Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1643808 A
Publication typeApplication
Application numberCN 03805752
PCT numberPCT/US2003/001949
Publication date20 Jul 2005
Filing date22 Jan 2003
Priority date23 Jan 2002
Also published asCA2473917A1, CN100448176C, DE60316663D1, DE60316663T2, EP1468505A1, EP1468505B1, EP1871012A1, EP1871012B1, EP2230869A2, EP2230869A3, US7020482, US8078211, US20030139196, US20060116155, WO2003063384A1
Publication number03805752.2, CN 03805752, CN 1643808 A, CN 1643808A, CN-A-1643808, CN03805752, CN03805752.2, CN1643808 A, CN1643808A, PCT/2003/1949, PCT/US/2003/001949, PCT/US/2003/01949, PCT/US/3/001949, PCT/US/3/01949, PCT/US2003/001949, PCT/US2003/01949, PCT/US2003001949, PCT/US200301949, PCT/US3/001949, PCT/US3/01949, PCT/US3001949, PCT/US301949
InventorsI梅德弗戴夫, JR沃尔顿, JW凯淳
Applicant高通股份有限公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
CN 1643808 A
Abstract  translated from Chinese
一些技术,用于在多信道通信系统内将总发射功率分配到传输信道,以获得更高的总系统频谱效率和/或其他好处。 Some techniques for multichannel communication system within the total transmit power allocated to the transmission channel, in order to obtain higher overall system spectral efficiency and / or other benefits. 总发射功率可以在开始时基于特定的功率分配方案(例如灌水方案)被分配给传输信道。 The total transmit power may be based on a particular power allocation scheme (e.g., irrigation programs) at the start of the transmission channel is allocated to. 初始的分配可能导致分配给一些传输信道比获得要求的SNR(例如实现最大允许数据速率需要的SNR)更多的功率,这会导致这些传输信道在饱和区操作。 The initial allocation may result in a number of transmission channels allocated to obtain the required ratio SNR (e.g., the maximum allowed data rate to achieve the required SNR) more power, which causes the transmission channel operating in the saturation region. 在该种情况下,这些技术将在饱和区操作的传输信道的过量发射功率重新分配给在饱和区以下操作的其他传输信道。 In that case, the excess transmit power of these technologies will be operated in the saturation region of the transmission channel reallocated to other transmission channels operated below the saturation region. 这样,“较差”的传输信道可以获得更高的频谱效率,而不牺牲“较佳”的传输信道的性能。 Thus, "bad" transmission channels can achieve higher spectral efficiency without sacrificing "better" performance of the transmission channel.
Claims(47)  translated from Chinese
1.一种方法,用于在无线通信系统中将发射功率分配给多个传输信道,其特征在于包括:定义一个或多个要被分配以发射功率的传输信道集合;确定可用于分配给集合内的传输信道的总发射功率;基于特定分配方案将总发射功率分配给集合内的传输信道;标识由于分配的发射功率导致处于饱和区的传输信道;用修改的发射功率量重新分配给处于饱和区的每个传输信道;为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率;以及为一次或多次迭代实现定义、确定、分配、标识和重新分配,其中用于第一迭代的传输信道集合包括多个传输信道,对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 1. A method for a wireless communication system in the transmit power allocated to the plurality of transmission channels, characterized by comprising: defining one or more transmission power to be allocated to a transport channel set; determining available for assignment to a set of The total transmit power within the transmission channel; based on a particular allocation scheme will be the total transmit power allocated to the transmission channel within the set; identification since the distribution of transmit power lead is in the transmission channel of the saturation region; with a modified transmission power amount reassigned at saturation Each transport channel region; are reallocated for all transmit power to modify the amount of transmission channel determining the total excess transmit power; and for one or more iterations implementation-defined, determine, allocate, identify, and reallocate, wherein the means for the first an iterative transmission channel set comprises a plurality of transmission channels, for each successive iteration includes transmission channels not in the saturation region, and wherein each successive iteration of the total available transmit power comprises a total excess transmit power determined in a current iteration.
2.如权利要求1所述的方法,其特征在于可用于每次迭代的总发射功率基于灌水分配方案被分配给集合内的传输信道。 2. The method according to claim 1, characterized in that each iteration can be used for the total transmission power allocation scheme based irrigation is allocated to the transmission channel within the collection.
3.如权利要求1所述的方法,其特征在于如果一传输信道被分配以多于获得特定最大数据速率需要的发射功率,则所述传输信道被认为处于饱和区。 The method according to claim, wherein if a transmission channel is assigned to more than the maximum data rate needed to obtain a particular transmit power, then the transmission channel is considered to be in the saturation region.
4.如权利要求3所述的方法,其特征在于分配给饱和区内的每个传输信道的发射功率修改后的量是获得最大数据速率需要的最小量。 4. The method according to claim 3, characterized in that the quantity assigned to each transmission channel of the transmission power of the saturated region is modified to obtain the minimum quantity required for the maximum data rate.
5.如权利要求1所述的方法,其特征在于如果一传输信道被分配以多于获得特定信噪比(SNR)需要的发射功率,则所述传输信道被认为处于饱和区。 5. The method of claim 1, wherein if a transmission channel is assigned to more than obtain a particular ratio (SNR) required transmit power, then the transmission channel is considered to be in the saturation region.
6.如权利要求5所述的方法,其特征在于对集合内的所有传输信道使用单个SNR。 6. The method according to claim, characterized in that the set of all transport channels within a single SNR.
7.如权利要求5所述的方法,其特征在于每个传输信道与相应的阀值SNR相关联。 7. The method according to claim 5, characterized in that each transmission channel with a corresponding threshold SNR associated.
8.如权利要求1所述的方法,其特征在于所述的标识包括:部分基于分配给传输信道的发射功率确定集合内每个传输信道的有效信噪比(SNR);将集合内的每个传输信道的有效SNR与可应用到传输信道的阀值SNR相比较,以及如果其有效SNR大于可应用的阀值SNR则声明传输信道处于饱和区内。 Within each set; based in part on the transmission channels allocated to the transmission power determining an effective SNR for each transmission channel within the collection of (SNR): 8. The method of claim 1 or claim 2, wherein said identification comprises effective SNR of a transmission channel and can be applied to the transmission channel is compared with a threshold SNR, and if its effective SNR is greater than the applicable threshold SNR is declared transmission channel in the saturation region.
9.如权利要求8所述的方法,其特征在于阀值SNR对应于获得特定最大数据速率需要的SNR。 9. The method according to claim, wherein the threshold SNR corresponds to a maximum data rate to obtain a specific SNR needed.
10.如权利要求1所述的方法,其特征在于无线通信系统是多输入多输出(MIMO)系统。 10. The method according to claim 1, characterized in that the wireless communication system is a multiple-input multiple-output (MIMO) system.
11.如权利要求10所述的方法,其特征在于多个传输信道对应MIMO通信系统的MIMO信道的多个本征模式。 11. The method of claim 10, wherein the plurality of transmission channels corresponding to the MIMO communication system of the plurality of MIMO channel eigenmodes.
12.如权利要求1所述的方法,其特征在于所述无线通信系统是正交频分多路复用(OFDM)通信系统。 12. The method of claim 1, wherein said wireless communication system is an orthogonal frequency division multiplexing (OFDM) communication system.
13.如权利要求1所述的方法,其特征在于所述无线通信系统是使用正交频分多路复用(OFDM)的多输入多输出(MIMO)通信系统。 13. The method of claim 1, wherein the wireless communication system using orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) communication system.
14.一种方法,用于将发射功率分配给多输入多输出(MIMO)通信系统内的多个空间子信道,其特征在于包括:定义要被分配以发射功率的一个或多个空间子信道集合;确定可用于分配给集合内空间子信道的总发射功率;基于特定的分配方案将总发射功率分配给集合内的空间子信道;标识从分配的发射功率产生的处于饱和区的空间子信道;重新分配给处于饱和区的每个空间子信道一修改后的发射功率量;确定所有经重新分配以修改后发射功率量的空间子信道的总过量发射功率;以及为一次或多次迭代实现定义、确定、分配、标识和重新分配,其中用于第一迭代的空间子信道集合包括多个空间子信道,以及对于每次相继迭代包括不处于饱和区的空间子信道,且其中对于每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 14. A method for transmit power allocation for a multiple input multiple output (MIMO) communication system a plurality of spatial subchannels, comprising: definition is to be assigned to one or more spatial sub-channel transmit power set; can be used for determining the set of spatial subchannels allocated to the total radiation power; based on a particular allocation scheme to allocate the total transmit power within the set of spatial subchannels; space in the saturation region of the ID from the transmitted power distribution generated subchannel ; re-allocated to the amount of transmit power for each spatial sub-channel in the saturation region of a modified; reallocation to identify all the revised amount of transmit power of spatial subchannels of the total excess transmit power; and for one or more iterations to achieve define, determine, allocate, identify, and reallocate, wherein for the first iteration of the spatial sub-set comprises a plurality of spatial sub-channels, and for each successive iteration space is not in the saturation region comprises a sub-channel, and wherein for each successive iterations of the total transmit power can be used include the total excess transmit power determined in a current iteration.
15.如权利要求14所述的方法,其特征在于可用于每次迭代的总发射功率基于灌水分配方案被分配给集合内的空间子信道。 15. The method of claim 14, wherein each iteration can be used for the total transmission power allocation scheme based on the irrigation set is assigned to the space within the sub-channel.
16.一种用于在无线通信系统内将发射功率分配给多个传输信道的方法,其特征在于包括:标识要被分配以发射功率的第一传输信道集合;确定可用于分配给第一集合内的传输信道的总发射功率;基于特定的分配方案将总发射功率分配给第一集合内的传输信道;标识对最优操作点被分配以过量发射功率的一个或多个传输信道的第二集合;分配给第二集合内的每个传输信道一发射功率的修改后量以达到最优操作点;确定在第二集合内的所有传输信道的总过量功率;标识能支持更高最优操作点的一个或多个传输信道的第三集合;以及将总过量功率重新分配给第三集合内的一个或多个传输信道。 16. A method for a wireless communication system in the transmission method of power allocation to a plurality of transmission channels, characterized by comprising: identifying a transmit power to be allocated to a first transmission channel set; determining available for assignment to the first set The total transmit power within the transmission channel; based on a particular allocation scheme to allocate the total transmit power to the first set of transmission channel; identifying the optimal operating point is assigned to transmit a power of an excess or a second plurality of transmission channels set; assigned to each transport channel within a second set of modified emission amount of power to achieve the optimum operating point; determining a total excess power for all transmission channels in the second set; identifying optimum operation can support a higher The third set of one or more transmission channels of points; and the total excess power is redistributed to one or more of the third set of transport channels.
17.如权利要求16所述的方法,其特征在于每个最优操作点与支持特定离散数据速率需要的信噪比(SNR)相关联。 17. The method of claim 16, wherein each of the optimal operating point and the data rate needed to support a particular discrete signal to noise ratio (SNR) is associated.
18.如权利要求16所述的方法,其特征在于还包括:评估多种将总过量功率重新分配给第三集合内的一个或多个传输信道的多种可能性。 18. The method according to claim 16, characterized by further comprising: evaluating a variety of the total excess power to reallocate one or more of the possibility of a third plurality of transmission channels within the set.
19.如权利要求18所述的方法,其特征在于还包括:选择与吞吐量内最高增益相关的重新分配。 19. The method according to claim 18, characterized by further comprising: a re-allocation of the highest gain associated with the choice throughput.
20.如权利要求16所述的方法,其特征在于总过量功率每次一个信道被重新分配给第三集合内的一个或多个传输信道。 20. The method according to claim 16, characterized in that the total excess power per one channel is re-assigned to one or more transmission channels within the third set.
21.如权利要求16所述的方法,其特征在于每个传输信道被重新分配以足以达到下一更高最优操作点的发射功率。 21. The method of claim 16, wherein each transmission channel is reassigned to the next higher transmission power sufficient to reach the optimal operating point.
22.如权利要求16所述的方法,其特征在于重新分配包括:确定第三集合内每个传输信道需要的发射功率量以达到下一更高最优操作点;以及将总过量功率分配给与吞吐量内的最高增益相关联的传输信道。 22. The method according to claim 16, characterized in that the reallocation comprises: determining the amount of the third set of transmit power for each transmission channel required to achieve the next higher optimal operating point; and the total excess power is assigned to transmission channel associated with the highest gain in the throughput.
23.如权利要求16所述的方法,其特征在于基于灌水方案总发射功率被分配给第一集合内的传输信道。 23. The method according to claim 16, characterized in that the transmission channel is assigned to the first set within the total transmit power based on the irrigation programs.
24.如权利要求16所述的方法,其特征在于多个传输信道对应于MIMO系统内的空间子信道。 24. The method of claim 16, wherein the plurality of transmission channels corresponding to spatial subchannels MIMO system.
25.如权利要求16所述的方法,其特征在于多个传输信道对应于OFDM系统内的频率子信道。 25. The method of claim 16, wherein the plurality of transmission channels correspond to frequency subchannels of the OFDM system.
26.如权利要求16所述的方法,其特征在于多个传输信道对应于MIMO-OFDM系统内的空间子信道的频率子信道。 26. The method of claim 16, wherein the plurality of transmission channels correspond to frequency subchannels of spatial subchannels MIMO-OFDM system.
27.一方法,用于在无线通信系统中将发射功率分配给多个传输信道,其特征在于包括:标识要被分配以发射功率的传输信道集合;确定可用于分配给传输信道的总发射功率;基于特定分配方案将总发射功率分配给集合内的传输信道;部分基于分配给传输信道的发射功率确定过量频谱效率;以及重新分配给一个或多个传输信道以减少的发射功率量以减少过量频谱效率。 27. In a method, in a wireless communication system in the transmit power allocated to the plurality of transmission channels, characterized by comprising: identifying a transmit power to be allocated to a transport channel set; can be used to determine the transmission channels allocated to the total transmit power ; based on a particular allocation scheme the total transmit power allocated to the transmission channel within the set; part based on the assignment to the transmission channel transmission power determining an excess spectral efficiency; and re-allocated to one or more transmission channels in order to reduce the amount of transmit power to reduce the excess spectral efficiency.
28.如权利要求27所述的方法,其特征在于还包括:减少分配给每个传输信道的发射功率以获得最优操作点。 27 28. The method according to claim, characterized by further comprising: reducing the transmission channel assigned to each transmit power to obtain the optimum operating point.
29.如权利要求27所述的方法,其特征在于还包括:为传输信道的多个发射功率减少确定频谱效率方面的增量改变;以及选择与增量频谱效率改变相关联的最大发射功率减少,所述改变小于或等于过量频谱效率。 29. The method according to claim 27, characterized by further comprising: a plurality of transmission channels transmit power reduction increments change determination spectral efficiency; and selecting an incremental spectral efficiency change with the associated maximum transmit power reduction , the change is less than or equal to the excess spectral efficiency.
30.如权利要求27所述的方法,其特征在于还包括:确定回退后的发射功率;以及将回退后的发射功率分配给集合内的传输信道。 27 30. The method according to claim, characterized by further comprising: determining transmission power rollback; and rollback of transmit power allocated to the transmission channel within the collection.
31.如权利要求30所述的方法,其特征在于还包括:实现确定回退后的发射功率,并分配回退后的发射功率一次或多次直到过量频谱效率在特定阀值以内。 30 31. The method according to claim, characterized by further comprising: enabling determining if a rollback of the transmission power, and transmission power allocation back to back one or more times until the excess spectral efficiency is within a particular threshold.
32.一耦合到数字信道处理设备(DSPD)的存储器,其特征在于所述DSPD能将数字信号解释为:定义一个或多个要被分配以发射功率的传输信道集合;确定可用于分配给集合内的传输信道的总发射功率;基于特定分配方案将总发射功率分配给集合内的传输信道;标识由于分配的发射功率导致处于饱和区的传输信道;重新分配给处于饱和区的每个传输信道以修改的发射功率量;为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率;以及为一次或多次迭代实现定义、确定、分配、标识和重新分配,其中用于第一迭代的传输信道集合包括无线通信系统中的多个传输信道,以及对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 32. a channel coupled to the digital processing device (DSPD) of memory, wherein said digital signal can be interpreted as DSPD: define one or more transmission power to be allocated to a transport channel set; determining available for assignment to a set of The total transmit power within the transmission channel; based on a particular allocation scheme will be the total transmit power allocated to the transmission channel within the set; identification since the distribution of transmit power lead is in the transmission channel of the saturation region; re-allocated to each transmission channel in the saturation region to modify the amount of transmit power; all re-allocation of transmit power to modify the amount of excess transmission channel to determine the total transmit power; and for one or more iterations implementation-defined, determine, allocate, identify, and reallocate, wherein the means for the first an iterative set of transport channels in a wireless communication system comprising a plurality of transmission channels, and for each successive iteration includes transmission channels not in the saturation region, and wherein each successive iteration of the total available transmit power comprises determining the current iteration The total excess transmit power.
33.一计算机程序产品,用于在无线通信系统内将发射功率分配给多个传输信道,其特征在于包括:用于定义一个或多个要被分配以发射功率的传输信道集合的代码;用于确定可用于分配给集合内的传输信道的总发射功率的代码;用于基于特定分配方案将总发射功率分配给集合内的传输信道的代码;用于标识由于分配的发射功率导致处于饱和区的传输信道的代码;用于重新分配给处于饱和区的每个传输信道以修改的发射功率量的代码;用于为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率的代码;用于为一次或多次迭代实现定义、确定、分配、标识和重新分配的代码,其中用于第一迭代的传输信道集合包括多个传输信道,以及对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率;以及用于存储所述代码的计算机可用媒质。 33. A computer program product for a wireless communication system in the transmit power allocated to the plurality of transmission channels, comprising: means for defining one or more code to be assigned to the transmission power of the transmission channel set; with can be used to determine the total transmit power allocated to the transmission channel within the set of code; based on a particular allocation scheme for the total transmit power allocated to the transmission channel within the set of code; means for identifying the allocated transmit power due to lead in the saturation region transmission channel; code for re-assigned to each transmission channel in the saturation region to modify the amount of transmit power; code for re-allocation for all the modified transmission power amount of transmission channels to determine the total excess transmit power code; is used to define one or more iterations to achieve, determine, allocate, identify and code re-allocation, wherein for the first iteration of the transmission channel set comprises a plurality of transmission channels, and for each successive iteration is not in the saturation comprising transport channel region, and wherein each successive iteration of the total available transmit power comprises a total excess transmit power determined in the current iteration; and a computer-usable medium for storing the codes.
34.无线通信系统内的一装置,其特征在于包括:用于定义一个或多个要被分配以发射功率的传输信道集合的装置;用于确定可用于分配给集合内的传输信道的总发射功率的装置;用于基于特定分配方案将总发射功率分配给集合内的传输信道的装置;用于标识由于分配的发射功率导致处于饱和区的传输信道的装置;用于重新分配给处于饱和区的每个传输信道以修改的发射功率量的装置;用于为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率的装置;以及用于为一次或多次迭代实现定义、确定、分配、标识和重新分配的装置,其中用于第一迭代的传输信道集合包括多个传输信道,以及对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 34. A device of a wireless communication system, comprising: means for defining one or more means to be allocated transmit power of the transmission channel set; can be used for determining a transmission channel allocated to the total radiation within the collection power means; based on a particular allocation scheme for the total transmit power allocated to the devices within the set of transmission channels; means for identifying the transmission power since the distribution apparatus cause the transmission channel in the saturation region; for reassigned in the saturation region means an amount of transmit power for each transmission channel to modify; means for re-allocation for all the modified transmission power amount of transmission channels to determine the total excess transmit power; and means used to achieve the defined one or more iterations, determine, allocate, identify, and redistribution means, wherein for the first iteration of the transmission channel set comprises a plurality of transmission channels, and for each successive iteration includes transmission channels not in the saturation region, and wherein each successive iteration of the available The total transmit power including the total excess transmit power determined in the current iteration.
35.无线通信系统内的一控制器,其特征在于包括:用于定义一个或多个要被分配以发射功率的传输信道集合的装置;用于确定可用于分配给集合内的传输信道的总发射功率的装置;用于基于特定分配方案将总发射功率分配给集合内的传输信道的装置;用于标识由于分配的发射功率导致处于饱和区的传输信道的装置;用于重新分配给处于饱和区的每个传输信道以修改的发射功率量的装置;用于为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率的装置;以及用于为一次或多次迭代实现定义、确定、分配、标识和重新分配的装置,其中用于第一迭代的传输信道集合包括多个传输信道,以及对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 A controller 35. The wireless communication system, characterized by comprising: means for defining one or more means to be allocated transmit power of the transmission channel set; means for determining the total available for assignment to a set of transport channels within the transmission power; means for based on a particular allocation scheme to allocate the total transmit power to a set of devices within the transmission channel; means for identification since the distribution of transmission power leads means in the saturation region of the transmission channel; means for re-assigned to at saturation means an amount of the transmission power of each transport channel region to modify; means for re-allocation for all the modified transmission power amount of transmission channels to determine the total excess transmit power; and means used to achieve one or more iterations defined , determine, allocate, identify, and redistribution means, wherein for the first iteration of the transmission channel set comprises a plurality of transmission channels, and each successive iteration includes transmission channels not in the saturation region, and wherein each successive iteration for The total available transmit power comprises a total excess transmit power determined in a current iteration.
36.如权利要求35所述的控制器,其特征在于还包括:用于部分基于分配给传输信道的发射功率确定集合内每个传输信道的有效信噪比(SNR)的装置;用于将集合内的每个传输信道的有效SNR与可应用到传输信道的阀值SNR相比较的装置,以及用于如果其有效SNR大于可应用的阀值SNR则声明传输信道处于饱和区内的装置。 36. The controller according to claim 35, characterized by further comprising: based in part on the transmission channels allocated to the transmission power determining an effective SNR for each transmission channel within the collection (SNR) of the means for; for effective SNR and can be applied to the transmission channel SNR threshold means for comparing each of the transmission channel within the set, and means for if its effective SNR is greater than the applicable threshold SNR is declared transmission channel in the saturation region of the apparatus.
37.一基站包括如权利要求35所述的控制器。 37. A base station comprising a controller as claimed in claim 35.
38.无线通信系统内的一控制器,其特征在于包括:用于标识要被分配以发射功率的第一传输信道集合的装置;用于确定可用于分配给第一集合内的传输信道的总发射功率的装置;用于基于特定的分配方案将总发射功率分配给第一集合内的传输信道的装置;用于对最优操作点标识被分配以过量发射功率的一个或多个传输信道的第二集合的装置;用于分配给第二集合内的每个传输信道一发射功率的修改后量以获得最优操作点的装置;用于确定在第二集合内的所有传输信道的总过量功率的装置;用于标识能支持更高最优操作点的一个或多个传输信道的第三集合的装置;以及用于将总过量功率重新分配给第三集合内的一个或多个传输信道的装置。 A controller 38. The wireless communication system, characterized by comprising: means for identifying to be allocated to the transmit power of the first set of transport channels; can be used for determining a transmission channel allocated to the first set within the total transmission power; means for based on a particular allocation scheme of the apparatus of the first set of transport channels within the total transmit power allocated to; the optimal operating point for identifying the excess transmit power is allocated to one or more transmission channels means of the second set; assigned to the second set for each transport channel a transmission power amount modified to obtain the optimum operating point means; means for determining all the transport channels in the second set of the total excess power means; means for identifying a third set can support a higher optimum operating point or a plurality of transmission channels; and a total excess power for the re-allocated to one or more of the third set of transmission channels means.
39.无线通信系统内的一控制器,其特征在于包括:用于标识要被分配以发射功率的传输信道集合的装置;用于确定可用于分配给传输信道的总发射功率的装置;用于基于特定分配方案将总发射功率分配给集合内的传输信道的装置;用于部分基于分配给传输信道的发射功率确定过量频谱效率的装置;以及用于重新分配给一个或多个传输信道以减少的发射功率量以减少过量频谱效率的装置。 A controller 39. The wireless communication system, characterized by comprising: means for identifying to be allocated transmit power to a set of transport channels; can be used for determining a transmission channel allocated to the total radiation power; means for The means based on a particular allocation scheme of the transmission channel within the set of total transmit power allocated to; for partially allocated to the transmission channel based on the transmission power determining an excess spectral efficiency; and means for re-allocated to one or more transmission channels in order to reduce The amount of transmit power to reduce the excess spectral efficiency means.
40.无线通信系统内的发射机单元,其特征在于包括:发射(TX)数据处理器,用于基于一个或多个编码和调制方案对多个传输信道的数据进行编码以提供多个码元流;多个发射机,用于处理多个码元流以提供适用于在通信信道上传输的多个已调信号;以及控制器,用于将发射功率分配给多个传输信道,通过:定义一个或多个要被分配以发射功率的传输信道集合;确定可用于分配给集合内的传输信道的总发射功率;基于特定分配方案将总发射功率分配给集合内的传输信道;标识由于分配的发射功率导致处于饱和区的传输信道;重新分配给处于饱和区的每个传输信道以修改的发射功率量;为所有被重新分配以修改的发射功率量的传输信道确定总过量发射功率;以及为一次或多次迭代实现定义、确定、分配、标识和重新分配,其中用于第一迭代的传输信道集合包括多个传输信道,以及对于每次相继迭代包括不处于饱和区的传输信道,且其中每次相继的迭代可用的总发射功率包括在当前迭代中确定的总过量发射功率。 40. The transmitter unit of a wireless communication system, comprising: transmit (TX) data processor, based on one or more coding and modulation schemes for the plurality of transmission channels for encoding data to provide a plurality of symbols stream; plurality of transmitters, for processing a plurality of symbol streams to provide a plurality of communication adapted to the transmission channel a modulated signal; and a controller for the transmit power allocated to the plurality of transmission channels, by: defining one or more to be allocated set to transmit power of the transmission channel; determining available for assignment to a total radiation power of the transmission channel within the set; based on a particular allocation scheme the total transmit power allocated to the transmission channel within the set; identification since the distribution of transmit power leads in the saturation region of the transmission channel; re-allocated to each transmission channel in the saturation region to modify the amount of transmit power; all are reassigned to modify the transmission power amount of a transmission channel determines the total excess transmit power; and to one or more iterations to achieve definition, determine, allocate, identify, and reallocate, wherein for the first iteration of the transmission channel set comprises a plurality of transmission channels, and for each successive iteration includes transmission channels not in the saturation region, and wherein each successive iteration of the total transmit power can be used include the total excess transmit power determined in a current iteration.
41.如权利要求40所述的发射机单元,其特征在于所述的TX数据处理器进一步使用确定的特定加权对每个调制码元进行比例调整,所述加权是基于分配给用于该调制码元的传输信道的发射功率量而确定的。 41. The transmitter unit of claim 40, wherein said specific weighting TX data processor is further performed using the determined scaling for each modulation symbol, the weighting is based on the modulation for the assigned the amount of transmit power transmission channel symbols determined.
42.如权利要求40所述的发射机单元,其特征在于还包括:MIMO处理器,用于对多个码元流进行预调整以对角线化多个传输信道。 42. The transmitter unit according to claim 40, characterized by further comprising: MIMO processor for the plurality of symbol streams of preconditioned diagonally plurality of transmission channels.
43.一基站包括如权利要求40所述的发射机单元。 43. A base station comprising a transmitter unit as claimed in claim 40.
44.无线通信系统内的一接收机单元,其特征在于包括:接收(RX)MIMO处理器,用于接收并处理多个采样流以提供多个接收到的码元流,并导出用于多个接收到的码元流的多个传输信道的信道状态信息(CSI);以及RX数据处理器,用于根据一个或多个解调和解码方案处理多个接收到的码元流以提供解码后的数据,以及其中多个传输信道的发射功率部分地基于CSI经分配,这是通过:基于特定分配方案将总可用发射功率分配给多个传输信道,重新分配给在饱和区内的每个传输信道以一修改后的发射功率量,并将总剩余的发射功率分配给不在饱和区内的传输信道。 44. A receiver unit of a wireless communication system, comprising: receiving (RX) MIMO processor for receiving and processing a plurality of sample streams to provide a plurality of received symbol streams, and for multi-derived channel state information of a plurality of transmission channels received symbol streams (CSI); and RX data processor for processing a plurality of received symbol streams in accordance with one or more demodulation and decoding scheme to provide decoded After the data, and wherein the transmit power is partially based on a plurality of transmission channels allocated by the CSI, which is by: based on a particular allocation scheme to allocate the total available transmit power to a plurality of transmission channels, re-assigned to each of the saturated zone transmission channel to transmit a revised amount of power, and the total remaining transmit power allocated to the saturated zone is not in the transmission channel.
45.如权利要求44所述的接收机单元,其特征在于RX MIMO处理器进一步用于对多个接收到的码元流进行预调整以对角线化多个传输信道。 45. The receiver unit of claim 44, wherein the RX MIMO processor is further configured to a plurality of received symbol stream is pre-adjusted to a diagonal of the plurality of transmission channels.
46.如权利要求44所述的接收机单元,其特征在于还包括:TX数据处理器,用于处理传输回发射机单元的CSI。 46. The receiver unit of claim 44, characterized by further comprising: TX data processor for processing transmission CSI back to the transmitter unit.
47.无线通信系统内一接收机装置,其特征在于包括:用于处理多个采样流以提供多个接收到的码元流,并导出用于多个接收到的码元流的多个传输信道的信道状态信息(CSI)的装置;以及用于根据一个或多个解调和解码方案处理多个接收到的码元流以提供解码后的数据的装置,以及其中多个传输信道的发射功率部分地基于CSI经分配,这是通过:基于特定分配方案将总可用发射功率分配给多个传输信道,重新分配给在饱和区内的每个传输信道以一修改后的发射功率量,并将总剩余的发射功率分配给不在饱和区内的传输信道。 47. The wireless communications system within a receiver apparatus, comprising: means for processing a plurality of sample streams to provide a plurality of received symbol streams, and derives a plurality of transmitting a plurality of received symbol streams channel state information channel (CSI); and means for processing a plurality of received symbol streams in accordance with one or more demodulation and decoding scheme to provide decoded data, and means for transmitting a plurality of transmission channels wherein After power allocation based in part on CSI, this is achieved by: based on a particular allocation scheme to allocate the total available transmit power to a plurality of transmission channels, re-assigned to each transmission channel in the saturation region with a revised amount of transmit power, and The total remaining transmit power allocated to the saturated zone is not in the transmission channel.
Description  translated from Chinese
全信道状态信息(CSI)多输入多输出(MIMO) 系统的过量功率重新分配 Excessive power of the full channel state information (CSI) multiple-input multiple-output (MIMO) systems reassigned

背景领域本发明一般涉及数据通信,尤其是多信道通信系统(例如多输入多输出(MIMO)通信系统)内重新分配过量功率的技术。 BACKGROUND Field The present invention relates generally to data communication, reallocate excess power technology, especially multi-channel communication system (e.g., multiple-input multiple-output (MIMO) communication system) within.

背景在无线通信系统中,来自发射机单元的RF已调信号可以通过多个传播路径到达接收机单元。 Background In a wireless communication system, RF from the transmitter unit of a modulated signal may reach a receiver unit via a plurality of propagation paths. 传播路径的特征一般由于诸如衰落和多径的多个因素而随时间改变。 The general characteristics of the propagation path and multipath fading due to such multiple factors change over time. 为了提供抗有害路径影响的分集并改善性能,可以使用多个发射和接收天线。 To provide diversity against harmful path effects and improve performance, multiple transmit and receive antennas. 如果发射和接收天线间的传播路径是线性独立的(即在一个路径上的传输不是由其它路径上的传输的线性组合形成的),这在一定程度上为真,则正确地接收到数据传输的可能性随着天线数目的增加而增加。 If the propagation paths between the transmit and receive antennas are linearly independent (i.e., transmission on one path is not formed by a linear combination of the transmissions on the other paths), which to some extent is true, then the data transmission is correctly received With the possibility of the number of antennas increases. 一般,发射和接收天线增加导致分集增加和性能改善。 In general, the transmitting and receiving antennas increases resulting in an increase the diversity and performance improvement.

多输入多输出(MIMO)通信系统使用多个(NT)发射天线和多个(NR)接收天线进行数据传输。 Multiple input multiple output (MIMO) communication system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. 由NT个发射天线和NR个接收天线形成的MIMO信道可能被分解为NS个独立信道,其中NS≤min{NT,NR}。 A MIMO channel formed by the NT transmit antennas and NR receive antennas may be decomposed into formed NS independent channels, where NS≤min {NT, NR}. NS个独立信道的每个还被称为MIMO信道的空间子信道,并对应一维。 Each of the NS independent channels is also referred to as spatial subchannel of the MIMO channel and corresponds to a dimension. 如果使用由多个发射和接收天线建立的附加维数,则MIMO系统能提供改善的性能(例如增加的传输容量)。 If an additional dimension by the number of transmit and receive antennas to establish a plurality of MIMO system can provide improved performance (e.g., increased transmission capacity). 例如,独立数据流可以在NS个空间子信道的每个上被发送以增加系统吞吐量。 For example, an independent data stream may be transmitted in each of the NS spatial subchannels to increase system throughput on.

宽带MIMO系统的空间子信道在其带宽上经历不同的信道条件(例如不同的衰落和多径效应),且可能对给定发射功率量获得不同的信号对噪声加干扰比(SNR)。 Spatial subchannel wideband MIMO system experience different channel conditions (e.g., different fading and multipath effects) on its bandwidth, and may transmit a given amount of power to achieve different signal-to-noise-plus-interference ratio (SNR). 所以,空间子信道支持的数据速率随每个子信道而不同。 Therefore, the data rates supported spatial subchannels with each subchannel different. 而且,信道条件一般随着时间改变。 Moreover, the channel conditions generally change over time. 结果是,空间子信道支持的数据速率也随着时间改变。 As a result, the data rates supported spatial subchannels also vary over time.

编码的通信系统内的关键挑战在于基于信道条件选择合适的数据速率、编码和调制方案以及在可用传输信道上用于数据传输的发送功率。 The key challenge coded communication system is to select the appropriate data rate, coding and modulation schemes based on channel conditions and the available transmission channels for transmitting power for data transmission. 该选择过程的目标应是最大化频谱效率,而同时符合质量目标,该目标可以通过特定目标帧差错率(FER)和/或一些其它准则而被定量化。 The goal of the selection process should be to maximize spectral efficiency, while consistent with the quality target, which may be a particular target frame error rate (FER) and / or some other criteria are quantified.

在一般通信系统中,用于任何给定数据流的数据速率有一上限。 In a typical communication system, the data rate for any given data stream has an upper limit. 例如,系统可以支持一离散数据速率集合,且这些离散数据速率中的最大数据速率可以被认为是对任何给定数据流的饱和频谱效率ρsat。 For example, the system may support a set of discrete data rates, and these discrete data rates of the maximum data rate can be considered for any given data stream saturation spectral efficiency ρsat. 在该种系统中,如果每个数据流被发送到相应的空间子信道上,则分配比以最大数据速率获得目标FER需要的更多的发射功率会导致附加发射功率的无效使用。 In this kind of system, if each data stream is transmitted to the corresponding spatial subchannel, then the distribution ratio to the maximum data rate needed to obtain a target FER more transmit power will cause an inefficient use of the additional transmit power. 即使过量发射功率可能导致较低的FER,这种FER方面的改善并不被认为是实质性的,因为已经获得了目标FER。 Even if the excess transmit power may result in a lower FER, this improvement in FER area is not considered to be substantial, because the target has received FER. 过量发射功率可以被更有效地用于增加在一些其他空间子信道上的频谱效率。 Excess transmit power may be more effectively used to increase spectral efficiency on some other spatial subchannels.

因此,在领域内需要一种方法以在如果已经由至少一个子信道达到了饱和频谱效率时,分配/重新分配MIMO系统内的空间子信道间的发射功率。 Therefore, a need for a method in the field at a time as if one subchannel has reached the saturation spectral efficiency by at least, allocation / re-allocation of transmission power within the spatial sub-channel between the MIMO system.

概述本发明的各方面提供一些技术,以在多信道通信系统中将总发射功率分配给传输信道,以获得更高的总系统吞吐量和/或其他好处。 Overview of the various aspects of the invention provide techniques to multi-channel communication system will be the total transmit power allocated to the transmission channel, in order to obtain higher overall system throughput and / or other benefits. 传输信道可以对应于MIMO系统的空间子信道、OFDM系统的频率子信道或MIMO-OFDM系统内的频率子信道的空间子信道。 Transmission channels may correspond to the spatial subchannels of a MIMO system, the frequency subchannels of the OFDM system or the frequency subchannels of the MIMO-OFDM system within the spatial sub-channels.

总发射功率可以在开始时被基于特定功率分配方案(例如灌水方案)分配给传输信道。 The total transmit power may be based on a particular power allocation scheme (e.g., irrigation programs) at the start of dispensing to the transport channel. 初始分配会导致分配给一些需要获得需要的信噪比(SNR)(例如获得最大允许的数据速率需要的SNR)更多的功率,这会导致这些传输信道在饱和区操作。 The initial allocation may result in signal to noise ratio (SNR) is assigned to a number required to obtain desired (e.g., maximum allowed data rate required SNR) more power, which causes the transmission channel operating in the saturation region. 在该情况下,在此描述的技术较优地将在饱和区操作的传输信道的过量发射功率重新分配给在饱和区以下操作的其他传输信道。 In this case, the excess transmit power of the techniques described herein will be optimum to the operation in the saturation region of the transmission channels reallocated to other transmission channels operated below the saturation region. 这样,“较差”的传输信道可以获得更高的频谱效率,而不牺牲“较佳”的传输信道的性能。 Thus, "bad" transmission channels can achieve higher spectral efficiency without sacrificing "better" performance of the transmission channel.

在特定实施例中,提供一种方法,以在多信道通信系统内将发射功率分配给多个传输信道。 In a particular embodiment, a method is provided, in the multi-channel communication system to transmit power allocated to the plurality of transmission channels. 开始时,定义要被分配以发射功率的一个或多个传输信道集合。 Initially, the definition is to be assigned to a transmit power of the set of one or more transport channels. 可以分配给集合内的传输信道的可用总发射功率被确定,且基于特定分配方案被分配给这些传输信道(例如灌水方法)。 Can be assigned to the transmission channel within the set of total available transmit power is determined, and based on a particular allocation scheme are allocated to these transmission channels (e.g., irrigation methods). 然后识别由于分配的发射功率而在饱和区内操作的传输信道。 Then identifies the transmission channel due to the assignment of transmission power and operating in the saturation region. 每个该种传输信道被分配以一修改后的发射功率量(例如获得要求的SNR需要的最小量)。 The transmission channel for each species is assigned a revised amount of transmit power (e.g., the minimum amount needed to obtain the required SNR). 然后确定所有经重新分配以修改后的发射功率的所有传输信道的总过量发射功率。 Then determining all of reallocation of the total excess transmit power of the modified all transport channels of the transmission power.

上述步骤可以实现一次或多次。 The above steps may be implemented one or more times. 第一迭代的传输信道集合包括要被分配以发射功率的所有传输信道,且对于每次相继迭代,只包括不在饱和区域内的传输信道。 The first iteration of the transmission channel set includes transmit power to be allocated to all transmission channels, and for each successive iteration, includes only the transmission channels not in the saturation region. 而且,每次相继迭代可用的总发射功率包括在当前迭代内确定的总过量发射功率。 Moreover, each successive iteration of the total available transmit power comprises the total excess transmit power determined in a current iteration.

本发明的各个方面和实施例在以下进一步详述。 DETAILED DESCRIPTION Various aspects and further embodiments of the invention in the following. 本发明还提供实现本发明的各个方面、实施例和特征的方法、处理器、发射机单元、接收机单元、基站、终端、系统和其他装置和元件,如以下将详述。 The present invention further provides implement various aspects of the present invention, embodiments and features of the processor, transmitter units, receiver units, base stations, terminals, systems, and other devices and components, as will be described in detail.

附图的简要描述通过下面提出的结合附图的详细描述,本发明的特征、性质和优点将变得更加明显,附图中相同的符号具有相同的标识,其中:图1是使用功率重新分配在MIMO系统的本征模式间分配总发射功率的处理实施例流程图;图2是使用功率重新分配在多信道通信系统内的传输信道间分配总发射功率的处理实施例流程图;图3是在支持离散数据速率集合的MIMO系统内的本征模式间分配总发射功率的处理实施例流程图;图4A示出频谱效率对有效SNR的两个曲线图。 Brief Description of the following detailed description presented in conjunction with the drawings, features of the invention, the nature and advantages will become more apparent from the drawings the same reference numerals have the same identity, in which: Figure 1 is a power reallocation partitioned between eigenmodes of the MIMO system of a total radiation power flowchart illustrating an example of processing; FIG. 2 is a flow diagram of the use of power redistribution in multi-channel communication system, a transmission channel allocation of the total transmit power processing embodiment; FIG. 3 is Between the MIMO system supports a set of discrete data rates of eigenmode total transmit power allocation process flowchart of the embodiment; Fig. 4A shows the spectral efficiency of the effective SNR of two graphs.

图4B和4C示出支持离散数据速率集合的通信系统的频谱效率对有效SNR的曲线图;图5是用于基于灌水方案将总可用发射功率分配给本征模式集合的处理实施例流程图;图6A和6B用图例示出基于灌水方案将总发射功率分配给本征模式;以及图7是发射机系统和接收机系统的实施例框图;以及详细描述在此描述的用户将发射功率分配/重新分配到传输信道的技术可以用于各种多信道通信系统。 4B and 4C illustrate the spectral efficiency of the communication system supports data rates of a set of discrete effective SNR graph; Fig. 5 is a flowchart illustrating the irrigation program will be based on the total available transmit power is allocated to the processing eigenmode collection embodiment; 6A and 6B with a diagram showing an irrigation program will be based on the total transmit power allocated to eigenmode; and Figure 7 is a block diagram of a transmitter system and a receiver system; and users described herein will be described in detail transmit power allocation / reallocated to transmission channels may be used for various multi-channel communication technology systems. 该种多信道通信系统包括多输入多输出(MIMO)通信系统、正交频分复用(OFDM)通信系统、使用OFDM的MIMO系统(即MIMO-OFDM系统)以及其他。 This kind of multi-channel communication system comprises a multiple-input multiple-output (MIMO) communication systems, orthogonal frequency division multiplexing (OFDM) communication system using a MIMO OFDM system (i.e., MIMO-OFDM systems), and others. 多信道通信系统还可以实现码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)或其他多址技术。 Multi-channel communication systems may also implement code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), or other multiple access techniques. 多址通信系统可以支持多个终端(用户)的进发通信。 Multiple access communication system can support multiple terminals (users) moving traffic. 为了清楚,本发明的一些方面和实施例可以特别为MIMO系统描述,诸如多天线无线通信系统。 For clarity, some aspects and embodiments of the present invention may be described specifically for a MIMO system, such as a multi-antenna wireless communication system.

MIMO系统使用多个(NT)发射天线和多个(NR)接收天线用于数据传输:NT个发射天线和NR个接收天线形成的MIMO信道被分解成NS个独立子信道,其中NS≤min{NT,NR}。 MIMO system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission: MIMO channel NT transmit antennas and NR receive antennas formed is decomposed into NS independent subchannels, wherein NS≤min { NT, NR}. NS个独立信道的每个也被称为MIMO信道的空间子信道(或传输信道)。 Space NS independent channels is also referred to each subchannel MIMO channel (or transmission channel). 空间子信道的数目由MIMO信道的本征模式数确定,该数目接着取决于信道响应矩阵H,该矩阵描述NT个发射和NR个接收天线间的响应。 The number of spatial subchannels is determined by several intrinsic mode channel MIMO, then the number depends on the channel response matrix H, the matrix describes the response of the NT transmit and NR receive antennas.

信道响应矩阵H的元素由独立的高斯随机变量组成,如下:H‾=h1,1h1,2Λh1,NTh2,1h2,2Λh2,NTMMMhNR,1hNR,2ΛhNR,NT,---(1)]]>其中hi,j是第j个发射天线和第i个接收天线间的耦合(即复数增益)。 Elements of the channel response matrix H by an independent Gaussian random variable composition, as follows: H & OverBar; = h1,1h1,2 & Lambda; h1, NTh2,1h2,2 & Lambda; h2, NTMMMhNR, 1hNR, 2 & Lambda; hNR, NT, --- (1 )]]> where hi, j is the coupling (i.e., complex gain) the j-th transmit antenna and the i-th reception antenna. MIMO系统的模型可以被表示为:y=Hx+n, (2)其中y是接收到的向量,即y‾=[y1y2···yNR]T,]]>其中{yi}是第i个接收到的天线上接收到的项,且i∈{1,...,NR};x是发送的向量,即x‾=[x1x2···xNT]T,]]>其中{xj}是第j个发射天线上发送的项,且j∈{1,...,NT};H是MIMO信道的信道响应矩阵;n是带有的平均值为0向量以及Λn=σ2I的协方差矩阵的加性高斯噪声(AWGN),其中0为为零的向量,I是单位矩阵,对角线为1,其余全为零,且σ2是噪声的方差;以及[.]T表示[.]的转置。 Model of the MIMO system may be expressed as: y = Hx + n, (2) where y is the received vector, i.e., y & OverBar; = [y1y2 & CenterDot; & CenterDot; & CenterDot; yNR] T,]]> where {yi} is the first entry received on the i-th received antenna and i∈ {1, ..., NR}; x is a vector of transmission, i.e., x & OverBar; = [x1x2 & CenterDot; & CenterDot; & CenterDot; xNT] T,]]> where {xj} is the entry transmitted from the j-th transmit antenna, and j∈ {1, ..., NT}; H is the channel response matrix for the MIMO channel; n is an average value with a 0 vector, and Λn = σ2I covariance matrix of additive Gaussian noise (AWGN), where 0 is a zero vector, I is a unit matrix, a diagonal, the rest are all zero, and σ2 is the variance of noise; [.] and T [.] transpose.

为了简单化,MIMO信道被假设是平缓衰落的窄带信道。 For simplicity, MIMO channel is assumed to be flat fading narrowband channel. 在该情况下,信道响应矩阵H的元素为标量,且每个发射-接收天线对间的耦合hi,j用单个标量值表示。 In this case, the elements of the channel response matrix H is a scalar, and each emitter - coupled to receive antenna pair between hi, j is represented by a single scalar value. 然而,在此描述的功率分配/重新分配技术可以应用到在不同频率处有不同信道增益的频率选择性信道。 However, the power allocation described herein / reallocation techniques can be applied to a different channel gain in frequency selective channels at different frequencies. 在该种频率选择性信道中,操作带宽可以被分成多个(相等或不等)的频率带,使得每个频带被认为是平缓衰落信道。 In this kind of frequency selective channel, the operating bandwidth may be divided into a plurality of (equal or unequal) frequency bands such that each band is considered to be flat fading channel. 然后可以在总发射功率的分配/重新分配中考虑单个频带的响应。 In response to a single frequency band may then be considered in the allocation of the total transmit power / re-allocation.

由于在传播环境内的散布,从NT个发射天线发送的NT个数据流在接收机处相互干扰。 Since the spread in the propagation environment, NT data transmitted from the NT transmit antennas interfere with each other stream at the receiver. 一种用于消除或减少该种干扰的技术是“对角线化”MIMO信道,使得这些数据流在正交的空间子信道上被有效地发送。 One technique for eliminating or reducing this type of interference is to "diagonalization" MIMO channel such that these data streams are effectively transmitted on orthogonal spatial subchannels. 一种用于对角化MIMO信道的技术是对信道响应矩阵H实行奇异值分解,这可以表示为:H=UDVH, (3)其中U是NRNR的酉矩阵(即UHU=I);D是NRNT矩阵;V是NTNT的酉矩阵;以及″H″表示矩阵的复转置。 A MIMO channel diagonalization technique is the channel response matrix H implement singular value decomposition, which can be expressed as: H = UDVH, (3) where U is a unitary matrix NR NR (ie UHU = I); D is NR NT matrix; V is NT NT unitary matrix; and "H" represents a complex transposed matrix.

矩阵D的对角线项是G=HHH的本征值的平方根,用λi表示,且i∈{1,...,NS},其中NS≤min{NT,NR}是可分辨数据流数目。 Diagonal terms of the matrix D G = HHH is the square root of the eigenvalues, with λi represent and i∈ {1, ..., NS}, which NS≤min {NT, NR} is the number of data streams can be resolved . D的所有非对角线项为零。 All non-diagonal entries of D is zero.

对角线矩阵D因此包含对角线上的非负实数以及其余为零,其中非负实数值为di=λi.]]>di被称为信道响应矩阵H的奇异值。 Diagonal matrix D thus contains non-negative real number and the balance is zero diagonal, wherein the non-negative real values are di = & lambda;. I]]> di is called the singular values of the channel response matrix H. 奇异值分解是领域内已知的矩阵操作,且在各个参考中描述。 Singular value decomposition is a matrix operation known in the art and are described in various references. 一种该参考是Gilbert Strang写的书,题为“Linear Algebra and Its Applications”,第二版,Academic Press,1980,在此引入作为参考。 One such reference is a book written by Gilbert Strang entitled "Linear Algebra and Its Applications", Second Edition, Academic Press, 1980, herein incorporated by reference.

奇异值分解将信道响应矩阵H分解为两个酉矩阵U以及V,和对角矩阵D。 Singular value decomposition of the channel response matrix H is decomposed into two unitary matrices U and V, and the diagonal matrix D. 矩阵D描述MIMO信道的本征模式,这对应空间子信道。 Description of the MIMO channel matrix D eigenmodes, which corresponds to spatial subchannels. 酉矩阵U和V包括用于接收机和发射机相应的“操控”向量,这可以用于对角化MIMO信道。 Unitary matrix U and V comprises a receiver and a transmitter corresponding "control" vector, which can be used to diagonalize the MIMO channel. 尤其是,为了对角化MIMO信道,单个向量s可以左乘矩阵V,且产生的向量x=Vs在MIMO信道上被发送。 In particular, the vector in order to diagonalize the MIMO channel, a single vector s can multiplying matrix V, and the resulting x = Vs is transmitted over the MIMO channel. 在接收端,接收到的向量y=Hx+n可以左乘矩阵UH,以获得恢复的向量r,如下:r‾=U‾HHVs‾+U‾Hn‾]]>=Ds‾+n‾^,---(4)]]>其中 At the receiving end, the received vector y = Hx + n can multiplying matrix UH, to obtain the recovery of the vector r, as follows: r & OverBar; = U & OverBar; HHVs & OverBar; + U & OverBar; Hn & OverBar;]]> = Ds & OverBar; + n & OverBar; ^ , --- (4)]]> where 是n的简单旋转,导致带有与n相同的平均值向量和协方差矩阵的加性高斯白噪声。 N is a simple rotation, resulting in additive white Gaussian noise with the same average of n vectors and covariance matrices.

如等式(4)示出,单个向量s左乘矩阵V以及接收到的向量y左乘矩阵UH导致有效对角信道D,这是单个向量s以及恢复的向量r间的传递函数。 As shown in equation (4) shows, a single vector multiplying matrix V s of the received vector y, and multiplying the matrix UH results in an effective diagonal channel D, which is the transfer function of a single vector and the restoration vector r s between. 作为结果,MIMO信道被分解成NS个独立、不干扰、正交并行的信道。 As a result, MIMO channel is decomposed into NS independent, non-interfering, orthogonal to the parallel channels. 这些独立信道被称为MIMO信道的空间子信道。 These independent space channel is called MIMO channel subchannels. 空间子信道i或本征模式i的增益等于本征值λi,其中i∈I,且集合I被定义为I∈{1,...,NS}。 Spatial subchannel i or eigenmode i is equal to the gain of the eigenvalues λi, wherein i∈I, and set I is defined as I∈ {1, ..., NS}. 如果发射机被提供了信道响应矩阵H的估计,则可以实现为了获得NS个正交空间子信道的MIMO信道的对角化。 If the transmitter is provided a channel response estimation matrix H, you can achieve in order to obtain orthogonal spatial subchannels NS MIMO channel diagonalization.

在一般MIMO系统中,可以在NT个发射天线的每个之上施加峰值发射功率Pmax。 In the general MIMO system, a peak transmit power of Pmax may be applied in each of the NT transmit antennas on. 在该情况下,发射机处所有NT个发射天线可用的总发射功率Ptot可以表示为:Ptot=NT··Pmax---(5)]]>总发射功率Ptot可以基于各个方案被分配给NS个非零的本征模式(即空间子信道)。 In this case, at the transmitter for all NT transmit antennas are available total transmit power Ptot can be expressed as: Ptot = NT & CenterDot; & CenterDot; Pmax --- (5)]]> Ptot total transmit power may be allocated to each program based on NS non-zero eigenmodes (i.e., spatial subchannel). 如果目标是要最大化容量(即频谱效率),则总发射功率Ptot可以通过“灌水”方案被分配给空间子信道。 If the goal is to maximize the capacity (ie, spectral efficiency), the total transmit power Ptot can "irrigation" is assigned to the space program subchannels.

灌水技术类似于将固定量的水灌入有不规则底部的容器,其中每个频率区段的每个本征模式对应容器底部的一个点,且在任何给定点的底部高度对应与该本征模式相关的信噪比(SNR)的倒数。 Irrigation technology is similar to a fixed amount of water poured into the container has an irregular bottom, where each eigenmode corresponds to a frequency range of each point of the container bottom, and the bottom at any given point corresponds to the height of the intrinsic patterns related to noise ratio (SNR) of the countdown. 较低的高度因此对应高SNR,相反较高的高度对应低SNR。 Lower height and is associated with a high SNR, the higher the height corresponding to the opposite lower SNR. 总可用发射功率Ptot然后被“注入”该容器,使得容器内的较低点(即较高SNR)首先被注入,然后注入较高点(即较低SNR)。 Total available transmit power Ptot then "injected" the container so that the lower point in the container (ie, higher SNR) is first injected, and then injected into a high point (ie lower SNR). 发射功率分布取决于总发射功率Ptot以及容器在底部上的深度。 Transmit power distribution depending on the depth and the total transmit power Ptot on the bottom of the container. 在所有的总发射功率已被注入后容量的水平面在容器的所有点上是常数。 In all of the total transmit power has been injected after the capacity level at all points of the container is constant. 在水面高度以上的点未经注入(即本征模式的SNR低于一特定阀值的不用)。 Point height above the water without injection (ie, eigenmode SNR is below a certain threshold do not). 灌水技术由Robert G.Gallager在“information Theory and Reliable Communication”内描述,John Wileyand Sons,1968,在此引入作为参考。 Irrigation technology in the "information Theory and Reliable Communication" described by Robert G.Gallager, John Wileyand Sons, 1968, hereby incorporated by reference.

容量被定义为信息以任意低的差错概率被传递的最高频谱效率,且一般单位为每Hz每秒比特(bps/Hz)。 Capacity is defined as the highest spectral efficiency information to arbitrarily low probability of error is transmitted, and the generic units of bits per second per Hz (bps / Hz). 一个SNR为γ的高斯信道容量可以表示为:C=log2(1+γ) (6)对于带有有限总发射功率Ptot的MIMO系统,灌水方案可以最优地将总发射功率分配给NS个空间子信道,以获得该容量。 A SNR of γ Gaussian channel capacity can be expressed as: C = log2 (1 + γ) (6) For a MIMO system with limited total transmit power Ptot, the irrigation solution can optimally allocate the total transmit power to the NS spatial subchannel, to obtain the capacity. 灌水方案将总发射功率Ptot在本征模式上分布,其方式使得带有最低噪声方差的本征模式(即最高SNR)接收到最大部分的总功率。 Irrigation program will be the total transmit power Ptot distributed on eigenmode such a way that the eigenmode with the lowest noise variance (i.e., the highest SNR) receives the greatest portion of the total power. 灌水方案中分配给本征模式i的功率量用Pi表示,i∈I,其中Ptot=Σi∈IPi---(7)]]>基于本征模式i分配的发射功率Pi,i∈I,本征模式i的有效SNRγi可以表示为:γi=Pi·λiσ2,---(8)]]>其中γi是本征模式i的本征值,且σ2是MIMO信道的噪声方差。 Irrigation scheme allocated to eigenmode i is the amount of power indicated by Pi, i∈I, where Ptot = & Sigma; i & Element; IPi --- (7)]]> Based on eigenmode i allocated transmit power Pi, i∈ I, the effective SNRγi eigenmode i can be expressed as: & gamma; i = Pi & CenterDot; & lambda; i & sigma; 2, --- (8)]]> where γi is the eigenmode i eigenvalue, and σ2 is the MIMO noise variance of the channel. NS个空间子信道的容量可以表示为:C=Σi=1Nslog2(1+γi)---(9)]]>每个本征模式的频谱效率可以基于SNR的特定单调增量函数而经确定。 NS spatial subchannels capacity can be expressed as: C = & Sigma; i = 1Nslog2 (1 + & gamma; i) --- (9)]]> spectral efficiency of each eigenmode may be based on a particular monotonically incremental SNR of function and has been determined. 用于频谱效率的一个函数是等式(6)内示出的容量函数。 A function used for spectral efficiency is the equation (6) shows the capacity function. 在该情况下,本征模式i的频谱效率ρi可以被表示为:ρi=log2(1+γi) (10)图4A示出频谱效率对SNR的两个曲线图。 In this case, the spectral efficiency of ρi eigenmode i may be expressed as: ρi = log2 (1 + γi) (10) Figure 4A shows the spectral efficiency of the SNR of the two graphs. 图412示出基于等式(10)计算的频谱效率随着SNR对数地增加。 Figure 412 shows an equation based on (10) spectral efficiency calculated as the SNR increases the number of places. 等式(10)假设SNR的增长导致逐渐变高的频谱效率。 Equation (10) leads to SNR assuming growth gradually increases spectral efficiency. 然而,在实际的通信系统中,可能有频谱效率的上限,这可以例如由系统对任何给定数据流支持的最大数据速率决定。 However, in an actual communication system, there may be an upper limit of the spectral efficiency, which can be determined, for example by the system for any given data stream to support the maximum data rate. 曲线414示出在较低SNR处频谱效率对数地增加且在ρsat处饱和,ρsat是频谱效率的上限。 Curve 414 shows the spectral efficiency at low SNR and saturation increases logarithmically ρsat place, ρsat is the upper limit of spectral efficiency. 当SNR的增加不再引起频谱效率的增加,发生饱和。 When the increase in SNR no longer cause an increase in spectral efficiency, saturation occurs. 频谱效率饱和时的SNR用γsat表示(即γsatρsat)。 SNR saturation spectral efficiency when using γsat representation (ie γsatρsat).

取决于总发射功率Ptot,本征值γi以及噪声方差σ2,灌水方案的总发射功率分配会导致一些本征模式在饱和区操作(即γi>γsat)以及剩余的本征模式在该区以下操作(即γi≤γsat)。 Depends on the total transmit power Ptot, the intrinsic value of γi and total transmit power distribution noise variance σ2, irrigation schemes will lead to some intrinsic mode operation in the saturation region (ie γi> γsat) as well as the rest of the eigenmodes in the area following (ie γi≤γsat). 如果一本征模式被分配以多于获得要求的SNR需要的发射功率时被认为在饱和区操作,如果目标是为了获得最大可能频谱效率ρsat,则该要求的SNR为γsat。 If an eigen mode is assigned to more than required to obtain the desired transmit power SNR is considered operating in the saturation region, if the goal is to obtain the highest possible spectral efficiency ρsat, the required SNR for γsat. 虽然过量发射功率增加了本征模式的有效SNR,这然后会降低帧差错率(FER),但该类型的性能改善不重要,因为系统已经在目标FER处操作,或在很低的FER处操作。 Although the excess transmit power increases the effective SNR eigenmode, which would then reduce the frame error rate (FER), but this type of improvement in performance is not important, because the system is already operating at the target FER or at very low operating at FER . 在该情况下,使得有效SNR在要求的SNR以上的过量发射功率没有被有效地使用。 In this case, so that the effective SNR not be effectively used in the SNR requirement of the excess transmit power above. 可以通过利用这些过量发射功率以增加总系统频谱效率而改善系统性能。 By utilizing this excess transmit power to increase the overall system spectral efficiency and improving system performance.

同样地,在功率控制的MIMO系统中,对于每个本征模式,在接收机处允许的SNR(即上述的有效SNR)有上限,这可以表示为γsat。 Similarly, power control in a MIMO system, for each eigenmode, at the receiver allows the SNR (i.e., above the effective SNR) has an upper limit, which can be expressed as γsat. 在该情况下,如果分配给给定本征模式的发射功率导致有效SNR大于γsat,则将SNR增长到γsat以上的过量发射功率不能用在该本征模式中,由于对SNR施加了上限。 In this case, if assigned to the final version of eigenmode transmission power results in an effective SNR greater than γsat, then the SNR increased to more than γsat excess transmit power can not be used in the eigen mode, since an upper limit is applied to the SNR. 该过量发射功率可以更佳地分布在其他在γsat以下操作的其他本征模式上。 The excess transmit power can be better distributed on the other the following operations in γsat other eigenmodes.

本发明的一个方面提供将总发射功率分配/重新分配到本征模式,以获得更高的总系统频谱效率以及/或其他好处。 One aspect of the invention provides the total transmit power allocation / reallocation to eigenmode to obtain higher overall system spectral efficiency and / or other benefits. 总发射功率可以在开始时基于特定功率分配方案被分配给本征模式。 The total transmit power may be based on a particular power allocation scheme are allocated to the eigenmodes in the beginning. 初始分配会导致分配给需要获得要求的SNR(即支持饱和频谱效率ρsat需要的γsat)的一些本征模式更多的功率,这会导致这些本征模式在饱和区域内操作。 The initial allocation may result in the need to obtain a desired distribution of SNR (i.e. support γsat saturation spectral efficiency ρsat needed) for some eigenmodes more power, which causes these eigenmodes operating in the saturation region. 在该情况下,在此描述的技术较好地将饱和区内操作的本征模式的过量发射功率重新分配给其他在饱和区以下操作的本征模式。 In this case, the excess transmit power technique described herein is preferably in the saturated region operation eigenmode reallocated to other eigenmodes operated below the saturation region. 这样,“较差”的传输信道可以获得更高的频谱效率,而不牺牲“较佳”的传输信道的性能。 Thus, "bad" transmission channels can achieve higher spectral efficiency without sacrificing "better" performance of the transmission channel.

图1是用于在MIMO系统内的本征模式间分配总发射功率的处理100的实施例流程图。 Among eigenmodes 1 is used in the MIMO system allocate the total transmit power of the embodiment of a process flowchart 100. 该过程开始时基于特定功率分配方案(例如灌水方案)将总发射功率Ptot分配给NS个本征模式。 The process begins when based on a particular power allocation scheme (eg irrigation scheme) will be allocated to the total transmit power Ptot NS eigenmodes. 如果任何本征模式被分配以比获得要求的SNR需要的更多的发射功率(即工作在饱和区),则确定这些本征模式的总过量发射功率并被重新分配给其他的本征模式。 If any of the eigenmodes is allocated to obtain the desired ratio SNR needs more transmit power (i.e., operate in the saturation region), it is determined that the total excess transmit power of eigenmodes of these and re-allocated to other eigenmodes. 由于总过量发射功率的重新分配会导致一些其他的本征模式在饱和区内操作,则可以实行(或迭代)一次或多次直到(1)没有过量发射功率可用于重新分配,或(2)所有的本征模式都在饱和区。 Since the total excess transmit power reallocation will result in some other eigenmodes in the saturation region operation, may be implemented (or iteration) one or more times until (1) no excess transmit power is available for reallocation, or (2) all eigenmodes are in the saturation region.

开始时,变量n用于表示迭代次数,n在步骤112处为第一次迭代初始化为一(即n=1)。 Initially, the variable n used to denote the iteration number, n for the first iteration initialization at step 112 is one (i.e., n = 1). 在步骤114定义该次迭代的要被分配以发射功率的所有本征模式集合I(n)。 Transmit power is allocated to all of the set of eigenmodes I (n) is defined in step 114 of the iteration to be in. 对于第一次迭代,总发射功率分配中考虑所有的NS个本征模式,且I(n)∈{1,...,NS}。 For the first iteration, the total transmit power allocation in consideration of all of the NS eigenmodes, and I (n) ∈ {1, ..., NS}. 且对于以后的迭代,只在总剩余发射功率分配中考虑饱和区以下工作的本征模式,且集合I(n)会包括少于NS个本征模式或甚至可以为空集。 And for a subsequent iteration, only consider the total remaining transmit power allocation in the eigenmodes operating below the saturation region, and set I (n) would include less than NS eigenmodes or may even be an empty set.

如果集合I(n)为空,如在步骤116确定的,这指明没有本征模式在饱和区以下操作,则不能分配更多的发射功率,过程终止。 If the set I (n) is empty, as determined at step 116, this indicates that no eigenmodes in the saturation region the following operations can not allocate more transmission power, the process is terminated. 否则,如果集合I(n)不为空,则在步骤118确定可用于该次迭代的总发射功率Ptot(n)。 Otherwise, if set I (n) is not empty, it is determined at step 118 may be used for this iteration of the total transmit power Ptot (n). 对于第一次迭代,可用于所有NT个发射天线的总发射功率Ptot(n)可以如等式(5)示出的被确定。 For the first iteration, available for all NT transmit antennas of the total transmit power Ptot (n) may be as shown in equation (5) shown is determined. 这假设每个发射天线会在峰值发射功率Pmax处操作。 This assumes that each transmit antenna will operate at peak transmit power Pmax. 且对于每次接着的迭代,该次迭代可用的总发射功率Ptot(n)可以如下确定。 And for each subsequent iteration, the iteration of the total available transmit power Ptot (n) can be determined as follows.

然后在步骤120基于选定的功率分配方案将总可用发射功率Ptot(n)分配给集合I(n)内的本征模式。 Then, in step 120 based on the selected power allocation scheme eigenmode total available transmit power Ptot (n) is assigned to the set I (n) inside. 各种方案可以应用于功率分配,诸如例如灌水方案、将等量的发射功率分配给所有的本征模式的均匀分配方案以及可能的其他方案。 Various power allocation schemes may be applied, such as for example irrigation programs, the equal amount of transmit power allocated to a uniform allocation scheme all eigenmodes and other programs possible. 发射功率还可以基于考虑其他因子的方案被分配,这些因子诸如例如公平性、一个或多个系统和/或终端度量等。 Transmit power may also be allocated based on the consideration of other factors of the program, these factors such as e.g. fairness, one or more systems and / or terminal metrics like.

在一实施例中,灌水方案用于将总可用发射功率Ptot(n)分配给集合I(n)内的本征模式。 In one embodiment, the irrigation program will be used for the eigenmode total available transmit power Ptot (n) assigned to the set I (n) within. 灌水过程的结果是特定的分配给集合I(n)内的每个本征模式的发射功率Pi(n),i∈I(n)。 Results irrigation process is a specific transmit power allocated to the set I (n) within each eigenmode Pi (n), i∈I (n). 功率分配取决于总可用发射功率Ptot(n)以及集合I(n)内的本征模式的本征值λi。 Power distribution depends on the total available transmit power Ptot (n) and the eigenvalues λi set I (n) within the eigenmode. 集合I(n)内的每个本征模式的有效SNR可以被确定为:γi(n)=Pi(n)·λiσ2,]]>对于i∈I(n) (11)然后在步骤122确定集合I(n)内是否有任何本征模式工作在给于其被分配的发射功率的饱和区。 Effective SNR set I (n) within each eigenmode may be determined as: & gamma; i (n) = Pi (n) & CenterDot; & lambda; i & sigma; 2,]]> For i∈I (n) ( 11) Then 122 determines whether the set I (n) within any given eigenmode in its allocated transmit power of the saturated zone in step. 这可以通过将为每个本征模式确定的有效SNRγi(n)与饱和SNRγsat比较而实现。 This can be done effectively SNRγi (n) will be determined for each eigenmode relatively saturated SNRγsat achieved. I(n)内的每个本征模式,如果其γi(n)大于γsat,则被认为在饱和区操作,且被放入临时集合J,使得γj(n)>γsat,j∈J。 Each eigenmode (n) within the I, if it γi (n) is greater than γsat, is considered to operate in the saturation region, and is placed in a temporary set J, such that γj (n)> γsat, j∈J. 如果集合I(n)内没有任何本征模式在饱和区,这用空集合J表示,则没有过量发射功率要重新分配,过程终止。 If the set I (n) within no eigenmodes in the saturation region, which indicated by an empty set J, then there is no excess transmit power to reallocate, the process is terminated. 否则,如果集合J包括至少一个本征模式,则集合J内的所有本征模式的过量发射功率被确定且被分配给不在饱和区内的其他本征模式,如果有的话。 Otherwise, if set J includes at least one eigenmode, then the excess transmit power of all the set of eigenmode within J is determined and is allocated to other eigenmodes not in the saturation region, if any.

在步骤124处,重新分配过量发射功率的下一迭代开始于将变量n增量1(即n=n+1)。 At step 124, the next iteration to reallocate the excess transmit power begins to increment the variable n 1 (i.e., n = n + 1). 在步骤126,饱和区内的每个本征模式被包括在集合J内,被分配以获得需要的SNR(即γsat)要求的最小发射功率量。 In step 126, each eigenmode saturated region is included within the set J, is assigned to obtain the minimum amount of transmit power required SNR (i.e. γsat) requirements. 该发射功率可以被确定为:Pj(n)=γsat·σ2λj,]]>对于j∈J (12)在步骤128处确定分配给集合J内的每个本征模式的获得其要求的SNR的最小功率。 The transmit power can be determined as: Pj (n) = & gamma; sat & CenterDot; & sigma; 2 & lambda; j,]]> For j∈J (12) determines the allocation at step 128 to each set of eigenmode J within the its minimum power required to obtain the SNR. 总过量发射功率然后可以被确定为:ΔP(n)=Σj∈J(Pj(n-1)-Pj(n))---(13)]]>该总过量发射功率ΔP(n)可以被重新分配给仍在饱和区以下操作的本征模式。 The total excess transmit power may then be determined as: & Delta; P (n) = & Sigma; j & Element; J (Pj (n-1) -Pj (n)) --- (13)]]> This total excess transmit power ΔP (n) can be reallocated to eigenmodes operated below the saturation region are still. 该过程然后回到步骤114。 The process then returns to step 114.

对于第二次迭代,在步骤114定义在该迭代内要被分配以发射功率的本征模式集合I(n)。 For the second iteration, the step 114 is defined in the iteration in the transmission power to be allocated to the set of eigenmodes I (n). 集合I(n)可以通过从先前迭代定义的I(n-1)中去除集合J内的本征模式而被定义(即先前在饱和区内的本征模式)。 Set I (n) by (n-1) removing the set J eigenmode within the definition of I from the previous iteration is defined (i.e., eigenmodes previously saturated region). 当前迭代的集合I(n)因此只包括当前不处于饱和的本征模式。 Current iteration set I (n) and therefore not only includes the current in a saturated eigenmode. 如果新集合I(n)为空,如步骤116确定的,则所有的本征模式在饱和区内操作,不需要进一步的发射功率重新分配,且过程终止。 If the new set I (n) is empty, as determined in step 116, then all eigenmodes in the saturation region operation, no further reallocation of transmit power, and the process terminates. 否则,如果新集合I(n)不为空,则当前迭代可用的总发射功率Ptot(n)可以被确定为:Ptot(n)=Σi∈I(n)Pi(n)+ΔP(n)---(14)]]>在步骤120,当前迭代可用的总发射功率Ptot(n)然后基于选定的功率分配方案被分配给新集合I(n)内的本征模式。 Otherwise, if the new set I (n) is not empty, then the current iteration of the total available transmit power Ptot (n) can be determined as: Ptot (n) = & Sigma; i & Element; I (n) Pi (n) + & Delta; P (n) --- (14)]]> eigenmode in step 120, the current iteration of the total available transmit power Ptot (n) and then based on the selected power allocation scheme is assigned to the new set I (n) within the .

图1内示出的过程进行到直到(1)所有的过量发射功率都被重新分配给了不在饱和区内的本征模式(如在步骤122确定的,这可以发生在较低SNR操作环境内)或(2)所有的本征模式都在饱和区内(如步骤116确定的,这可能发生在高SNR操作环境中)。 Figure 1 illustrates the process proceeds to until (1) all of the excess transmit power has been reallocated to the eigenmodes not in the saturation region (as determined at step 122, which may occur in the low SNR operating environment) or (2) all eigenmodes are in the saturation region (as determined in step 116, which may occur at high SNR operating environment).

在上述描述中,假设频谱效率是有效SRN的严格增量函数,如等式(10)示出。 In the above description, it is assumed incremental spectral efficiency is strictly a function of the effective SRN, as shown in equation (10) is shown. 如果频谱效率是有效SNR的非线性函数,也能使用在此描述的发射功率分配/重新分配技术。 If the spectral efficiency is a nonlinear function of the effective SNR, can be used in the transmit power allocation described herein / reallocation techniques. 在该情况下,当将可用发射功率分配/重新分配到本征模式时,考虑非线性。 In this case, when the available transmit power allocation / reallocation into intrinsic mode, nonlinear.

如上所述,在此描述的发射功率分配/重新分配技术还可以用于无线通信系统中的功率控制。 As described above, the transmission power described herein allocation / reallocation techniques may also be used in a wireless communication system power control. 每个本征模式与特定设定点相关联,该设定点是为了获得期望的性能需要的目标SNR。 Each eigenmode is associated with a particular set point, the set point is needed in order to obtain a desired performance target SNR. 对于NS个本征模式可以使用相同或不同的设定点。 For the NS eigenmodes can use the same or a different set point. 总发射功率可以被分配给本征模式,使得对于这些本征模式达到设定点。 The total transmit power may be allocated to eigenmode, so that for these eigenmodes set point is reached. 图1内示出的处理还可以用于将发射功率重新分配给本征模式,其中需要的SNR现在不是γsat,而是设定点。 Processing shown in FIG. 1 can also be used to reallocate transmit power to the eigenmodes, where the required SNR is not the γsat, but the set point. 确定特定本征模式是否在饱和区操作因此可以取决于与该本征模式相关的特定设定点(取代公共的SNR,诸如γsat)。 Determining a particular eigenmode is operating in the saturation region can be dependent on the specific setpoint associated with that eigenmode (substituted common SNR, such as γsat).

在此描述的发射功率分配/重新分配技术还可以用于其他多信道通信系统,诸如OFDM系统、MIMO-OFDM系统等。 Transmit power described herein allocation / reallocation techniques may also be used for other multi-channel communication systems such as OFDM systems, MIMO-OFDM systems.

OFDM有效地将系统带宽分成多(NF)个频率子信道,这通常被称为频率区段或子频带。 OFDM to effectively partition the system bandwidth into multiple (NF) frequency subchannels, which are usually referred to as segments or sub-band frequency. 每个频率子信道与相应的子载波(或频调)相关联,数据在该载波上被调制。 Each frequency subchannel and corresponding sub-carriers (or tones) are associated, the data is modulated on the carrier. 在每个时隙处,调制码元可以在NF个频率子信道的每个之上被发送,其中时隙是指一特定时间间隔,它取决于频率子信道的带宽。 In each time slot, the modulated symbols may be sent in the NF frequency subchannels of each above, wherein the slot means that a specific time interval, which depends on the bandwidth of the frequency subchannel. 对于OFDM系统,每个频率子信道可以被称为传输信道,对于OFDM系统有NC=NF个传输信道。 For OFDM system, each frequency subchannel may be referred to a transmission channel, the OFDM system has NC = NF transmission channels.

OFDM系统的频率子信道可以经历频率选择性衰落(即不同的频率子信道不同的衰减量)。 Frequency subchannels OFDM system may experience frequency selective fading (i.e., different amounts of attenuation of different frequency subchannels). 频率子信道的特定响应取决于发射和接收天线间的传播路径特征(例如衰落和多径效应)。 Specific frequency response characteristics of the propagation path depends on subchannels (such as fading and multipath effects) between transmitting and receiving antennas. 因此,对于给定发射功率量可以为不同的频率子信道获得不同的有效SNR。 Thus, for a given amount of transmit power can obtain different subchannels effective SNR for different frequencies. 在该情况下,总发射功率可以以类似于上述对于本征模式描述的方式被分配给NF个频率子信道。 In this case, the total transmit power may be similar to the above described manner for the eigenmodes is allocated to the NF frequency subchannels.

MIMO-OFDM系统包括每个NS本征模式NF个频率子信道。 MIMO-OFDM system comprising for each eigenmode NS NF frequency subchannels. 每个本征模式的每个频率子信道被称为传输信道,且对于MIMO-OFDM系统有NC=NFNS个传输信道。 Each frequency subchannel of each eigenmode is called a transport channel, and for MIMO-OFDM systems have NC = NF NS transmission channels. MIMO-OFDM系统内的每个本征模式的频率子信道类似地经历不同的信道条件,且对于给定的发射功率量获得不同的SNR。 MIMO-OFDM system for each eigenmode frequency subchannels similarly experience different channel conditions, and for a given amount of transmit power to achieve different SNR. 在该情况下,总发射功率可以被分配给NC个传输信道,类似于以上对本征模式描述的方式。 In this case, the total transmit power can be allocated to the NC transmission channels, similar to the manner described above eigenmode.

图2是多信道通信系统中用于将总发射功率分配到NC个传输信道的处理2O0实施例流图。 Figure 2 is a process flow diagram 2O0 embodiment for multi-channel communication system total transmit power allocated to the NC transmission channels of. 处理200可以用于任何多信道通信系统,包括MIMO系统、OFDM系统、MIMO-OFDM系统等。 Process 200 can be used for any multi-channel communication systems, including MIMO systems, OFDM systems, MIMO-OFDM systems. 处理200开始时将总发射功率Ptot基于特定功率分配方案(例如灌水方案)分配给NC个传输信道。 Process 200 begins when the total transmit power Ptot assigned to NC transmission channels based on a particular power allocation scheme (e.g., irrigation programs). 如果任何传输信道被分配以多于获得要求的SNR需要的发射功率(即操作在饱和区),则确定这些传输信道的总过量发射功率,并将其重新分配给其他传输信道。 If any of the transmission channel is assigned to more than required to obtain the required SNR transmit power (i.e., operating in the saturation region), it is determined that the total excess transmit power of the transmission channel, and re-assigned to other transmission channels. 同样,发射功率分配可以被实现(或迭代)一次或多次,直到(1)没有过量发射功率可用于重新分配,或(2)所有的传输信道在饱和区。 Similarly, the transmit power allocation may be implemented (or iteration) one or more times until (1) no excess transmit power is available for reallocation, or (2) all transmission channels in the saturation region.

开始时,变量n用于表示迭代次数,n在步骤212处为第一次迭代初始化为一(即n=1)。 Initially, the variable n used to denote the iteration number, n for the first iteration initialization at step 212 is one (i.e., n = 1). 在步骤214定义该次迭代的要被分配以发射功率的所有传输信道集合I(n)。 In step 214, the definition of the iteration is to be allocated to transmit the transmission power of all channels set I (n). 对于第一次迭代,总发射功率分配中考虑所有的NC个传输信道,且I(n)∈{1,...,NC},其中对于MIMO系统NC=NS,对于OFDM系统NC=NF,对于MIMO-OFDM系统NC=NFNS。 For the first iteration, the total transmit power allocation in consideration of all NC transmission channels, and I (n) ∈ {1, ..., NC}, where for MIMO systems NC = NS, for OFDM Systems NC = NF, For MIMO-OFDM systems NC = NF NS. 且对于随后的每个迭代,只在总剩余发射功率分配中考虑饱和区以下操作的传输信道。 And for each subsequent iteration, only consider the transmission channel in the saturation region following total remaining transmit power allocation. 集合I(n)会包括少于NC个本征模式或甚至可以为空集。 Set I (n) would include fewer than NC eigenmodes or even to the empty set.

如果集合I(n)为空,如在步骤216确定的,这指明没有传输信道在饱和区以下操作,对该区域可重新分配更多的发射功率,则过程终止。 If the set I (n) is empty, as determined at step 216, this indicates that no transmission channel in the saturation region the following operations, the region may be re-allocate more transmission power, then the process terminates. 否则,在步骤218确定可用于该次迭代的用于分配的总发射功率Ptot(n)。 Otherwise, it is determined at step 218 that the iteration may be used for allocating the total transmit power Ptot (n). 然后在步骤220基于选定的功率分配方案将总可用发射功率Ptot(n)分配给集合I(n)内的传输信道。 Then, in step 220 based on the selected power allocation scheme the total available transmission channel transmit power Ptot (n) is assigned to the set I (n) inside.

然后在步骤222确定集合I(n)内是否有任何传输信道给定其被分配的发射功率处于饱和区。 222 then determines whether the set I (n) within any given transmission channel which is allocated transmission power in the saturation zone in step. 这可以通过将为每个传输信道确定的有效SNR γi(n)与该传输信道应用的设定点比较而实现。 This can be effective SNR γi (n) determined for each transport channel compares the setpoint to achieve a transmission channel applications. 取决于系统设计,一个设定点可以用于(1)所有传输信道,(2)每个发射天线或每个频率子信道,(3)每个传输信道,或(4)每个传输信道组。 Depending on the system design, one setpoint may be used for (1) all transmission channels, (2) each transmit antenna or each frequency subchannel, (3) each transmission channel, or (4) for each transmission channel group . 其有效SNR大于应用的设定点的每个传输信道被认为在饱和区操作,且被放入集合J。 Its effective SNR is greater than the set point applied to each transport channel is considered to operate in the saturation region, and is placed in a collection J. 如果没有任何传输信道在饱和区,这用空集合J表示,则没有过量发射功率要重新分配,则过程终止。 If no transmission channel in the saturation region, which indicated by an empty set J, then there is no excess transmit power to reallocate, then the process terminates. 否则,如果集合J包括至少一个传输信道,则集合J内的所有传输信道的过量发射功率被确定且被分配给不在饱和区内的其他传输信道,如果有任何当前不在饱和区内操作的其他传输信道。 Otherwise, if set J includes at least one transmission channel, the set of the excess transmit power of all transmission channels J inside is determined and is allocated to not the saturated region of the other transmission channels, if any are not currently in the saturated region operation of other transmission channel.

在步骤224处,重新分配过量发射功率的下一迭代开始于将变量n增量1(即n=n+1)。 At step 224, the next iteration to reallocate the excess transmit power begins to increment the variable n 1 (i.e., n = n + 1). 在步骤226,饱和区内的每个传输信道被分配以获得可应用的设定点需要的最小发射功率量。 In step 226, each transport channel is assigned a saturated region in order to obtain the minimum amount of transmit power can be applied to set the required points. 在步骤228处确定分配给集合J内的每个传输信道获得其要求的SNR的最小功率而节省的发射功率。 Is determined in step 228 is assigned to each transport channel within the set of J obtained SNR minimum power requirements and saving its transmit power. 总过量发射功率然后可以被重新分配给仍在饱和区以下操作的传输信道。 The total excess transmit power may then be reallocated to transmission channels are still operated below the saturation region. 该过程然后回到步骤214。 The process then returns to step 214.

对于第二次迭代,在步骤214定义在该迭代内被分配以发射功率的传输信道集合I(n)以只包括那些当前不在饱和区内的传输信道。 For the second iteration, step 214 defined in the iteration is allocated to transmit the transmission power of the channel set I (n) to include only those that are not currently in the saturated region of the transmission channel. 如果新集合I(n)为空,如步骤216确定的,则所有的传输信道在饱和区内操作,不需要进一步的发射功率重新分配,且过程终止。 If the new set I (n) is empty, as determined at step 216, then all transmission channels operating in the saturated region, no further reallocation of transmit power, and the process terminates. 否则,如果新集合I(n)不为空,则在步骤218,确定当前迭代可用的总发射功率Ptot(n),且然后在步骤220基于选定的功率分配方案被分配给新集合I(n)内的传输信道。 Otherwise, if the new set I (n) is not empty, then in step 218, determines whether the current iteration of the total available transmit power Ptot (n), and then in step 220 based on the selected power allocation scheme is assigned to the new set I ( transmission channel n) within.

图2内示出的过程进行到直到(1)所有的过量发射功率都被重新分配给了不在饱和区内的传输信道(如在步骤222确定的)或(2)所有的传输信道都在饱和区内(如步骤216确定的)。 Figure 2 illustrates the process proceeds to until (1) all of the excess transmit power has been reallocated to the transmission channels not in the saturation region (e.g. 222 determines in step a) or (2) all transmission channels are in the saturation region within (e.g. determined at step 216).

对于MIMO-OFDM系统,在每次迭代中可以考虑所有的传输信道(即对于空间和频率维)进行功率分配。 For the MIMO-OFDM system, each iteration can be considered for all transport channels (i.e., for the spatial and frequency dimensions) for power distribution. 或者,可以实现功率分配,使得在任何给定时间只考虑一维。 Alternatively, the power distribution can be achieved, so that at any given time only consider one-dimensional. 例如,可以在每发射天线的基础上实现功率分配,其中每个发射天线的总发射功率Pmax可以被分配给该发射天线的频率子信道。 For example, may be implemented on a per transmit antenna on the power distribution, in which the total transmitting power Pmax for each transmit antenna may be allocated to the frequency subchannels of the transmit antenna.

在此描述的技术还可以用于将发射功率分配/重新分配到传输信道组。 Techniques described herein may also be used to transmit power allocation / reallocation to the groups of transport channels. 每个组可以包括任何数量的传输信道,且可以与相关的设定点相关联。 Each group may include any number of transmission channels, and may be associated with the set-point is associated. 每个组可以包括例如用于独立数据流的传输信道,该数据流可以与特定的数据速率以及特定的编码和调制方案相关。 Each group may include, for example an independent data transmission channel stream, the data stream may be associated with a particular data rate and a particular coding and modulation scheme. 对于多址通信系统,每个组可以与分配给不同接收机的传输信道相关联。 For multiple-access communication system, each group may be assigned different transmission channels associated to the receiver.

在以上对MIMO系统的描述中,使用奇异值分解用于对角化MIMO信道。 In the above description of the MIMO system, singular value decomposition is used to diagonalize the MIMO channel. 在其他实施例中,接收机可以提供用于数据传输的每个传输信道的质量指示。 In other embodiments, the receiver may be provided for indicating the quality of data transmission of each transmission channel. 接收机报告的信息可以是以估计的SNR、支持的数据速率等形式。 Information receiver address may be in the estimated SNR, a supported data rate, etc. form. 发射机然后可以基于报告的信息将发射功率分配给传输信道以获得可用发射功率更佳的利用。 The transmitter can then be based on the information reported by the transmit power allocated to the transmission channel to obtain a better utilization of available transmit power. 例如,如果对于给定传输信道估计的SNR高于获得指定数据速率所需要的,或如果报告的给定传输信道支持的数据速率大于系统的最大数据速率,则可以为该传输信道分配较少的发射功率。 For example, if for a given transport channel estimation SNR is higher than for the specified data rate required, or if the report of a given transmission channel is greater than the data rate supported by the system's maximum data rate, the less that can be transmitted channel assignment transmit power. 分配的特定的发射功率量可以基于报告的信息(例如估计的SNR或支持的数据速率)而经确定。 The specific amount of transmit power allocation may be based on the reported information (e.g., the estimated SNR or supported data rate) which has been determined.

以下描述特定数值示例以说明用于在本征模式间分配/重新分配总发射功率的技术。 The following description of specific numerical examples to illustrate for partitioned between eigenmodes / reallocate the total transmit power of the technique. 对该示例,每个发射天线的峰值发射功率经标准化,使得Pmax=1,且噪声的方差经设定使得在每个接收机处的SNR为γrx=15dB,假设没有其他信道恶化。 This example, the normalized peak transmit power for each transmit antenna, such that Pmax = 1, and the variance of the noise is set so that by each receiver SNR is γrx = 15dB, assuming no other channel deterioration. 这导致噪声方差σ2=10-15/10=0.0316。 This leads to the noise variance σ2 = 10-15 / 10 = 0.0316. 还假设以下参数:NS=NT=NR=4,λ1=2.4,λ2=1.0,λ3=0.4,和λ4=0.2,以及γsat|dB=15dB→γsat=31.62在开始阶段(即图1的n=1),要被分配的本征模式集合被定义为I(1)={1,2,3,4}(步骤114)且总发射功率Ptot(n)=4.1=4(步骤118)。 The following parameters are also assumed: NS = NT = NR = 4, λ1 = 2.4, λ2 = 1.0, λ3 = 0.4, and λ4 = 0.2, and γsat | n dB = 15dB → γsat = 31.62 at the beginning (i.e., FIG. 1 = 1), to be allocated in the set of eigenmodes is defined as I (1) = {1,2,3,4} (step 114) and the total transmit power Ptot (n) = 4.1 = 4 (step 118). 对于第一次迭代,灌水功率分配(步骤120)导致分配给集合I(1)内的本征模式的以下功率:P1(1)=1.06,P2(1)=1.04,P3(1)=0.99,和P4(1)=0.91集合I(1)内的本征模式的有效SNR使用等式(11)经计算,被确定为:γ1(1)=80.25,γ2(1)=32.85,γ3(1)=12.54,和γ4(1)=5.77由于γsat=31.62,可以观察到本征模式1和2在饱和区内操作。 For the first iteration, irrigation power distribution (step 120) is assigned to lead the set I (1) within the eigenmodes of the following power: P1 (1) = 1.06, P2 (1) = 1.04, P3 (1) = 0.99 , and P4 (1) = 0.91 I effective SNR set using equation (1) within the eigenmode (11) is calculated, is determined as: γ1 (1) = 80.25, γ2 (1) = 32.85, γ3 ( 1) = 12.54, and γ4 (1) = 5.77 Since γsat = 31.62, it can be observed eigenmodes 1 and 2 in the saturation region operation. 因此,饱和区内的本征模式集合被定义为J={1,2}。 Thus, eigenmodes saturation region is defined as the set J = {1,2}.

由于集合J不为空(步骤122),实现发射功率重新分配。 Since set J is not empty (step 122), to realize the transmission power re-allocation. 这是通过首先将索引n增量变为n=2(步骤124)。 This is accomplished by first increment index n becomes n = 2 (step 124). 饱和区内的本征模式然后被分配以最小量的发射功率以获得λsat。 Eigenmodes saturation region is then allocated the minimum amount of transmit power to obtain λsat. 集合J内的本征模式1和2的新发射功率可以使用等式(12)被确定(步骤126),如下:P1(2)=31.62×0.03162.4=0.42]]>和P2(2)=31.62×0.03161.0=1.00]]>本征模式1和2的总过量发射功率然后使用等式(13)确定(步骤128),如下:ΔP=(1.06-0.42)+(1.04-1.00)=0.68对于第二次迭代(n=2),重新定义要被分配以发射功率的本征模式I(2)集合(步骤114)以只包括那些当前不在饱和区内的,其中I(2)={3,4}。 Eigenmodes within the set J 1 and 2 may be new transmission power using equation (12) is determined (step 126), as follows: P1 (2) = 31.62 & times; 0.03162.4 = 0.42]]> and P2 (2 ) = 31.62 & times; 0.03161.0 = 1.00]]> eigenmodes 1 and 2 of the total excess transmit power and using equation (13) is determined (step 128), as follows: ΔP = (1.06-0.42) + (1.04- 1.00) = 0.68 for the second iteration (n = 2), to redefine the transmit power to be allocated to the eigenmodes I (2) the set (step 114) to include only those that are not currently in the saturated region, wherein the I ( 2) = {3,4}. 可用于该次迭代的总发射功率然后使用等式(14)经确定(步骤118),如下:Ptot(2)=0.99+0.91+0.68=2.58总可用发射功率Ptot(2)然后被分配给I(2)内的本征模式。 The total transmit power may be used for this iteration is then used in equation (14) has been determined (step 118), as follows: Ptot (2) = 0.99 + 0.91 + 0.68 = 2.58 The total available transmit power is Ptot (2) is then assigned to the I eigenmodes (2) inside. 对于第二次迭代,灌水功率分配(步骤120)导致分配给集合I(2)内的本征模式以下功率:P3(2)=1.33和P4(2)=1.25本征模式3和4的有效SNR可以被确定为:γ3(2)=16.84和γ4(2)=7.92由于λsat=31.62,则可以观察到没有本征模式在饱和区操作,则发射功率分配过程终止。 For the second iteration, irrigation power distribution (step 120) is assigned to lead the set I eigenmode (2) within the following power: P3 (2) = 1.33 and P4 effective (2) = 1.25 eigenmode 3 and 4 SNR can be determined as: γ3 (2) = 16.84 and γ4 (2) = 7.92 Since λsat = 31.62, it can be observed that there is no operation of eigenmodes in the saturation region, the transmit power allocation process terminates. 本征模式1到4最终的发射功率分配如下:P1=0.42,P2=1.00,P3=1.33,和P4=1.25有效SNR为:γ1=31.62,γ2=31.62,γ3=16.84,和γ4=7.92在总发射功率被分配给本征模式后,集合I(1)={1,2,3,4}内的每个本征模式的频谱效率可以使用等式(10)确定。 Eigenmodes 1-4 final transmit power allocation as follows: P1 = 0.42, P2 = 1.00, P3 = 1.33, and P4 = 1.25 effective SNR for: γ1 = 31.62, γ2 = 31.62, γ3 = 16.84, and γ4 = 7.92 in After the total transmit power is allocated to eigenmodes, set I (1) = {1,2,3,4} is the spectral efficiency of each eigenmode may use equation (10) is determined. 总频谱效率ρtot可以通过对每个本征模式获得的频谱效率求和而获得。 The total spectral efficiency ρtot spectral efficiency can be obtained for each eigenmode obtained by summation.

可以示出可以通过将在饱和区域内的本征模式的过量发射功率重新分配给饱和区内的其他本征模式而在中间SNR处获得2到5dB的增益。 It can be shown by the reallocated to other eigenmodes in the saturation region of excess transmit power within the saturation region eigenmode to obtain a gain of 2 to 5dB SNR at the middle. 在较低的SNR处,本征模式不进入饱和区,因此有很少或没有发射功率进行重新分配。 At lower SNR at the eigenmodes do not enter the saturation region, so there is little or no transmit power to reallocate. 在较高的SNR处,大部分或所有的本征模式在饱和区内操作,且发射功率重新分配可以用于减少干扰量,这可以改善相邻小区的性能。 At higher SNR at most or all of the eigenmodes in the saturation operating region, and the transmit power reallocation may be used to reduce the amount of interference, which may improve the performance of neighboring cells.

离散数据速率的功率分配/重新分配在以上的描述中,假设频谱效率ρ是有效SNRγ的连续函数,如等式(10)示出。 Power allocation discrete data rates / redistribute in the above description, it is assumed spectral efficiency ρ is a continuous function of the effective SNRγ, as shown in equation (10) shown. 另外,上述的系统允许频谱效率为任何不超过饱和点ρsat的实数值。 Further, the spectral efficiency of the system allows for any real value does not exceed the saturation point ρsat. 然而一般的通信系统只可能支持每个空间子信道的离散数据速率集合,且数据速率集合对于子信道可以相同或不同。 However, only a general communication system may support each spatial subchannel set of discrete data rates, and the data rate for the set of subchannels may be the same or different.

图4B示出在对每个本征模式支持离散数据速率集合的通信系统内的一定本征模式的频谱效率对有效SNR的曲线图。 Figure 4B shows in support of discrete data rates for each set of intrinsic mode communication system spectral efficiency must eigenmode effective SNR graph. 每个数据速率集合可以被转换成离散频谱效率集合且进一步与获得空间子信道上数据传输的目标帧差错率(FER)需要的离散有效SNR集合相关联。 Each set of data rates may be converted into a discrete set of spectral efficiency and further the obtained discrete spatial subchannels effective SNR target frame error rate of data transmission (FER) associated with the set required.

在图4B内,离散频谱效率在纵轴上被标为ρi(d),且发生在对应的γi(d)的SRN处,其中i(i∈I)指本征模式i和d(1≤d≤Di),被用于通过Di个与本征模式i相关的离散数据速率列举。 In Figure 4B, the discrete spectral efficiency is marked on the vertical axis as ρi (d), and occurs in the corresponding γi (d) at the SRN, wherein i (i∈I) refers to eigenmode i and d (1≤ d≤Di), is used to enumerate one by Di eigenmode i associated with discrete data rates. 本征模式i的最高频谱效率发生在d=Di处并对应发生在饱和SNRγsat(i)=γi(Di)处的饱和频谱效率。 Maximum spectrum efficiency eigenmode i occurs at d = Di and corresponds to the saturation spectral efficiency at the saturation occurs SNRγsat (i) = γi (Di) at. 该系统的频谱效率函数用曲线422示出(粗实线)。 A function of the spectral efficiency of the system is shown by curve 422 (thick solid line). 对应获得一定频谱效率需要的最小SNR的((γi(d),ρi(d)))处的离散操作点用实圈424示出。 Corresponding to obtain the minimum SNR required for a certain spectral efficiency of ((γi (d), ρi (d))) at the discrete operating point 424 is shown by a solid circle. 如图4B内的频谱效率函数可见,SNR的增加不提供频谱效率的改善。 Figure 4B spectral efficiency function within the visible spectrum efficiency improvements to increase the SNR is not available. 因此,分配比在操作频谱效率处的目标FER需要的发射功率更多的发射功率会导致附加发射功率的无效使用。 Therefore, the distribution ratio in the target FER at the operating spectral efficiency requires more transmit power the transmit power results in additional inefficient use of the transmission power.

上述的过量功率分配/重新分配技术可以用于带有离散数据速率和设定点的系统。 These excess power allocation / reallocation techniques can be used with discrete data rates and system set point.

图3是用于在支持离散数据速率集合的MIMO系统的本征模式间分配总发射功率的过程300实施例流图。 Figure 3 is a process of allocation of the total transmit power between MIMO systems support data rates of collection of discrete eigenmodes 300 embodiment flow diagram. 开始时,总发射功率Ptot在步骤312处基于特定的功率分配方案(例如灌水方案)被分配给NS个本征模式。 Initially, the total transmit power Ptot at step 312 is allocated to the NS eigenmodes based on a particular power allocation scheme (e.g., irrigation programs). 在初始发射功率分配结束时,每个本征模式被分配以发射功率Pi,其中i∈I,分配给给定本征模式的功率可以为零。 At the end of the initial transmit power allocation, each eigenmode is assigned to transmit power Pi, where i∈I, assigned to the final version of the levy to the power mode can be zero. 如果本征模式的有效SNR不落在离散操作点的一个上,则无效地使用了一些分配给该本征模式的发射功率,且可以使用功率控制。 If the effective SNR eigenmode does not fall on a discrete operating points, the ineffective use of some assigned to transmit power to the eigenmodes, and you can use the power control.

其SNR不落在离散操作点集合上的本征模式在步骤314处被放入集合K。 It does not fall eigenmode SNR discrete operating point set is placed on the set at step 314 K. 如果在步骤316处确定集合K为空,则过程终止。 If set K is empty is determined at step 316, then the process terminates. 否则,在步骤318,集合K内的每个本征模式被分配以满足该本征模式的当前频谱效率分布需要的最小发射功率量。 Otherwise, at step 318, for each eigenmode within the set K is allocated the minimum amount of transmit power to meet the current needs of the spectral efficiency distribution eigenmode. 这可以通过回退(即减少)分配给集合K内的每个本征模式的发射功率而实现,使得本征模式在离散操作点操作。 This can be rolled back (i.e., reduce) the transmit power allocated to the set of K within each eigenmode is achieved, so that the eigenmode of discrete operating points in the operation.

图4B还示出三个本征模式的初始操作点,用虚线426a到426c示出,它们不在离散操作点上。 Figure 4B also shows three of the initial operating point eigenmodes, with the dashed lines 426a to 426c are shown, they are not discrete operating points. 每个这些本征模式的发射功率减少回退量BOk,k∈K,使得本征模式以更低的发射功率操作而不导致频谱效率损失。 Transmit power for each of these eigenmodes reduced amount of retraction BOk, k∈K, such eigenmodes with lower transmission power operation without resulting in the loss of spectral efficiency. 对本征模式k,在离散操作点操作需要的发射功率 For eigenmode k, the discrete operating point operations required transmit power 可以表示为:P^k=γk(d)·σ2λk,---(15)]]>其中对于k∈KI,变量k指集合K内的每个本征模式,且γk(d)是对应本征模式k的当前频谱效率ρk(d)的离散操作点。 Can be expressed as: P ^ k = & gamma; k (d) & CenterDot; & sigma; 2 & lambda; k, --- (15)]]> wherein for k∈KI, the variable k in which each set of K within the intrinsic mode, and γk (d) is a corresponding eigenmode k of the current spectral efficiency ρk (d) of the discrete operating points.

然后在步骤320处确定通过减少分配给集合K内的本征模式的发射功率而获得的过量发射功率,如下: Then the excess transmit power is determined by reducing the transmit power allocated to the set of eigenmode within the K obtained at step 320, as follows:

ΔP^=Σk∈K(Pk-P^k),---(16)]]>其中Pk指在步骤312处分配给本征模式k的初始发射功率。 & Delta; P ^ = & Sigma; k & Element; K (Pk-P ^ k), --- (16)]]> which refers to the initial transmit power Pk 312 penalties in step k eigenmodes of rationing. 由于只能在其相应饱和区以下操作的本征模式间重新分配过量功率,所以来自本征模式完整集合I的这些本征模式的新(未改变)的有效SNR在其饱和点γsat(i)以下,它们在步骤322处用索引j表示,并被放入集合J。 Since the inter-eigenmode only its respective saturation region following the redistribute the excess power, the eigenmodes from the complete set of new (unchanged) effective SNR I of these eigenmodes at its saturation point γsat (i) below, which represents the index j in step 322, and placed in a collection of J. 如果集合J为空,如在步骤324确定的,则过程终止。 If set J is empty, as determined at step 324, then the process terminates. 一旦对集合K内的本征模式应用了新功率,集合J因此包括所有集合I内的在其相应饱和(不操作)点以下的本征模式。 Once the set of eigenmodes within the application K new power set J thus include (not operating) point below the eigenmodes in set I all their corresponding saturated within.

否则,步骤320内确定的过量发射功率 Otherwise, step 320 determines the transmission power excess 以各种不同的组合(例如所有可能的组合)在集合J内的本征模式间经重新分配。 In various combinations (e.g., all possible combinations) in the set J of between eigenmodes reallocation. 这可以基于已知的频谱效率而实现,该频谱效率是每个本征模式的有效SNR的函数(例如如图4B曲线422所示)。 This may be based on the known spectral efficiency achieved, the spectral efficiency is the effective SNR of each eigenmode function (e.g. curve 422 shown in FIG. 4B). 为了方便步骤326的评估,可以为集合J内的每个本征模式j的每个操作点d确定增量SNRΔγj(d)以及对应的频谱效率的增益Δρj(d)的表格。 In order to facilitate the evaluation in step 326, each operating point d j can be set for each eigenmode J within certain increment SNRΔγj (d) and the corresponding spectral efficiency gain Δρj (d) forms.

增量SNRΔγj(d)可以被定义为:Δγj(d)=γj(d+1)-γj(d), (17)且该增量SNR是将本征模式j从在当前的操作点d处的频谱效率上移到下一个更高的频谱效率d+1的操作点处需要的最小SNR量。 Incremental SNRΔγj (d) may be defined as: Δγj (d) = γj (d + 1) -γj (d), (17) and the incremental SNR is the eigenmode j from the current operating point d in The spectral efficiency over the next higher spectral efficiency minimum SNR d + 1 at the point of the operation amount required. 对应的频谱效率内的增益Δρj(d)可以给出为:Δρj(d)=ρj(d+1)-ρj(d), (18)且可以通过将SNR从γj(d)增量到γj(d+1)而获得。 Gain Δρj (d) within the corresponding spectral efficiency can be given as: Δρj (d) = ρj (d + 1) -ρj (d), (18) and can be obtained by SNR from γj (d) increment to γj (d + 1) is obtained.

图4B说明增量SNR以及给定频谱效率函数的频谱效率内产生的增益。 4B illustrates the spectral efficiency gains generated within a given incremental SNR and spectral efficiency function. 增量SNRΔγj(d)可以被转换成增量发射功率ΔPj(d),如下:ΔPj(d)=Δγj(d)·σ2λj---(19)]]>ΔPj(d)是本征模式j从当前的操作点d到更高的频谱效率需要的增量功率。 Incremental SNRΔγj (d) can be converted to an incremental transmit power ΔPj (d), as follows: & Delta; Pj (d) = & Delta; & gamma; j (d) & CenterDot; & sigma; 2 & lambda; j --- (19)] ]> ΔPj (d) is the eigenmode j d from the current operating point to a higher spectral efficiency requires incremental power.

实现过量发射功率的重新分配以获得频谱效率内的最高可能增益。 Reallocate the excess transmit power to achieve the highest possible gain in spectral efficiency obtained within. 这可以通过以下实现:在步骤328处,使用从等式(19)和(18)相应获得的增量发射功率和频谱效率内的对应增益实现对集合J内所有本征模式的过量发射功率 This can be realized by the following: In step 328, using the equations (19) and delta (18) corresponding to the obtained transmit power and the corresponding spectral efficiency of the gain on the set of all eigenmodes J excess transmit power 所有可能重新分配的穷尽搜索(或评估)。 All possible reallocation exhaustive search (or evaluation). 最终,在步骤330,过量发射功率根据产生频谱效率内的最高增益的重新分配被分布。 Finally, in step 330, the excess transmit power is distributed according to a redistribution highest spectral efficiency gain is generated inside. 过程然后终止。 The process then terminates.

还可以使用其他方案用于将过量发射功率分配给集合J内的本征模式。 You can also use other programs for the excess transmit power allocated to eigenmode set J inside. 在一方案中,过量发射功率每次从最佳本征模式开始被重新分配给一个本征模式。 In one embodiment, the excess transmit power from the optimum start of each eigenmode is reallocated to a eigenmodes. 例如,一些过量发射功率可以被重新分配给集合J内的最佳本征模式(例如,正好足够的功率使得该本征模式进入下一最高频谱效率级)。 For example, some excess transmit power may be reallocated to the best eigenmode within the set J (e.g., just enough power such that the eigenmodes of the next highest spectral efficiency level). 一些剩余的过量发射功率然后可以被重新分配给集合J内的下一更高本征模式,且过程这样继续直到重新分配了所有的过量发射功率。 Some remaining excess transmit power may then be reallocated to the next higher set of eigenmodes within J, and the process continues until reassigned so that all excess transmit power. 在另一方案中,开始时确定集合J内每个本征模式跳到下一更高频谱效率的所有功率重新分配,选择实现最高频谱效率增益的重新分配(或如果频谱内的增益在所有本征模式上相同,则使用最少量的增量发射功率量)。 In another aspect, at the beginning of the set J is determined for each eigenmode skip the next higher spectral efficiency for all power redistribution, select reallocated for maximum spectral efficiency gain (or the gain of the spectrum if present in all the same as the eigenmodes, then use the least amount of incremental transmit power amount). 还可以使用其他方案,且在本发明的范围内。 You can also use other programs, and within the scope of the invention.

以下描述特定的数值示例以说明在支持离散数据速率集合的系统内用于在本征模式间分配/重新分配总发射功率的技术。 The following describes a specific numerical examples to illustrate in the system supports a set of discrete data rates for partitioned between eigenmodes / reallocate the total transmit power of the technique. 对于该示例,每个发射天线的峰值发射功率经归一化,使得Pmax=1,且噪声的方差经设定,使得在每个接收机处的SNR,假设没有其他信道恶化的情况下,为γrx=10dB。 For this example, each transmit antenna peak transmit power by normalization, so that Pmax = 1, and the noise variance is set, so that the SNR at each receiver, assuming no other channel degradation case, γrx = 10dB. 这导致了σ2=10-10/10=0.10的噪声方差。 This leads σ2 = 10-10 / 10 = 0.10 noise variance. 还假设以下参数:NS=NT=NR=3,和λ1=1.7,λ2=0.9,和λ3=0.4图4C示出上述示例系统的频谱效率对有效SNR。 The following parameters are also assumed: NS = NT = NR = 3, and λ1 = 1.7, λ2 = 0.9, and λ3 = 0.4 4C shows the spectral efficiency of the above-described exemplary system for effective SNR. 离散数据速率的相同集合被假设应用于所有的本征模式,且与曲线432示出的频谱效率函数相关。 The same set of discrete data rates is assumed to be applied to all eigenmodes, and spectral efficiency function and the correlation curve 432 shown. 每个本征模式的饱和SNR因此为γsat(i)|dB=12dB,i∈I。 Saturated SNR for each eigenmode So for γsat (i) | dB = 12dB, i∈I.

发射机处可用的总发射功率为Ptot=3.1=3。 Available at the transmitter, the total transmission power is Ptot = 3.1 = 3. 灌水功率分配(步骤312)导致分配给三个本征模式的以下功率:P1(1)=1.08,P2(1)=1.03,和P3(1)=0.89使用等式(11)计算的本征模式的有效SNR被确定为:γ1(1)=18.38,γ2(1)=9.26,和γ3(1)=3.56频谱效率函数上的三个本征模式的有效SNR的位置由图4C内的菱形438a到438c示出。 Irrigation power distribution (step 312) leads assigned to three eigenmodes following power: P1 (1) = 1.08, P2 (1) = 1.03, and P3 (1) = 0.89 using equation (11) to calculate the intrinsic effective SNR mode is determined to be: effective SNR of γ1 (1) = 18.38, γ2 (1) = 9.26, and γ3 (1) = 3.56 three eigenmode spectrum efficiency function of the position on the inside of the diamond in Figure 4C 438a to 438c shown. 可见三个本征模式不位于实圈434示出的离散操作点上。 Visible three eigenmodes is not on solid circle 434 discrete operating points shown. 因此集合被确定为K={1,2,3}(步骤314)。 Thus collection is determined to be K = {1,2,3} (step 314). 由于集合K不为空,确定仍导致该本征模式的当前频谱效率值的每个本征模式的最小发射功率(步骤318)。 Since set K is not empty, the minimum transmit power to determine the still cause the value of the current spectral efficiency of each eigenmode eigenmode (step 318). 对于该示例,本征模式的发射功率被回退,使得有效SNR对于第一、第二和第三本征模式相应为12dB、9dB以及3dB。 For this example, the transmit power eigenmode is rolled back, making the effective SNR for the first, second and third eigenmode corresponding to 12dB, 9dB and 3dB.

使用等式(15),三个本征模式的新发射功率被确定为: Using equation (15), the new transmit power of the three eigenmodes are determined to be:

P^1=10(12/10)×0.11.7=0.93,]]>P^2=10(9/10)×0.10.9=0.88,]]>和P^3=10(3/10)×0.10.4=0.50]]>新发射功率分配将三个本征模式的操作点推向离散操作点。 P ^ 1 = 10 (12/10) & times; 0.11.7 = 0.93,]]> P ^ 2 = 10 (9/10) & times; 0.10.9 = 0.88,]]> and P ^ 3 = 10 (3 /10)×0.10.4=0.50]]> new transmitted power distribution to the three operating point eigenmode to the discrete operating points. 下一步,由等式(16)确定过量发射功率为:ΔP^=(1.08-0.93)+(1.03-0.88)+(0.89-0.50)=0.69]]>由于第一本征模式已经在其饱和点处,不再重新分配给该本征模式更多的发射功率。 Next, by equation (16) to determine the excess transmit power: & Delta; P ^ = (1.08-0.93) + (1.03-0.88) + (0.89-0.50) = 0.69]]> Since the first eigenmode is already its saturation point, does not re-assigned to the eigenmodes for more transmission power. 过量发射功率可以被重新分配给本征模式二和三,且集合J等于J={2,3}。 Excess transmit power can be reallocated to eigenmodes two and three, and the collection of J equal to J = {2,3}.

表格1列出每个操作点d和每个本征模式(对于j∈J)的增量SNRΔγj(d)。 Table 1 lists and for each operating point d of each eigenmode (for j∈J) increments SNRΔγj (d). 由于在该示例中对所有本征模式,离散数据速率相同,丢弃下标j,且增量SNR被表示为Δγ(d)。 Since in this example for all eigenmodes, the same discrete data rate, discarding the subscript j, and the incremental SNR is expressed as Δγ (d). 本征模式j上的增量发射功率ΔPj(d)是本征模式j的本征值λj的函数。 Incremental transmission power ΔPj (d) on eigenmode j is a function of the intrinsic value of λj eigenmode j's. 为每个本征模式(对于j∈J)和每个操作点d示出ΔPj(d),如使用等式(19)计算的。 For each eigenmode (for j∈J) and each operating point d shown ΔPj (d), such as the use of equation (19) calculated. 最后,在最后一列列出频谱效率内的增量增益Δρj(d),对于所有操作点保持在0.5bps/Hz处恒定,如图4C示出。 Finally, lists the incremental gain Δρj (d) within the spectral efficiency in the last column, for all operating points is maintained at 0.5bps / Hz at a constant, is shown in Figure 4C.

表格1 Table 1

下一步骤是确定过量发射功率的所有可能重新分配,ΔP^=0.69.]]>因为第二和第三本征模式分别在的d=5和d=2处操作,只有一种有效的过量功率的分配,就是重新分配ΔP2(d)=0.22更多的发射功率给第二本征模式,重新分配ΔP3(d)=0.40更多的发射功率给第三本征模式。 The next step is to determine all the possible excess transmit power to reallocate, & Delta;. P ^ = 0.69]]> because the second and third eigenmodes are in the d = 5 operate at a and d = 2, only an effective The excess power allocation, is reallocated ΔP2 (d) = 0.22 more transmit power to the second eigenmode, redistribute ΔP3 (d) = 0.40 more transmit power to the third eigenmode. 该功率重新分配会导致频谱效率内1bps/Hz的增长,且未使用的发射功率量为ΔP^u=0.69-0.22-0.40=0.7]]>如上所述,在此描述的用于将发射功率分配/重新分配给传输信道的技术还可以用于各种多信道通信系统,包括MIMO系统、OFDM系统、MIMO-OFDM系统等。 This power reallocation will result in spectral efficiency 1bps / Hz of growth, and not the amount of transmission power used is & Delta; P ^ u = 0.69-0.22-0.40 = 0.7]]> As described above, will be described herein for transmit power allocation / reallocation techniques to the transmission channel can also be used for various multi-channel communication systems, including MIMO systems, OFDM systems, MIMO-OFDM systems. 这些技术还可以有利地被用于带有饱和频谱效率ρsat的系统(如图4A内说明)以及用于支持传输信道的一个或多个离散数据速率集合的系统(如图4B内说明)。 These techniques may also advantageously be used in systems with saturation spectral efficiency ρsat (Figure 4A the legend) and used to support the system transmission channels one or more sets of discrete data rates (Figure 4B in the note). 图3内示出的过程可以经修改以将发射功率分配/重新分配给传输信道(而不是本征模式)。 The process shown in Figure 3 can be modified to the transmit power allocation / re-allocated to the transmission channels (instead of eigenmodes).

指定频谱效率的功率分配/重新分配上述的技术可以用于分配/重新分配总发射功率以最大化频谱效率(例如为了获得最高可能总吞吐量或传输信道的集合数据速率)。 Specified spectral efficiency of power allocation / reallocation techniques described above may be used to allocate / reallocate the total transmit power to maximize spectral efficiency (e.g., in order to obtain the highest possible overall throughput or aggregate data transmission channel rate). 对于一些通信系统,集合数据速率可以是受限或指定的。 For some communication systems, the aggregate data rate may be limited or specified. 对于这些系统,上述的技术可以经修改并用于分配获得指定集合数据速率的最小量的发射功率。 For these systems, the techniques described above can be modified and used to allocate the minimum amount of a specified set of obtained data rate transmission power.

获得特定频谱效率的最小发射功率分配可以以各种方式实现,这可以取决于通信系统的设计和容量。 Achieve a particular spectral efficiency may be the minimum transmit power allocation implemented in various ways, which may depend on the communication system design and capacity. 几种可能的方案列出如下。 Several possible solutions are listed below.

对于支持离散数据速率集合的系统,特定频谱效率的最小发射功率分配可以如下实现:1.例如基于灌水方案,将总发射功率分配给传输信道。 Support system for collection of discrete data rates, the minimum transmit power allocation for a particular spectral efficiency may be achieved as follows: 1, for example based on the irrigation scheme, the total transmit power allocated to the transmission channel.

2.使用上述的技术确定每个传输信道的新发射功率,使得其操作点落在获得相同频谱效率的离散操作点上。 2. Using the techniques described above to determine for each transport channel of the new transmission power, so that its operating point falls to obtain the same spectral efficiency of discrete operating points.

3.确定用新发射功率分配获得的集合频谱效率。 3. Determine the set of spectral efficiency with a new transmission power allocation obtained. 如果该频谱效率高于指定的频谱效率,则进行到步骤4。 If this spectral efficiency is higher than the specified spectral efficiency, then proceed to step 4. 否则,完成发射功率分配。 Otherwise, completion of the transmission power allocation.

4.作为可获得的频谱效率(带有新发射功率分配)和指定的频谱效率之差确定“过量”频谱效率。 4. As the spectral efficiency available (with the new transmit power allocation) and the specified spectral efficiency of determining the difference between the "excess" spectrum efficiency. 系统的频谱效率然后被降低该确定的差的量。 Spectral efficiency of the system is then to reduce the amount of the difference determined.

5.形成每个传输信道的增量发射功率/增量频谱效率表格,一示例为表格16.搜索发射功率的各种可能减少,该种减少可以获得小于或等于步骤4内确定过量频谱效率的频谱效率减少。 5. The incremental forming each transport channel transmit power / incremental spectral efficiency table, an example of the table 16. The search for the various transmission power may be reduced, the kinds of reduction can be obtained in step 4 is less than or equal to the excess spectral efficiency determined reduce spectral efficiency.

7.从步骤6,选择最大化节省的发射功率量的发射功率减少。 7. From step 6, select the transmit power to maximize the amount of saving transmission power reduction.

对于支持更连续可变数据速率的系统(例如更细化增量的离散数据速率),可以实现迭代搜索以确定指定频谱效率的最小发射。 For more continuous support variable data rate systems (such as more detailed incremental discrete data rate), you can achieve an iterative search to determine the minimum transmit the specified spectral efficiency. 尤其是,在开始时分配了总发射功率后(例如基于灌水方案),可以如上所述确定过量频谱效率。 After especially at the start of dispensing a total transmit power (e.g., based on the irrigation scheme), the excess spectral efficiency may be determined as described above. 如果过量频谱效率超过一特定阀值(例如在指定的频谱效率上的特定百分比),则可以确定减少频谱效率的新发射功率分配。 If the excess spectral efficiency exceeds a specified threshold (e.g., on a specific percentage of the specified spectral efficiency), it is determined that the new transmit power allocation to reduce spectral efficiency. 这可以以下方式获得:回退总发射功率(其回退的百分比可以基于过量频谱效率的百分比而经估计),且将回退后的发射功率分配给传输信道(例如同样基于灌水方案)。 This can be obtained in the following ways: fallback total transmit power (which percentage can rollback percentage excess spectral efficiency based on the estimated), and the rollback of transmit power allocated to the transmission channel (for example, based on the same irrigation scheme). 如果回退后的发射功率获得的频谱效率小于规定的频谱效率,则可以减少回退,且新的回退后的发射功率可以在此被分配给传输信道。 If the rollback spectral efficiency transmission power obtained is less than the specified spectral efficiency, you can reduce the rollback, and the rollback of the new transmit power can be allocated to the transmission channel here. 该过程可以迭代多次直到特定回退后的发射功率获得的频谱效率在可接受的阀值内。 This process can be iterated several times until the specified spectral efficiency rollback transmit power obtained within an acceptable threshold.

还可以实现确定其他指定频谱效率的最小发射功率分配的方案,且在本发明的范围内。 May also be implemented to determine the minimum transmit power allocation to other specified spectral efficiency of the scheme, and are within the scope of the invention.

灌水功率分配当在发射机处有全CSI可用时,MIMO信道可以使用奇异值分解被对角线化成NS个正交信道,如上所述。 When irrigation power allocation at the transmitter with full CSI is available, MIMO channel using singular value decomposition can be diagonally into NS orthogonal channels, as described above. 该技术导致NS个不相干扰的空间子信道,被称为本征模式,本征模式i上的功率等于与该本征模式相关的本征值λi,i∈I={1,2,...,NS}。 This technique results in NS spatial subchannels do not interfere with one, known as eigenmodes, the power on eigenmode i is equal to the eigenmodes associated eigenvalues λi, i∈I = {1,2 ,. .., NS}. 每个空间子信道上的性能受到方差为σ2的加性高斯白噪声(AWGN)的限制图5是用于将总可用功率分配给本征模式集合的过程500实施例流图。 The performance of each spatial subchannel by variance σ2 of additive white Gaussian noise (AWGN) in Figure 5 is used to limit the total available power allocated to eigenmode collection process embodiment of the flow diagram 500. 过程500是灌水方案的一特定实现,且可以用于图1、2和3内相应的步骤120、220和213。 Process 500 is a specific implementation of irrigation programs, and can be used for 1, 2 and 3 within the respective steps 120, 220 and 213. 灌水方案在给定发射机处的总发射功率Ptot、本征值λi以及噪声方差σ2条件下,确定分配给集合I内本征模式的发射功率Pi(i∈I)。 Irrigation program, at a given total transmit power at the transmitter Ptot eigenvalues λi and a noise variance σ2 conditions, determine the transmit power allocated to the eigenmodes in set I Pi (i∈I).

在步骤512开始时,用于表示迭代次数的变量n被设定为一(即n=1)。 Begins at step 512, indicating the number of iterations is set to a variable n (i.e., n = 1). 在步骤514,对于第一次迭代,集合I(n)被定义为包括所有本征模式(即1≤i≤NS)。 In step 514, for the first iteration, set I (n) is defined to include all of the eigenmodes (i.e. 1≤i≤NS). 然后在步骤516,确定当前迭代的集合I(n)的势(即长度)L1(n)=|I(n)|,对于第一次迭代,L1(n)=NS。 Then, at step 516, determines whether the current iteration of the set I (n) of the potential (i.e., length) L1 (n) = | I (n) |, for the first iteration, L1 (n) = NS.

在步骤518,接着确定要分布在集合I(n)内的本征模式上的总“有效”功率PTOTAL。 In step 518, then determines to be distributed over the set of eigenmodes I (n) within the total "effective" power PTOTAL. 总有效功率被定义为等于在发射机处可用的总发射功率Ptot加上每个本征模式上的SNR倒数之和,如下:PTOTAL=Ptot+Σi∈Iσ2λi---(20)]]>图6A用图说明带有三个本征模式的示例系统的总有效功率。 The total effective power is defined to be equal at the transmitter the available total transmit power Ptot plus each eigenmode on the SNR of the reciprocal of the sum, as follows: PTOTAL = Ptot + & Sigma; i & Element; I & sigma; 2 & lambda; i --- ( The total effective power 20)]]> FIG. 6A with FIG described with three eigenmodes in an example system. 每个本征模式有SNR倒数等于σ2/λi(假设归一化的发射功率1.0),i={1,2,3}。 Each eigenmode has SNR equal to the reciprocal of σ2 / λi (assuming a normalized transmit power of 1.0), i = {1,2,3}. 发射机处可用的发射功率总量为Ptot=P1+P2+P3,且用图6A内的阴影区表示。 The total transmit power at the transmitter available for Ptot = P1 + P2 + P3, and is represented by the shaded area in Figure 6A inside. 总有效功率用图6A内的阴影和非阴影区表示。 The total effective power represented by the shaded and non-shaded areas in Figure 6A inside.

总发射功率然后被分配给集合I(n)内的本征模式。 The total transmit power is then allocated to the set I (n) within the eigenmodes. 用于本征模式的索引i在步骤520被初始化为一(即i=1)。 Eigenmodes for the index i is initialized at step 520 is one (i.e., i = 1). 分配给本征模式i的发射功率量然后在步骤522被确定,基于以下:Pi=PTOTALL1(n)-σ2λi---(21)]]>对于灌水,虽然水面的底部有不规则表面,但最上面的水面在整个容器内保持恒定。 Assigned to the transmission power amount eigenmode i is then determined in step 522, based on the following: Pi = PTOTALL1 (n) - & sigma; 2 & lambda; i --- (21)]]> For irrigation, although the bottom of the water has not regular surface, but the uppermost surface of the water is kept constant throughout the container. 类似地且如图6A示出,在总发射功率Ptot分布在本征模式上后,在所有本征模式上最后功率电平恒定。 After similarly and shown in Figure 6A, the distribution of the total transmit power Ptot on eigenmode on all eigenmodes of the final power level constant. 该最终功率电平通过将PTOTAL除以集合I(n)内的本征模式的数目L1(n)而经确定。 The final number of the power level by dividing PTOTAL set I (n) within the eigenmode L1 (n) which has been determined. 分配给本征模式i的功率量然后通过将该本征模式的SNR倒数σ2/λi从最终功率电平PTOTAL/L1(n)中减去而经确定如等式(21)给出,且在图6A内示出。 Allocated to eigenmode i is then the reciprocal of the amount of power σ2 / λi from the final power level by the eigenmode SNR PTOTAL / L1 (n) and subtracting the determined as shown in equation (21) is given, and in 6A shows the inner. 集合I(n)内的每个本征模式在步骤522被分配以发射功率Pi。 Each eigenmode set I (n) in step 522 is within the assigned transmit power Pi. 步骤524和步骤526是将发射功率分配给集合I(n)内的每个本征模式的环路的一部分。 Step 524 and step 526 are part of the loop of the transmission power allocated to the set I (n) within each eigenmode.

图6B示出灌水方案的功率分配情况,这导致一本征模式接收负功率,这是(PTOTAL/L1(n))<(σ2/λi)的情况。 6B shows the power distribution of the irrigation program, which results in an eigenmode receiving negative power, which is (PTOTAL / L1 (n)) <(σ2 / λi) of the case. 在功率分配结束时,如果有本征模式接收到负功率,如在步骤528确定的,则在步骤530,过程继续通过将所有带有为负功率的本征模式(即Pi<0)从集合I(n)中去除,且在步骤532将n增量一(即n=n+1)。 At the end of the power allocation, if there are eigenmodes receiving negative power, as determined in step 528, then in step 530, the process continues through all eigenmodes with negative powers (i.e., Pi <0) from the collection I (n) is removed, and at step 532 will increment an n (i.e., n = n + 1). 因此,在每次接着的迭代中,总发射功率在集合I(n)内剩余的本征模式间划分。 Thus, in each subsequent iteration, the total transmit power among the set I (n) within the division of the remaining eigenmodes. 该过程继续直到集合I(n)内的所有本征模式都被分配了正功率,如步骤528内确定的。 This process continues until all eigenmodes set I (n) are assigned within a positive power, as determined in step 528. 不在集合I(n)内的本征模式被分配以零功率。 Eigenmodes not in set I (n) are assigned to the zero power.

为了清楚解释,特地描述了本征模式的灌水方案。 In order to explain clearly, specifically describing the irrigation scheme eigenmode. 一般,灌水方案可以对任何类型的传输信道实现(例如空间子信道、频率子信道或空间子信道的频率子信道,这取决于实现的系统)。 In general, the irrigation programs can for any type of transmission channel realizations (e.g., spatial subchannels, frequency subchannels, or frequency subchannels of spatial subchannels, depending on the implementation of the system). 图5内示出的过程因此可以经修改以将发射功率分配给传输信道(而不是本征模式)。 The process shown in FIG. 5 can be modified to allocate transmit power to transmission channels (instead of eigenmodes).

实现MIMO-OFDM系统的基本灌水处理的特定算法在美国专利申请号09/978337内描述,题为“Method and Apparatus for Determining PowerAllocation in a MIMO Communication System”,提交于2001年10月15日,转让给本发明的受让人,并在此引入作为参考。 Specific algorithms for basic irrigation treatments MIMO-OFDM systems in the United States Patent Application No. 09/978337 within descriptions, entitled "Method and Apparatus for Determining PowerAllocation in a MIMO Communication System", filed on October 15, 2001, transferred to assignee of the present invention, and incorporated herein by reference.

系统图7是发射机系统710和接收机系统750实施例框图,它们能实现本发明的各个方面和实施例。 7 is a system diagram of a transmitter system 710 and a receiver system 750 block diagram embodiment example, they can implement various aspects and embodiments of the present invention.

在发射机710处,从数据源712提供话务数据给发射(TX)数据处理器714,该处理器基于一个或多个编码方案对话务数据进行格式化、编码和交织以提供编码后的数据。 At transmitter 710, traffic data provided from a data source 712 to a transmit (TX) data processor 714, the processor based on one or more coding schemes for traffic data is formatted, encoded and interleaved to provide coded data . 编码后的话务数据然后可以使用时分多路复用(TDM)或码分多路复用(CDM)在一个或多个用于数据传输的所有传输信道或其子集上与导频数据一起多路复用。 Traffic data can then be encoded using time division multiplexing (TDM) or code division multiplexing (CDM) on one or more of all or a subset of the transmission channels for data transmission together with pilot data multiplexing. 导频数据一般是以已知的方式处理的已知数据模式。 The pilot data is typically a known data pattern processed in a known manner. 经多路复用的导频和编码后话务数据然后基于一个或多个调制方案(例如BPSK、QPSK、M-PSK或M-QAM)经调制以提供调制码元。 Multiplexed pilot and coded traffic data is then based on one or more modulation schemes (e.g., BPSK, QPSK, M-PSK or M-QAM) modulated to provide modulation symbols. 每个传输信道或每个传输信道组的数据速率、编码、交织以及调制可以由控制器730提供的各种控制确定。 Data rate for each transmission channel or each group of transmission channels, coding, interleaving, and modulation can be determined by various controls provided by controller 730.

调制码元然后被提供给TX MIMO处理器720并经进一步处理。 Modulation symbols are then provided to a TX MIMO processor 720 and further processed. 在特定实施例中,TX MIMO处理器720的处理包括(1)分解信道响应矩阵H的估计以获得酉矩阵V以及对角矩阵D;(2)将调制码元(即信道向量s)左乘酉阵V,以及(3)将经预调整后的码元(即发射向量x)多路分解为NT个码元流。 In particular embodiments, TX MIMO processor 720 includes (1) decomposing the channel response estimate matrix H to obtain a unitary matrix V and a diagonal matrix D; (2) the modulation symbols (i.e., a channel vector s) premultiplication unitary matrix V, and (3) the pre-adjusted symbols (i.e. transmit vector x) demultiplexing of the NT symbol streams. 在另一实施例中,TX MIMO处理器720的处理简单地包括将调制码元多路分解为NT个码元流(即没有用矩阵V预调整的码元)。 In another embodiment, the processing by TX MIMO processor 720 simply includes demultiplexing the modulation symbols for the NT symbol streams (i.e., no pre-adjustment of the matrix V symbols). TX MIMO处理器720可以进一步对每个码元进行比例调整,这是通过基于分配给用于该码元的传输信道的发射功率量确定合适的加权而实现的。 TX MIMO processor 720 may further be scaled for each symbol, which is assigned to the transmit power by an amount based on the symbol transmission channel is used to determine the appropriate weighting achieved. NT个(经加权)的码元流然后被提供给发射机(TMTR)722a到722t、每个发射机722接收并处理相应的码元流。 The NT (weighted) symbol streams are then provided to a transmitter (TMTR) 722a to 722t, each transmitter 722 receives and processes a respective symbol stream. 对于OFDM系统,每个发射机变换码元(例如使用IFFT)以形成OFDM码元,且进一步向每个OFDM码元加入循环前缀以形成对应的传输码元。 For OFDM system, each transmitter transform symbols (e.g., using IFFT) to form OFDM symbols, and further added to the cyclic prefix to each OFDM symbol to form a corresponding transmission symbol. 每个发射机还将码元流转换成一个或多个模拟信号并进一步将模拟信号调整(例如放大、滤波并正交调制)以生成适用于在MIMO信道上传输的已调信号。 Each transmitter also symbol stream into one or more analog signals and further adjust the analog signals (e.g., amplifies, filters, and quadrature modulated) to generate the modulated signal suitable for transmission over the MIMO channel. 来自发射机722a到722t的NT个已调信号然后相应地从NT个天线724a到724t被发送。 The NT modulated signals from transmitters 722a to 722t are then transmitted from corresponding NT antennas 724a to 724t.

在接收机系统750处,发送的已调信号由NR个天线752a到752r接收,且来自每个天线752接收到的信号被提供给相应的接收机(RCVR)754。 At receiver system 750, the modulated signal transmitted by NR antennas 752a to 752r reception, and the received signal from each antenna 752 is provided to a respective receiver (RCVR) 754. 每个接收机754对接收到的信号调整(例如滤波、放大以及下变频)并将经调整的信号数字化以提供相应的采样流。 Each receiver 754 a signal to adjust the received (e.g., filters, amplifies, and downconverts) and the adjusted signal is digitized to provide a corresponding stream of samples. 每个数据流可以进一步经处理(例如用恢复的导频解调)以获得对应的接收到的码元流(用y表示)。 Each data stream may be further processed (e.g., demodulated with a pilot recovered pilot) to obtain a corresponding received symbol streams (denoted by y). RX MIMO处理器760然后接收并处理NR个接收到的码元流以提供NT个恢复的码元流。 RX MIMO processor 760 then receives and processes the NR received symbol streams to provide NT recovered symbol streams. 在特定实施例中,RXMIMO处理器760的处理可以包括(1)将估计的信道响应矩阵分解以获得酉矩阵U,(2)用酉矩阵UH左乘接收到的码元(即向量y),以提供恢复的码元(即向量r),以及(3)对恢复的码元进行均衡以获得均衡后的码元。 In a particular embodiment, the processing RXMIMO processor 760 may include (1) the estimated channel response matrix is decomposed to obtain a unitary matrix U, (2) a unitary matrix UH by multiplying the received symbols (i.e., the vector y), to provide recovered symbols (i.e., the vector r), and (3) equalizing the recovered symbols to obtain equalized symbols.

接收(RX)数据处理器762然后对均衡后的码元解调、解交织并解码以恢复发送的话务数据。 Receive (RX) data processor 762 then demodulates the equalized symbols, deinterleaves, and decodes it to recover the transmitted traffic data. RX MIMO处理器760以及RX数据处理器762的处理分别与在发射机处的TX MIMO处理器720和TX数据处理器714实行的处理互补。 Processing RX MIMO processor 760 and RX data processor 762, respectively in the transmitter TX MIMO processor 720 and TX data processor 714 to implement the processing complementary.

RX MIMO处理器760可以进一步导出MIMMO信道的信道响应矩阵H以及传输信道的SNR等,并将这些量提供给控制器770。 RX MIMO processor 760 may further derive MIMMO channel SNR and other channel response matrix H and the transmission channel, and will provide these amounts to the controller 770. RX数据处理器762还可以提供每个接收到的帧或分组的状态、一个或多个其他指示解码后结果的性能度量以及可能的其他信息。 RX data processor 762 may also provide the status of each received frame or packet, one or more other performance metrics indicative decoded result, and possibly other information. 控制器770收集信道状态信息(CSI),包括从RX MIMO处理器760和RX数据处理器762接收到的所有信息或其一部分。 Controller 770 to collect channel state information (CSI), including 762 received from RX MIMO processor 760 and RX data processor to which all the information or a portion thereof. CSI然后由TX数据处理器778处理,由调制器780调制,由发射机754a到754r经调整,并被发送回发射机系统710。 CSI is then processed by a TX data processor 778, modulated by a modulator 780, conditioned by transmitters 754a through 754r adjusted, and transmitted back to transmitter system 710.

在发射机系统710处,来自接收机系统750的已调信号为天线724接收,经接收机722调整,由解调器解调并由RX数据处理器742处理以恢复接收机系统报告的CSI。 At transmitter system 710, the modulated from the receiver system 750 for an antenna 724 receives the signal, adjusted by the receiver 722, demodulated by a demodulator processed by a RX data processor 742 to recover the receiver system reported CSI. CSI然后被提供给控制器730并用于为TX数据处理器714和TX MIMO处理器720生成各种控制。 CSI is then provided to controller 730 and 720 generate various controls for the TX data processor 714 and TX MIMO processor.

控制器730和770引导在发射机和接收机系统处相应的操作。 Controller 730 and 770 guide the transmitter and receiver system appropriate action. 存储器732和772相应提供控制器730和770使用的程序代码和数据的存储。 732 and 772 provide memory controller 730 and the corresponding program code and data storage 770 uses.

为了实现上述的发射功率分配/重新分配技术,控制器730从接收机系统750接收CSI,这可以包括描述MIMO信道特征的信道响应矩阵或其他信息。 In order to achieve the above-described transmit power allocation / reallocation techniques, the system controller 730 from the receiver 750 receives the CSI, which may include a description of the channel characteristics of MIMO channel response matrix, or other information. 控制器730然后将总发射功率分配给传输信道,使得在饱和区操作的传输信道的过量发射功率被重新分配给不在饱和区内的其他传输信道,如上所述。 The controller 730 then the total transmit power allocated to the transmission channels such that excess transmit power in a saturation region operation of the transmission channel is reassigned to other region is not saturated transport channel, as described above. 分配给每个传输信道的发射功率Pi可以确定用于该传输信道的数据速率以及编码和调制方案。 Allocated to each transmission channel of the transmission power Pi may determine the data rate and coding and modulation schemes of the transmission channel.

发射机和接收机系统的各种MIMO和OFDM处理技术在以下专利申请部分被详细说明,它们被转让给本发明的受让人,并在此引入作为参考:●美国专利申请序列号09/993087,题为“Multiple-AccessMultiple-Input Multiple-Output(MIMO)Communication System”,提交于2001年11月6日;●美国专利申请序列号09/854235,题为“Method and Apparatus forProcessing Data in a Multiple-Input Multiple-Output(MIMO)Communication System Utilizing Channel State Information”,提交于2001年5月11日;●美国专利申请序列号09/826481和09/956449,题为“Method andApparatus for Utilizing Channel State Information in aWireless Communication System”,相应地提交于2001年3月23日和2001年9月18日;以及●美国专利申请序列号10/017308,题为“Time-Domain Transmit andReceive Processing with Channel Eigenmode Decomposition forMIMO system”,提交于2001年12月7日。 Various MIMO and OFDM processing techniques transmitter and receiver systems are described in detail in the following part of the patent application, which is assigned to the assignee of the present invention, and incorporated herein by reference: ● U.S. Patent Application Serial No. 09/993087 entitled "Multiple-AccessMultiple-Input Multiple-Output (MIMO) Communication System", filed on November 6, 2001; ● US Patent Application Serial No. 09/854235 entitled "Method and Apparatus forProcessing Data in a Multiple- Input Multiple-Output (MIMO) Communication System Utilizing Channel State Information ", filed on May 11, 2001; ● US Patent Application Serial No. 09/826481 and 09/956449 entitled" Method andApparatus for Utilizing Channel State Information in aWireless Communication System ", accordingly filed March 23, 2001 and September 18, 2001; and ● US Patent Application Serial No. 10/017308 entitled" Time-Domain Transmit andReceive Processing with Channel Eigenmode Decomposition forMIMO system ", submitted on December 7, 2001.

在此描述的发射功率分配/重新分配技术可以以各种方式实现。 Transmit power described herein allocation / reallocation techniques may be implemented in various ways. 例如,这些技术可以以硬件、软件或其组合实现。 For example, these techniques may be implemented in hardware, software, or a combination thereof. 对于硬件实现,用于将发射功率分配/重新分配给传输信道的元件可以用以下元件实现:一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑设备(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、其他用于实现上述功能的电子单元或其组合。 For a hardware implementation, for transmit power allocation / reallocation to the element of the transmission channel can be realized by the following components: one or more application specific integrated circuits (ASIC), a digital signal processor (DSP), digital signal processing device (DSPD ), programmable logic devices (PLD), a field programmable gate array (FPGA), processors, controllers, micro-controllers, microprocessors, other electronic units for implementing the functions described above, or combinations thereof.

对于软件实现,发射功率分配/重新分配可以用实现上述功能的模块(例如,过程、函数等)实现。 For a software implementation, the transmit power allocation / reallocation may be used to achieve the above function modules (e.g., procedures, functions, etc.) to achieve. 软件代码可以被存储在存储器单元(例如图7的存储器732)内并由处理器执行(例如控制器730)。 The software codes may be stored in a memory unit (e.g., memory 732 in FIG. 7) and executed by processors within (e.g., controller 730). 存储器单元可以实施在处理器内或处理器外部,在该情况下,它可以通过领域内已知的各种装置被通信耦合到处理器。 The memory unit may be implemented within the processor or external to the processor, in which case, it may be various devices known in the art to be communicatively coupled to the processor.

在此包括的标题用于参考并帮助定位一些部分。 In this includes titles for reference and to help locate some parts. 这些标题不用于限制在此描述的概念,且这些概念在整个规范内的其它部分内也可以有应用。 These headings are not intended to limit the concept described herein, and these concepts within the entire specification of the other parts can also be applied.

上述优选实施例的描述使本领域的技术人员能制造或使用本发明。 Description of the preferred embodiments described above enable those skilled in the art to make or use the present invention. 这些实施例的各种修改对于本领域的技术人员来说是显而易见的,这里定义的一般原理可以被应用于其它实施例中而不使用创造能力。 These modifications to the various embodiments of the skilled artisan is apparent, the generic principles defined herein may be applied to other embodiments without the use of creativity. 因此,本发明并不限于这里示出的实施例而要符合与这里揭示的原理和新颖特征一致的最宽泛的范围。 Accordingly, the present invention is not limited to the embodiments shown herein but to consistent with the principles and novel features disclosed herein and the widest scope.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN103548285B *23 Jul 200723 Mar 2016上海贝尔股份有限公司功率控制方法及相应的基站
Classifications
International ClassificationH04W52/26, H04W52/24, H04W24/00, H04W72/00, H04B7/005, H04W52/34, H04W52/50
Cooperative ClassificationH04W72/00, H04W52/50, H04W24/00, H04W52/346, H04W52/267, H04W52/241, H04B7/0443
European ClassificationH04B7/04M3M3, H04W52/34N
Legal Events
DateCodeEventDescription
20 Jul 2005C06Publication
14 Sep 2005C10Request of examination as to substance
3 Mar 2006REGReference to a national code
Ref country code: HK
Ref legal event code: DE
Ref document number: 1078187
Country of ref document: HK
31 Dec 2008C14Granted
11 Sep 2009REGReference to a national code
Ref country code: HK
Ref legal event code: GR
Ref document number: 1078187
Country of ref document: HK