CN1662590A - 碳纳米管填充复合材料 - Google Patents

碳纳米管填充复合材料 Download PDF

Info

Publication number
CN1662590A
CN1662590A CN038141345A CN03814134A CN1662590A CN 1662590 A CN1662590 A CN 1662590A CN 038141345 A CN038141345 A CN 038141345A CN 03814134 A CN03814134 A CN 03814134A CN 1662590 A CN1662590 A CN 1662590A
Authority
CN
China
Prior art keywords
nanotube
monomer
mixture
carbon nanotube
tensio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN038141345A
Other languages
English (en)
Inventor
H·J·巴拉扎
L·巴尔扎诺
F·波姆皮欧
O·L·鲁易达
E·A·奥雷尔
D·E·里萨斯夸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oklahoma State University
University of Oklahoma
Original Assignee
University of Oklahoma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Oklahoma filed Critical University of Oklahoma
Publication of CN1662590A publication Critical patent/CN1662590A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

一种采用如图1所示的微乳液聚合方法形成碳纳米管填充复合材料的方法。所述碳纳米管优选为单壁碳纳米管。该碳纳米管高度分散在该复合材料包含的聚合物中并与其结合。

Description

碳纳米管填充复合材料
技术背景
长期以来研究者一直通过引入无机补强材料(例如碳黑、铁粉)来改变聚苯乙烯和其它聚合物的电性质1。近来,多壁碳纳米管(MWNT)的使用已显示出比碳黑更为优越,不仅因为达到导电阈值所需的填充量更小,而且由于其高长度直径比有助于产生促进电子迁移的大范围网络。在涉及导电碳纳米管填充聚合物的应用方面,单壁碳纳米管(SWNT)还没有MWNT的研究那样深入。其中一个原因是:强吸引范得华力导致其易于集聚,因而,使用现有技术领域的浇铸技术,很难在相对小的填充量下形成导电网络。
此外,将碳纳米管纯化、官能化并引入聚合物基体中的工程研究近来活跃开展的原因在于:从抗腐蚀涂料到纳米厚度的导电薄膜等极为重要的应用预期将直接影响价值以数亿美元计的世界市场。制造碳纳米管填充聚合物复合材料的挑战之一是:必需创造性地控制和利用碳纳米管和聚合物链之间的界面相互作用,以便充分扩散到整个基体而不破坏碳纳米管(NT)的完整性。溶液蒸发法已经是制备填充热塑性材料,如聚苯乙烯(PS)2、聚乙烯醇(PVA)3、聚羟基氨基醚(PHAE)4,5、聚(m-亚苯基次亚乙烯基-共-2,5-二辛氧基-p-亚苯基次亚乙烯基)(PmPV)6以及环氧热固性材料的主要实验路线。溶液浇铸法对于制造高导电性膜的适用性有限,因为过度的纳米管集聚使SWNT复合材料在1.2%纳米管含量时就趋于饱和5。另外,大部分聚合物材料需要大量溶剂以完全溶解,然后再引入NT。而且,这些溶剂是公知的高毒性有机液体,如甲苯、氯仿、四氢呋喃(THF)或二甲基甲酰胺(DMF),因此其使用应予避免。
近来,无机填料如碳黑8、二氧化钛9、磁石10、碳酸钙9,10和二氧化硅11已通过采用表面活性剂增强的微乳液聚合技术来进行包封。在微乳液聚合中,首先将无机填料分散在单体中,然后将混合物置于高剪切型微乳化作用条件下。在温和的温度条件下,采用油溶性或水溶性自由基引发剂加速聚合反应,生成具有不同结构的杂化物,例如包封的填料、附着无机粒子的聚合物核;或二者的混合物11。在乳液聚合条件下制造掺杂聚苯胺(PANI)-多壁碳纳米管复合材料的相似方法由Deng等12完成,他们观察到PANI-NT复合材料(10%NT填充量)的电导率比母体PANI的电导率提高约25倍。另一个表面活性剂辅助复合材料制造的例子是采用阳离子表面活性剂中的碳纳米管分散体来生成共胶束,用作含纳米管的二氧化硅微棒的合成模板13。然而,原位微乳液技术尚未用于将SWNT与单体结合以形成SWNT-复合材料。
发明内容
本发明在一个实施方案中考虑采用原位聚合工艺来生成SWNT填充复合材料的方法,其步骤包括:在存在或不存在聚合催化剂的条件下合并单壁碳纳米管和单体;如果需要则活化聚合催化剂;将该混合物置于聚合条件下从而得到其中高度分散有单壁碳纳米管的聚合物混合物;从而形成单壁碳纳米管填充复合材料。用于该方法中的纳米管可以是纯化SWNT,或仍结合有至少一部分在生产SWNT的过程中所用催化材料的SWNT。所使用的聚合催化剂可在制造SWNT之前加入到SWNT生成过程中所用的催化剂中,或在SWNT生成之后加入SWNT中。
在一替代实施方案中,本发明考虑了通过微乳液工艺来制造单壁碳纳米管填充聚合物复合材料(SWNT填充复合材料)的方法,其步骤包括:将SWNT与水性表面活性剂合并而形成表面活性剂-纳米管混合物,并形成表面活性剂-纳米管分散体;将聚合引发剂与所述表面活性剂-纳米管分散体合并从而形成表面活性剂-纳米管-引发剂混合物,处理该表面活性剂-纳米管-引发剂混合物以形成聚集体,其中纳米管高度分散在该表面活性剂-纳米管-引发剂混合物中;将单体与疏水剂合并以形成单体-疏水剂混合物,并加入聚合催化剂从而形成单体-疏水剂-聚合催化剂混合物;将表面活性剂-纳米管-引发剂混合物与单体-疏水剂-聚合催化剂混合物合并,从而形成单体-纳米管混合物;在微乳化条件下将该单体-纳米管混合物混合预定持续时间形成单体-纳米管微乳液,其中发生聚合反应,从而得到其中高度分散有单壁碳纳米管的聚合物混合物,形成单壁碳纳米管填充复合材料。用于该方法中的纳米管可以是纯化SWNT,或仍结合有SWNT生产过程中所用催化材料的SWNT。
附图说明
图1显示共同溶解在甲苯中的聚苯乙烯和SWNT样品(左瓶)以及根据本发明制备并溶解于甲苯中的SWNT-聚苯乙烯复合材料(SWNT-PS)(右瓶)的光学显微照片。
图2显示含8-9%SWNT的30μm厚浇铸膜的100×透射光显微照片。左侧显微照片显示甲苯蒸发后图1左瓶中的聚苯乙烯-SWNT的简单混合物,同时右侧显微照片对应于甲苯蒸发后图1右瓶中的SWNT-PS复合材料混合物。
图3显示在(A)极低频率、(B)中间频率和(C)较高频率下:(1)SWNT-PS、(2)聚苯乙烯和(3)CARBOLEX SWNT的拉曼光谱。
图4显示溶解于甲苯的SWNT-PS的TEM显微照片,显示吸附在(A)SWNT束上的一层聚合物,和(B)裸CARBOLEX SWNT的TEM照片。
图5显示具有下列不同厚度的SWNT-PS复合材料片的阻抗系数的log-log图:(1)0.0276cm;(2)0.0462cm;(3)0.0857cm;(4)0.1891cm;(5)0.2205cm。
图6显示(a)聚苯乙烯,(b)SWNT-复合材料,由疏水催化剂负载SWNT(HO-SWNT)制成和(c)SWNT-复合材料,由亲水催化剂负载SWNT(HI-SWNT)制成。
图7显示在聚苯乙烯聚合物基体中催化剂负载SWNT的分散体的光学显微照片,(a)HI-SWNT-10×,(b)HI-SWNT-50×,(c)HO-SWNT-10×,(d)HO-SWNT-50×。
图8显示(a)HI-SWNT和HO-SWNT,(b)聚苯乙烯,(c)HI-SWNT聚苯乙烯和HO-SWNT聚苯乙烯复合材料的拉曼光谱。
具体实施方式
如前所述,使用MWNT已经显示出比碳黑更为优越,不仅因为达到导电阈值所需的填充量更小,而且由于其高长度直径比有助于产生促进电子迁移的大范围网络。在涉及导电碳纳米管填充聚合物应用方面,单壁碳纳米管(SWNT)还没有MWNT的研究那样深入。其中一个原因是强吸引范得华力导致其易于集聚,因而,使用现有的浇铸技术,很难在相对小的填充量下形成导电网络。然而,此处所述的微乳液聚合技术作为原位聚合方法的一个实例,可以使SMNT有效分散到主基体中,并形成改进复合材料电响应的多重管-管接触。
因此,本发明针对碳纳米管填充复合材料及其制造方法。所述复合材料优选包括单壁碳纳米管。
在优选实施方案中,该方法包括合并一定量的单壁碳纳米管、单体和聚合催化剂,所述聚合催化剂在良好分散有SWNT的情况下供单体聚合,从而形成碳纳米管填充复合材料的步骤。
在一替代实施方案中,该方法包括以下步骤:将一定量单壁碳纳米管与水性表面活性剂合并形成表面活性剂-纳米管混合物,超声波处理该表面活性剂-纳米管混合物以在其中形成聚集体,因而形成表面活性剂-纳米管分散体;将聚合引发剂与该表面活性剂-纳米管分散体合并以形成表面活性剂-纳米管-引发剂混合物;将一定量的单体与一定量的疏水剂合并以形成单体-疏水剂混合物;将聚合催化剂与该单体-疏水剂混合物合并以形成单体-疏水剂-聚合催化剂混合物;将所述的表面活性剂-纳米管-引发剂混合物与该单体-疏水剂-聚合催化剂混合物合并以形成单体-纳米管混合物,超声波处理该单体-纳米管混合物导致形成单体-纳米管微乳液,其中发生聚合,从而形成碳纳米管填充复合材料。
例如,已在微乳液聚合条件下原位制备了SWNT-PS和SWNT-SI(SWNT-苯乙烯-异戊二烯共聚物复合材料)。在SWNT-PS复合材料上进行的AC阻抗和DC电阻率测量表明纳米管的含量显著改变了母基体的电响应,而且对于填充8.5%纳米管的具体情况下,其电阻率值跳跃了10个数量级。
虽然将联系以下实施例中的特定优选实施方案来说明本发明,以使其各方面得到更全面的理解和评价,但是这不意味着将本发明限制于这些具体实施方案上。相反,这意味着覆盖了所有可包括在由所附权利要求所限定的本发明范围中的替换、改变和等同物。因而,以下包括优选实施方案的实施例将用来说明本发明的实施,应该理解所示特例仅仅是示例性的,出于对本发明优选实施方案的说明性讨论的目的,其存在的原因是提供本发明的配制方法以及原理与概念各方面中最有用且最易于理解的描述。
实施例
实施例1.纳米管-聚苯乙烯复合材料和纳米管-苯乙烯-异戊二烯共聚物复合 材料的制备。
SWNT购自CARBOLEX(批号CLAP 8256)。将该原料悬浮于3M HNO3溶液中,并持续回流约10h直到不再放出NO2气体。这样处理之后,使用孔尺寸为0.2μ的特氟隆(Teflon)膜(PTFE 0.2μ)将产物真空过滤。然后将所得固体用去离子水彻底洗涤,直到滤液完全丧失开始时的黄色为止。该最终产物的碳含量为86wt%,其主要是单壁碳纳米管14
在优选实施方案中,先处理和/或官能化SWNT再将其用于本发明。将SWNT悬浮在去离子水中,加入HCl水溶液,以使纯化步骤中产生的氧化基团发生质子化作用。之前已经说明这种处理后SWNT上留有羧基基团。SWNT的边缘和SWNT壁上的缺陷要比纳米管圆筒壁更具有反应性。管的柱体部位五元环的存在和较六元环来说更高的曲率使得当置于强氧化剂如HNO3中时,管的那些部分更容易开环。之前已在IR谱中观察到氧化攻击后产生的羧基基团。
用葡糖胺官能化SWNT,第一步为将纯化的SWNT悬浮于亚硫酰氯(SOCl2)和二甲基甲酰胺(DMF)溶液中生成酰氯。在本具体实施例中的用量为20cm3 SOCl2和1cm3 DMF每0.1g SWNT。该悬浮液在65℃搅拌24h。然后过滤分离固体,并用无水四氢呋喃(THF)洗涤。接着,室温下真空干燥5min。最后,将该固体与溶于无水THF中的葡糖胺(99%纯度,购自Aldrich)混合,所述无水THF预先蒸馏,并加入金属Na丝以除去痕量水。将该混合物回流48h,并用上述同样的0.2μ的Teflon膜过滤器过滤分离固体。最后,用无水THF彻底洗涤并真空干燥过夜。此时,该固体表现出随SWNT-葡糖胺的比例而变的浅灰色。
将得自Aldrich的十六烷基三甲基溴化铵(CTAB)和十二烷基硫酸钠(SDS)(Aldrich,98%纯度)加入含去离子水的分离容器中。称取纯化的碳纳米管产物,加到上述表面活性剂溶液中(其略微超过临界胶束浓度(cmc)),以得到0.6和1.2wt%的纳米管浓度。混合并以中等超声波处理(45W)2h,生成黑色的表面活性剂-纳米管分散体,存在可忽略量的沉淀。将0.05克油溶性引发剂:AIBN(99%纯度,Aldrich)溶于1.5ml纯乙醇中,然后混入35ml表面活性剂-纳米管分散体,即得表面活性剂-纳米管-引发剂混合物。
提供苯乙烯(99%纯度,Aldrich)和异戊二烯(99%纯度,Aldrich)单体。通过在30-ml小瓶中将少量单体(约25ml)与1g碱性氧化铝(活性级I,Sigma)剧烈振荡来除去其中的阻聚剂。为稳定该体系避免微液滴聚结和Ostwald熟化效应,在超声波处理混合物之前先将单体与疏水剂(如十六烷)混合。接着,用PS-AlCl3酸络合物(聚合催化剂)进行单体的成种,以引起更高的单体转化率以及随后在基体中更好地引入碳纳米管。将0.8ml的十六烷(99.8%纯度,Fisher)与0.05ml的PS-AlCl3/十六烷混合物在4ml苯乙烯中合并,即得单体-疏水剂-聚合催化剂混合物。
然后将所述单体-疏水剂-聚合催化剂混合物与表面活性剂-纳米管-引发剂混合物以200转/min振荡1h,合并形成单体-纳米管混合物。之后,用Fisher 500超声波破碎仪,其设备振幅设为5,在室温下对该单体-纳米管混合物进行超声波处理60s,形成没有痕量碳沉淀物或其它微粒的单体-纳米管微乳液。超声波处理后,立即将该混合物转移至65℃恒温设备中,直到反应聚合,例如在14hr内,形成纳米管填充复合材料,其可通过例如混合大量纯异丙醇(J.T.Baker)来产生絮凝从而沉淀出来。
SWNT-SI以与上述SWNT-PS相似的方法制备,唯一的不同在于使用了2ml的每种单体:苯乙烯和异戊二烯。反应完成后,将聚合的纳米管填充复合材料聚结而不是象在SWNT-PS中那样生成絮凝物质,更大的SWNT-SI聚结体集聚成发白的橡胶状固体。通过比较,以同样的表面活性剂溶液和上述方法合成参照材料(即聚苯乙烯和苯乙烯-异戊二烯共聚物),显然没有加入碳纳米管。在对照聚合物或参照材料的情况下,阳离子和阴离子表面活性剂都生成具有相似性能的聚合物。
使用拉曼激光光谱来探测未改性聚合物以及SWNT-PS与SWNT-SI复合材料的结构。在所有情况下以激发波长514nm和强度35mW来扫描80cm-1至4000cm-1之间的光谱范围。其它实验参数为收集时间(1min)和透镜放大倍数(50×)。固态样品分析优选通过将聚合样品溶于溶剂中、再在载玻片上浇铸的替代方法进行。前一方法给出更强的信号并较少出现荧光问题。对于室温下AC阻抗测量
(SOLARTRON 1260阻抗分析仪),采用双探头的几何布局。将SWNT-PS复合材料的盘状部分模压成不同的厚度并夹在两片抛光铜电极之间(面积=4.908cm2),由两块平面聚碳酸酯板将样品夹紧。Fowler Associates Inc.(Moore,SC)也根据ASTM-257对盘状SWNT-PS模压样品进行了DC体积电阻率测量。
SWNT-PS复合材料带有蓝灰色,用异丙醇聚结后,析出灰色粉末。该粉末过滤,并用去离子水洗涤数次以除去残留的表面活性剂,随后在75℃真空下放置过夜以分离出未反应的单体和水分。伴随干燥操作,该灰色粉末变为深黑色小球。与SWNT-PS相比,纯聚苯乙烯对照样品在干燥后为纯白色,并具有特有的粉末状稠度。当异丙醇洗涤液变清并不再出现黑色沉淀时,存在于表面活性剂-纳米管混合物中的初始负载的纳米管就被引入了反应后的聚合物相。对由起始混有1.2wt%纳米管的表面活性剂-纳米管混合物制备的SWNT-PS复合材料进行的程序升温氧化(TPO)测量表明在该纳米管填充复合材料中最终纳米管填充量为8.5wt%。表面活性剂溶液中的纳米管含量越低则复合材料中的填充量就越低。
纳米管填充复合材料中聚合物链与纳米管间高水平相互作用的一个好的指标是:SWNT-PS复合材料完全溶解于有机溶剂(甲苯)中三周以上,形成均匀的黑色分散体。
图1所示为溶于甲苯中的复合材料样品。每个样品均含有大致等量的SWNT。由聚苯乙烯简单溶解于甲苯中再加入纳米管所制得的对照溶液(左)经过2h超声波处理后具有非常黑的外观;但两天后,黑色沉积并分离澄清溶液。右侧样品为根据本发明制备、然后混合有甲苯的SWNT-PS复合材料(8.5%填充量)。SWNT-PS复合材料在超过三周之后仍然溶解于甲苯中。纳米管本身不溶于所有已知溶剂中,因此如此处所述,要形成稳定的混合物,每个纳米管必须通过所连接的聚合物链而获得空间稳定性,从而阻止絮凝和减少集聚现象。超声波处理这些同样的聚合物-纳米管溶液(左-聚苯乙烯+纳米管;右-SWNT-PS复合材料)后立即制备的溶剂浇铸膜在透射光学显微镜下也呈现出完全不同的微观结构(图2),与由微乳化方法得到高度分散性无机增强材料的状况一致。左侧的膜显示在聚苯乙烯-SWNT-甲苯的简单混合物中聚集体的形成。
含有0.6wt%纳米管的纳米管填充苯乙烯-异戊二烯复合材料(SWNT-SI)在颜色上类似于反应后的蓝灰色聚苯乙烯复合材料。然而,改性弹性体的较大团块沉积成稍有弹性的发白橡胶之后更容易集聚。浸入沸水5分钟后该固体块的外观变为深黑色。该颜色效应在整个样品上是统一的。一旦洗涤并在较高温度(75℃)的真空箱中放置过夜后,就不再能检测到颜色变化。SWNT-SI复合材料也可完全溶解于甲苯和THF中三周以上,进一步表明了复合材料中存在强的聚合物-纳米管相互作用。纯的苯乙烯-异戊二烯共聚物对照也具有橡胶状稠度,经相同沸水洗涤和随后的真空箱干燥后该共聚物没有变黑而是变得透明。
光谱结果
长期以来拉曼光谱被认为是探测聚合物结构的一种有效技术,特别是那些含有碳-碳双键的聚合物链。上述高分辨率和多用途使得拉曼分析对于研究SWNT中诸如金属性质、直径和存在缺陷的形态学和组成参数特别重要。在图3A-3C中,在激发波长514nm下对比了对照聚苯乙烯和SWNT-PS复合材料的三种不同频率区的光谱。通过举例,还示出了纳米管粉末的光谱。在非常低的频率下(图3A),未改性聚合物在87cm-1显示一个肩峰和以220cm-1周围为中心的一个宽峰。文献中将第一个肩峰归于聚合物链上苯基团的扭曲,同时该宽峰与切向的C-H弯曲模式有关16。有趣的是注意到当引入纳米管时未检测到明显的聚合物峰位变化。相反,SWNT的呼吸模式移向低频,同时中心在160cm-1的初始尖峰分裂成两个更低强度的宽峰。图3B对应于中等频率区。其中,聚苯乙烯谱图主要是位于1584cm-1和1603cm-1的两个主峰,其通常归于苯环上C-C键的切向伸展模式。另一方面,纳米管谱图主要是中心位于1580cm-1的所谓G-线特征。在复合材料中,SWNT的引入导致G-线移向更高频率并且在1590cm-1波段清晰显著。近来对于纳米管-共轭聚合物复合材料也观察到类似结果,并且提出这些变化不能被孤立地解释为模式的简单重合5。这种现象说明了与SWNT点阵结合而产生的聚合物振动结构的改变。拉曼光谱显示纳米管和聚合物之间发生了强相互作用,这源于更少的聚合物振动自由度。最后,在高频区(图3C)聚苯乙烯谱图在2915cm-1和3058cm-1附近具有相当大强度的两个明确的峰。在聚苯乙烯中,前者确认为源于C-H骨架振动(C-H伸展模式),同时,第二主峰与苯环中C-H径向伸展有关。应该注意引入纳米管后高频区的复合材料谱图没有明显变化。
一般来说,在SWNT-PS的振动结构中的类似变化可以在SWNT-SI中发现。在C-C伸展区,这些变化大部分表现为强烈移向位于1590cm-1波段的主峰。另外,未改性的苯乙烯-异戊二烯中特征性的乙烯基或C=C伸展作为极强峰出现在1670cm-1波段处,并在引入碳纳米管后显著丧失其强度。
电性能
表1总结了对应于三种不同填充量的SWNT-PS复合材料的DC电阻率数据。
表1.室温下DC电阻率数据(12%RH)
    聚合物   厚度(cm)  SWNT填充量(%)     ρ(Ω·cm)
    PS   0.059  0     >2×1016
    SWNT-PS   0.073  3.5-4     >2×1016
    SWNT-PS   0.046  8.5     7.47×106
在聚合物基体中引入SWNT导致电阻率极大下降,从未改性聚合物的大于1016Ω·cm下降到8.5%纳米管填充量的SWNT-PS复合材料中的106Ω·cm。这些结果暗示了一种典型的逾渗体系,其中直到纳米管间平均距离减少到可以形成穿过聚合物的电子隧道效应或物理接触,复合材料的电性能才会变得不同于本体聚合物。在最高纳米管填充量下(8.5%),SWNT-PS复合材料显示出比纯聚苯乙烯明显较低的体积电阻。该纳米管网络较小的导电能力的原因可以归结为聚合物吸附层的内部阻抗,其降低了电子接触的数量3。事实上,溶于甲苯中的SWNT-PS的TEM显微照片为纳米管束上吸附有一层聚合物提供了证据(图4A)。通过比较,CARBOLEX(批号CLAP 8256)的裸单壁碳纳米管的显微照片示于图4B。
图5示出对于不同的SWNT-PS复合材料(8.5%填充量)模制碟型圆片以及其它两种参照材料:典型绝缘体(聚苯乙烯)和半导体(硅晶片,0.98mm厚)的阻抗系数|Z|与频率的log-log图。从这些结果可以明显看出SWNT复合材料均未表现出如纯聚苯乙烯那样的理想电介质行为,相反,随样品厚度的减少样品从纯半导体变为纯电阻行为。对于非常薄的样品(0.0276cm),阻抗系数的频率依赖性暗示成为欧姆材料必须具有连接得非常好的3D纳米管网络。当样品厚度增大时,纳米管的相互连接3D网趋于连接较差。相对于样品厚度阻抗系数的表观恒定以及向半导体行为的转变可以解释为纳米管连接所产生的电导率仅仅存在于表面。
实施例2.采用催化剂负载SWNT制备SWNT填充复合材料
仍然结合有颗粒催化剂材料的SWNT也能够用于本发明的方法以形成SWNT填充复合材料。该催化剂负载SWNT是本领域普通技术人员所公知的,例如参见美国专利6,333,016和6,413,487,二者的整体内容均通过引用并入本文。在此所考虑的催化剂负载SWNT可包括含有一种或多种过渡金属(例如VIb族和/或VIII族和/或镧系)的金属催化剂,其安置在载体材料上,例如二氧化硅、氧化铝、沸石分子筛、MCM-41、MgO、ZrO2、或氧化铝稳定氧化镁。随后,在合适的条件下将该金属催化剂置于含碳气体中以在该金属催化剂上形成SWNT,从而生成催化剂负载SWNT,其可构成本发明的SWNT组分。
在本实施方案中,采用了亲水和疏水型催化剂负载SWNT,前者包括用作载体材料的亲水性二氧化硅,后者包括疏水性二氧化硅(亲水性二氧化硅通过热处理变成疏水性)。本实施方案的结合有二氧化硅的金属催化剂为钴和钼,但也可使用本文他处所述的其它金属组分。
如下所述,将疏水性催化剂负载SWNT(HO-SWNT)和亲水性催化剂负载SWNT(HI-SWNT)与苯乙烯单体合并,形成HO-SWNT聚苯乙烯复合材料(HO-SWNT-PS)或HI-SWNT聚苯乙烯复合材料(HI-SWNT-PS)。
在120mM CTBA溶液中制备HO-SWNT和HI-SWNT(1.2%w.)分散体,并在水浴超声波机中超声波处理12小时。将1.5g偶氮二异丁腈溶于50ml乙醇中制备引发剂溶液。该引发剂溶液优选在30℃制备以避免沉淀。将苯乙烯与1g碱性氧化铝混合,并在200rpm下振荡15分钟以除去单体中的阻聚剂。SWNT-复合材料根据以上实施例1中所述的方法制备。保持温度为30℃,将32ml表面活性剂-纳米管分散体与引发剂溶液混合。将由4ml苯乙烯、0.8ml十六烷和0.05ml PS-AlCl3/十六烷制备的前述溶液加入所述表面活性剂-纳米管-引发剂混合物中。最终溶液在200rpm下振动1h。之后,在超声波破碎仪中超声波处理该溶液1分钟,直至该溶液变为灰/蓝色微乳液。然后将该微乳液在水浴/振动装置中加热到65℃并持续12小时。由本方法得到的SWNT-复合材料可通过在30-40℃下用异丙醇洗涤来沉淀。过滤并用水洗涤以除去样品上的痕量表面活性剂。在真空箱中于70℃干燥12h从该复合材料中除去水和其它挥发性化合物。在微乳液聚合过程中,观察到一些催化剂负载SWNT的沉淀。
图6所示为得自实施例2的SWNT-复合材料。图6a示出采用同样的乳液聚合方法制备的作为对照样品的聚苯乙烯。图6b示出疏水性催化剂负载SWNT复合材料(HO-SWNT-PS),其颜色比图6c所示的亲水性催化剂负载SWNT复合材料(HI-SWNT-PS)要浅。
图7中两种类型的催化剂负载SWNT均良好分散在聚合物基体中,但HI-SWNT-PS具有比HO-SWNT-PS更小和更均匀的粒子。使用拉曼光谱来观察HI-SWNT和HO-SWNT材料与聚苯乙烯聚合物基体的相互作用。图8a-c示出(a)用作填料的HI-SWNT和HO-SWNT材料、(b)用作对照样品的聚苯乙烯和(c)HI-SWNT-PS和HO-SWNT-PS复合材料的拉曼光谱。在图8c中,可看出拉曼光谱中主要是SWNT的信号。同时,在纯聚苯乙烯谱图(图8b)中1000cm-1波段附近为最强特征峰,而由于纳米管波段的高强度导致在复合材料中该波段非常弱。因此,呼吸模式区域(即低于300cm-1)中的波段可仅仅归于纳米管,这是因为归于聚苯乙烯的波段太弱而不明显。对应于SWNT材料呼吸模式的信号峰(虚线)移向低频证实了复合材料中SWNT和聚合物基体间的相互作用。
本发明提供用来制备碳纳米管掺杂热塑性和弹性复合材料的方法,其通过表面活性剂增强微乳液聚合技术制备。将纳米管引入单体混合物中之后在含有纳米管的胶束中发生聚合反应。微乳液中的聚集体尺寸为约50-500nm,而常规乳液聚合中为10-100μm。在本发明中,在微乳化方法中生成的聚集体尺寸主要优选为50-125nm,更主要优选为50-100nm至50-75nm。
阳离子表面活性剂(例如CTAB)有效分散了SWNT。在初始步骤中,制成水性表面活性剂和纳米管(SWNT)混合物,并将其超声波处理适当的时间,直至纳米管在其中良好分散形成表面活性剂-纳米管分散体。表面活性剂通过形成聚集体来稳定纳米管。然后在该表面活性剂-纳米管溶液中加入偶氮二异丁腈(AIBN)或其它有效的聚合反应引发剂,以形成表面活性剂-纳米管-引发剂混合物,产生用于聚合的自由基。单壁碳纳米管可用本文他处所述的官能化方法或本领域公知的其它方法来改性,从而使阴离子、非离子和其它阳离子表面活性剂有效地将SWNT分散在单体中。
分别将一种单体如苯乙烯(用来形成热塑性聚合物)或多种单体如苯乙烯和异戊二烯(用来形成弹性体共聚物)与疏水剂如十六烷混合,以形成单体-疏水剂混合物。该疏水剂可为任何可阻止微液滴过早絮凝和Ostwald熟化的适当混合物。接着,将用作“种子”或成核点的聚合反应催化剂,如氯化铝,加入到单体-疏水剂混合物中以形成单体-疏水剂-聚合催化剂混合物。
然后将表面活性剂-纳米管-引发剂混合物与单体-疏水剂-聚合催化剂混合并振荡适当的时间,例如以200转/min振荡1小时,形成单体-纳米管混合物;再将其用超声波破碎仪在适当频率下处理适当的时间,从而进一步将纳米管分散在聚合物中以形成单体-纳米管微乳液;随后将其装入“低速振荡”设备中,例如在60-65℃下振荡12-14小时以使体系聚合。12-14小时后,该乳液已聚合并形成碳纳米管填充复合材料,其可具有乳白色“胶乳”的稠度。例如,该胶乳可用作涂料,或可以通过加入醇来使其中的表面活性剂溶入醇中而产生纳米管复合材料沉淀物。通过相同的步骤完成苯乙烯-异戊二烯(弹性体)共聚物的加工过程,不过形成的是橡胶聚结物。此处所述的方法也可用亲水性聚合物和微乳液来进行。
实施例3.原位聚合
可以通过将活性剂加入到SWNT或制备纳米管之前的裸催化剂中,将纯化SWNT或者仍结合有至少一部分用于SWNT制备的催化物质的“产物”SWNT选择性地用于特定聚合物的原位聚合。例如,SWNT/SiO2复合材料可以掺杂铬来活化,以用于乙烯的原位聚合。已经证实SWNT产物的质量不会受催化剂中铬的存在的影响。用Phillips的Cr/SiO2催化剂生产的聚乙烯占世界聚乙烯产量的20%。由于该催化剂需要在高温和CO下活化才能对聚合反应有效,因此在通过CO歧化反应生长纳米管后,掺杂有铬的SWNT复合材料已经是对于乙烯聚合活化的。事实上,在SWNT生长期间,催化剂在高温和CO条件下处理。因此,如果将产生的SWNT/Cr掺杂催化剂在生成后立即置于乙烯聚合反应条件下(例如,160℃、大气压力下的乙烯流体中),则会得到SWNT/SiO2/聚乙烯复合材料。
本发明可使用,但不限于使用以下设备:高压均质器(如ChristisonScientific M-110L Laboratory Microfluidizer Processor);微喷均质机(如MFIC-Microfluidics Co.HC-2000);超声波震荡器(如Fisher 550超声波破碎仪)。
本发明可使用,但不限于使用以下单体:苯乙烯、异戊二烯、氯苯乙烯(VBC)、氯乙烯、醋酸乙烯酯、丙烯酰胺(AM)、丙烯腈(AN)、丙烯酸(AA)、甲基丙烯酸酯,如甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BuA)、甲基丙烯酸月桂酯(LMA)、甲基丙烯酸十二烷基酯(DMA)、和甲基丙烯酸硬脂基酯(SMA),环氧树脂(二胺/二环氧化物)、及其组合。
本发明可使用,但不限于使用以下表面活性剂:十二烷基硫酸钠(SDS)、和月桂基硫酸钠(SLS)、十二烷基苯磺酸钠(NaDDBS)、十六烷基三甲基溴化铵(CTAB)、十八烷基溴化吡啶翁(ODPB)、聚(氧化乙烯)衍生物如壬基酚聚氧乙烯醚(NP-40)、聚乙烯醇(PVOH)、tergitol,及其组合,用作混合的表面活性剂溶液。
本发明可使用,但不限于使用以下聚合反应引发剂:月桂酰基过氧化物(LPO)、枯基过氧化物(CUPO)、苯甲酰基过氧化物(BPO)、过硫酸钠(NaPS)、过硫酸钾(KPS)、2,2’-偶氮二异丁腈(AIBN)、和2,2’-偶氮二异丁基脒二盐酸盐(V50)。
本发明可使用,但不限于以下憎水剂以获得最小水溶性:十六烷醇(CA)、硅氧烷、氟代链烷、异氰酸酯、十六烷、橄榄油、及其组合。
本发明可使用,但不限于使用以下“种子物质”:聚苯乙烯-AlCl3、PMMA(聚甲基丙烯酸甲酯)-AlCl3、或任何可与酸性催化剂配位的单体或单体组合。
以此处所述方法制备的SWNT由于纳米管更为完全地分散而具有更佳的性质。纳米管在聚合物中的高分散性对于改善纳米管-聚合物复合材料的力学性能是必要的。本发明的SWNT复合材料的用途包括,但不限于屏蔽电磁辐射、可涂刷的塑料、各向异性热传导(差异化传导)材料、和增强其它聚合物或陶瓷。
例如,为了制造陶瓷可将SWNT复合材料混入陶瓷或金属中,然后当陶瓷或金属形成或成型时,聚合物被熔融掉而留下纳米管。
相似地,SWNT填充复合材料可用于“熔融吹塑”或“旋转接合”工艺。由于和单独的纳米管相比,SWNT填充复合材料与聚合物更为相容,因此在熔融吹塑或旋转接合工艺中将SWNT填充复合材料与熔融吹塑聚合物相结合(优选在熔融吹塑或旋转接合工艺中不单独使用SWNT填充复合材料)。
采用本方法制成的SWNT聚合物复合材料的电阻比纯聚合物或不采用微乳液聚合方法制成的含相同纳米管含量的复合材料更低。例如,和3.5-4.0%填充量的纳米管/聚合物混合物相比,采用本方法制成的含8.5wt%纳米管的SWNT填充复合材料的电阻表现出10倍或更多的下降。
此处所述的SWNT填充复合材料的其它用途对于本领域的普通技术人员来说是显而易见的,此处所列出的所述SWNT填充复合材料的用途并非穷举。
本发明的范围并不限于此处所述的具体实施方案,因为这些实施方案的目的只是说明本发明的一个方面,任何功能上等同的实施方案也包括在本发明的范围内。实际上,从上面的描述和附图可以看出,本文所示及所述内容之外的本发明的各种改动对于本领域的技术人员来说将是显而易见的。
本申请公开了采用微乳液聚合方法形成碳纳米管填充复合材料的方法。所述碳纳米管优选单壁碳纳米管。该碳纳米管高度分散在该复合材料含有的聚合物中并与其结合。
本申请人保留现在或将来要求或不要求在此公开的任何特征、特征的组合或特征的再组合的权利。
本申请中公开的所有数字和定量测量(包括说明书、权利要求书、摘要、附图和任何附录)均为近似值。
在此示例公开或要求保护的本发明内容可以在此处未具体公开或要求保护的任何要素不存在的情况下进行适当地实施。因而,本发明可以包含此处所公开或要求保护的内容,或者由此处所公开或要求保护的内容组成或基本组成。
以下权利要求书享有与本申请相一致的尽可能宽的保护范围。权利要求没有必要限制在优选实施方案或实施例所示的实施方案中。
本申请要求对于美国专利申请No.60/390,129(于2002年6月19日提交,标题为“通过微乳液聚合方法制备的SWNT填充复合材料”)的优先权,其整体内容通过引用并入本文。
本申请还要求对于提交于2003年6月18日的、题目为“通过微乳液聚合方法制备的碳纳米管填充复合材料”的该美国专利申请的优先权(请注意于2003年6月18日递交的美国专利申请的申请号目前还未知)。于2003年6月18日提交的该美国专利申请的全部内容通过引用并入本文。
在本申请中引用或参考的所有美国专利、先期提交的美国专利申请(包括美国专利申请No.60/390,129和上述于2003年6月18日提交的美国专利申请)和任何其它文献与打印材料均的整体内容都通过引用并入本文。
参考文献
1.Franco,RWA;Donoso,J.P.;Magon,C.J.;Rodella,C.B.;Florentino,A.O.;Saeki,M.J.;Pernaut,J.M.;de Oiveira,A.L Solid State lonics 1998,115,149
2.Qian,D.;Dickey,E.C.;Andrews,R.and Rantell T.Appl.Phys.Lett.2000,76,2868
3.Shaffer,M.S.P.;Windle,A.H.Adv.Mater.1999,11,937
4.Jln,L.;Bower,C.;Zhou,O.Appl.Phys.Lett.1998,73,1197
5.Bower,C.;Rosen,R.;Jin,L.;Han,J.;Zhou,O.Appl.Phys.Lett.1999,74,3317
6.McCarthy,B.;Coleman,J.N.;Czerw,R.;Dalton,A.B.;In het Panhius,M.;Maiti,A.;Drury,A.;Bemier,P.;Nagy,J.B.;Lahr,B.;Byme,HJ.;Carroll,D.L.;Blau,W.J.J.Phys.Chem.B.2002,106,2210
7.Gong,X.G.;Liu,J.;Baskaran,S.;Voise,R.D.;Young,J.S.Chem.Mater.2000,12,1049
8.Tiarks,F.;Ladfester,K.;Antonietti,M.Macromol.Chem.Phys.2001,202,51
9.Landfester,K.Macromol.Rapid Commun.2001,22,896
10.Landfester,K.Adv.Mater,2001,13,765
11.Tiarks,F.;Ladfester,K.;Antonietti,M.Langmuir2001,17,5775
12.Deng,J.G;Ding,X.B.;Peng,Y.X.;Chan,A.S.C.Chinese Chem.Lett.2001,12,1037
13.Hwang.G/L/;Hwang,K.C.J.Mater.Chem.2001,11,1722
14.Pompeo,F.;Resasco,D.Nanoletters 2002,2,369
15.Anderson,C.D.;Sudol,D.E.;El-Asser,M.S.Macromolecules 2002,35,574
16.sears,W.M.;Hunt,J.L.;stevens,J.R.J.Chem.Phys.1981,75,1589

Claims (46)

1.一种制备碳纳米管填充复合材料的方法,包括:
将一定量的单壁碳纳米管与水性表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述的表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述的表面活性剂—纳米管—引发剂混合物与所述的单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述单体—纳米管混合物导致形成单体—纳米管微乳液,其中发生聚合,从而形成碳纳米管填充复合材料。
2.权利要求1的方法,其中在合并一定量的单壁碳纳米管的步骤中,所述单壁碳纳米管是官能化的。
3.权利要求1的方法,其中在合并一定量的单壁碳纳米管的步骤中,所述单壁碳纳米管与催化剂材料结合,所述催化剂材料包括至少一部分用于纳米管生长的催化剂材料。
4.权利要求3的方法,其中所述的催化剂材料包括选自VIb族的金属和选自VIII族的金属。
5.权利要求4的方法,其中所述的催化剂材料包含Co和Mo。
6.权利要求3的方法,其中所述的催化剂材料包括选自二氧化硅、氧化铝、沸石分子筛、MCM-41、MgO、ZrO2和氧化铝稳定氧化镁的载体材料。
7.权利要求3的方法,其中所述的催化剂材料包括用作载体材料的亲水性二氧化硅和/或疏水性二氧化硅。
8.权利要求1的方法,其中在将一定量的单壁碳纳米管与水性表面活性剂合并的步骤中,所述水性表面活性剂是阳离子、阴离子或非离子的。
9.权利要求8的方法,其中所述的表面活性剂是十二烷基硫酸钠(SDS)、月桂基硫酸钠(SLS)、十二烷基苯磺酸钠(NaDDBS)、十六烷基三甲基溴化铵(CTAB)、十八烷基溴化吡啶翁(ODPB)、聚(氧化乙烯)衍生物如壬基酚聚氧乙烯醚(NP-40)、聚乙烯醇(PVOH)、tergitol中的至少一种,及其组合。
10.权利要求1的方法,其中在合并聚合引发剂的步骤中,所述聚合引发剂是月桂酰基过氧化物(LPO)、枯基过氧化物(CUPO)、苯甲酰基过氧化物(BPO)、过硫酸钠(NaPS)、过硫酸钾(KPS)、2,2’-偶氮二异丁腈(AIBN)、和2,2’-偶氮二异丁基脒二盐酸盐(V50)中的至少一种。
11.权利要求1的方法,其中在将一定量的单体与疏水剂合并的步骤中,所述单体是苯乙烯、异戊二烯、氯苯乙烯(VBC)、氯乙烯、醋酸乙烯酯、丙烯酰胺(AM)、丙烯腈(AN)、丙烯酸(AA)、甲基丙烯酸酯、环氧树脂(二胺/二环氧化物)中的至少一种,及其组合。
12.权利要求1的方法,其中在将一定量的单体与疏水剂合并的步骤中,所述的疏水剂是十六烷醇(CA)、硅氧烷、氟代链烷、异氰酸酯、十六烷、橄榄油中的至少一种,及其组合。
13.权利要求1的方法,其中在合并聚合催化剂的步骤中,所述聚合催化剂是聚苯乙烯-AlCl3、PMMA(聚甲基丙烯酸甲酯)-AlCl3、或任何可与酸催化剂配位的单体或单体组合中的至少一种。
14.权利要求1的方法,其中在超声波处理单体—纳米管混合物导致形成单体—纳米管微乳液的步骤中,所述单体—纳米管微乳液主要包括直径为50-500nm的聚集体。
15.权利要求14的方法,其中所述的聚集体主要具有直径为50-125nm。
16.权利要求15的方法,其中所述的聚集体主要具有直径为50-100nm。
17.权利要求1的方法,其中所述的碳纳米管填充复合材料具有小于105Ω·cm的电阻率。
18.权利要求1的方法,其中所述的碳纳米管填充复合材料具有小于107Ω·cm的电阻率。
19.一种碳纳米管填充复合材料,其制造方法包括以下步骤:
将一定量的单壁碳纳米管与水性表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述表面活性剂—纳米管—引发剂混合物与所述单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述单体—纳米管混合物导致形成单体—纳米管微乳液,其中发生聚合,从而形成碳纳米管填充复合材料。
20.权利要求19的碳纳米管填充复合材料,其中在合并一定量的单壁碳纳米管的步骤中,所述单壁碳纳米管是官能化的。
21.权利要求1的碳纳米管填充复合材料,其中所述单壁碳纳米管与催化剂材料结合,所述催化剂材料包括至少一部分用于形成单壁碳纳米管的催化剂材料。
22.权利要求21的碳纳米管填充复合材料,其中所述的催化剂材料包括选自VIb族的金属和选自VIII族的金属。
23.权利要求22的碳纳米管填充复合材料,其中所述的催化剂材料包括Co和Mo。
24.权利要求21的碳纳米管填充复合材料,其中所述的催化剂材料包括选自二氧化硅、氧化铝、沸石分子筛、MCM-41、MgO、ZrO2和氧化铝稳定氧化镁的载体材料。
25.权利要求21的碳纳米管填充复合材料,其中所述的催化剂颗粒包括用作载体的沉淀法二氧化硅和/或热解法二氧化硅。
26.权利要求19的碳纳米管填充复合材料,其中所述的水性表面活性剂是阳离子、阴离子或非离子的。
27.权利要求26的碳纳米管填充复合材料,其中所述的表面活性剂是十二烷基硫酸钠(SDS)、月桂基硫酸钠(SLS)、十二烷基苯磺酸钠(NaDDBS)、十六烷基三甲基溴化铵(CTAB)、十八烷基溴化吡啶翁(ODPB)、聚(氧化乙烯)衍生物、聚乙烯醇(PVOH)、tergitol中的至少一种,及其组合。
28.权利要求19的碳纳米管填充复合材料,其中所述的聚合引发剂是月桂酰基过氧化物(LPO)、枯基过氧化物(CUPO)、苯甲酰基过氧化物(BPO)、过硫酸钠(NaPS)、过硫酸钾(KPS)、2,2’-偶氮二异丁腈(AIBN)、和2,2’-偶氮二异丁基脒二盐酸盐(V50)中的至少一种。
29.权利要求19的碳纳米管填充复合材料,其中所述的单体是苯乙烯、异戊二烯、氯苯乙烯(VBC)、氯乙烯、醋酸乙烯酯、丙烯酰胺(AM)、丙烯腈(AN)、丙烯酸(AA)、甲基丙烯酸酯、环氧树脂(二胺/二环氧化物)中的至少一种,及其组合。
30.权利要求19的碳纳米管填充复合材料,其中所述的疏水剂是十六烷醇(CA)、硅氧烷、氟代链烷、异氰酸酯、十六烷、橄榄油中的至少一种,及其组合。
31.权利要求19的碳纳米管填充复合材料,其中所述的聚合催化剂是聚苯乙烯-AlCl3、PMMA(聚甲基丙烯酸甲酯)-AlCl3、或任何可与酸催化剂配位的单体或单体组合中的至少一种。
32.权利要求19的碳纳米管填充复合材料,其中所述的单体—纳米管微乳液主要包括直径为50-500nm的聚集体。
33.权利要求32的碳纳米管填充复合材料,其中所述的聚集体主要具有直径为50-125nm。
34.权利要求33的碳纳米管填充复合材料,其中所述的聚集体主要具有直径为50-100nm。
35.权利要求19的碳纳米管填充复合材料,其中所述的碳纳米管填充复合材料具有小于105Ω·cm的电阻率。
36.权利要求19的碳纳米管填充复合材料,其中所述的碳纳米管填充复合材料具有小于107Ω·cm的电阻率。
37.一种形成碳纳米管填充复合材料的方法,包括将碳纳米管与单体合并以形成纳米管—单体混合物,并将所述的纳米管—单体混合物置于聚合反应条件下,其中在碳纳米管存在下发生单体的聚合以形成碳纳米管填充复合材料。
38.权利要求37的方法,其中所述的碳纳米管是单壁碳纳米管。
39.权利要求1的方法,其中在将一定量的单体与疏水剂合并的步骤中,所述单体是苯乙烯、异戊二烯、氯苯乙烯(VBC)、氯乙烯、醋酸乙烯酯、丙烯酰胺(AM)、丙烯腈(AN)、丙烯酸(AA)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BuA)、甲基丙烯酸月桂酯(LMA)、甲基丙烯酸十二烷基酯(DMA)、甲基丙烯酸硬脂基酯(SMA)、环氧树脂(二胺/二环氧化物)中的至少一种,及其组合。
40.权利要求26的碳纳米管填充复合材料,其中所述的表面活性剂是十二烷基硫酸钠(SDS)、月桂基硫酸钠(SLS)、十二烷基苯磺酸钠(NaDDBS)、十六烷基三甲基溴化铵(CTAB)、十八烷基溴化吡啶翁(ODPB)、壬基酚聚氧乙烯醚(NP-40)、聚乙烯醇(PVOH)、tergitol中的至少一种,及其组合。
41.权利要求19的碳纳米管填充复合材料,其中所述的单体是苯乙烯、异戊二烯、氯苯乙烯(VBC)、氯乙烯、醋酸乙烯酯、丙烯酰胺(AM)、丙烯腈(AN)、丙烯酸(AA)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸丁酯(BuA)、甲基丙烯酸月桂酯(LMA)、甲基丙烯酸十二烷基酯(DMA)、甲基丙烯酸硬脂基酯(SMA)、环氧树脂(二胺/二环氧化物)中的至少一种,及其组合。
42.一种制备碳纳米管填充复合材料的方法,任选地包括以下步骤的一个或多个:
将一定量的单壁碳纳米管与水性表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述的单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述的表面活性剂—纳米管—引发剂混合物与所述的单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述单体—纳米管混合物导致形成单体—纳米管微乳液,其中发生聚合,从而形成碳纳米管填充复合材料。
43.一种碳纳米管填充复合材料,其制造方法任选地包括以下步骤的一个或多个:
将一定量的单壁碳纳米管与水性表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述的单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述的表面活性剂—纳米管—引发剂混合物与所述的单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述单体—纳米管混合物导致形成单体—纳米管微乳液,其中发生聚合,从而形成碳纳米管填充复合材料。
44.一种制备纳米管填充复合材料的方法,任选地包括以下步骤的一个或多个:
将一定量的纳米管与表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述的表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述的表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述的单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述的表面活性剂—纳米管—引发剂混合物与所述的单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述的单体—纳米管混合物。
45.一种纳米管填充复合材料,其制造方法任选地包括下列步骤的一个或多个:
将一定量的纳米管与表面活性剂合并以形成表面活性剂—纳米管混合物;
超声波处理所述的表面活性剂—纳米管混合物以形成表面活性剂—纳米管分散体;
将聚合引发剂与所述的表面活性剂—纳米管分散体合并以形成表面活性剂—纳米管—引发剂混合物;
将一定量单体与一定量疏水剂合并以形成单体—疏水剂混合物;
将聚合催化剂与所述的单体—疏水剂混合物合并以形成单体—疏水剂—聚合催化剂混合物;
将所述的表面活性剂—纳米管—引发剂混合物与所述的单体—疏水剂—聚合催化剂混合物合并以形成单体—纳米管混合物;和
超声波处理所述的单体—纳米管混合物。
46.一种形成纳米管填充复合材料的方法,任选地包括将纳米管与单体合并以形成纳米管—单体混合物,并将所述的纳米管—单体混合物置于聚合反应条件下。
CN038141345A 2002-06-19 2003-06-19 碳纳米管填充复合材料 Pending CN1662590A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39012902P 2002-06-19 2002-06-19
US60/390,129 2002-06-19
US10/464,041 2003-06-18
US10/464,041 US7153903B1 (en) 2002-06-19 2003-06-18 Carbon nanotube-filled composites prepared by in-situ polymerization

Publications (1)

Publication Number Publication Date
CN1662590A true CN1662590A (zh) 2005-08-31

Family

ID=30003140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038141345A Pending CN1662590A (zh) 2002-06-19 2003-06-19 碳纳米管填充复合材料

Country Status (9)

Country Link
US (1) US7153903B1 (zh)
EP (1) EP1534774A4 (zh)
JP (1) JP2005530029A (zh)
CN (1) CN1662590A (zh)
AU (1) AU2003245631A1 (zh)
BR (1) BR0311890A (zh)
CA (1) CA2489352A1 (zh)
MX (1) MXPA04012506A (zh)
WO (1) WO2004001107A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383279C (zh) * 2005-11-10 2008-04-23 东华大学 一种碳纳米管/镍锌铁氧体复合材料的制备方法
CN100420714C (zh) * 2006-06-09 2008-09-24 中国科学院广州化学研究所 一种碳纳米管/环氧树脂复合材料的制备方法
CN102046517A (zh) * 2008-05-28 2011-05-04 株式会社百奥尼 由碳纳米管和金属构成的纳米复合物及其制备方法

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816709B2 (en) 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6919064B2 (en) 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US20040034177A1 (en) * 2002-05-02 2004-02-19 Jian Chen Polymer and method for using the polymer for solubilizing nanotubes
US7829622B2 (en) * 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
KR100827861B1 (ko) * 2003-05-22 2008-05-07 지벡스 퍼포먼스 머티리얼즈, 엘엘씨 나노복합물 및 이의 제조 방법
US7026432B2 (en) * 2003-08-12 2006-04-11 General Electric Company Electrically conductive compositions and method of manufacture thereof
US7414088B1 (en) 2003-09-05 2008-08-19 The Board Of Regents For Oklahoma State University Polymers grafted to carbon nanotubes
EP1748837A4 (en) 2004-01-09 2009-11-11 Olga Matarredona CARBON NANOTUBLE PASTE AND USE METHODS
US20050176894A1 (en) * 2004-02-05 2005-08-11 Jeong Yang-Seung Method of emulsion polymerization using liquid miniemulsion as seed particle
JP5254608B2 (ja) * 2004-04-13 2013-08-07 ザイベックス パフォーマンス マテリアルズ、インク. モジュール式ポリ(フェニレンエチレニン)の合成方法及びナノマテリアルを機能化するためにその電子特性を微調整する方法
KR100593907B1 (ko) 2004-05-21 2006-06-30 삼성전기주식회사 전계방출 에미터전극 제조방법 및 이를 이용하여 제조된전계방출장치
JP4245514B2 (ja) * 2004-05-24 2009-03-25 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合金属材料の製造方法、炭素繊維複合非金属材料の製造方法
US7296576B2 (en) * 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
JP4824971B2 (ja) * 2004-09-09 2011-11-30 三菱レイヨン株式会社 ナノ物質含有組成物、その製造方法及びそれを用いた複合体
DE102004048201B4 (de) * 2004-09-30 2009-05-20 Infineon Technologies Ag Halbleiterbauteil mit Haftvermittlerschicht, sowie Verfahren zu deren Herstellung
JP2006117759A (ja) * 2004-10-20 2006-05-11 Teijin Ltd ポリアミド複合材料の製造方法
CN100386373C (zh) * 2004-12-10 2008-05-07 中国科学院长春应用化学研究所 碳纳米管与聚乙烯复合材料的原位聚合制备方法
US20060188723A1 (en) * 2005-02-22 2006-08-24 Eastman Kodak Company Coating compositions containing single wall carbon nanotubes
FR2883879B1 (fr) * 2005-04-04 2007-05-25 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone a dispersion amelioree leur procede de preparation
JP4742650B2 (ja) * 2005-04-08 2011-08-10 東レ株式会社 カーボンナノチューブ組成物、バイオセンサーおよびそれらの製造方法
CN100528382C (zh) * 2005-05-28 2009-08-19 鸿富锦精密工业(深圳)有限公司 纳米筛选装置
KR101289256B1 (ko) 2005-06-28 2013-07-24 더 보드 오브 리젠츠 오브 더 유니버시티 오브 오클라호마 탄소 나노튜브의 성장 및 수득 방법
WO2007010517A1 (en) * 2005-07-22 2007-01-25 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin Nanocomposite polymers
EP1777262A1 (en) * 2005-10-24 2007-04-25 Basf Aktiengesellschaft Carbon nanotubes reinforced thermoplastic molding compositions and production process therefor
US7976731B2 (en) * 2005-10-26 2011-07-12 Maverick Corporation Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor
ATE403695T1 (de) * 2006-02-09 2008-08-15 Innovent Ev Technologieentwicklung Modifiziertes polymeres substrat, insbesondere kunststoff, verfahren zu dessen herstellung und dessen verwendung
WO2008048705A2 (en) * 2006-03-10 2008-04-24 Goodrich Corporation Low density lightning strike protection for use in airplanes
JP4788436B2 (ja) * 2006-03-29 2011-10-05 日本電気株式会社 無線リソース割り当て方法及びそれを用いる無線リソース割り当て装置並びに基地局
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US8129463B2 (en) * 2006-03-31 2012-03-06 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US8283403B2 (en) * 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US8445587B2 (en) * 2006-04-05 2013-05-21 Applied Nanotech Holdings, Inc. Method for making reinforced polymer matrix composites
KR100823554B1 (ko) * 2006-10-31 2008-04-22 (주) 파루 고분자 유전체가 나노 코팅된 단일 벽 탄소 나노튜브 및이를 이용한 박막트랜지스터
KR100874219B1 (ko) * 2006-11-03 2008-12-15 한국과학기술원 계면활성제막이 표면에 고착된 탄소나노튜브의 제조방법 및 그의 제조 방법
WO2008104078A1 (en) * 2007-02-28 2008-09-04 National Research Council Of Canada Block functionalization methods
KR100852386B1 (ko) * 2007-03-16 2008-08-14 한국과학기술원 나노튜브 분산 복합체와 그의 제조방법
FR2914634B1 (fr) * 2007-04-06 2011-08-05 Arkema France Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables
US8813352B2 (en) * 2007-05-17 2014-08-26 The Boeing Company Methods for fabricating a conductor
CN100460358C (zh) * 2007-05-23 2009-02-11 上海应用技术学院 一种高比表面硅氧碳陶瓷纳米管的制备方法
CN101821089B (zh) * 2007-09-10 2014-12-10 新加坡国立大学 加入纳米管的高分子膜
KR20080012393A (ko) * 2008-01-17 2008-02-11 김재호 고 내마모성 및 고 투명성의 수용성 광경화형 대전방지조성물 및 이를 코팅한 전도성 타일 바닥재
WO2009110591A1 (ja) 2008-03-07 2009-09-11 日立化成工業株式会社 カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
CN101582302B (zh) * 2008-05-14 2011-12-21 清华大学 碳纳米管/导电聚合物复合材料
US9136036B2 (en) * 2008-07-02 2015-09-15 Miller Waster Mills Injection moldable, thermoplastic composite materials
US8956556B2 (en) 2008-07-02 2015-02-17 Eaton Corporation Dielectric isolators
US8003014B2 (en) 2008-07-02 2011-08-23 Eaton Corporation Dielectric isolators
CN101654555B (zh) * 2008-08-22 2013-01-09 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN101659789B (zh) * 2008-08-29 2012-07-18 清华大学 碳纳米管/导电聚合物复合材料的制备方法
KR101607232B1 (ko) * 2009-04-09 2016-03-29 삼성전자주식회사 복합 음극 활물질, 그의 제조방법 및 이를 채용한 리튬전지
KR101081417B1 (ko) 2009-04-30 2011-11-08 한국생산기술연구원 탄소나노튜브 섬유화 장치
JP5801997B2 (ja) 2009-07-07 2015-10-28 ファイザー・リミテッドPfizer Limited 薬品の組合せを吸入するための投薬ユニット、投薬ユニットのパック、および吸入器
JPWO2011030821A1 (ja) * 2009-09-10 2013-02-07 国立大学法人 東京大学 カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
GB201010831D0 (en) * 2010-06-28 2010-08-11 Ct Angewandte Nanotech Can A micellular combination comprising a nanoparticle and a plurality of surfmer ligands
US8739876B2 (en) * 2011-01-13 2014-06-03 Halliburton Energy Services, Inc. Nanohybrid-stabilized emulsions and methods of use in oil field applications
US8664198B2 (en) 2011-02-28 2014-03-04 The University Of Central Oklahoma Immunologically modified carbon nanotubes for cancer treatment
US20110171413A1 (en) * 2011-03-19 2011-07-14 Farbod Alimohammadi Carbon nanotube embedded textiles
CN102286234B (zh) * 2011-05-09 2013-03-20 陕西科技大学 一种碳纳米管原位改性丙烯酸树脂类皮革涂饰材料的制备方法
CN102580696A (zh) * 2012-02-20 2012-07-18 江苏大学 一种埃洛石磁性复合材料表面印迹温敏吸附剂的制备方法
JP5962175B2 (ja) * 2012-04-25 2016-08-03 日本ゼオン株式会社 反応性組成物及び反応射出成形体
KR101391825B1 (ko) * 2012-05-21 2014-05-12 (주)고딘테크 그라핀-공중합체 나노복합체 제조 방법
CN103059618B (zh) * 2013-01-04 2014-10-22 齐鲁工业大学 一种复合材料高黏附性超疏水薄膜的制备方法
US9115266B2 (en) 2013-07-31 2015-08-25 E I Du Pont De Nemours And Company Carbon nanotube-polymer composite and process for making same
BR112016002368A2 (pt) 2013-09-24 2017-08-01 Henkel IP & Holding GmbH camadas orgânicas pirolisadas e pré-impregnados condutores produzidos com essas camadas
KR101447078B1 (ko) 2013-10-22 2014-10-06 재단법인 한국탄소융합기술원 고 전기전도성 및 고강도 pan계 탄소섬유 및 그 pan 전구체를 제조하는 방법
KR20180100057A (ko) 2015-12-29 2018-09-06 사빅 글로벌 테크놀러지스 비.브이. 중합체 코팅된 다중벽 탄소 나노튜브
US9989579B2 (en) * 2016-06-20 2018-06-05 Eaton Intelligent Power Limited Monitoring systems and methods for detecting thermal-mechanical strain fatigue in an electrical fuse
CN107082836B (zh) * 2017-05-09 2019-12-24 深圳市华星光电技术有限公司 碳纳米管导电微球的制备方法及导电胶
GB201719915D0 (en) * 2017-11-30 2018-01-17 Univ Oxford Innovation Ltd A composition and method of preparation thereof
IT202100028130A1 (it) * 2021-11-04 2023-05-04 Instituto Naz Di Fisica Nucleare Processo per la produzione di polimetilmetacrilato comprendente nanoparticelle di ossido di gadolinio in alta concentrazione

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746657A (en) 1971-06-28 1973-07-17 Standard Oil Co Catalyst manufacturing process
US4361711A (en) 1981-12-18 1982-11-30 The Standard Oil Company Alcohols from olefins and synthesis gas
US4574120A (en) 1984-10-15 1986-03-04 Shell Oil Company Method for preparing high activity silica supported hydrotreating catalysts
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5445327A (en) 1989-07-27 1995-08-29 Hyperion Catalysis International, Inc. Process for preparing composite structures
DE4004911C2 (de) 1990-02-16 1999-09-23 Horst Grochowski Verfahren und Vorrichtung zum Behandeln von wenigstens einem Fluid mittels eines als Schüttgut vorliegenden Feststoffes in einem Wanderbettreaktor
US5227038A (en) 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
US5300203A (en) 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
US5591312A (en) 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
TW295579B (zh) 1993-04-06 1997-01-11 Showa Denko Kk
US5641466A (en) 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
AU7211494A (en) 1993-06-28 1995-01-17 William Marsh Rice University Solar process for making fullerenes
JPH0822733B2 (ja) 1993-08-04 1996-03-06 工業技術院長 カーボンナノチューブの分離精製方法
US5543378A (en) 1993-10-13 1996-08-06 E. I. Du Pont De Nemours And Company Carbon nanostructures encapsulating palladium
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP2611179B2 (ja) 1994-02-25 1997-05-21 工業技術院長 フラーレンの製造方法及び装置
WO1995026925A1 (en) 1994-03-30 1995-10-12 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
JP3298735B2 (ja) 1994-04-28 2002-07-08 科学技術振興事業団 フラーレン複合体
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JP2590442B2 (ja) 1994-09-27 1997-03-12 工業技術院長 カーボンナノチューブの分離精製方法
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5814290A (en) 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same
US6183714B1 (en) 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
JP2873930B2 (ja) 1996-02-13 1999-03-24 工業技術院長 カーボンナノチューブを有する炭素質固体構造体、炭素質固体構造体からなる電子線源素子用電子放出体、及び炭素質固体構造体の製造方法
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
CA2283502C (en) 1997-03-07 2005-06-14 William Marsh Rice University Carbon fibers formed from singlewall carbon nanotubes
JP3183845B2 (ja) 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US7282260B2 (en) 1998-09-11 2007-10-16 Unitech, Llc Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
DE69941294D1 (de) 1998-09-18 2009-10-01 Univ Rice William M Chemische derivatisierung von einwandigen kohlenstoffnanoröhren um ihre solvatation zu erleichtern und verwendung derivatisierter nanoröhren
EP1115655B1 (en) 1998-09-18 2006-11-22 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US6599961B1 (en) 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6872403B2 (en) 2000-02-01 2005-03-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
AU2001286655A1 (en) * 2000-08-24 2002-03-04 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6782154B2 (en) * 2001-02-12 2004-08-24 Rensselaer Polytechnic Institute Ultrafast all-optical switch using carbon nanotube polymer composites
US7265174B2 (en) 2001-03-22 2007-09-04 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
US20030077515A1 (en) 2001-04-02 2003-04-24 Chen George Zheng Conducting polymer-carbon nanotube composite materials and their uses
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
JP2005501935A (ja) * 2001-08-29 2005-01-20 ジョージア テク リサーチ コーポレイション 剛性ロッドポリマーとカーボンナノチューブを含む組成物及びその製造方法
AU2002336675C1 (en) 2001-10-29 2008-10-16 Hyperion Catalysis International, Inc. Polymer containing functionalized carbon nanotubes
US7148269B2 (en) 2002-03-11 2006-12-12 Trustees Of The University Of Pennsylvania Interfacial polymer incorporation of nanotubes
US6905667B1 (en) * 2002-05-02 2005-06-14 Zyvex Corporation Polymer and method for using the polymer for noncovalently functionalizing nanotubes
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
JP3606855B2 (ja) 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383279C (zh) * 2005-11-10 2008-04-23 东华大学 一种碳纳米管/镍锌铁氧体复合材料的制备方法
CN100420714C (zh) * 2006-06-09 2008-09-24 中国科学院广州化学研究所 一种碳纳米管/环氧树脂复合材料的制备方法
CN102046517A (zh) * 2008-05-28 2011-05-04 株式会社百奥尼 由碳纳米管和金属构成的纳米复合物及其制备方法

Also Published As

Publication number Publication date
WO2004001107A2 (en) 2003-12-31
BR0311890A (pt) 2005-04-05
AU2003245631A1 (en) 2004-01-06
CA2489352A1 (en) 2003-12-31
US7153903B1 (en) 2006-12-26
EP1534774A4 (en) 2006-07-26
WO2004001107A3 (en) 2004-06-03
JP2005530029A (ja) 2005-10-06
US20070004857A1 (en) 2007-01-04
MXPA04012506A (es) 2005-02-24
EP1534774A2 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CN1662590A (zh) 碳纳米管填充复合材料
Salavagione et al. Recent advances in the covalent modification of graphene with polymers
Xu et al. Synthesis and characterization of water-soluble multiwalled carbon nanotubes grafted by a thermoresponsive polymer
JP2006501124A (ja) 逆オパール様構造体の製造方法
JP2007537313A (ja) カーボンナノチューブとポリマーマトリックスとをベースにした複合材料と、その製造方法
JP2004509983A5 (zh)
CN104926975B (zh) 强碱性复合树脂材料及其制备方法
CN1300179C (zh) 聚苯乙烯包覆纳米二氧化硅微球制备单分散性核/壳复合颗粒乳液的方法
CN103962074B (zh) 一种中空亚微米球、其制备方法与应用
CN109206567B (zh) 一种表面接枝乙烯基聚合物的无机纳米粒子的制备方法
US20070160521A1 (en) Use of core/shell particles
US7935745B2 (en) Self-assembled nanofiber templates; versatile approaches for polymer nanocomposites
CN1773635A (zh) 尺寸可控分子印迹聚合物磁性复合纳米颗粒及其制备方法
Guo et al. Carbon spheres surface modification and dispersion in polymer matrix
CN1757668A (zh) 高分子/碳酸钙纳米粒子、其功能型粒子及其制备方法
Prevot et al. Recent advances in layered double hydroxide/polymer latex nanocomposites: from assembly to in situ formation
US7879940B2 (en) Polymerization initated at sidewalls of carbon nanotubes
Rosehr et al. Polypropylene composites with finely dispersed multi-walled carbon nanotubes covered with an aluminum oxide shell
CN1317327C (zh) 一种高分散纳米氧化物/聚乙烯醇复合材料的制备方法
CN103755849A (zh) 一种碳纳米管-聚硅烷-有机高分子复合材料及其制备方法
Gao et al. Growth from spherical to rod-like SiO2: Impact on microstructure and performance of nanocomposite
CN1240768C (zh) 聚丙烯酸酯/无机物ⅰ/无机物ⅱ三元复合粒子及其制备方法
CN1195007C (zh) 活性聚合的方法制备具有核-壳结构的聚合物纳米胶束
CN1298778C (zh) 羧基功能型高分子/SiO2复合纳米粒子及其制备方法
CN109942732B (zh) 一种聚甲基丙烯酸甲酯与氧化石墨烯复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication