinghouse Electric Corp. Fuel cell generator containing self-supporting high gas flow solid oxide electrolyte fuel cells
US4729931A (en) 1986-11-03 1988-03-08 Westinghouse Electric Corp. Reforming of fuel inside fuel cell generator
US4791035A (en) 1987-12-10 1988-12-13 Westinghouse Electric Corp. Cell and current collector felt arrangement for solid oxide electrochemical cell combinations
JPH0230797A (ja) 1988-07-21 1990-02-01 Mitsubishi Metal Corp 電気泳動法による厚膜の製造方法
EP0359931B1 (de) * 1988-09-05 1993-03-31 Asea Brown Boveri Ag Verfahren zur Trennung von dampfförmigen Schwermetallverbindungen von einem Trägergas und Vorrichtung zur Durchführung des Verfahrens
DE68908140T2 (de) 1988-12-22 1994-02-03 Ngk Insulators Ltd Keramikrohr mit einseitig geschlossenem Rohrmantel und Verfahren zu dessen Herstellung.
US5077148A (en) 1989-05-03 1991-12-31 Institute Of Gas Technology Fully internal manifolded and internal reformed fuel cell stack
DK162245C (da) 1989-06-19 1992-02-17 Haldor Topsoe As Braendselscellesystem
DE3922673A1 (de) 1989-07-10 1991-01-24 Siemens Ag Hochtemperaturbrennstoffzelle
US5302319A (en) 1991-01-07 1994-04-12 United Technologies Corporation Preparation of sol gel composition for electrophoresis
US5366687A (en) 1991-01-07 1994-11-22 United Technologies Corporation Electrophoresis process for preparation of ceramic fibers
US5244752A (en) 1991-12-06 1993-09-14 Westinghouse Electric Corp. Apparatus tube configuration and mounting for solid oxide fuel cells
TW269058B (zh) 1992-04-29 1996-01-21 Westinghouse Electric Corp
US5336570A (en) 1992-08-21 1994-08-09 Dodge Jr Cleveland E Hydrogen powered electricity generating planar member
US5273837A (en) 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
WO1994022178A2 (en) 1993-03-20 1994-09-29 Keele University Solid oxide fuel cell structures
JP3102969B2 (ja) 1993-04-28 2000-10-23 三菱電機株式会社 内部改質形燃料電池装置
US5763114A (en) 1994-09-01 1998-06-09 Gas Research Institute Integrated reformer/CPN SOFC stack module design
JP3071373B2 (ja) 1994-11-24 2000-07-31 日本鋼管株式会社 ジルコニア薄膜の製造方法
US5942348A (en) 1994-12-01 1999-08-24 Siemens Aktiengesellschaft Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell
US5952116A (en) 1995-02-16 1999-09-14 Siemens Aktiengesellschaft Solid electrolyte high temperature fuel cell module and method for its operation
US5807642A (en) * 1995-11-20 1998-09-15 Xue; Liang An Solid oxide fuel cell stacks with barium and strontium ceramic bodies
US5985113A (en) * 1995-08-24 1999-11-16 Litton Systems, Inc. Modular ceramic electrochemical apparatus and method of manufacture therefor
US6007932A (en) 1996-10-16 1999-12-28 Gore Enterprise Holdings, Inc. Tubular fuel cell assembly and method of manufacture
JPH10158894A (ja) 1996-11-29 1998-06-16 Fujikura Ltd 固体電解質の成膜方法
US5993989A (en) 1997-04-07 1999-11-30 Siemens Westinghouse Power Corporation Interfacial material for solid oxide fuel cell
US5935727A (en) 1997-04-10 1999-08-10 The Dow Chemical Company Solid oxide fuel cells
US6099985A (en) 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US5976721A (en) 1997-09-15 1999-11-02 Limaye; Santosh Y. Chemical cogeneration process
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
WO1999017390A1 (en) 1997-10-01 1999-04-08 Waikatolink Limited Integrated solid oxide fuel cell and reformer
US6051330A (en) 1998-01-15 2000-04-18 International Business Machines Corporation Solid oxide fuel cell having vias and a composite interconnect
US6051173A (en) 1998-01-15 2000-04-18 International Business Machines Corporation Method of making a solid oxide fuel cell with controlled porosity
US6238819B1 (en) 1998-01-23 2001-05-29 Stork, N.V. Metal foam support, electrode and method of making same
US6001501A (en) 1998-02-03 1999-12-14 Siemens Westinghouse Power Corporation Connections for solid oxide fuel cells
US6074771A (en) 1998-02-06 2000-06-13 Igr Enterprises, Inc. Ceramic composite electrolytic device and method for manufacture thereof
US6217822B1 (en) 1998-02-09 2001-04-17 Siemens Westinghouse Power Corporation Method of making straight fuel cell tubes
US5993985A (en) 1998-04-09 1999-11-30 Siemens Westinghouse Power Corporation Fuel cell tubes and method of making same
US6017646A (en) 1998-06-03 2000-01-25 Praxair Technology, Inc. Process integrating a solid oxide fuel cell and an ion transport reactor
US6080501A (en) * 1998-06-29 2000-06-27 Motorola, Inc. Fuel cell with integral fuel storage
DE19908213B4 (de) 1998-07-27 2005-03-10 Mitsubishi Heavy Ind Ltd Basisrohr für eine Brennstoffzelle
US6183897B1 (en) 1998-09-16 2001-02-06 Sofco Via filled interconnect for solid oxide fuel cells
US6214490B1 (en) 1998-12-17 2001-04-10 Eveready Battery Company, Inc. Foam collector for electrochemical cells
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
AUPQ315499A0 (en) 1999-09-29 1999-10-21 Ceramic Fuel Cells Limited Fuel cell assembly
US6368751B1 (en) 1999-10-08 2002-04-09 Reves, Inc. Electrochemical electrode for fuel cell
CA2308092C (en) 2000-05-10 2008-10-21 Partho Sarkar Production of hollow ceramic membranes by electrophoretic deposition
US7416802B2 (en) * 2000-05-22 2008-08-26 Acumentrics Corporation Electrode-supported solid state electrochemical cell
US6403248B1 (en) 2000-07-24 2002-06-11 Microcell Corporation Microcell electrochemical devices assemblies with water management subsystem, and method of making and using the same
US6338913B1 (en) 2000-07-24 2002-01-15 Microcell Corporation Double-membrane microcell electrochemical devices and assemblies, and method of making and using the same
US6399232B1 (en) 2000-07-24 2002-06-04 Microcell Corporation Series-connected microcell electrochemical devices and assemblies, and method of making and using the same
US6403517B1 (en) 2000-07-24 2002-06-11 Microcell Corporation System and process for manufacturing microcell electrochemical devices and assemblies
US6383350B1 (en) * 2000-07-26 2002-05-07 Northrop Grumman Corporation Thin film modular electrochemical apparatus and method of manufacture therefor
GB2368450B (en) 2000-10-25 2004-05-19 Imperial College Fuel cells
US6893762B2 (en) * 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
US6824907B2 (en) * 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack
US6846588B2 (en) 2002-01-16 2005-01-25 Alberta Research Council Inc. Hollow inorganic membranes produced by metal or composite electrodeposition
US6936367B2 (en) * 2002-01-16 2005-08-30 Alberta Research Council Inc. Solid oxide fuel cell system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689669B (zh) * 2007-07-13 2013-10-02 丰田自动车株式会社 燃料电池
CN102460789A (zh) * 2009-06-24 2012-05-16 西门子能源公司 具有多孔金属支撑和陶瓷互连件的管状固体氧化物燃料电池
CN102460789B (zh) * 2009-06-24 2016-01-27 西门子能源公司 具有多孔金属支撑和陶瓷互连件的管状固体氧化物燃料电池
CN102549821A (zh) * 2009-08-03 2012-07-04 法国原子能及替代能源委员会 具有金属衬底的电化学电池和用于制造其的方法
CN101719554B (zh) * 2009-12-08 2012-02-29 中国科学院过程工程研究所 一种试管型中温固体氧化物燃料电池
CN102544565A (zh) * 2012-03-19 2012-07-04 郭丰亮 三环组合结构的管式固体氧化物燃料电池组
CN102881929B (zh) * 2012-10-26 2015-06-03 中国科学院上海硅酸盐研究所 一种浸渍电极用平板式金属支撑型固体氧化物燃料电池结构
CN102881929A (zh) * 2012-10-26 2013-01-16 中国科学院上海硅酸盐研究所 一种浸渍电极用平板式金属支撑型固体氧化物燃料电池结构
CN103367783A (zh) * 2013-06-27 2013-10-23 大连理工大学 一种Ni-Cu包覆电解质材料的制备方法
CN103367783B (zh) * 2013-06-27 2015-06-10 大连理工大学 一种Ni-Cu包覆电解质材料的制备方法
CN108206293A (zh) * 2016-12-19 2018-06-26 通用电气公司 用于检测燃料电池堆的损坏和调整燃料电池系统中的操作特性的方法和设备
CN108206293B (zh) * 2016-12-19 2022-11-22 通用电气公司 用于检测燃料电池堆的损坏和调整燃料电池系统中的操作特性的方法和设备
US11695140B2 (en) 2016-12-19 2023-07-04 Cummins Enterprise Llc Method and apparatus for detecting damage in fuel cell stacks, and adjusting operational characteristics in fuel cell systems
CN108550874A (zh) * 2018-04-26 2018-09-18 山东理工大学 一种氧化铈-铈酸钡基固体氧化物燃料电池电解质及制备方法
CN109057922A (zh) * 2018-08-10 2018-12-21 武汉理工大学 一种基于固体氧化物电解池的汽车尾气NOx分解装置

Also Published As

Publication number Publication date
RU2005104416A (ru) 2005-07-20
KR20050026517A (ko) 2005-03-15
WO2004012287A3 (en) 2004-07-01
US20060051643A1 (en) 2006-03-09
NO20050981L (no) 2005-04-25
AU2003254655A8 (en) 2004-02-16
JP2005534152A (ja) 2005-11-10
CA2493915A1 (en) 2004-02-05
BR0312869A (pt) 2005-07-12
EP1540755A2 (en) 2005-06-15
US6893762B2 (en) 2005-05-17
US7452622B2 (en) 2008-11-18
AU2003254655A1 (en) 2004-02-16
WO2004012287A2 (en) 2004-02-05
US20030134171A1 (en) 2003-07-17
NO20050981D0 (no) 2005-02-23
CA2493915C (en) 2011-09-13

Similar Documents

Publication Publication Date Title
CN1672281A (zh) 金属支撑的管状燃料电池
EP1472755B1 (en) Tubular solid oxide fuel cell stack
CN1293662C (zh) 固体氧化物燃料电池系统
US20100173213A1 (en) Advanced solid oxide fuel cell stack design for power generation
US8709674B2 (en) Fuel cell support structure
CN1639391A (zh) 由金属或复合物电沉积所制备的中空无机膜
US20050095483A1 (en) Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same
JP5105392B2 (ja) 電気化学リアクターチューブセル及びそれらから構成される電気化学反応システム
CN1976108A (zh) 实心多孔支撑体平板串接式微型固体氧化物燃料电池
EP2693544A1 (en) Medium-to-low-temperature high-efficiency electrochemical cell and electrochemical reaction system comprising same
CA2414622A1 (en) Compact solid oxide fuel cell stack
CN101953008A (zh) 管状电化学电池
Yamaguchi et al. Design and Fabrication of a Novel Electrode‐Supported Honeycomb SOFC
JP4173029B2 (ja) 集電部材
JP2022119219A (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
Suzuki et al. Fabrication and characterization of light-weighted micro tubular SOFCs
CA2752514A1 (en) Compact solid oxide fuel cell stack

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication