CN1669160A - 自对准纳米管场效应晶体管及其制造方法 - Google Patents

自对准纳米管场效应晶体管及其制造方法 Download PDF

Info

Publication number
CN1669160A
CN1669160A CNA038062925A CN03806292A CN1669160A CN 1669160 A CN1669160 A CN 1669160A CN A038062925 A CNA038062925 A CN A038062925A CN 03806292 A CN03806292 A CN 03806292A CN 1669160 A CN1669160 A CN 1669160A
Authority
CN
China
Prior art keywords
nanotube
self
effect transistor
tube
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA038062925A
Other languages
English (en)
Other versions
CN1669160B (zh
Inventor
乔尔格·阿彭泽勒
佩登·阿沃里斯
凯文·K·钱
菲利普·G·科林斯
理查德·马特尔
汉森·P·黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1669160A publication Critical patent/CN1669160A/zh
Application granted granted Critical
Publication of CN1669160B publication Critical patent/CN1669160B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/94Specified use of nanostructure for electronic or optoelectronic application in a logic circuit

Abstract

一种自对准碳纳米管场效应晶体管半导体器件,包括沉积在衬底(102)上的碳纳米管(104)、分别形成在该碳纳米管(104)的第一端和第二端的源极和漏极(106-107)、以及基本形成在该碳纳米管(104)的一部分上并通过介电膜(111)与该碳纳米管隔开的栅极(112)。

Description

自对准纳米管场效应晶体管及其制造方法
技术领域
本发明涉及场效应晶体管,并且更加特别地涉及碳纳米管场效应晶体管。
背景技术
在分子纳米电子(molecular nanoelectronics)领域,很少有材料表现得如纳米管一般充满希望,特别是碳纳米管,其包括埃量级直径的石墨中空圆筒。依赖纳米管的电学特性,纳米管可以应用于诸如二极管和晶体管的电子器件中。纳米管的尺寸、形状和物理性质是独特的。结构上,碳纳米管类似于卷成圆筒的碳六角形点阵。
除了在低温下展现出引人注目的量子行为以外,碳纳米管还表现出至少两种重要特性:根据其空间螺旋特性(即构象几何),纳米管可以是金属性的或半导体性的。金属性的纳米管可以以固定的电阻率承载极大的电流密度。半导体性的纳米管可以如场效应晶体管(FET)般电导通和截止。这两种类型可以共价结合(共享电子)。这些特性指出了纳米管是用于制造纳米尺寸半导体电路的优良材料。
另外,碳纳米管是一维电学导体,即仅以一维量子力学模式承载电流。对于碳纳米管基晶体管的器件性能,这可以成为明显的优点,因为材料中的散射得到明显抑制。更少的散射意味着更好的器件性能。
对于三端器件,诸如FET,栅极(第三端子)需要与电性有源沟道区以及源极和漏极隔离开。为此,可以使用介电材料,例如二氧化硅。为了改善硅器件中的器件特性,可以减小这一层的厚度。这种减小增加了栅极电容并改善了栅极与沟道的耦合。对于标准的硅场效应器件,栅极电容的大小与介电膜的厚度成反比。对于目前制造的高性能处理器,SiO2的厚度小于4nm。值得注意的是,很难实现进一步的减小,因为通过介电膜的栅极泄漏对于厚度在4nm以下的氧化物成指数形式增大。
然而,碳纳米管晶体管的栅极电容并不与介电膜的厚度成反比。相反,碳纳米管遵循对数比例的规则。与标准的硅场效应晶体管相比,碳纳米管晶体管的栅极电容可以更大,应为这些对象的圆筒形几何形状。
尚无已知的系统或方法在FET中应用纳米管以获得性能和更小的尺寸。因此,需要制备纳米管基FET的系统及方法。
发明内容
根据本发明一实施例,提供一种自对准碳纳米管场效应晶体管半导体器件。该器件包括沉积在衬底上的碳纳米管、形成在该碳纳米管第一端和第二端处的源极和漏极、以及基本(substantially)形成在该碳纳米管的一部分上并通过介电膜与该碳纳米管分开的栅极。
该衬底包括沉积在硅衬底上的热氧化物。该热氧化物约150纳米厚。
该栅极还通过氧化层与该碳纳米管分开。该栅极的一部分通过氮化物间隔壁与该源极和漏极分开。
该器件还包括器件上的钝化介电层。
该器件包括衬底中的对准标记,该源极和漏极与该对准标记对准。
该栅极包围(wrap)该介电膜和该碳纳米管,从而与该碳纳米管的背侧接触。
根据本发明一实施例,提供一种碳纳米管场效应晶体管半导体器件。该器件包括被包围在介电材料中的垂直碳纳米管、分别形成在该碳纳米管的第一侧和第二侧上的源极和漏极、通过其形成每个该源极和漏极的连接带(bandstrap)从而将包围在介电材料中的该碳纳米管连接至该源极和漏极的双层氮化物复合体(bilayer nitride complex)、以及基本形成在该碳纳米管的一部分上的栅极。
该器件包括碳纳米管基部处的金属催化剂。
根据本发明的一个实施例,提供一种用于形成自对准碳纳米管场效应晶体管半导体器件的方法。该方法包括:在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;在该纳米管的每个端部处形成金属触点,其中第一金属触点为源极而第二金属触点为漏极;以及在该器件上沉积非晶硅层。该方法还包括:在每个金属触点的相对侧面上形成氮化物间隔壁;在该器件上沉积高k介电膜;氧化该非晶硅;以及基本在该源极与漏极之间、并且在该纳米管上方形成栅极。
该方法包括在该器件上沉积钝化电介质。
该纳米管为单壁纳米管。该金属触点使用光致抗蚀剂形成。
根据本发明一实施例,提供一种用于形成自对准碳纳米管场效应晶体管半导体器件的方法。该方法包括:在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;通过反应离子蚀刻在纳米管的每个端部处形成金属触点,其中第一金属触点为源极而第二金属触点为漏极;以及在每个金属触点的相对侧面上形成氮化物间隔壁。该方法还包括:在该器件上沉积高k介电膜;以及基本在该源极与漏极之间、且在该纳米管上方形成栅极。
该方法包括在该器件上沉积钝化电介质。
根据本发明一实施例,提供一种用于形成自对准碳纳米管场效应晶体管半导体器件的方法。该方法包括:在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;以及在该纳米管的每个端部上形成非晶硅柱。该方法还包括:利用一层氧化物隔离该非晶硅柱;在非晶硅柱之间形成栅极介电层;以及基本在该非晶硅柱之间、且在该纳米管上形成栅极。该方法包括:在该栅极上形成氮化物层;在该栅极的每一侧上形成氧化物间隔壁;以金属触点取代非晶硅,其中第一金属触点为源极而第二金属触点为漏极;以及在该器件上沉积钝化电介质。
根据本发明另一实施例,提供一种用于形成自对准碳纳米管场效应晶体管半导体器件的方法。该方法包括:在热氧化物衬底上沉积金属催化剂;在该器件上沉积低温氧化物层;穿过该氧化物、金属催化剂,进入该金属催化剂下面的热氧化物中蚀刻出沟槽;以及蚀刻该低温氧化物层从而形成氧化物岛。该方法还包括:剥落暴露的金属催化剂;在氧化物岛下的金属催化剂之间生长纳米管;以及将纳米管包围在栅极电介质中。该方法包括:在氧化物岛的相对的表面上形成氮化物间隔壁;通过化学气相沉积基本在氧化物岛之间、且在纳米管上形成栅极;以及在该器件上沉积钝化电介质。
根据本发明一实施例,提供一种用于形成自对准碳纳米管场效应晶体管半导体器件的方法。该方法包括:从形成在半导体器件表面上的金属催化剂垂直地生长纳米管;形成氮化物块结构(block structure);以及将纳米管包围在栅极电介质中。该方法包括:沉积栅极金属,其通过该电介质与金属催化剂隔开;沉积氮化物层;以及形成由该氮化物层封盖的栅极金属柱。该方法在所述柱周围形成氮化物间隔壁;基本在该些柱之间沉积漏极金属,其通过该介电层与栅极金属隔开;以及在该器件上沉积钝化电介质。
附图说明
下面将参照附图更加详细地介绍本发明的优选实施例:
图1a至1i示出了根据本发明一实施例的第一碳纳米管场效应晶体管的源极/漏极;
图2a至2b示出了根据本发明一实施例的第一碳纳米管场效应晶体管的另一源极/漏极;
图3a至3g示出了根据本发明一实施例的第一碳纳米管场效应晶体管的栅极;
图4a至4d示出了根据本发明一实施例的包括在适当位置生长的纳米管的碳纳米管场效应晶体管;
图5a至5n示出了根据本发明一实施例的包括在适当位置垂直生长的纳米管的碳纳米管场效应晶体管;以及
图6a至6b示出了根据本发明一实施例的纳米管的定向组装。
具体实施方式
根据本发明一实施例,场效应晶体管(FET)的栅极、源极和漏极是自对准的,由此减小交叠电容。
根据本发明一实施例,可使用通过剥离蚀刻(lift-off etch)的图案转移来制造碳纳米管FET,其中源极和漏极在栅极之前形成。参照图1a至1i,在热氧化物102和硅衬底103中形成对准标记101。对准标记101是定位图案时可用作参照的高精度部件。在硅103上沉积热氧化物102。硅可以是例如P+掺杂的(0.01Ω·cm,约3×1018cm-3)。可以在热氧化物102上沉积纳米管104,并可以通过光刻定位光致抗蚀剂105。纳米管可以以浆料的形式沉积,其中纳米管沉积是随机的。可以通过定向组装来沉积纳米管,如下所述。光致抗蚀剂暴露纳米管的端部。在暴露出纳米管端部的沟槽中形成金属触点106-107。该金属可以是例如钴(Co)、镍(Ni)、钨(W)或钛(Ti)。可以在器件上沉积金属,填充暴露出纳米管104的端部的沟槽。可以剥落光致抗蚀剂105。沉积在沟槽中的金属形成源极/漏极触点106-107。可在器件上沉积非晶硅(a-Si)108。可以在a-Si层上沉积氮化物层109。可以蚀刻该氮化物从而在金属触点106-107的侧面上形成间隔壁,例如110。可以选择性地去除或湿法化学氧化非晶硅108。可以在器件上沉积栅极介电膜111。此处,如下面的方法,电介质可以是二氧化硅以及任何其它高k介电材料,例如,HfO2。可以通过例如CVD和蚀刻基本在形成源极和漏极的金属触点106-107之间形成栅极112。在器件上沉积钝化介电层113。源极、漏极和栅极112自对准于对准标记101。
二者择一地,可以在形成栅极之前通过反应离子蚀刻(RIE)形成源极/漏极。参照图2a至2b,方法首先使用RIE形成源极/漏极106-107,从而限定源极/漏极金属。RIE需要与碳纳米管104隔离。可以在器件上沉积氮化物层201,并从围绕金属触点的区域蚀刻掉该氮化物层。可以在金属触点的侧面上形成氮化物间隔壁,例如202。在器件上沉积栅极电介质203。可以基本在源极与漏极106至107之间形成栅极金属204。可以在器件上沉积钝化电介质205。热氧化物可以是约150nm厚。
根据本发明另一实施例,可以在源极/漏极之前形成栅极。可在纳米管104的端部上沉积非晶硅301。可以利用氧化物层302覆盖a-Si。可以在a-Si(例如301)之间沉积栅极电介质303。可以基本在a-Si柱(例如301)之间形成栅极304。可以在栅极金属304上形成氮化物层305。可以在栅极金属304的端部上形成氧化物间隔壁,例如306。可以剥落a-Si/氧化物的暴露的角,暴露出a-Si。围绕栅极金属的剩余的a-Si可以通过RIE去除。可以在先前由a-Si占据的区域中沉积金属触点307-308。金属触点307-308与栅极电介质303和栅极金属304下面延伸的纳米管104连接。金属触点307-308形成器件的源极和漏极。金属触点307-308可以与沉积在热氧化物102和硅衬底103中的对准标记101对准。可以在器件上沉积钝化电介质309。
根据本发明一实施例,可以在适当位置(in place)生长碳纳米管FET。源极/漏极可以在栅极之前形成。在热氧化物层102上沉积非晶硅层401。可以在金属催化剂上沉积低温氧化物(LTO)层402。可以由氧化物402、非晶硅401和热氧化物102中蚀刻出沟槽。非晶硅401可以从氧化物402下方被部分底切(under cut)。可以在底切的非晶硅膜401的边缘上自组装金属催化剂401B,例如Fe、Co、Ni或Fe/Mo。可以在金属催化剂401B的剩余部分之间生长碳纳米管403,其中,一部分纳米管悬在热氧化物102上方。可以通过化学气相沉积(CVD)沉积栅极介电膜404,包围纳米管403。由此,可以完全以栅极电介质(例如SiO2)覆盖纳米管403。可以在氧化物(例如402)的侧面上形成间隔壁,例如405。可以基本在氧化物(例如402)之间形成栅极406。若热氧化物102中的蚀刻足够深,则栅极金属406可以围绕整个纳米管403和介电膜404叠层。为此,可以借助化学气相沉积来沉积栅极金属,从而覆盖纳米管/介电膜叠层的背侧。包围构造提供了良好的栅极与纳米管耦合(gate-to-nanotube coupling)。可以在器件的表面上沉积钝化电介质406。
根据本发明另一实施例,可以在适当位置垂直生长碳纳米管。纳米管可以从例如基体处的金属源或金属粒子催化剂垂直生长。参照图5a至5n,可以在硅衬底502上形成金属催化剂501。可以在器件上沉积第一层氮化物503。可以在第一层氮化物503上沉积氧化物层504。可以在氧化物504上沉积第二层氮化物505。可以通过光刻在器件上形成光致抗蚀剂,例如506,其中暴露出金属催化剂501。在器件上沉积多个第二金属催化剂,例如507。可以剥落光致抗蚀剂,例如506,使得形成在第一金属催化剂501上的第二催化剂(例如507)保留下来。可以自每个第二金属催化剂(例如507)垂直生长纳米管,例如508。由此,可以形成纳米管的二维和三维阵列。
纳米管的垂直生长发生在金属粒子催化剂位于垂直于衬底排列的孔中时。在此情况下,用于生长的空间受到限制,并迫使管的生长沿着垂直方向。具体而言,如图5b中的垂直孔可以使用抗蚀剂和图案转移来形成。
可以在器件上沉积非晶硅层509。可以向下平坦化器件至第二氮化物层505。可以从器件上去除氮化物-氧化物-氮化物层503至505的一部分。围绕纳米管(例如508)和金属催化剂501和507的柱体保留了下来。可以在氮化物层505、纳米管508、以及a-Si 509上形成牺牲层510。接触层可以是例如钛或钨。可以从氮化物层503与505之间去除氧化物层504。可以从纳米管(例如508)周围,与氧化物层504同时蚀刻掉a-Si 509。或者,可以在已经去除了氧化物层504后去除a-Si 509。可以在纳米管(例如508)周围、金属催化剂501上面和牺牲层510下面形成栅极电介质,例如511。或者,对于纳米管二维阵列,栅极电介质511可以沉积在纳米管之间。可以通过例如蚀刻去除牺牲层510。可以在器件表面上面沉积栅极金属512。可以在栅极金属512上沉积第三氮化物层513。可以去除部分栅极金属512和第三氮化层513。栅极金属和氮化物间隔壁(例如512和513)的柱体保留在金属催化剂-纳米管结构的周围。氮化物间隔壁(例如514)形成在每个柱体周围。可以在金属催化剂-纳米管结构上形成漏极515,由此形成FET。可以在FET之间沉积钝化电介质516。
应注意,纳米管自金属催化剂的生长的确切机理目前未知。然而,由金属催化剂(例如氧化铝支撑钼(Mo)颗粒上的钴(Co))生长单壁纳米管的工艺可以按多种方式实施。
根据本发明一实施例,纳米管可通过定向组装(directed assembly)而非上述的沉积或生长的方法而被放置在适当位置。使用通过化学或物理工艺驱动的选择性沉积,定向组装可用于纳米管的水平和垂直沉积。选择性沉积可包括形成附着层或起受体(receptor)作用的化学基,从而促进在给定位置的管的所需沉积。图6a和6b分别示出了用于水平和垂直定向组装的方法。可以制备在每一端包括预定化学基602(例如DNA链(strand)或硫醇基)的纳米管601。可以将纳米管601置于包括受体604的衬底603的附近,例如在使用DNA的情况下,可使用互补的DNA链。在使用硫醇基(thiol group)时,可以构造金粒子或包括金的接触形状,从而与纳米管601的化学基602结合。由此可以根据定向组装将纳米管601置于衬底603上。
为改善高k介电膜的性能,具有高介电常数的介电膜可以用作栅极绝缘体。碳纳米管FET的电容不随介电膜的厚度明显改变,由此,难以实现期望的电容,即使使用薄的栅极介电膜。关于这一点,氧化铝Al2O3(k=9)以及氧化铪(HfO2)(k=20)是有希望的候选者。可以氧化CVD-铝从而产生高k栅极电介质,或可以直接沉积CVD-Al2O3(HfO2)。与SiO2相比,这些材料将栅极电容提高达5倍,并且与减小介电膜厚度相比可以对器件性能产生更大作用。由于纳米管在大气环境中为pFET,而退火后在真空和诸如氩(Ar)的惰性气体中变为nFET,因此可以在增加介电膜的沉积前将器件退火。这样将管转变为nFET。利用电介质将其封盖在原位还防止了管再次变为pFET。对于互补技术,应转化为pFET的FET上的介电膜可以局部地去除,也允许该FET被掺杂。低温下的CVD沉积再次覆盖这些器件(之前无需额外的退火步骤)。
由于所有结构(pFET和nFET)都以氧化物(或任何其它适合的介电膜)覆盖,所以在制造栅极电极时不产生短路。CVD可以用于栅极的沉积。对如图4和5所述的制造过程使用化学气相沉积,可以确保已经包围在介电膜中的纳米管完全被金属栅极围绕。这对于良好的栅极与纳米管耦合会是重要的。在需要时,可以构图和去除栅极金属。可以为电连接而露出源极和漏极电极。
以上已经介绍了碳纳米管FET及其制造方法的优选实施例,注意,本领域技术人员在上述教导的启发下可进行改动和变化。因此应理解,可以对所公开的本发明的特定实施例在由所附权利要求限定的本发明的范围和实质内进行改动。对于由此以细节和专利法所需的特定内容介绍的本发明,专利文件所要求和期望保护的,在所附权利要求中列示。

Claims (19)

1.一种自对准碳纳米管场效应晶体管半导体器件,包括:
沉积在衬底上的碳纳米管;
形成在该碳纳米管的第一端的源极;
形成在该碳纳米管的第二端的漏极;以及
基本形成在该碳纳米管的一部分上,通过介电膜与该碳纳米管隔开的栅极。
2.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,其中该衬底包括沉积在硅衬底上的热氧化物。
3.如权利要求2所述的自对准碳纳米管场效应晶体管半导体器件,其中该热氧化物约150纳米厚。
4.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,其中该栅极的一部分还通过氧化物层与该碳纳米管隔开。
5.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,其中该栅极通过氮化物间隔壁与该源极和漏极隔开。
6.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,还包括在该器件上的钝化介电层。
7.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,还包括在该衬底中的对准标记,该源极和漏极与该对准标记对准。
8.如权利要求1所述的自对准碳纳米管场效应晶体管半导体器件,其中该栅极包围在该介电膜和该碳纳米管周围,从而与该碳纳米管的背侧接触。
9.一种碳纳米管场效应晶体管半导体器件,包括:
包围在介电材料中的垂直碳纳米管;
形成在该碳纳米管的第一侧的源极;
形成在该碳纳米管的第二侧的漏极;
双层氮化物复合体,通过该双层氮化物复合体形成每个该源极和漏极的连接带,将包围在该介电材料中的该碳纳米管连接至该源极和漏极;以及
基本形成在该碳纳米管的一部分上的栅极。
10.如权利要求9所述的碳纳米管场效应晶体管半导体器件,还包括该碳纳米管的基部处的金属催化剂。
11.一种形成自对准碳纳米管场效应晶体管半导体器件的方法,包括步骤:
在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;
在该纳米管的每个端部处形成金属触点,其中第一金属触点为源极,第二金属触点为漏极;
在该器件上沉积非晶硅层;
在每个金属触点的相对侧面上形成氮化物间隔壁;
在该器件上沉积高k介电膜;
氧化该非晶硅;以及
基本在该源极与漏极之间,在该纳米管上面形成栅极。
12.如权利要求11所述的方法,还包括在该器件上沉积钝化电介质的步骤。
13.如权利要求11所述的方法,其中该纳米管为单壁纳米管。
14.如权利要求11所述的方法,其中该金属触点利用光致抗蚀剂形成。
15.一种形成自对准碳纳米管场效应晶体管半导体器件的方法,包括步骤:
在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;
通过反应离子蚀刻在该纳米管的每个端部处形成金属触点,其中第一金属触点为源极,第二金属触点为漏极;
在每个金属触点的相对侧面上形成氮化物间隔壁;
在该器件上沉积高k介电膜;以及
基本在该源极与漏极之间和该纳米管上面形成栅极。
16.如权利要求15所述的方法,还包括在该器件上沉积钝化电介质的步骤。
17.一种形成自对准碳纳米管场效应晶体管半导体器件的方法,包括步骤:
在热氧化物衬底上沉积纳米管,其中该衬底包括对准标记;
在该纳米管的每个端部上形成非晶硅柱;
利用一层氧化物隔离该非晶硅柱;
在非晶硅柱之间形成栅极介电层;
基本在该非晶硅柱之间和该纳米管上面形成栅极;
在该栅极上形成氮化物层;
在该栅极的每一侧上形成氧化物间隔壁;
以金属触点取代该非晶硅,其中第一金属触点为源极,第二金属触点为漏极;以及
在该器件上沉积钝化电介质。
18.一种形成自对准碳纳米管场效应晶体管半导体器件的方法,包括步骤:
在热氧化物衬底上沉积金属催化剂;
在该器件上沉积低温氧化物层;
穿过该氧化物、金属催化剂,并进入该金属催化剂下面的热氧化物中蚀刻出沟槽;
蚀刻该低温氧化物层,从而形成氧化物岛;
剥落暴露的金属催化剂;
在该氧化物岛下的金属催化剂之间生长纳米管;
将该纳米管包围在栅极电介质中;
在该氧化物岛的相对的表面上形成氮化物间隔壁;
通过化学气相沉积基本在该氧化物岛之间、以及在该纳米管上面形成栅极;以及
在该器件上沉积钝化电介质。
19.一种形成自对准碳纳米管场效应晶体管半导体器件的方法,包括步骤:
自形成在该半导体器件的表面上的金属催化剂垂直地生长纳米管;
形成氮化物块结构;
将该纳米管包围在栅极电介质中;
沉积栅极金属,其通过该栅极电介质与该金属催化剂隔开;
沉积氮化物层;
形成由该氮化物层封盖的栅极金属柱;
在所述柱周围形成氮化物间隔壁;
基本在该些柱之间沉积漏极金属,其通过该介电层与该栅极金属隔开;以及
在该器件上沉积钝化电介质。
CN038062925A 2002-03-20 2003-02-19 自对准纳米管场效应晶体管及其制造方法 Expired - Lifetime CN1669160B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/102,365 2002-03-20
US10/102,365 US6891227B2 (en) 2002-03-20 2002-03-20 Self-aligned nanotube field effect transistor and method of fabricating same
PCT/US2003/007269 WO2003081687A2 (en) 2002-03-20 2003-02-19 Self-aligned nanotube field effect transistor and method of fabricating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010101262554A Division CN101807668B (zh) 2002-03-20 2003-02-19 碳纳米管场效应晶体管半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN1669160A true CN1669160A (zh) 2005-09-14
CN1669160B CN1669160B (zh) 2012-02-01

Family

ID=28040198

Family Applications (2)

Application Number Title Priority Date Filing Date
CN038062925A Expired - Lifetime CN1669160B (zh) 2002-03-20 2003-02-19 自对准纳米管场效应晶体管及其制造方法
CN2010101262554A Expired - Lifetime CN101807668B (zh) 2002-03-20 2003-02-19 碳纳米管场效应晶体管半导体器件及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2010101262554A Expired - Lifetime CN101807668B (zh) 2002-03-20 2003-02-19 碳纳米管场效应晶体管半导体器件及其制造方法

Country Status (14)

Country Link
US (6) US6891227B2 (zh)
EP (2) EP1748503B1 (zh)
JP (1) JP4493344B2 (zh)
KR (1) KR100714932B1 (zh)
CN (2) CN1669160B (zh)
AT (2) ATE516600T1 (zh)
AU (1) AU2003224668A1 (zh)
BR (1) BR0308569A (zh)
CA (3) CA2659479C (zh)
IL (2) IL164066A0 (zh)
MX (1) MXPA04008984A (zh)
PL (1) PL373571A1 (zh)
TW (1) TW586165B (zh)
WO (1) WO2003081687A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047130B (zh) * 2006-03-30 2011-01-19 高丽大学校算学协力团 使用纳米颗粒的顶栅薄膜晶体管及其制造方法
CN102148249A (zh) * 2010-02-09 2011-08-10 三菱电机株式会社 SiC半导体装置及其制造方法
CN102301480A (zh) * 2009-02-17 2011-12-28 国际商业机器公司 纳米线网格器件及其制备方法
US8227799B2 (en) 2009-08-14 2012-07-24 Tsinghua University Thin film transistor
CN102668150A (zh) * 2009-11-30 2012-09-12 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN103518255A (zh) * 2011-05-10 2014-01-15 国际商业机器公司 具有减小寄生电阻的带电单层的碳场效应晶体管
CN104576324A (zh) * 2013-12-21 2015-04-29 上海大学 碳基电子的制作及互连方法
CN106229348A (zh) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板、显示装置
US9559211B2 (en) 2010-07-30 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN110364438A (zh) * 2019-05-29 2019-10-22 北京华碳元芯电子科技有限责任公司 晶体管及其制造方法

Families Citing this family (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US20060228723A1 (en) * 2002-01-16 2006-10-12 Keith Bradley System and method for electronic sensing of biomolecules
US20040253741A1 (en) * 2003-02-06 2004-12-16 Alexander Star Analyte detection in liquids with carbon nanotube field effect transistor devices
US20070178477A1 (en) * 2002-01-16 2007-08-02 Nanomix, Inc. Nanotube sensor devices for DNA detection
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
JP3804594B2 (ja) * 2002-08-02 2006-08-02 日本電気株式会社 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ
TWI309845B (en) * 2002-09-30 2009-05-11 Nanosys Inc Large-area nanoenabled macroelectronic substrates and uses therefor
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7507987B2 (en) * 2002-10-11 2009-03-24 Massachusetts Institute Of Technology Method of making packets of nanostructures
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
WO2005000739A1 (en) * 2002-10-29 2005-01-06 President And Fellows Of Harvard College Carbon nanotube device fabrication
JP4501339B2 (ja) * 2002-11-29 2010-07-14 ソニー株式会社 pn接合素子の製造方法
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US6696327B1 (en) * 2003-03-18 2004-02-24 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US20100244262A1 (en) 2003-06-30 2010-09-30 Fujitsu Limited Deposition method and a deposition apparatus of fine particles, a forming method and a forming apparatus of carbon nanotubes, and a semiconductor device and a manufacturing method of the same
US7547648B2 (en) 2003-08-20 2009-06-16 Qucor Pty Ltd Fabricating nanoscale and atomic scale devices
TWI239071B (en) * 2003-08-20 2005-09-01 Ind Tech Res Inst Manufacturing method of carbon nano-tube transistor
DE10340926A1 (de) * 2003-09-03 2005-03-31 Technische Universität Ilmenau Abteilung Forschungsförderung und Technologietransfer Verfahren zur Herstellung von elektronischen Bauelementen
US7105851B2 (en) * 2003-09-24 2006-09-12 Intel Corporation Nanotubes for integrated circuits
JP5250615B2 (ja) * 2003-10-28 2013-07-31 株式会社半導体エネルギー研究所 半導体装置
CN1906529B (zh) * 2003-11-18 2010-05-12 尼康股份有限公司 显示装置制造方法及显示装置
US7038299B2 (en) * 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
DE102004001340A1 (de) * 2004-01-08 2005-08-04 Infineon Technologies Ag Verfahren zum Herstellen eines Nanoelement-Feldeffektransistors, Nanoelement-Feldeffekttransistor und Nanoelement-Anordnung
DE102004003374A1 (de) * 2004-01-22 2005-08-25 Infineon Technologies Ag Halbleiter-Leistungsschalter sowie dafür geeignetes Herstellungsverfahren
US7211844B2 (en) * 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US20050167655A1 (en) * 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
KR101050468B1 (ko) * 2004-02-14 2011-07-19 삼성에스디아이 주식회사 바이오 칩 및 이를 이용한 바이오 분자 검출 시스템
US7253431B2 (en) * 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US20050218398A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics
US7019391B2 (en) * 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7330369B2 (en) * 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
US20050218397A1 (en) * 2004-04-06 2005-10-06 Availableip.Com NANO-electronics for programmable array IC
US7498641B2 (en) * 2004-05-28 2009-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Partial replacement silicide gate
US7109546B2 (en) * 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7129097B2 (en) * 2004-07-29 2006-10-31 International Business Machines Corporation Integrated circuit chip utilizing oriented carbon nanotube conductive layers
US20060063318A1 (en) * 2004-09-10 2006-03-23 Suman Datta Reducing ambipolar conduction in carbon nanotube transistors
KR101025846B1 (ko) * 2004-09-13 2011-03-30 삼성전자주식회사 탄소나노튜브 채널을 포함하는 반도체 장치의 트랜지스터
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7776307B2 (en) * 2004-09-16 2010-08-17 Etamota Corporation Concentric gate nanotube transistor devices
US7462890B1 (en) 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US20070246784A1 (en) * 2004-10-13 2007-10-25 Samsung Electronics Co., Ltd. Unipolar nanotube transistor using a carrier-trapping material
US7226818B2 (en) 2004-10-15 2007-06-05 General Electric Company High performance field effect transistors comprising carbon nanotubes fabricated using solution based processing
CN100420033C (zh) * 2004-10-28 2008-09-17 鸿富锦精密工业(深圳)有限公司 场效应晶体管及其制造方法
US7582534B2 (en) * 2004-11-18 2009-09-01 International Business Machines Corporation Chemical doping of nano-components
US7405129B2 (en) * 2004-11-18 2008-07-29 International Business Machines Corporation Device comprising doped nano-component and method of forming the device
US7585420B2 (en) * 2004-12-16 2009-09-08 William Marsh Rice University Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates
US7202173B2 (en) * 2004-12-20 2007-04-10 Palo Alto Research Corporation Incorporated Systems and methods for electrical contacts to arrays of vertically aligned nanorods
US7598516B2 (en) 2005-01-07 2009-10-06 International Business Machines Corporation Self-aligned process for nanotube/nanowire FETs
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
US7535016B2 (en) * 2005-01-31 2009-05-19 International Business Machines Corporation Vertical carbon nanotube transistor integration
JP5127442B2 (ja) * 2005-02-10 2013-01-23 パナソニック株式会社 微細構造体を保持するための構造体の製造方法、半導体装置の製造方法、およびセンサの製造方法
US20100065820A1 (en) * 2005-02-14 2010-03-18 Atomate Corporation Nanotube Device Having Nanotubes with Multiple Characteristics
US20060180859A1 (en) * 2005-02-16 2006-08-17 Marko Radosavljevic Metal gate carbon nanotube transistor
US7671398B2 (en) * 2005-02-23 2010-03-02 Tran Bao Q Nano memory, light, energy, antenna and strand-based systems and methods
US7126207B2 (en) * 2005-03-24 2006-10-24 Intel Corporation Capacitor with carbon nanotubes
EP2348300A3 (en) * 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
US7271079B2 (en) * 2005-04-06 2007-09-18 International Business Machines Corporation Method of doping a gate electrode of a field effect transistor
KR101145146B1 (ko) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 박막트랜지스터와 그 제조방법
KR101109623B1 (ko) 2005-04-07 2012-01-31 엘지디스플레이 주식회사 박막트랜지스터와 그 제조방법.
US7781862B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7141727B1 (en) * 2005-05-16 2006-11-28 International Business Machines Corporation Method and apparatus for fabricating a carbon nanotube transistor having unipolar characteristics
US7230286B2 (en) * 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
US7838943B2 (en) * 2005-07-25 2010-11-23 International Business Machines Corporation Shared gate for conventional planar device and horizontal CNT
US20070031318A1 (en) * 2005-08-03 2007-02-08 Jie Liu Methods of chemically treating an electrically conductive layer having nanotubes therein with diazonium reagent
US7485908B2 (en) * 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7371677B2 (en) * 2005-09-30 2008-05-13 Freescale Semiconductor, Inc. Laterally grown nanotubes and method of formation
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
KR100792402B1 (ko) 2005-12-28 2008-01-09 주식회사 하이닉스반도체 듀얼폴리게이트를 갖는 반도체소자의 제조 방법
US8394664B2 (en) * 2006-02-02 2013-03-12 William Marsh Rice University Electrical device fabrication from nanotube formations
US20070183189A1 (en) * 2006-02-08 2007-08-09 Thomas Nirschl Memory having nanotube transistor access device
US8759811B2 (en) * 2006-02-14 2014-06-24 Raytheon Company Particle encapsulated nanoswitch
KR100668355B1 (ko) * 2006-02-16 2007-01-12 삼성전자주식회사 캐리어 트래핑 물질을 구비한 유니폴라 탄소나노튜브 및유니폴라 전계효과 트랜지스터
WO2008054839A2 (en) * 2006-03-03 2008-05-08 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
US8785058B2 (en) 2006-04-07 2014-07-22 New Jersey Institute Of Technology Integrated biofuel cell with aligned nanotube electrodes and method of use thereof
US7626190B2 (en) 2006-06-02 2009-12-01 Infineon Technologies Ag Memory device, in particular phase change random access memory device with transistor, and method for fabricating a memory device
US7714386B2 (en) 2006-06-09 2010-05-11 Northrop Grumman Systems Corporation Carbon nanotube field effect transistor
DE102006026949A1 (de) * 2006-06-09 2007-12-13 Infineon Technologies Ag Speicherbauelement, insbesondere Phasenwechselspeicherbauelement mit wahlfreiem Zugriff mit Transistor, und Verfahren zum Herstellen eines Speicherbauelements
US7393699B2 (en) 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
US20070290394A1 (en) * 2006-06-20 2007-12-20 International Business Machines Corporation Method and structure for forming self-planarizing wiring layers in multilevel electronic devices
US20080135892A1 (en) * 2006-07-25 2008-06-12 Paul Finnie Carbon nanotube field effect transistor and method of making thereof
FR2897978A1 (fr) * 2006-08-03 2007-08-31 Commissariat Energie Atomique Cellule de memoire comportant un transistor moleculaire, dispositif comportant une pluralite de telles cellules et procede d'utilisation
JP5168888B2 (ja) * 2006-11-20 2013-03-27 日本電気株式会社 半導体装置及びその製造方法
KR100912111B1 (ko) * 2006-12-04 2009-08-13 한국전자통신연구원 쇼트키 장벽 나노선 전계 효과 트랜지스터 및 그 제조방법
US8168495B1 (en) 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
DE102007001130B4 (de) * 2007-01-04 2014-07-03 Qimonda Ag Verfahren zum Herstellen einer Durchkontaktierung in einer Schicht und Anordnung mit einer Schicht mit Durchkontaktierung
US7511344B2 (en) * 2007-01-17 2009-03-31 International Business Machines Corporation Field effect transistor
US8039870B2 (en) * 2008-01-28 2011-10-18 Rf Nano Corporation Multifinger carbon nanotube field-effect transistor
WO2008128164A1 (en) * 2007-04-12 2008-10-23 The Penn State Research Foundation Accumulation field effect microelectronic device and process for the formation thereof
US9209246B2 (en) 2007-04-12 2015-12-08 The Penn State University Accumulation field effect microelectronic device and process for the formation thereof
US20080272361A1 (en) * 2007-05-02 2008-11-06 Atomate Corporation High Density Nanotube Devices
US8546027B2 (en) 2007-06-20 2013-10-01 New Jersey Institute Of Technology System and method for directed self-assembly technique for the creation of carbon nanotube sensors and bio-fuel cells on single plane
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7964143B2 (en) 2007-06-20 2011-06-21 New Jersey Institute Of Technology Nanotube device and method of fabrication
US7858454B2 (en) * 2007-07-31 2010-12-28 Rf Nano Corporation Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same
CN101442105B (zh) * 2007-11-21 2010-06-09 中国科学院化学研究所 一种有机场效应晶体管及其专用源漏电极与制备方法
CN101933125A (zh) * 2007-12-31 2010-12-29 伊特蒙塔公司 边缘接触型垂直碳纳米管晶体管
KR100930997B1 (ko) * 2008-01-22 2009-12-10 한국화학연구원 탄소나노튜브 트랜지스터 제조 방법 및 그에 의한탄소나노튜브 트랜지스터
US8847249B2 (en) 2008-06-16 2014-09-30 Soraa, Inc. Solid-state optical device having enhanced indium content in active regions
US7858506B2 (en) 2008-06-18 2010-12-28 Micron Technology, Inc. Diodes, and methods of forming diodes
US8805134B1 (en) 2012-02-17 2014-08-12 Soraa Laser Diode, Inc. Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
US8143148B1 (en) * 2008-07-14 2012-03-27 Soraa, Inc. Self-aligned multi-dielectric-layer lift off process for laser diode stripes
US8767787B1 (en) 2008-07-14 2014-07-01 Soraa Laser Diode, Inc. Integrated laser diodes with quality facets on GaN substrates
US8284810B1 (en) 2008-08-04 2012-10-09 Soraa, Inc. Solid state laser device using a selected crystal orientation in non-polar or semi-polar GaN containing materials and methods
EP2319086A4 (en) 2008-08-04 2014-08-27 Soraa Inc WHITE LIGHTING DEVICES WITH NON POLAR OR SEMI-POLAR GALLIUM-HARDENED MATERIALS AND INFLUENCES
US8063454B2 (en) 2008-08-13 2011-11-22 Micron Technology, Inc. Semiconductor structures including a movable switching element and systems including same
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8837545B2 (en) 2009-04-13 2014-09-16 Soraa Laser Diode, Inc. Optical device structure using GaN substrates and growth structures for laser applications
DE112010001615T5 (de) * 2009-04-13 2012-08-02 Soraa, Inc. Stuktur eines optischen Elements unter Verwendung von GaN-Substraten für Laseranwendungen
US8634442B1 (en) 2009-04-13 2014-01-21 Soraa Laser Diode, Inc. Optical device structure using GaN substrates for laser applications
US9800017B1 (en) 2009-05-29 2017-10-24 Soraa Laser Diode, Inc. Laser device and method for a vehicle
US8509275B1 (en) 2009-05-29 2013-08-13 Soraa, Inc. Gallium nitride based laser dazzling device and method
US9829780B2 (en) 2009-05-29 2017-11-28 Soraa Laser Diode, Inc. Laser light source for a vehicle
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
US9250044B1 (en) 2009-05-29 2016-02-02 Soraa Laser Diode, Inc. Gallium and nitrogen containing laser diode dazzling devices and methods of use
US8427590B2 (en) 2009-05-29 2013-04-23 Soraa, Inc. Laser based display method and system
US8247887B1 (en) 2009-05-29 2012-08-21 Soraa, Inc. Method and surface morphology of non-polar gallium nitride containing substrates
US8895352B2 (en) * 2009-06-02 2014-11-25 International Business Machines Corporation Method to improve nucleation of materials on graphene and carbon nanotubes
US8574673B2 (en) * 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8355418B2 (en) 2009-09-17 2013-01-15 Soraa, Inc. Growth structures and method for forming laser diodes on {20-21} or off cut gallium and nitrogen containing substrates
US8750342B1 (en) 2011-09-09 2014-06-10 Soraa Laser Diode, Inc. Laser diodes with scribe structures
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US8841652B2 (en) * 2009-11-30 2014-09-23 International Business Machines Corporation Self aligned carbide source/drain FET
US8143113B2 (en) * 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
WO2011068028A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
US8129247B2 (en) * 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8384065B2 (en) * 2009-12-04 2013-02-26 International Business Machines Corporation Gate-all-around nanowire field effect transistors
US8455334B2 (en) * 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US8173993B2 (en) * 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8097515B2 (en) * 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
US20120248417A1 (en) * 2009-12-21 2012-10-04 Imec Double gate nanostructure fet
WO2011077966A1 (en) * 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8101474B2 (en) * 2010-01-06 2012-01-24 International Business Machines Corporation Structure and method of forming buried-channel graphene field effect device
US8722492B2 (en) 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8436403B2 (en) * 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor provided with sidewall and electronic appliance
WO2011103558A1 (en) 2010-02-22 2011-08-25 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (cntfet) devices and methods of making same
KR101780841B1 (ko) * 2010-02-26 2017-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US20110233513A1 (en) * 2010-03-29 2011-09-29 International Business Machines Corporation Enhanced bonding interfaces on carbon-based materials for nanoelectronic devices
US8324940B2 (en) 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
US8451876B1 (en) 2010-05-17 2013-05-28 Soraa, Inc. Method and system for providing bidirectional light sources with broad spectrum
US8513099B2 (en) * 2010-06-17 2013-08-20 International Business Machines Corporation Epitaxial source/drain contacts self-aligned to gates for deposited FET channels
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8404539B2 (en) 2010-07-08 2013-03-26 International Business Machines Corporation Self-aligned contacts in carbon devices
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
US8816319B1 (en) 2010-11-05 2014-08-26 Soraa Laser Diode, Inc. Method of strain engineering and related optical device using a gallium and nitrogen containing active region
US9048170B2 (en) 2010-11-09 2015-06-02 Soraa Laser Diode, Inc. Method of fabricating optical devices using laser treatment
US8597967B1 (en) 2010-11-17 2013-12-03 Soraa, Inc. Method and system for dicing substrates containing gallium and nitrogen material
US9025635B2 (en) 2011-01-24 2015-05-05 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a support member
US9595813B2 (en) 2011-01-24 2017-03-14 Soraa Laser Diode, Inc. Laser package having multiple emitters configured on a substrate member
US9093820B1 (en) 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
US9287684B2 (en) 2011-04-04 2016-03-15 Soraa Laser Diode, Inc. Laser package having multiple emitters with color wheel
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US8455365B2 (en) 2011-05-19 2013-06-04 Dechao Guo Self-aligned carbon electronics with embedded gate electrode
US8492748B2 (en) 2011-06-27 2013-07-23 International Business Machines Corporation Collapsable gate for deposited nanostructures
US8486778B2 (en) 2011-07-15 2013-07-16 International Business Machines Corporation Low resistance source and drain extensions for ETSOI
US8729529B2 (en) * 2011-08-03 2014-05-20 Ignis Innovation Inc. Thin film transistor including a nanoconductor layer
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
WO2013043544A1 (en) 2011-09-19 2013-03-28 California Institute Of Technology Translocation and nucleotide reading mechanisms for sequencing nanodevices
US8803129B2 (en) * 2011-10-11 2014-08-12 International Business Machines Corporation Patterning contacts in carbon nanotube devices
US8971370B1 (en) 2011-10-13 2015-03-03 Soraa Laser Diode, Inc. Laser devices using a semipolar plane
US8629010B2 (en) 2011-10-21 2014-01-14 International Business Machines Corporation Carbon nanotube transistor employing embedded electrodes
US8569121B2 (en) * 2011-11-01 2013-10-29 International Business Machines Corporation Graphene and nanotube/nanowire transistor with a self-aligned gate structure on transparent substrates and method of making same
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
US8772782B2 (en) 2011-11-23 2014-07-08 International Business Machines Corporation Transistor employing vertically stacked self-aligned carbon nanotubes
JP5887881B2 (ja) * 2011-11-28 2016-03-16 株式会社リコー 配線の形成方法
US8895417B2 (en) 2011-11-29 2014-11-25 International Business Machines Corporation Reducing contact resistance for field-effect transistor devices
US8772910B2 (en) 2011-11-29 2014-07-08 International Business Machines Corporation Doping carbon nanotubes and graphene for improving electronic mobility
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US8642432B2 (en) 2011-12-01 2014-02-04 International Business Machines Corporation N-dopant for carbon nanotubes and graphene
US9663369B2 (en) 2011-12-16 2017-05-30 International Business Machines Corporation Cerium (IV) salts as effective dopant for carbon nanotubes and graphene
WO2013100906A1 (en) * 2011-12-27 2013-07-04 Intel Corporation Carbon nanotube semiconductor devices and deterministic nanofabrication methods
US10224413B1 (en) * 2012-01-30 2019-03-05 Northrop Grumman Systems Corporation Radio-frequency carbon-nanotube field effect transistor devices with local backgates and methods for making same
JP2013179274A (ja) * 2012-02-09 2013-09-09 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタおよびその製造方法
US9020003B1 (en) 2012-03-14 2015-04-28 Soraa Laser Diode, Inc. Group III-nitride laser diode grown on a semi-polar orientation of gallium and nitrogen containing substrates
US9343871B1 (en) 2012-04-05 2016-05-17 Soraa Laser Diode, Inc. Facet on a gallium and nitrogen containing laser diode
EP2674996A1 (en) * 2012-06-15 2013-12-18 Imec VZW Method for growing nanostructures in recessed structures
US8741756B2 (en) 2012-08-13 2014-06-03 International Business Machines Corporation Contacts-first self-aligned carbon nanotube transistor with gate-all-around
US8786018B2 (en) 2012-09-11 2014-07-22 International Business Machines Corporation Self-aligned carbon nanostructure field effect transistors using selective dielectric deposition
US8823059B2 (en) * 2012-09-27 2014-09-02 Intel Corporation Non-planar semiconductor device having group III-V material active region with multi-dielectric gate stack
US8735869B2 (en) * 2012-09-27 2014-05-27 Intel Corporation Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8796096B2 (en) 2012-12-04 2014-08-05 International Business Machines Corporation Self-aligned double-gate graphene transistor
US8609481B1 (en) 2012-12-05 2013-12-17 International Business Machines Corporation Gate-all-around carbon nanotube transistor with selectively doped spacers
US8900975B2 (en) 2013-01-03 2014-12-02 International Business Machines Corporation Nanopore sensor device
JP5637231B2 (ja) * 2013-03-04 2014-12-10 富士通株式会社 電界効果型トランジスタの製造方法
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
JP6376788B2 (ja) 2013-03-26 2018-08-22 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
US9048216B2 (en) 2013-04-17 2015-06-02 International Business Machines Corporation Self aligned embedded gate carbon transistors
US9193585B2 (en) 2013-06-07 2015-11-24 International Business Machines Corporation Surface modification using functional carbon nanotubes
US8841189B1 (en) * 2013-06-14 2014-09-23 International Business Machines Corporation Transistor having all-around source/drain metal contact channel stressor and method to fabricate same
JP2015032662A (ja) * 2013-08-01 2015-02-16 株式会社東芝 半導体装置及びその製造方法
US9406888B2 (en) 2013-08-07 2016-08-02 GlobalFoundries, Inc. Carbon nanotube device
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture
WO2016100049A1 (en) 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-sensitive field effect transistor
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9502673B2 (en) * 2015-03-31 2016-11-22 International Business Machines Corporation Transistor devices with tapered suspended vertical arrays of carbon nanotubes
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US9787963B2 (en) 2015-10-08 2017-10-10 Soraa Laser Diode, Inc. Laser lighting having selective resolution
JP6851166B2 (ja) 2015-10-12 2021-03-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US10276698B2 (en) 2015-10-21 2019-04-30 International Business Machines Corporation Scalable process for the formation of self aligned, planar electrodes for devices employing one or two dimensional lattice structures
CA2909813A1 (en) 2015-10-26 2017-04-26 Ignis Innovation Inc High ppi pattern orientation
US9577204B1 (en) * 2015-10-30 2017-02-21 International Business Machines Corporation Carbon nanotube field-effect transistor with sidewall-protected metal contacts
US9837394B2 (en) 2015-12-02 2017-12-05 International Business Machines Corporation Self-aligned three dimensional chip stack and method for making the same
US10396300B2 (en) 2015-12-03 2019-08-27 International Business Machines Corporation Carbon nanotube device with N-type end-bonded metal contacts
WO2017201081A1 (en) 2016-05-16 2017-11-23 Agilome, Inc. Graphene fet devices, systems, and methods of using the same for sequencing nucleic acids
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10665799B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
US10825681B2 (en) * 2016-08-13 2020-11-03 Applied Materials, Inc. 3D CTF integration using hybrid charge trap layer of sin and self aligned SiGe nanodot
GB2554362B (en) * 2016-09-21 2020-11-11 Pragmatic Printing Ltd Transistor and its method of manufacture
DE102017222059A1 (de) 2016-12-06 2018-06-07 Ignis Innovation Inc. Pixelschaltungen zur Minderung von Hysterese
US10304804B2 (en) * 2017-03-31 2019-05-28 Intel Corporation System on package architecture including structures on die back side
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10141528B1 (en) * 2017-05-23 2018-11-27 International Business Machines Corporation Enhancing drive current and increasing device yield in n-type carbon nanotube field effect transistors
US10193090B2 (en) * 2017-06-20 2019-01-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
JP7118973B2 (ja) 2017-08-04 2022-08-16 株式会社半導体エネルギー研究所 半導体装置
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
CN107706307B (zh) * 2017-10-13 2020-05-19 深圳市华星光电半导体显示技术有限公司 碳纳米管薄膜晶体管及其制作方法
CN107819037B (zh) * 2017-12-07 2023-10-27 苏州大学 应用碳纳米管作为导电沟槽的鳍式场效应管及其制备方法
US10333088B1 (en) 2017-12-12 2019-06-25 International Business Machines Corporation Carbon nanotube transistor with carrier blocking using thin dielectric under contact
US10222474B1 (en) 2017-12-13 2019-03-05 Soraa Laser Diode, Inc. Lidar systems including a gallium and nitrogen containing laser light source
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10551728B1 (en) 2018-04-10 2020-02-04 Soraa Laser Diode, Inc. Structured phosphors for dynamic lighting
CN109560125B (zh) * 2018-11-27 2022-03-11 湖南工业大学 金属堆叠源漏电极场效应管及其制作方法
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11884202B2 (en) 2019-01-18 2024-01-30 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system
KR20200130778A (ko) * 2019-05-10 2020-11-20 삼성디스플레이 주식회사 박막 트랜지스터의 제조 방법, 표시 장치의 제조 방법 및 박막 트랜지스터 기판
CN110571333B (zh) * 2019-08-13 2023-06-30 北京元芯碳基集成电路研究院 一种无掺杂晶体管器件制作方法
US11417729B2 (en) 2019-08-29 2022-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Transistors with channels formed of low-dimensional materials and method forming same
DE102020109756A1 (de) 2019-08-29 2021-03-04 Taiwan Semiconductor Manufacturing Co., Ltd. Transistoren mit kanälen gebildet aus niedrigdimensionalenmaterialien und verfahren zum bilden derselben
CN113644112B (zh) * 2020-05-11 2022-07-15 北京华碳元芯电子科技有限责任公司 晶体管及制作方法
WO2022039148A1 (ja) * 2020-08-17 2022-02-24 株式会社村田製作所 半導体センサ
WO2023097120A1 (en) * 2021-11-29 2023-06-01 Duke University Metallic single-walled carbon nanotube hybrid assemblies and superstructures

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2137806B (en) * 1983-04-05 1986-10-08 Standard Telephones Cables Ltd Ion implantation in semiconductor bodies
CA1308496C (en) * 1988-02-18 1992-10-06 Rajiv V. Joshi Deposition of tungsten on silicon in a non-self-limiting cvd process
JPH02206130A (ja) * 1989-02-06 1990-08-15 Nec Corp Mos型電界効果トランジスタの製造方法
JP2717234B2 (ja) * 1991-05-11 1998-02-18 株式会社 半導体エネルギー研究所 絶縁ゲイト型電界効果半導体装置およびその作製方法
JP3403231B2 (ja) * 1993-05-12 2003-05-06 三菱電機株式会社 半導体装置およびその製造方法
JP3460863B2 (ja) * 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
JP3393237B2 (ja) * 1994-10-04 2003-04-07 ソニー株式会社 半導体装置の製造方法
US6025635A (en) 1997-07-09 2000-02-15 Advanced Micro Devices, Inc. Short channel transistor having resistive gate extensions
EP1123091A1 (en) * 1998-10-23 2001-08-16 Merck Frosst Canada &amp; Co. Combination product comprising an e-type prostaglandin ligand and a cox-2 selective inhibitor and methods of use
US6022771A (en) * 1999-01-25 2000-02-08 International Business Machines Corporation Fabrication of semiconductor device having shallow junctions and sidewall spacers creating taper-shaped isolation where the source and drain regions meet the gate regions
JP4039600B2 (ja) * 1999-02-22 2008-01-30 クラウソン、ジョセフ、イー、ジュニア ナノ構造デバイス及び装置
JP2000275678A (ja) * 1999-03-26 2000-10-06 Matsushita Electric Ind Co Ltd 薄膜半導体装置およびその製造方法
SE517833C2 (sv) 1999-11-26 2002-07-23 Ericsson Telefon Ab L M Metod vid tillverkning av en bipolär kiseltransistor för att bilda basområden och öppna ett emitterfönster samt bipolär kiseltransistor tillverkad enligt metoden
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
US6407435B1 (en) 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
KR100327496B1 (ko) * 2000-06-27 2002-03-15 윤종용 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
JP4112358B2 (ja) * 2000-07-04 2008-07-02 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 電界効果トランジスタ
KR100350794B1 (ko) * 2000-11-20 2002-09-05 엘지전자 주식회사 탄소나노튜브를 이용한 스핀 밸브 단전자 트랜지스터
CN1251962C (zh) * 2000-07-18 2006-04-19 Lg电子株式会社 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
DE10036897C1 (de) * 2000-07-28 2002-01-03 Infineon Technologies Ag Feldeffekttransistor, Schaltungsanordnung und Verfahren zum Herstellen eines Feldeffekttransistors
US6664143B2 (en) * 2000-11-22 2003-12-16 North Carolina State University Methods of fabricating vertical field effect transistors by conformal channel layer deposition on sidewalls
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US6524920B1 (en) * 2001-02-09 2003-02-25 Advanced Micro Devices, Inc. Low temperature process for a transistor with elevated source and drain
JP3731486B2 (ja) * 2001-03-16 2006-01-05 富士ゼロックス株式会社 トランジスタ
JP4225716B2 (ja) * 2001-09-11 2009-02-18 富士通株式会社 円筒状多層構造体による半導体装置
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP2004537174A (ja) 2001-07-26 2004-12-09 テクニシェ ユニヴェルシテイト デルフト カーボンナノチューブを利用した電子デバイス
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
TWI220269B (en) * 2002-07-31 2004-08-11 Ind Tech Res Inst Method for fabricating n-type carbon nanotube device
US20040144972A1 (en) * 2002-10-04 2004-07-29 Hongjie Dai Carbon nanotube circuits with high-kappa dielectrics
MY134672A (en) 2004-05-20 2007-12-31 Japan Tobacco Inc Stable crystal of 4-oxoquinoline compound

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047130B (zh) * 2006-03-30 2011-01-19 高丽大学校算学协力团 使用纳米颗粒的顶栅薄膜晶体管及其制造方法
CN102301480B (zh) * 2009-02-17 2015-07-22 国际商业机器公司 纳米线网格器件的制备方法
CN102301480A (zh) * 2009-02-17 2011-12-28 国际商业机器公司 纳米线网格器件及其制备方法
CN101997035B (zh) * 2009-08-14 2012-08-29 清华大学 薄膜晶体管
US8227799B2 (en) 2009-08-14 2012-07-24 Tsinghua University Thin film transistor
CN102668150A (zh) * 2009-11-30 2012-09-12 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN102668150B (zh) * 2009-11-30 2015-05-20 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN102148249A (zh) * 2010-02-09 2011-08-10 三菱电机株式会社 SiC半导体装置及其制造方法
US8461632B2 (en) 2010-02-09 2013-06-11 Mitsubishi Electric Corporation SiC semiconductor device and method of manufacturing the same
US8987105B2 (en) 2010-02-09 2015-03-24 Mitsubishi Electric Corporation SiC semiconductor device and method of manufacturing the same
CN102148249B (zh) * 2010-02-09 2015-07-15 三菱电机株式会社 SiC半导体装置及其制造方法
US9559211B2 (en) 2010-07-30 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN103518255A (zh) * 2011-05-10 2014-01-15 国际商业机器公司 具有减小寄生电阻的带电单层的碳场效应晶体管
CN103518255B (zh) * 2011-05-10 2016-09-28 国际商业机器公司 具有减小寄生电阻的带电单层的碳场效应晶体管
CN104576324A (zh) * 2013-12-21 2015-04-29 上海大学 碳基电子的制作及互连方法
CN106229348A (zh) * 2016-09-22 2016-12-14 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板、显示装置
CN110364438A (zh) * 2019-05-29 2019-10-22 北京华碳元芯电子科技有限责任公司 晶体管及其制造方法

Also Published As

Publication number Publication date
TW200304679A (en) 2003-10-01
US7253065B2 (en) 2007-08-07
IL164066A (en) 2009-12-24
TW586165B (en) 2004-05-01
CA2695715C (en) 2011-06-07
MXPA04008984A (es) 2005-02-17
CN1669160B (zh) 2012-02-01
CN101807668A (zh) 2010-08-18
CA2659479A1 (en) 2003-10-02
KR20040086474A (ko) 2004-10-08
US20100001260A1 (en) 2010-01-07
CA2659479C (en) 2010-07-13
EP1485958B1 (en) 2012-03-28
US6891227B2 (en) 2005-05-10
CA2695715A1 (en) 2003-10-02
PL373571A1 (en) 2005-09-05
BR0308569A (pt) 2007-04-03
US20090309092A1 (en) 2009-12-17
WO2003081687A2 (en) 2003-10-02
US20080017899A1 (en) 2008-01-24
EP1748503A2 (en) 2007-01-31
US8138491B2 (en) 2012-03-20
JP4493344B2 (ja) 2010-06-30
EP1748503B1 (en) 2011-07-13
WO2003081687A3 (en) 2004-09-30
EP1748503A3 (en) 2007-08-15
KR100714932B1 (ko) 2007-05-04
ATE516600T1 (de) 2011-07-15
ATE551734T1 (de) 2012-04-15
US20120142158A1 (en) 2012-06-07
US20030178617A1 (en) 2003-09-25
US20050056826A1 (en) 2005-03-17
US7897960B2 (en) 2011-03-01
CA2479024A1 (en) 2003-10-02
AU2003224668A8 (en) 2003-10-08
US8637374B2 (en) 2014-01-28
CA2479024C (en) 2010-02-16
CN101807668B (zh) 2012-05-30
IL164066A0 (en) 2005-12-18
US7635856B2 (en) 2009-12-22
JP2006508523A (ja) 2006-03-09
EP1485958A2 (en) 2004-12-15
AU2003224668A1 (en) 2003-10-08

Similar Documents

Publication Publication Date Title
CN1669160B (zh) 自对准纳米管场效应晶体管及其制造方法
JP5132320B2 (ja) ナノチューブ/ナノワイヤfetのための自己整合プロセス
US8753965B2 (en) Graphene transistor with a self-aligned gate
US8803130B2 (en) Graphene transistors with self-aligned gates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171124

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

Effective date of registration: 20171124

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20120201

CX01 Expiry of patent term