CN1633594A - X射线图像定量分析的方法和装置 - Google Patents

X射线图像定量分析的方法和装置 Download PDF

Info

Publication number
CN1633594A
CN1633594A CNA038040166A CN03804016A CN1633594A CN 1633594 A CN1633594 A CN 1633594A CN A038040166 A CNA038040166 A CN A038040166A CN 03804016 A CN03804016 A CN 03804016A CN 1633594 A CN1633594 A CN 1633594A
Authority
CN
China
Prior art keywords
ray
calibrating patterns
calibration curve
data
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038040166A
Other languages
English (en)
Inventor
菲利普·兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imaging Therapeutics Inc
Original Assignee
Imaging Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/086,653 external-priority patent/US6904123B2/en
Application filed by Imaging Therapeutics Inc filed Critical Imaging Therapeutics Inc
Publication of CN1633594A publication Critical patent/CN1633594A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • A61B6/563Details of data transmission or power supply, e.g. use of slip rings involving image data transmission via a network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4423Constructional features of apparatus for radiation diagnosis related to hygiene or sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/508Clinical applications for non-human patients
    • A61B6/51
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/155Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands use of biometric patterns for forensic purposes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Quality & Reliability (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

本发明涉及X射线图像的分析。还描述了包括校准模型的装置,使用这些装置的方法;将包括有关于X射线图像信息的数据库公式化的方法;数据库本身和操作该信息和数据库的方法。

Description

X射线图像定量分析的方法和装置
技术领域
本发明属于射线照相成像及其分析领域。特别是对网络化分析及分析技术进行了描述。此外还描述了包括有校准模型的装置以及使用这些装置的方法。
背景技术
X射线和其它射线照相分析是重要的诊断工具。此外,通过本地或远程网络传输X射线图像是常用手段。但是,当X射线图像在网络环境中传输时,目前的技术不能够精确地确定X射线中所包含的定量信息,如解剖学结构的密度。
用于成像技术中的校准基准(也称为校准模型)已有描述。例如,参见美国专利US5,493,601和US5,235,628。US5,335,260公开了一种代表含有可变钙浓度的人体组织的校准模型,该模型用于在射线照相和CT成像系统中作为钙、骨质量和骨矿物质密度的量化基准。但是,由于受到投影到校准模型上的结构或材料的影响,以及还由于校准模型的一个或多个区域不总是显现在X射线图像上,目前可获得的校准模型不总是精确的。
因此,需要对包含在X射线图像中的信息,如网络环境中的解剖学结构的密度、结构和/或几何形状进行定量估计的方法。还需要包括有可靠和精确的校准模型的装置和方法。
发明内容
本发明通过提供能够对网络环境中的X射线图像进行分析的组成结构和方法来满足这些以及其它需要。本发明还提供包括有精确校准模型的X射线组件,该组件特别包括用作基准以确定X射线图像中骨矿物质密度的校准模型。
一方面,本发明包括一种从网络环境中的X射线图像得出定量信息的方法,该方法包括:提供用于传输X射线图像的本地计算机,提供用于接收X射线图像的远程计算机,以及提供从X射线图像中分析和提取定量信息的计算机程序。在某些实施例中,定量信息为密度测量信息,例如骨矿物质密度或所选择的软组织或器官的密度。可选择地,定量信息可以是一个结构的形态学信息,例如形成所述结构的各个成分的二维排列信息或形成所述结构的各个成分的三维排列信息,所述结构例如为皮层结构、小梁(trabecular)结构等。在此描述的任何方法中,解剖学结构可以是骨,而信息可以是,例如小梁厚度信息、小梁间距信息和/或小梁网络的二或三维结构估计。进一步地,在此描述的任何方法中,定量信息可以采用外部标准得出,例如采用已知X射线密度的校准模型。(例如,在X射线图像上即包括待成像结构还包括一个校准模型)。
在另一些实施例中,从X射线图像得出的定量信息包括与X射线图像的获取相关的一个或多个参数(例如,X射线管电压、X射线能量、X射线管电流、胶片一焦点距离、物体一胶片距离、准直、焦斑尺寸、X射线系统的空间分辨率、滤波器技术、胶片焦距,修正系数或它们的组合),例如以提高定量信息的精度。上述X射线获取参数可在X射线图像传输之前、同时或之后通过网络传输。此外,一个或多个X射线获取参数可手动或者自动输入计算机。
在另一方面,提供一种网络环境中X射线图像内定量信息的测量方法。在某些实施例中,该方法包括:从本地计算机向远程计算机传输X射线图像,并采用计算机程序从X射线图像获取定量信息。在某些实施例中,X射线图像或计算机程序设有(附带有)一个或多个内部标准。该内部标准可以是,例如,人体组织(皮下脂肪、骨、肌肉)的密度,解剖学结构周围的空气或者组织和空气密度的合成。在另一些实施例中,X射线图像或计算机程序设有(附带有)一个或多个外部标准。至少一个外部标准(例如校准模型)可以临时或永久性地通过附着机构,例如通过象维可牢尼龙搭扣或粘结剂这样的机械附着机构,物理连接到X射线胶片上。此外,至少一个外部标准可集成到胶片和/或胶片支架内,例如通过在X射线胶片的两个物理层之间包含有已知X射线密度的材料,或在X射线胶片的一个物理层内包含有已知X射线密度的材料。
在另一方面,在此描述的任何方法还包括以下步骤:基于定量信息生成诊断报告,并且可选择地,发送诊断报告(例如向医师)。这种报告可用计算机程序生成,例如远程计算机上的程序。该诊断报告可包括,例如,患者健康状态信息(例如象骨质疏松症这样的骨矿物质密度状态和/或骨折风险信息)。其它疾病状态也可使用在此描述的教导从X射线图像分析得出。在某些实施例中,这些方法还包括为诊断报告的接受者生成清单(费用帐目)。该清单可包括生成报告的费用、专业费(profession fee)、技术费(technical fee)等。该清单可打印并通过邮件或传真发送给接受者,或者该清单可电子传送。接受者可以是医师、被测对象、患者、患者的雇主、医疗保健组织、健康保险提供者、政府机构或政府代表。该清单也可分开,其各部分分送给多个接受者。在某些实施例中,该清单用远程计算机上的计算机程序生成。
在另一方面,本发明包括将一个或多个X射线图像数据库公式化(formulating)的方法,所述方法包括从一个或多个被测对象采集X射线数据(例如密度测量信息),通过将每一个所述数据点与一个或多个数据属性(例如被测对象的年龄、被测对象的体重、被测对象的身高、疾病状态等)联系起来以公式化所述的一个或多个数据库。数据可采用X射线成像技术进行采集,例如通过采用数字或数字化X射线图像。在某些实施例中,数据来自于一个被测对象,而在另一些实施例中,数据来自于两个或多个被测对象。在另一些实施例中,这些方法还包括从每个数据库编制多个数据库,每个数据库中的数据点是由一个单个个体采集的,而每个单个个体的数据点与一个或多个相关数据属性相联系。
在此描述的任何方法中,定量信息可以是密度测量信息,例如骨矿物质密度或所选择的软组织或器官的密度。可选择地,定量信息是形态学信息,例如,组成解剖学结构(例如,骨)各个成分的二维和/或三维排列信息。在此描述和任何方法中,结构可以是骨,而信息可以是,例如,小梁厚度、小梁间距信息和/或小梁网络的二或三维结构估计。此外,该信息可以以在此描述的任何方法加密(例如,对未经允认的用户隐藏被测对象的姓名或其它人口统计信息)。
此外,在此描述的任何方法中,X射线图像可以由X射线胶片生成,例如采用磷光板系统。优选地,将图像数字化,例如,图像可以数字获取(例如采用硒或硅探测系统)或采用扫描单元数字化。
在另一方面,本发明包括由在此描述的任何方法形成的数据库,例如通过将X射线图像中所选择的数据点用公式表示。在某些实施例中,数据点与一个或多个相关数据属性相联系。
在另一方面,一种X射线图像数据库的操作方法,其包括:提供包括在此描述的数据点和数据属性的任何数据库;以及通过与所述数据点联合的所述属性确定所述数据点和所述属性之间的关系,从而操作所述数据点。
在另一方面,本发明包括用于确定骨矿物质密度的X射线组件,该组件包括X射线胶片支架;X射线胶片和包含有至少一个标记的校准模型,标记例如为位于已知密度区域中的一条线或其它几何图形(例如圆形、星形、方形、月牙形、椭圆形、多边体、不规则形体或这些形状的组合),并且其中校准模型投影(project)在骨组织之外。校准模型可附着到X射线胶片、胶片支架和/或探测系统上。附着可以是永久的(例如集成到胶片内,如胶片的两个物理层之间或胶片的一层内,和/或集成到胶片支架或检测器上)或临时的(例如,通过机械的或其它附着机构,如维可牢尼龙搭扣或粘结剂等)。这样,在某些实施例中,校准模型可重复使用和/或可在多次使用之间进行消毒。在某些实施例中,该组件是牙科X射线组件。在此描述的任何X射线组件中,校准模型的形状可做成,例如阶状楔形(stepwedge)或多个已知密度的流体填充腔。
在某些方面,楔形校准模型用于提供基准测量以按照模型材料厚度表示解剖学结构的密度。例如,在此所描述的就是生成描述被测衰减和材料厚度之间的关系的校准曲线的方法,其中形成该曲线的数据点由模型图像导出。在某些实施例中,楔形校准模型具有长度L并在该长度上从最大厚度T到厚度0具有线性变化(例如校准模型具有两端—一端标记最薄点,另一端标记最厚点,其中厚度在两端之间线性变化)。在这些实施例中,在与楔形体最薄端距离为D处的楔形体图像中的每一个点X在校准曲线上得出点(T*L/D,G),其中T*L/D为X处楔形体的厚度,G为X处的厚度衰减。
可选择地,校准曲线也可在当距离D为未知的情况下生成,例如,如果校准楔形体沿其长度的变化是非线性的,或者模型的两端不能在图像中正常识别出。在某些实施例中,确定所预期的全部校准曲线的形状,并可通过已识别出的校准楔形区域与预期曲线拟合计算出部分曲线。对于特定结构的已知厚度衰减,采用所述校准曲线确定对应的厚度值。
此外,可对从线性和非线性模型生成的校准曲线进行进一步的操作,例如,将厚度数据转化成浓度(例如钙浓度)。在某些实施例中,铝制阶状楔形体的图像和表示厚度的校准曲线通过在该图像中包括变化钙浓度的样品而转化成钙浓度单位。利用该第二校准曲线,以铝厚度表示的值可转换成钙浓度单位。
在另外一些实施例中,基准校准曲线可通过,例如对多个由在此描述的任何方法所获得的校准曲线(例如厚度和/或浓度曲线)取平均而生成。基准校准曲线用于不具有其自身的模型或其它标准的图像分析中。
在另一方面,本发明包括利用在此描述的任何校准模型和/或方法获得精确骨矿物质密度信息的方法。因此,在某些实施例中,这些方法包括定位在此描述的任何校准模型,从而使X射线同时穿过被测对象和校准模型,其中校准模型投影于会改变其表观密度的材料外;创建该模型和被测对象部分解剖学结构的图像;以及比较模型和被测对象解剖学结构的图像以确定被测对象骨矿物质密度。该X射线图像可以是,例如牙科X射线。在此描述的任何方法可以在计算机上、在网络环境中或手动执行。
本发明的另一方面是一种用于辅助评价被测对象骨状态的工具包,该工具包包括一个软件程序,当该工具包在计算机上安装并运行后,其读出X射线图像(例如数字或数字化牙科X射线)并产生显示骨矿物质密度的信息显示。在此描述的任何工具包还可包括校准模型、X射线胶片、X射线胶片支架和用于显示和/或生成关于骨矿物质密度信息显示的清单的计算机程序(例如软件)。
另一方面,本发明包括一个校准模型,例如一个包括多个几何形状的校准模型,其中该校准模型的长度小于2.5cm,宽度小于5mm。上述几何形状可以为例如,包括形成阶状楔形体的矩形。模型自身可以是不锈钢,例如其成份为0.08%的碳,2%的锰,1%的硅,0.045%的磷,0.03%的硫磺,10-14%的镍,16-18%的铬,2-3%的钼和为达到100%而加入的铁。
在另一方面,提供诊断被测对象骨质疏松症的方法,例如采用在此所述的任何工具包、方法和/或装置。在某些实施例中,被测对象骨质疏松症的诊断方法包括采用计算机程序分析X射线图像的骨矿物质密度,以及将从图像中获得的骨矿物质密度值与基准标准或曲线相比较,从而确定被测对象是否患有骨质疏松症。在某些实施例中,X射线图像包括校准模型,例如在此所述的校准模型。在其它实施例中,基准校准曲线可以用于分析图像。
在另一方面,评价骨矿物质密度的方法用于为需要进行治疗的对象提供合适的治疗。例如,利用在此描述的任何方法、工具包和/或装置,可以诊断被测对象是否存在骨质疏松症,并为被测对象提供合适的治疗(例如,一种或多种抗再吸收剂和/或一种或多种合成代谢剂)。此外,随着时间的过去,在此描述的方法可用于评价所选择治疗的效果。因此在某些实施例中,骨质疏松症的诊断和/或治疗在网络环境中得以实现。
本发明的这些和其它实施例将通过在此公开的内容所给出的启示而展现于本领域技术人员面前。
附图说明
图1示出用于监测骨质疏松症的能够进行网络定量X射线分析的实例。
图2示出牙科X射线胶片支架的一个实例。该胶片支架包括校准模型。
图3示出牙科X射线胶片支架的另一个实例,该胶片支架包括校准模型。
图4示出一个实施例,其中校准模型附着到牙科X射线胶片支架上。
图5示出一个实施例,其中校准模型附着到X射线胶片上。
图6示出一个实施例,其中校准模型集成到胶片盖内。
图7示出一个实施例,其中校准模型集成到检测器系统内。
图8示出可用作校准图像的固有标准的牙科X射线的示范性测量位置。
图9示出可用作校准图像的固有标准的牙科X射线的示范性测量位置。
图10中的图A和图B示出示范性校准模型。图(A)显示该装置的顶视图和尺寸。图B显示阶状楔形体的侧视图和示范性尺寸。
图11示出牙科X射线的示范性X射线系统的侧视图,其中校准模型(104)集成到胶片支架中。在图11中还示出了卡紧块(100),胶片(103),环状Rinn固定器(102)和不锈钢杆(101)。环状Rinn固定器(102)能够有助于对准X射线管,从而使其垂直或接近垂直于胶片。
具体实施方式
在详细描述本发明之前,应当理解的是本发明不限于这些具体明确的描述或步骤参数,其当然是可以改变的。还应当理解的是在此所采用的术语仅用于描述本发明具体实施例,而不是起限定作用的。
本发明的实施,除非另有说明,采用本领域数据库存储和操作的常规方法。这些技术在文献中有全部的解释。参见,例如Numerical Mathematical Analysis第三版,J.B.Scarborough著,1995年,John Hopkins Press出版;System Analysis and Design Methods,Jeffrey L.Whitten等著,第四版,1997,Richard K.Irwin出版;Modern Database Management,Fred R.Mcfadden等著,第五版,1999,Addison-Wesley Pub.Co.出版;Modern System Analysis and Design,JefferyA.Hoffer等著,第二版,1998,Addison-Wesley Pub.Co.出版;Data Processing:Fundamentals,Design,and Implementation,David M.Kroenke著,第七版,2000,Prentice Hall出版;CaseMethod:Entity Relationship Modeling(Computer Aided Systems Engineering),Richard Barker著,1990,Addison-Wesley Pub.Co.出版。
在全部出版物中,在此引证的专利及专利申请,无论前面还是后面出现的,均全部引入在此作为参考。
必须注意的是,本说明书和附加的权利要求书中所采用的单数形式“a”,“an”和“the”包括复数含义,除非本文中另外明确说明。因此,例如,“a校准模型”的含义包括一个或多个这种模型。
定义
除非另有定义,所有在此所采用的技术和科学术语具有本发明所属技术领域的普通技术人员所通常理解的同样含义。虽然与在此所述的方法和材料类似或等价任何方法和材料均可用于本发明的实际测试中,在此只描述了优选材料和方法。
术语“被测对象”包括任何恒温动物,特别包括某些哺乳类动物,例如,非限制性的,人类和非人类灵长类的动物,如黑猩猩和其它猿猴类;畜牧场动物,如牛、绵羊、猪、山羊和马;家养哺乳动物,如狗和猫;包括啮齿动物在内的实验室动物,如耗子、老鼠和豚鼠等。该术语不指定特定的年龄和性别,因而包括成年和新生对象,无论是雄性还是雌性。
“参数”指出现在数学表达式中的任意常数或变量,改变该参数能得到各种所代表现象的情形(McGraw-Hill Dictionary of Scientific and Technical Terms,S.P.Parker,ed.,第五版,McGraw-Hill Inc.,1994)。参数是其值确定某物的特性或行为的任何一组属性。
“数据点”通常是一个对应于物理测量值(“获得的”数据点)或由一个或多个获得的数据点(“计算的”或“导出的”数据点)计算或导出的单个数字结果的数字值。所导出的数据包括,但不限于,从原始数据导出的量,例如,变化的速度和/或幅度,线的斜率(例如,由回归分析所确定的),截距(例如,由回归分析所确定的),以及相关系数。
“数据标记”,亦称为数据点的“属性”,是这些特定数据点所附带的各种特性。例如,包括X射线信息(和/或骨矿物质密度)的数据点附带有若干个属性,例如,图像获取的数据和时间;与被测量的特定对象有关的某种身份识别(例如人口信息:如特定用户的性别、年龄、体重或种族;医疗信息,如被测对象所用的药物和/或被测对象所患疾病)。
“数据库”是数据点和每个数据点所附带的数据属性的集合。因此,“数据点、导出数据和数据属性数据库”是包括例如从X射线图像、从原始数据点导出的数据和这些数据点或所导出的数据所附带的数据属性所采集的数据点的数据库。数据库可限定为包括一个或多个水平测量的数据点;这些数据点可进一步从一个或多个被测对象采集。例如,可以创建一个数据点数据库且该数据库中的信息与存有属性的第二数据库有关。这种一个或多个数据库的组合是本领域技术人员在本说明书的教导下易于得出的。数据仓库(data warehouse)是数据库的另一个术语。数据仓库这一术语通常用于大型数据库。
数据库的“公式化”包括采集数据点,将这些数据点输入所需的数据库格式,以及按照所采用的特定格式给每个数据点附加上各种数据属性。可提供输入数据点和给这些数据点附加上数据属性的手段的软件有很多种,例如Excel(Microsoft Corporation,Seattle,Washington)电子制表软件,Quattro(Corel Inc.,Ottawa,Canada)电子制表软件,MicrosoftAccess 2000(Microsoft)软件,Oracle(Oracle Inc.,Redwood Shores,CA)软件以及其它数据库和数据仓库软件。
数据库的“操作”指各种处理,例如选择、排序、筛选、合计、群集、模型化、探察和利用数据点所附带的各种数据属性或标记对数据点进行分段。用于产生数据库和操作所得到的数据库的有效系统包括,但不限于,Sybase(Sybase Systems,Emeryville,CA),Oracle(oracle Inc.,Redwood Shores,CA),和Sagent Design Studio(Sagent Technologies Inc.,Mountain View,Califormia)系统软件。此外,还有用于数据分析和数据挖掘的统计程序包和系统。例证性实例包括SAS(SAS Institute Inc.,Cary,NC)和SPSS(SPSS Inc.,Chicago,IL)系统软件。
“数据挖掘”指对大量数据进行选择、开采、模型化以揭示事先未知的趋势、模式和各种数据点和数据属性之间的关系的处理。
“数据合计”和“数据群集”指基于一个或多个共同的属性对数据点进行分组的处理。相反地,“数据分段”指基于一个或多个属性将数据分为离散组。
“骨结构”指骨组织的二维或三维排列(例如构造或微观构造)。(又参见国际专利公开WO02/30283)。通常,骨组织包括两种类型的骨—通常大部分是固体且其中具有槽和孔的皮质骨的外层,和通常结构为海绵状或蜂窝状的小梁(或网状骨质)骨的内层。皮质骨和小梁骨的结构特征包括,但不限于,小梁厚度、小梁间距、小梁间的二维或三维间距;小梁网络的二维或三维构造;固体材料(通常大于3000μm),主副小梁(通常75至200μm),主副骨板(通常100至300μm),丛状、间质骨,小梁束,薄层(lamellae)(通常1至20μm),腔隙,水泥Lines,小管,胶原—矿物质合成物(通常0.06至0.4μm),皮孔,小梁连通性,节点和分支点等。一个或多个这些和其它结构特征可通过本发明的实践进行测量。优选地,测量在毫米以下范围内,更典型地在10-500μm范围内。微构造参数的非限制性实例包括小梁结构临界二元图像参数,如小梁面积;总面积;小梁面积/总面积;小梁参数面积;小梁距离变换;骨髓距离变换;小梁距离变换局部最大值(平均,最小,最大,标准Dev);骨髓距离变换局部最大值(平均,最小,最大,标准Dev);星状体积(参见,例如,Ikuta等(2000)JBMR 18:217-277;Vesterby(1990)Bone 11:149-155;和Vesterby等(1989)Bone10:7-13);trabecular Bone Pattern Factor(Hahn等(1992)Bone 13:327-330);TBPF=(P1-P2)/(A1-A2),其中P1和A1为扩大前的参数长度和小梁骨面积,而P2和A2对应于单个象素扩大后的值以及小梁骨架参数,如连接骨架数或树状物数(T);节点数(N);分段数(S);节点至节点的段数(NN);节点至自由端的段数(NF);节点至节点段长度(NNL);节点至自由端段长度(NFL);自由端至自由端段长度(FFL);节点至节点总支杆长度(NN.TSL)(参见,例如,Legrand等,(2000)JMBR 15:13-19;自由端至自由端以杆长度(FF.TSL);总支杆长度(TSL);FF.TSL/TSL;NN.TSL/TSL;环数(Lo);环面积;每个连接骨架的平均距离变换值;每段(Tb.Th.)的平均距离变换值;每个节点至节点段(Tb.Th.NN)的平均距离变换值;每个节点至自由端段(Tb.Th.NF)的平均距离变换值;每段的方向(角度);段间的角度;长厚比(NNL/Tb.Th.NN)和(NFL/Tb.Th.NF);和内部连接索引(ICI),其中ICI=(N*NN)/(T*(NF+1).
“宏观解剖学参数”指描述骨和/或周围结构的形状、尺寸或厚度的任何参数,通常是至少在一个维度上大于0.5mm的参数。宏观解剖学参数包括,例如,在髋关节中的股骨干皮层厚度,股骨颈皮层厚度,髋轴长度,CCD(头—颈—骨干)角度和转节区。
“骨质量”泛指任何所给定的骨的全部特性。因此,该述语所指的特性包括,但非限制性的,所具有的骨密度程度,骨的厚度,骨的脆性(例如易骨折性),骨长度和/或骨的宏观或宏观解剖学结构特性之一。
概述
在此描述了用于分析X射线图像的方法和组成。特别是,本发明包括从网络环境中的X射线图像获得或导出信息的方法。此外,本发明涉及为X射线系统提供的校准模型和使用这些模型的方法。校准模型通常由与人体骨组织的特性类似的材料形成,并且设置在X射线组件中从而可以利用传统X射线设备达到更高的钙、骨质量和骨密度量化的精确度和准确度。
本发明的优点包括,但不限于,(i)为X射线图像分析,特别是骨矿物质密度的X射线分析提供快速集中的网络;(ii)为X射线分析提供容易可靠的手段;(iii)提供精确的校准模型;(iv)提供可容易与标准X射线技术一起使用的精确的校准模型;和(v)提供构成这些网络化技术和装置的方法和材料。
数据库公式化
根据本发明的数据点、导出数据和数据属性的公式化方法包括以下步骤:(1)数据点的采集,所述数据点包括从X射线图像获得的信息,例如骨矿物质密度信息;和(2)这些数据点与相关数据点属性的联合。该方法还可包括(3)从一个或多个直接数据点确定导出数据点以及(4)这些数据点与相关数据点属性的联合。该方法还包括(5)利用远程计算机进行的数据点采集,其中所述远程计算机在网络环境中操作。
在优选实施例中,信息是从X射线图像获得的,例如无生命结构的解剖学结构。X射线图像可采用已知技术在本地位置获取。如果X射线图像是采用传统X射线胶片捕获的,可将X射线图像的数据点(信息)数字化,例如利用扫描装置。该数字化X射线图像信息而后可通过网络,例如因特网,传输到远程计算机或服务器。如果X射线图像是利用数据获取技术获得的,例如利用磷光板系统或者硒或硅探测系统,该X射线图像信息已经是数字格式。在这种情况下,图像可直接通过网络,例如因特网传输。信息也可在传输前压缩和/或加密。传输也可采用其它方法,如传真或邮件等。
数据点
因此,作为本发明的一个方面,数据点、导出数据和数据属性数据库的公式化方法开始于测量值数据集的采集,例如从X射线图像进行骨矿物质密度的测量。记录可制成电子制表格式,例如包括数据属性,如X射线日期,患者年龄、性别、体重、目前用药,地理位置等。本发明的数据库公式化方法还可包括从一个或多个获得的数据点导出或计算数据点的计算。多种导出数据点可有助于在后续数据库操作过程中提供关于个体或人群组的信息,因而通常在数据库公式化过程中被包括在内。导出数据点包括,但不限于,下列:(1)最大骨矿物质密度或一个或多个骨结构测量的最大值,其由骨所选区域或在同一或不同被测对象的多个样本中确定;(2)最小骨矿物质密度或一个或多个骨结构测量的最小值,其由骨所选区域或在同一或不同被测对象的多个样本中确定;(3)平均骨矿物质密度或所选骨结构测量的平均值,其由骨所选区域或在同一或不同被测对象的多个样本中确定;(4)异常的高或低的测量数,其通过给定测量数据点与所选值的比较而确定;和其它等。其它导出数据点在本发明的教导下,对于本领域技术人员是显而易见的。可获得的数据和从原始数据导出的(或通过原始数据的分析所得到的)数据的数量提供了与患病(如骨质疏松症)骨的监控非常相关的空前的数据量。例如,随时间的推移对被测对象进行的检查可评估药物的效果。
测量值和导出的数据点分别进行采集和计算,并可与一个或多个数据属性联合形成数据库。
数据属性可随X射线图像自动输入,并可包括,例如按年代顺序排列的信息(例如日期和时间)。其它所属性可包括,但不限于,所采用的X射线的种类,扫描信息和数字化信息等。可选择地,数据属性可由被测对象和/或操作者输入,例如被测对象标识符,即与特定被测对象附带的特征。这些标识符包括,但不限于,下列:(1)被测对象代码(例如数字或字母数字序列);(2)人口信息,如种族、性别和年龄;(3)物理特征,如体重、身高和身体质量指数(BMI);(4)所选方面的被测对象病史(例如疾病状态和情形等);和(5)与疾病有关的特征,如骨障碍类型,如果存在的话;被测对象所用药物的种类。在本发明的实际应用中,每个数据点以及被测对象的人口状况等特征通常由具体被测对象确定。
其它数据属性在本发明的教导下,对于本领域技术人员是显而易见的。
数据集的存储和数据点与相关数据属性的联合
存储的数据集和同时联合的相关属性存在有多种格式,包括,但不限于,(1)表格式的,(2)关系的,(3)空间的。通常数据库包括数据点,对应于物理测量量(所“获取的”数据或数据点)或由采用在此公开的各种方法所获得的一个或多个所获取的数据点而导出或计算的单个数字结果的数值。数据库可包括原始数据或也可包括附加的相关信息,例如也称为数据点“属性”的数据标记。数据库可采用若干不同形式或以多种方式构建。
最常见的格式是表格式,通常称作电子数据表。当前存在有多种电子制表程序,本发明实际上通常采用的包括,但不限于,微软Excell电子制表软件和Corel Quattro电子制表软件。在这种格式中,通过在测量发生时在同一行输入数据点和与该数据点相关的属性数据点来产生数据点与相关属性的联合。
进一步地,可推知,也可采用关系(Database Design for Mere Mortals,Michael J.Hernandez著,1997,Addison-Wesley Pub.Co.出版;Database Design for Smarties,RobertJ.Muller著,1999,Morgan Kaufmann出版;Relational Database Design ClearlyExplained,Jan L.Harrington,1998,Morgan Kaufmann Publishers出版)和空间(Data-Parallel Computing,V.B.Muchnick等著,1996,International ThomsonPublishing出版;Understanding Fourth Dimensions,David Graves著,1993,ComputerizedPricing Systems出版)数据库系统和管理手段。
关系数据库通常支持由关系代数定义的一系列操作。这种数据库通常包括由包括在数据库中的数据的列和行组成的表。每个数据库表具有一个主索引,其可以是任何列或列组,其值唯一确定表中的行。数据库中的该表还可包括外来索引,其为一列或列组,其值与另一表中的主索引值相匹配。通常,关系数据库也支持形成管理数据库内关系的关系代数基础的一系列操作(例如,选择,加入和联合)。
这种关系数据库可以各种方式实施。例如,在Sybase(Sybase Systems,Emeryville,CA)数据库中,表可以物理为不同的数据库。对于Oracle(Oracle Inc.,Redwood Shores,CA)数据库,则相反,各种表没有物理隔开,因为有一个临时工作区(instance),为不同的表指定了不同的所有权。在一些配置中,数据库全部位于单个计算机上的单个数据库(例如数据仓库)。在另一些场合,各种数据库分在不同的计算机上。
当然应当了解的是,数据库不限于上述排列和结构。各种其它的排列对本领域技术人员来说将是显而易见的。
数据库操作
采用本发明方法制成的数据库有利于操作,例如,使用各种统计分析,以产生有用信息。本发明的数据库可以,例如从个体采集的数据或从在所限定的时间段内(例如天、月或年)所选择的个体组,从导出的数据和从数据属性而生成。
本发明还涉及数据点、导出数据和数据属性数据库的操作方法以提供有用结果,所述方法包括提供数据点、导出数据和数据属性数据库,以及操作和/或分析数据库。
例如,数据集可通过与数据点相关联的属性进行合计、排序、选择、筛选、群集和分离。存在有若干可用于进行所需操作的数据库管理系统和数据挖掘软件。
数据库内的关系可直接查询和/或通过统计方法进行数据分析以评价从操作数据库而获得的信息。
例如,可为所选数据集建立一个分布曲线,并从中计算出平均值、中值和模式。进而,可计算数据分布特点,例如变化性、四分值和标准偏差。
可通过计算相关系数来审查具体的变化与骨矿物质密度水平之间的关系特性。对此较有用的方法包括,但不限于,下列方法:Pearson Product Moment Correlation and Spearman RankOrder Correlation。
变化分析能够检测采样组间的区别以确定所选的变化是否对所测量的参数具有可察觉的作用。
非参数测试可用作检测在经验数据和实现期望之间的变化是否归因于偶然或是所检测到的变化的手段。这些包括Chi平方(Square)测试,Chi Square适合度(Goodness of Fit),2×2相依表(Contingency Table),Sign测试和Phi相关系数(Correlation Coefficient)。
可应用于本发明数据库分析的标准数据挖掘软件中的工具和分析方法有许多种。这些工具和分析方法包括,但不限于,群集分析、因素分析、决策图表、神经网络、规则引导、数据驱动(driven)模型化和数据可视化。数据挖掘技术更复杂的一些方法用于揭示那些更为经验的和数据导向的关系,而非理论导向的关系。
可用于本数据库的分析和/或生成的数据挖掘软件的实例包括,但不限于:链接分析(LinkAnalysis)(例如,属性分析(Associations analysis),有序图形(Sequential Patterns),有序时间(Sequential time)和Bayes网络(Bayes Networks));分类(Classification)(例如,神经网络分类(Neural Networks Classification),Bayesian分类(Bayesian Classification),k-最近相邻分类(k-nearest neighbors classification),线性判别式分析,基于存储推理(Memorybased Reasoning),和属性分类(Classification byAssociations));群集(例如,k-平均集群,人口集群,关系分析和神经网络集群);统计方法(例如平均,Std dev,频率,线性回归,非线性回归,t-测试,F-测试,Chi2测试,主要成份分析和因素分析);预测(例如,神经网络预测模型,Radial Based方程预测,模糊逻辑预测,时间序列分析和基于存储推理(Memory based reasoning));操作系统和其它(例如,平行可量测性,简单查询语言功能和为应用而生成的C++目标)。随之还提供如下软件,例如,Adaptative Methods Group at UTS(UTS City Campus,Sydney,NSW2000),CSI,Inc.,(Computer Science Innovations,Inc.Melbourne,Florida),IBM(Intemational Business Machines Corporation,Armonk,NY),Oracle(Oracle Inc.,Redwood shores,CA)和SAS(SAS Institute Inc.,Cary,NC)。
这些方法和处理可应用于本发明的数据库,例如,包括有X射线图像数据集、导出数据和数据属性的数据库。
关于应用于数据分析的常规统计学的讨论,参见Applied Statistics for Science and Industry,A.Romano著,1977,Allyn和Bacon出版。
硬件/软件和系统补偿(considerations)
A.硬件/软件
通常包含有一个或多个微处理器的各种计算机系统可根据在此所描述的方法用于进行存储、检索和分析所获得的信息。该计算机系统可以是一台简单的未与其它计算机联网的单机计算机,该系统设有数据存储形式,例如磁盘驱动器,可移动磁盘存储器,例如ZIP驱动器(Iomega Corporation,Roy,Utah),光学介质(例如,CD-ROM),磁带,固态存储器和/或bubble存储器。可选择地,该计算机系统可包括网络计算机系统,其中一台计算机连接到一个或多个其它计算机,例如网络服务器。该网络系统可地一个企业内部互联网系统和/或一个通过因特网连接到其它计算机的系统。因此,该计算机系统可是基于因特网和非基于因特网的系统。
此外,象个人数字助理(PDA),例如Palm PilotTM(Palm Inc.,Santa Clara,CA)或HandspringTM VisorTM(Handspring,Inc.,Mountain View,CA)和袖珍计算机(PPC),例如Casio EM500 Multimedia Cassiopeia Pocket PC(Casio Inc.,Dover,NJ)或Compaq iPAQTM(Compaq Computer Corporation,Houston,Texas)这些装置可用于检索和患者数据库信息。PDA或PPC可以是一台简单的未与其它计算机联网的单机装置,所提供的装置具有数据存储形式,例如固态存储器,SD(安全数字)和MMC(多媒体卡)卡。可选择地,PDA或PPC可连接到网络中,在该网络中,该装置连接到一个或多个计算机上,例如网络服务器或PC上。连接到网络上的PDA或PPC可以是一个企业内部互联网系统和/或一个通过因特网连接到其它计算机的系统。因此,该PDA或PPC可以是连接于因特网和非连接于因特网的系统。
例如,关于X射线图像的信息和用于获取X射线图像的参数(例如获取参数)可随图像在局部或远程网络上传输。图像获取参数可与图像同时或在图像传输之前或之后在网络上传输。以这种方式传输的的图像获取参数包括,但不限于,X射线管电压设定,能量设定,X射线管电流,胶片—焦点距离,目标—胶片距离,准直,焦斑,空间分辨率,滤波设定等。这些参数可手动输入到与X射线图像同时或在X图像之前或之后传输的数据注册单或数据库中。可选择地,至少部分这些参数可自动传输,而其它可在不同患者之间保持常数的参数可存储到本地位置或网络上。
因此,在X射线图像之前、之后或同时在网络上传输的X射线获取参数可用于提高X射线图像定量测量精度。例如,当已知X射线图像获取参数时,X射线图像上所包含的解剖学结构或无生命物体的密度信息可更精确地导出。
软件可安装在PC机、Silicon Graphics,Inc.(SGI)计算机或Macintosh计算机上。
B.单机系统
到中心网络(例如因特网)的连接可是直接中通过串行接口适配器。例如,如果读出设备具有无线功能,则可采用直接连接;可选择地,可通过装置和网络之间的SLA或其它类型的对接站连接。
在一些实例中,计算机系统包括具有Inter Pentium微处理器(Intel Corporation,SantaClara,CA)的计算机,该微处理器运行Microsoft WINDOWS Version 3.1,WINDOWS95,WINDOWS98,或WINDOWS2000操作系统(Microsoft Corporation,Redmond,WA)。当然也可采用其它微处理器,如ATHLONTM微处理器(Advanced Micro Devices,Inc.,Sunnyvale,CA)和Intel CELERON和XEON微处理器。在不背离本发明的范围的情况下,还可采用其它的操作系统,例如,UNIX,LINUX,APPLE MAC OS9和OS X(Apple,Cupertino,CA),PalmOS(Palm Inc.,Santa Clara,CA),Windows CE2.0或Windows CE Professional(Microsoft Corporation,Redmond,WA)。通常还包括有用来存储或检索患者数据库信息的存储介质,例如磁盘驱器、可移动磁盘存储器,CD-ROM。
可采用标准计算机接口,例如通用串行总线(USB)口,来实现与计算机系统的通信。也可采用标准无线接口,例如射频(RF)技术-IEEE802.11和蓝牙,和/或红外技术。数据可以标准方式编码,例如美国信息交换标准码(ASCII)格式—由ANSI于1963年提出并于1968年定案的标准七位码。ASCII是微机设备的通用代码。
计算机系统可采用各种现存的软件将信息存入,例如数据库,这些软件提供了输入数据点以及将数据点与数据属性联合的手段。生成数据库和操作所得到的数据库的可用系统包括,但不限于,Excel(Microsoft Corporation,Seattle,Washington)电子制表软件,Quattro(corel Inc.,Ottawa,Canada),Sybase(Sybase Systems,Emeryville,CA),Oracle(Oracle Inc.,Redwood Shores,CA),和Sagent Design Studio(Sagent Technologies Inc.,Mountain View,California)系统软件。此外,还可得到用于数据分析和数据挖掘的统计工具包和系统(参见上面)。例证性实例包括,但不限于,SAS(SAS Institute Inc.,Cary,NC)和SPSS(SPSS Inc.,Chicago,IL)。数据库可记录在,例如磁盘驱动器—系统外部或内部的,读/写CD-ROM驱动器,磁带存储系统,固态存储器或bubble存储器,SD或MMC上。除将数据存储到数据库中外,信息可发送到辅助读取装置,如显示监视器上。
C.网络系统
网络化计算机也适于执行本发明的方法。可采用多个网络系统,例如局域网(LAN)或广域网(WAN)。网络计算机系统包括用于将数据以所建立的格式进行传递的所需功能性,例如,Ethernet或Token Ring Packets或Frames,HTML-格式化数据,或WAN数字或模拟协议,与任何参数信息相结合,例如Destination Address,或Cyclic Redundancy Check(CRC)。CRC技术是获得数据可靠性的强大和易于实现的技术。CRC技术用于保护称为框架(frame)的数据块。采用该技术,传输器对每个框架附加额外n-位序列,称为框架核对序列(FCS)。FCS保留有助于传输框架中检测误差(error)的关于框架的多余信息。CRC为将数据通信中的误差检测转换成适合于传输通过传输线以传递至数据库服务器的格式的最常用的技术。进一步地,网络系统可包括所需的软件和硬件以从读出设备接收数据,存储数据,处理数据,以各种方式显示数据,并反向与读出设备通信以及允许许多用户之间和这些用户与读出设备之间的通信。
网络计算机系统,例如Ethernet,Tokey Ring或FDDI网络,可用标准网络接口卡(NIC)访问,例如3Com Etherlink NIC(3Com,Inc,Santa Clara,CA),其提供UTP、同轴或光纤电缆、或IntelPRO/100S桌面适配器(Intel Corporation,Santa Clara,CA)方式的网络连接,或使用标准远程访问技术,例如使用普通的旧电话系统(POTS)线的调制解调器,或连接到数字用户线的xDSL路由器,或电缆调制解调器。此外,网络计算机系统可使用标准无线接口,例如射频(RF)技术-IEEE 802.11和蓝牙,连接到LAN。
网络计算机系统与单机系统一样,具有同样的将数据存储到存储介质(例如磁盘驱动器、磁带存储器或CD-ROM)的能力。可选择地,网络计算机系统能够将数据传输到任何连接到网络计算机系统的设备,例如使用标准电子邮件软件的医生或医疗保健机构,使用数据库查询和更新软件的中央数据库(例如,数据点、导出数据、和从大量被测对象获得的数据属性的大型数据库)。可选择地,用户可从医生办公室或医疗机构,使用任何带有因特网入口的计算机系统,得以回顾有助于确定治疗的历史数据。
如果网络计算机系统包括www的应用程序,该应用程序包括产生数据库语言指令(例如SQL指令)所需的执行代码。这种可执行指令通常包括嵌入的SQL指令。该应用程序还包括含有各种软件实体的指针和地址的配置文件,该软件实体除位于不同的响应用户请求而被访问的外部和内部数据库以外,还位于数据库服务器上。该配置文件直接为数据库服务器资源请求合适的硬件,正如如果数据库服务器在两台或多台不同计算机上分配所可能需要的。
通常每台网络计算机系统包括一个向网络数据库服务器提供用户界面的WWW浏览器。该网络计算机系统能够通过Web浏览器从数据库作出检索信息的搜索请求。通过访问Web浏览器,用户通常能够指向或点击用户界面元素,如按钮,下拉菜单和其它图形用户界面元素,以准备和提交从数据库提取相关信息的询问。以这种方式公式化的请求随后传输到将该请求格式化以生成可用于从数据库中提取相关信息的询问的Web应用程序。
当使用基于Web的应用程序时,Web应用程序通过以数据库语言,例如Sybase或OracleSQL,构成一个请求从数据库中访问数据,该数据语言而后传递到有关的数据库管理系统,该系统反过来处理该询问以从数据库中获得有关的信息。
因此,本发明的一方面描述了一种在网络上,例如因特网上提供X射线图像数据的方法,以及使用该连接以提供实时和延迟的数据分析。中央网络还可允许医师访问被测对象的数据。类似地,如果被测对象的读数超出预定范围等,可向医师发出警报。医师而后可通过电子邮件或Web网页界面上的讯息向患者回送建议。进一步地,访问全部被测对象数据的整个数据库有助于统计研究目的。当然还使用适当的网络安全特性(例如,用于数据传输、质询,设备更新等)。
此外,可采用远程计算机分析已自动通过网络传输的X射线。例如,可以以这种方式生成物体的X射线密度信息或结构信息。X射线密度信息可以是,例如骨矿物质密度。如果用于这种方式,该测试可用于诊断骨质疏松症(参见图1)。
D.图形用户界面
在某些计算机系统中,包括象包含有一套功能的界面屏幕的界面,以使用户易于访问他们从本发明的数据库和方法中所寻求的信息。这种界面通常包括一个主菜单页,用户从该主菜单页能够启动各种不同类型的分析。例如,数据库的主菜单页通常包括用于访问某些类型信息的按钮,这些信息包括,但不限于,投射信息、交互投射比较,每天次数、事件、日期、次数、数据范围等。
E.计算机程序产品
可采用各种计算机程序产品来实施在此所述的各种方法和分析。通常,计算机程序产品包括计算机实行上述方法所需的可读介质和代码。其上编码有程序指令的该计算机可读介质可以是任何各种已知的介质形式,包括,但不限于,微处理器,闪存,硬盘驱动,ZIP驱动器,WORM驱动器,磁带和象CD-ROM这样的光学介质。
例如,一旦X射线通过本地或远程计算机网络传输,且X射线数据由远程计算机或与该远程网络计算机相连的计算机接收,就可以进行物体的形态学分析,例如使用合适的计算机程序。该物体的形态学分析可以二维形式出现,虽然也可以是三维的,特别是当已采用多个不同的X射线角度获取了整个解剖学物体的X射线图像。例如,在骨结构成像中,这种传输的X射线图像的形态学分析可用于测量指示或暗示骨损耗或代谢性骨病的参数。这些参数包括可用于评价骨结构的全部当前和未来参数。例如,这些参数包括,但不限于,小梁间距、小梁厚度和小梁之间的间隔。
当已知象空间分辨率这样的X射线图像获取参数时,解剖学结构的形态学或者2D或3D形态学信息可更精确地导出。其它象锥束失真度这样的参数也可有助于该设置。
如上所述,X射线图像可从本地位置传输到远程服务器,并且远程服务器可对X射线进行自动分析。此外,远程服务器或与远程服务器相连的计算机然后可生成诊断报告。因此,在某些实施例中,计算机程序(例如,在远程服务器上的或在与远程服务器相连的计算机上的)可生成诊断报告的费用。该远程服务器然后可将诊断报告传输给医师,通常是安排该测试或负责该病人的医师。诊断报告也可传输给第三方,例如,健康保险公司。诊断报告的这种传输可通过电子方式(电子邮件),通过信件、传真或其它通信手段实现。全部或部分所传输的信息(例如患者识别信息)可加密以保持医疗记录的保密性。
通常,也可采用能够生成帐单的一个或多个程序,例如远程服务器上的帐单制作程序。帐单上的费用将遵从普通医疗赔付的指导方针。该帐单可通过电子方式(电子邮件),通过信件、传真或其它通信手段传输。这些程序还可进行酬金分配,例如,用于诊断测试的酬金的一个百分数传送给负责进行测试的医师,用于诊断测试的一个百分数传送给机构,例如医院,X射线门诊部,妇女门诊部,获取X射线图像的牙医办公室,以及诊断酬金的一个百分数传送到X射线信息提取和自动分析的机构。这些酬金可包含专业和技术成分。帐单可与基于自动化网络的分析结果的传输同时传输或在该报告传输之后传输。类似地,可使用合适的媒介收取付费,例如,使用因特网上的信用卡或通过邮寄付费。
校准模型
虽然仅从X射线图像就可以获得丰富的信息,更为优选地,网络化X射线图像包括精确的基准标记,例如用于评估任何给定X射线图像骨矿物质密度的校准模型。因此,在某些情况下,本发明提供了能够对X射线中包含的信息,例如网络环境中的解剖学结构的X射线密度或解剖学结构的形态,进行精确定量的评估。
X射线图像可采用已知的技术从任一位置获取。例如,在某些情况下,使用2维平面X射线成像技术。2维平面X射线成像是一种通过使X射线束穿过人体或结构或材料而并通过在所述人体或所述结构或所述材料的另一侧测量X射线的衰减而生成图像的方法。2维平面X射线成像不同于断层成像技术,如计算机断层或磁共振成像。如果X射线图像是用常规的X射线胶片捕获的,则X射线可使用任何适合的扫描装置进行数字化。然后,该数字化X射线图像通过网络,例如因特网,传输到远程计算机或服务器。显然,该X射线图像也可采用数据获取技术获取,例如采用磷光板系统或者硒或硅检测器系统,此时,该所获得的X射线图像信息已经是数据格式。在这种情况下,图像可通过网络直接传输,例如通过因特网,或可选择地,该图像可在传输前进行压缩。
在优选实施例中,当获取了解剖学结构或无生命物体的X射线时,在其视野中包含有校准模型。可采用任何合适的校准模型,例如,包括有铝或不透射线电材料的模型。美国专利US5,335,260中描述了适用于评估X射线图像中的骨矿物质密度的其它校准模型。其它合适的校准基准材料的实例可以是流体或流体状材料,例如,一个或多个充有可变浓度氯化钙等的腔室。在优选实施例中,模型的材料为不锈钢(例如,AISI等级316,其包含碳(0.08%);锰(2%);硅(1%);磷(0.045%);硫磺(0.03%);镍(10-14%);铬(16-18%);钼(2-3%);并添加铁至100%)。这些成份的相对百分比可以关于重量或体积。
很明显,校准模型可包含若干不同射线不透率的不同区域。例如,校准模型可以有一个台阶状的设计,由此该楔形体的局部厚度变化引起射线不透率的不同。采用变化厚度材料的阶状楔形体常常在放射学中用于X射线束特性的质量控制测试。通过改变台阶的厚度,可以改变投影图像中的X射线束强度和频谱成份。阶状楔形体通常由铝、铜和其它方便的具有已知X射线衰减特性的均匀材料制成。阶状楔形模型还可包含磷酸钙粉或熔于石蜡中的磷酸钙粉。
图10示出了根据本发明所述的阶状楔形校准模型的实例。其中图(A)表示顶视图以及整体尺寸。所示出的模型约为2cm长和4mm宽。阶状楔形体的每个矩形约为3mm长。图(B)表示该阶形楔状校准模型的侧视图。阶状楔形体的每个组成部分的尺寸(例如高度)示出为箭头之间,按微米进行测量。本领域技术人员将认识到,图10中所示的模型的形状和特定尺寸只是示范性的,并可根据此处的教导而改变。例如,当校准模型用于小型X射线(例如牙科X射线)的情况下,整个装置优选为不大于5cm乘1cm(或其间的任何尺寸),较优选为3cm乘约1-50mm(或其间的任何尺寸),甚至更优选为约2cm乘约1-5mm(或其间的任何尺寸)。
可选择地,校准基准可设计为使得不透射线率的从周围向中心变化(例如,在其它形状结构的圆形、椭圆形,矩形中)。如上所述,校准基准也可构建为多个分离的腔室,例如充有流体的腔室,每个腔室包括有特定浓度的基准流体(例如氯化钙)。
无论校准模型的整体形状如何,优选在模型中存在至少一个已知密度的标记。目前,校准模型的区域通常不能显示在X射线图像上。这对于最高和最低密度区域表现得更为显著。因此,通常很难确定校准模型的任何特定区域的密度是多少。本发明通过确保在位于已知密度位置的校准模型中包括至少一个几何形状来解决该问题。可以采用任何形状,包括但不仅于,正方形、圆形、椭圆形、矩形、星形、月牙形、多边体(例如八角形)或不规则形等,只要它们与校准模型特定密度相关的位置是已知的。在优选实施例中,在此描述的校准模型用于2维平面X射线成像中。
由于校准模型的密度和衰减都是已知的,校准模型为待测解剖学结构或无生命物体的密度测量提供了一个外部基准。
例如,阶状楔形校准模型能够提供基准测量以根据模型材料厚度表示解剖学结构的密度。为达到此目的,描述被测衰减与材料厚度之间关系的校准曲线可从模型的图像导出。对于长度为L和从最大厚度T至厚度0为线性变化的楔形校准模型,该楔形体的图像中与楔形体薄端距离为D处的每个点X得到校准曲线上的点(T*L/D,G),其中T*L/D为楔形体在X处的厚度,而G为在X处的衰减。
如果所获得的射线照片中不能正常识别楔形体的两端,则可使用从非线性校准曲线得到的校准楔形体,从而距离D为未知。如果所预期的整个校准曲线形状为已知,则可从属该校准楔形体的已识别区域计算出的部分曲线可以与预期曲线拟合。这样,就可以确定楔形体的精确位置。
对于已知衰减的特定解剖学结构,采用所述校准曲线确定相应的厚度值。
此外,采用同一校准模型计算出的测量单位A和B的校准曲线可用于将一种测量值从单位A转换为单位B。例如,骨矿物质密度可以从也包含有铝阶状楔形体图像的射线照片中评定。为将其转换为钙浓度单位,可以从包含有同样的铝阶状楔形体以及变化的钙浓度样品的另一幅射线照片图像创建另一条将钙浓度单位与铝厚度联系起来的校准曲线。采用第二条校准曲线,表示为铝厚度的值可以转换为钙浓度的单位。本领域技术人员应当认识到,在本发明的教导下,还可以有在X射线成像中采用校准模型的其它应用。
该校准模型可以在获取X射线图像之前或之后成像。可选择地,该校准模型可以与X射线图像同时成像。该校准模型可以与X射线胶片和/或胶片支架物理连接。这种物理连接可以采用合适的机构或其它附着机构实现,其它附着机构包括但不限于,粘合剂、化学粘结剂、螺丝和钉子的使用、焊接以及VelcroTM带或VelcroTM材料等。类似地,校准模型可以采用一个或多个附着机构(例如机构连接装置、VelcroTM带或VelcroTM材料、化学粘结剂、螺丝和钉子的使用、焊接和粘合剂)物理连接到检测器系统或数字X射线成像的存储盘上。
该附着可以是永久的或临时的,且该校准模型可以集成(例如内置)于胶片、胶片支架和/或检测器系统,或可以在胶片和/或胶片支架制成之后适当地永久性或临时性地附着或定位。因此,校准模型可以设计为单一使用(例如一次性的)或不同X射线图像的多次使用。这样,在某些实施例中,该校准模型是可重复使用的,并且此外还要以在每次使用期间进行消毒。校准模型的集成可通过在X射线胶片的两个物理层之间包含有已知X射线密度的材料来实现。集成还可通过在X射线胶片的一个物理层内包含有已知X射线密度的材料来实现。此外,校准模型可以集成到胶片盖上。校准模型或外部标准也可以集成到检测器系统或数字X射线成像存储盘上。例如,集成可以通过在检测器系统或存储盘的两个物理层之间包含有已知X射线密度的材料来实现。集成还可通过在检测器系统或存储盘的一个物理层内包含有已知X射线密度的材料来实现。
在某些实施例中,例如在那些校准模型是临时附着到X射线组件上的实施例,可以在装置上设置十字线、线或其它标记来作为校准模型定位的指针。这些指针可有助于确保校准模型的定位,以使其不会投影到会改变所获得图像的表观密度材料上。
图2和图3示出了可设计成包含有校准模型牙科X射线胶片支架。(又参见美国专利US5,001,738和US4,251,732)。应当注意的是,图2和图3仅描述了适于X射线胶片支架的若干形状中的两种形状。此外,虽然是针对牙科X射线胶片和/或胶片支架进行说明的,很明显,在此所述的校准模型可以包括在任何形式的X射线胶片和/或支架中。
图2示出了用于保存X射线胶片的胶片盒(11)。胶片盒(11)装在咬翼胶片的支架(10)内,该支架(10)具有一个从胶片支架垂直伸出咬合片(12)。开口(13)能够对准患者牙齿。如图所示,该咬合片(12)具有大体上方形形状。沿一条边缘可包括一个弯曲切割部分(20)以获得X射线管的更好瞄准。根据在此所给的教导,校准模型可放置在支架或胶片上的任何合适的位置上。在优选实施例中,极需将校准模型放置成使其不会投影到改变该校准模型的表同密度的结构或材料上。校准模型还需要包括一个已知密度的标记(例如几何图形)以增加模型作为外部标准的精确度。因此,校准模型可以放置在咬合翼(12)与胶片支架(11)的汇合处,例如靠近弯曲(18)或沿着咬合翼(12)与胶片支架(11)汇合处所形成的区域(8)。这种精细的定位确保校准模型在X射线图像中出现在牙齿间,从而比骨(例如下颌)或牙齿更精确。很明显,校准模型所包含的区域可以制成稍厚以确保校准模型不会投影到X射线图像中的骨组织上。
现在参见图3,另一个例证性的X射线胶片支架(10)由一个具有用于X射线束对准和咬合板平台人工定位的延伸体(2),以及胶片保持槽部(16)、(48)和(20)组成的一体结构。延伸体(2)在“T”形区域(22)处与平台(14)相连。胶片保持槽部(16)在(24)处垂直连接于平台(14)且包括用于支承胶片(30)的侧壁(26)和槽(36),例如如图3所示的后曝光位置的右上部。校准模型(例如阶状楔形体、流体腔室等)可再次永久地或临时地放置在任何合适的位置,最好其出现在X射线图像中但不会投影到会改变X射线图像中该校准模型的表观密度的材料或结构上。这些合适的位置的非限制性实例包括在胶片支架部(16,48,20)中,例如在胶片支架的合拢部(50,60)上面或内部。其它合适的位置可以按照本说明书的教导而很容易地确定。
图4示出了另一个示范性实施例,其中校准模型(100)附着到牙科X射线胶片支架(200)上。该带有胶片(105)的胶片支架(200)的这种放置使得校准模型(100)、牙齿(300)和下颌骨(400)都投影到胶片上。
图5示出一个实施例,其中校准模型(101)(永久地或临时地)附着到X射线胶片(500)上。
图6示出一个实施例,其中校准模型(120)集成到防止胶片曝光的胶片盖(600)中。
图7示出一个实施例,其中校准模型(125)集成到检测器系统(77)中。该校准模型可以采用任何合适的永久的或临时的附着手段(例如维可牢尼龙搭扣,粘合剂等)集成在各个检测器或检测器排之间,或者在检测器的上面或下面。
图8示出在牙科X射线中可用作校准图像的固有标准的测量位置(108箭头所指向的)的一个实例。同时示出的还有牙齿(301)和骨(42)。
图9示出在牙科X射线中可用作校准图像的固有标准的测量位置(108箭头所指向的)的另一个实例。同时示出的还有牙齿(320)和骨(410)。
在此描述的包含有校准模型的任何组件可以用于X射线图像中骨矿物质密度的分析和/或量化方法中。这些方法通常同时涉及校准模型和另一种材料(例如被测对象的骨组织)的成像和扫描,以实现成像材料(例如骨组织)密度的量化目的。“被测对象”通常指动物,例如哺乳动物,如人类。在此所采用的术语“患者”指人类被测对象。
因此,在本发明的方法下,校准模型优选地与单个被测对象同时进行成象和扫描,虽然本发明允许模型和被测对象的非同时扫描。采用放射技术对结构进行扫描和成象是公知技术。通过将校准模型与被测对象一起放置X射线束内,基准校准样品能够进行骨吸收特性的修正和校准。当该模型与每个被测对象同时进行成像或扫描时,由于模型和被测对象都获得同样的X射线束频谱,X射线束能量和束硬化(beam hardening)中的变化得到修正。具有不同尺寸、厚度、肌肉脂肪比和骨含量的每个被测对象对X射线束的衰减不同,从而改变有效X射线束频谱。在被测对象的同一X射线束频谱中需要具有与骨等价的校准模型以获得精确的校准。
当前所使用的X射线成像组件没有考虑校准模型与被成像结构的位置关系。因此,当包括在已知组件中时,校准模型通常所放置的位置使得其投影到会改变所得到的X射线图像中校准模型表观密度的材料或结构(如,骨)上。很明显,这种表观密度的改变将影响校准模型作为确定骨矿物质密度的参考的精度。因此,本发明的目的之一是提供校准模型投影到将会改变基准的表观密度的材料或结构之外的方法。例如,在牙科X射线情况下,在此所描述的方法确保校准模型投影到骨(例如,牙、下颌)组织之外。如上面参照图2和3所述的,这可以通过多种方法实现,例如,将校准模型放置在X射线胶片中或X射线胶片支架中,从而其在牙科X射线中将出现在牙齿之间。
本发明的校准模型材料和方法适用于常规放射照相系统和计算机断层摄影(CT)系统。在常规放射照相系统中,例如,可以从采用变化的厚度的,含有所需参考材料浓度的模型制成阶状楔形模型。此外,在此所述的校准模型可容易地构造得足够小和足够薄以能放入口中,且本发明的方法可用于采用标准牙科X射线系统量化骨质量,例如通过将临时的或永久的校准模型包括在牙科X射线胶片支架内。
在本发明的另一些实施例中,解剖学结构或无生命体的固有信息可用于估计该解剖学结构或无生命体中所选定的感兴趣区的密度(和/或获得关于骨结构的信息)。例如,由于肌肉、脂肪和空气的X射线密度是已知的,解剖学结构或无生命体周围的空气密度、皮下脂肪密度和肌肉组织密度可用于估计骨的所选定区域的密度,例如在远端半径内。
解剖学结构的固有信息也可与校准模型所提供的信息结合。进一步地,这种结合可引起校准精度的提高。
在另一实施例中,从包含校准模型的多个基准图像建立总校准曲线,例如,通过计算各基准图像校准曲线的平均。该总校准曲线随后用于校准无校准模型所获得的图像。
本发明还提供从X射线图像获得信息,例如从X射线获得关于骨矿物质密度信息的工具包。在某些实施例中,该工具包包括一个或多个计算机(例如软件)程序,例如用于接收、分析和基于X射线图像生成报告。在另一些实施例中,该工具包可包括校准模型,例如集成到或附着到X射线胶片和/或X射线胶片支架上的校准模型。
本发明的所有这些方面可以分别或组合实施。通常,采用上面所列出的实施例组合具有更多的优点。此外,虽然对本发明的优选实施例进行了详细描述,应当理解的是,在不背离本发明的精神和范围的情况下可以做出明显的变化。
实施方式
下面是完成本发明的具体实施例的一些实例。提供这些实例仅是为解释说明目的,而不是以任何方式限制本发明的范围。
实例1:集成到胶片盖中的校准模型
在此提出的工作流程构成了在图像获取中使用校准模型的一个实例。本领域技术人员将容易地得出将校准模型包括在获取处理中以使X射线图像中所获得的任何测量形式正规化或标准化的其它方式。
在本实例中,校准模型集成到防止X射线胶片曝光的牙科X射线胶片盖中。该胶片放置到用于将胶片保持在患者口中的胶片支架中。该带有胶片的胶片支架在放置到患者口时,使得校准模型不会受到任何结构(例如牙齿或嘴唇)对X射线束的阻挡。
在图像获取之后,胶片送到暗房且打开带有校准模型的盖。该胶片而后以与常规牙科X射线胶片同样的方式进行处理。
实例2:通过网络传输包括有校准模型图像的X射线图像
本实例描述了本发明一种可能的典型应用,其中通过网络传输包括有校准模型图像的数字化X射线图像。由此容易想到本发明的类似应用。
X射线图像通过将校准模型投影到胶片上的方式获得。冲洗具有X射线图像和校准模型图像的胶片。随后,使该胶片数字化,例如通过使用平床(flat-bed)或幻灯胶片扫描,得出数字图像。该数字图像,其包括X射线图像和校准模型图像,然后通过网络传输到远程计算机。该远程计算机使用X射线图像和/或校准模型图像进行一个或多个测量。
实例3:包括有图像获取参数的X射线图像的传输
通过网络传输的图像数据也可以包括表示图像获取参数的数据。当X射线图像获取和数字化之后,获取参数输入本地计算机系统。这些参数可包括,但不限于,电压设定,管电流或胶片一焦点距离。图像和获取参数据数据而后通过网络传送到远程计算机。
在远程计算机上分析该图像。该获取参数可用于该评价以提高测量精度。该结果可通过数字网络或传真传输送回到原始地点。该结果还可传送到第三方。
实例4:X射线图像的远程分析
本实例描述了本发明的一种情形,其中X射线图像在本地位置获得且传送到进行分析的远程地点。可以对本实例进行各种变更。
在通过X射线机获得X射线图像后,冲洗胶片。随后,胶片采用,例如可购买到的平床数字化。该数据化图像数据通过,例如数字网络或电话线传送到远程计算机。在远程计算机上进行图像自动分析。该分析的结果可发送回本地计算机。它们也可通过传真线路传送。该结果还可发送到第三方。

Claims (29)

1.一种确定骨矿物质密度的X射线组件包括:
X射线胶片支架
X射线胶片和
具有长度(L)和沿长度变化的厚度(T)的楔形校准模型。
2.根据权利要求1所述的组件,其中校准模型投影在骨组织之外。
3.根据权利要求1所述的组件,其中校准模型附着到X射线胶片支架或检测器系统上。
4.根据权利要求1所述的组件,其中校准模型集成到X射线胶片支架上。
5.根据权利要求1所述的组件,其中X射线组件为牙科X射线组件。
6.根据权利要求1所述的组件,其中校准组件的厚度沿长度线性变化。
7.根据权利要求1所述的组件,其中校准组件的厚度沿长度非线性变化。
8.一种生成密度校准曲线的方法,包括以下步骤:
(a)采用包括有校准模型的X射线组件产生解剖学结构的X射线图像;
(b)测量校准模型X射线图像中多点处的衰减,其中每点位于距离模型的所选部分已知距离处,由此生成描述所测量的衰减和材料厚间关系的校准曲线。
9.一种生成密度校准曲线的方法,包括以下步骤:
(a)采用包括有校准模型的X射线组件产生解剖学结构的X射线图像;
(b)生成预校准曲线;和
(c)测量校准模型X射线图像中多点处的衰减;以及
(d)将步骤(c)中测量的点与步骤(b)中生成预期校准曲线对准,由此生成该图像的校准曲线。
10.根据权利要求8或9所述的方法,其中步骤(a)包括采用如权利要求1-7中任一个的X射线组件。
11.根据权利要求8或9所述的方法,其中还包括将描述厚度的校准曲线转化为描述钙浓度的曲线的步骤。
12.根据权利要求11所述的方法,其中校准模型包括铝且校准曲线描述铝的厚度。
13.一种生成参考校准曲线的方法,包括计算根据权利要求8至12方法中的任一个所获得的校准曲线的平均的步骤。
14.一种生成密度校准曲线的方法,包括以下步骤:
(a)生成解剖学结构的数字X射线图像,该数字X射线图像包括一个具有长度(L)和沿长度变化的厚度(T)的楔形校准模型;
(b)生成预期校准曲线;和
(c)测量校准模型X射线图像中多点处的衰减;以及
(d)将步骤(c)中测量的点与步骤(b)中生成预期校准曲线对准,由此生成该图像的校准曲线。
15.权利要求14的方法,还包括将描述厚度的校准曲线转化为描述钙浓度的曲线的步骤。
16.权利要求15的方法,其中校准模型包括铝且校准曲线描述铝的厚度。
17.一种获得被测对象骨质量信息的方法,该方法包括:
(a)根据权利要求8至16中任一个的方法生成校准曲线,和
(b)将从被对象解剖学结构获得的衰减信息与该校准曲线进行比较,由此确定被测对象骨质量的信息。
18.一种获得被测对象骨质量信息的方法,该方法包括:
(a)根据权利要求11的方法生成校准曲线,和
(b)将从被对象解剖学结构获得的衰减信息与该校准曲线进行比较,由此确定被测对象骨质量的信息。
19.一种确定被测对象骨质量的方法,该方法包括:
(a)根据权利要求13的方法生成基准曲线,和
(b)将从被对象解剖学结构获得的衰减信息与该基准曲线进行比较,由此确定被测对象骨质量的信息。
20.根据权利要求8至19中任一个的方法,其中X射线图像为牙科X射线。
21.根据权利要求17至19中任一个的方法,其中所述比较是在网络环境中进行的。
22.一个包括楔形校准模型,X射线成像组件和计算机程序的工具包,其中所述计算机程序能够分析和评估骨矿物质密度。
23.一种诊断骨质疏松症的方法,包括分析采用权利要求1至7任一个中所描述的组件所获得的X射线。
24.一种治疗骨质疏松症的方法,包括根据权利要求23的方法诊断骨质疏松症,并且施行合适的治疗。
25.根据权利要求24所述的方法,其中该治疗包括施用抗再吸收剂或合成代谢剂。
26.一种包括多个几何形状的校准模型,其中该校准模型的长度小于2.5cm且宽度小于5mm。
27.根据权利要求26所述的校准模型,其中几何形状包括形成阶状楔形的矩形。
28.根据权利要求26所述的校准模型,其中该模型包括不锈钢。
29.根据权利要求28所述的校准模型,其中该不锈钢包括0.08%的碳,2%的锰,1%的硅,0.045%的磷,0.03%的硫磺,10-14%的镍,16-18%的铬,2-3%的钼和为达到100%而加入的铁。
CNA038040166A 2002-02-27 2003-02-27 X射线图像定量分析的方法和装置 Pending CN1633594A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/086,653 US6904123B2 (en) 2000-08-29 2002-02-27 Methods and devices for quantitative analysis of x-ray images
US10/086,653 2002-02-27
US10/225,363 US7050534B2 (en) 2000-08-29 2002-08-20 Methods and devices for quantitative analysis of x-ray images
US10/225,363 2002-08-20

Publications (1)

Publication Number Publication Date
CN1633594A true CN1633594A (zh) 2005-06-29

Family

ID=27767346

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038040166A Pending CN1633594A (zh) 2002-02-27 2003-02-27 X射线图像定量分析的方法和装置

Country Status (7)

Country Link
US (5) US7050534B2 (zh)
EP (1) EP1478918A4 (zh)
JP (1) JP2005518832A (zh)
CN (1) CN1633594A (zh)
AU (1) AU2003217932A1 (zh)
CA (1) CA2473621A1 (zh)
WO (1) WO2003071934A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113222951A (zh) * 2021-05-20 2021-08-06 吉林大学 一种识别髋关节x线的骨质疏松人工智能诊断装置

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
AU772012B2 (en) 1998-09-14 2004-04-08 Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and preventing damage
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US7467892B2 (en) 2000-08-29 2008-12-23 Imaging Therapeutics, Inc. Calibration devices and methods of use thereof
US7050534B2 (en) * 2000-08-29 2006-05-23 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
US6904123B2 (en) * 2000-08-29 2005-06-07 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
US20020186818A1 (en) * 2000-08-29 2002-12-12 Osteonet, Inc. System and method for building and manipulating a centralized measurement value database
JP4049312B2 (ja) * 2000-08-29 2008-02-20 イメージング セラピューティクス,インコーポレーテッド X線画像の定量解析法および装置
DE60138116D1 (de) 2000-09-14 2009-05-07 Univ R Beurteilung des zustandes eines gelenkes und planung einer behandlung
ATE413135T1 (de) 2000-09-14 2008-11-15 Univ Leland Stanford Junior Beurteilung des zustandes eines gelenkes und des verlustes von knorpelgewebe
US7660453B2 (en) 2000-10-11 2010-02-09 Imaging Therapeutics, Inc. Methods and devices for analysis of x-ray images
US20070047794A1 (en) * 2000-10-11 2007-03-01 Philipp Lang Methods and devices for analysis of x-ray images
US8639009B2 (en) 2000-10-11 2014-01-28 Imatx, Inc. Methods and devices for evaluating and treating a bone condition based on x-ray image analysis
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
EP1389980B1 (en) * 2001-05-25 2011-04-06 Conformis, Inc. Methods and compositions for articular resurfacing
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US9308091B2 (en) 2001-05-25 2016-04-12 Conformis, Inc. Devices and methods for treatment of facet and other joints
DE60233485D1 (de) * 2001-05-25 2009-10-08 Imaging Therapeutics Inc Verfahren zur diagnose, behandlung und prävention von knochenverlust
US8965075B2 (en) 2002-09-16 2015-02-24 Imatx, Inc. System and method for predicting future fractures
WO2004025541A1 (en) * 2002-09-16 2004-03-25 Imaging Therapeutics, Inc. Imaging markers in musculoskeletal disease
US7840247B2 (en) 2002-09-16 2010-11-23 Imatx, Inc. Methods of predicting musculoskeletal disease
EP1555962B1 (en) 2002-10-07 2011-02-09 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
AU2003290757A1 (en) 2002-11-07 2004-06-03 Conformis, Inc. Methods for determing meniscal size and shape and for devising treatment
CA2519187A1 (en) 2003-03-25 2004-10-14 Imaging Therapeutics, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
US7488109B2 (en) * 2003-03-27 2009-02-10 Wright State University Osteoporosis screening using radiographic absorptiometry of the mandible
JP4142482B2 (ja) * 2003-04-04 2008-09-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
KR100571813B1 (ko) * 2003-07-28 2006-04-17 삼성전자주식회사 로컬 선형변환함수를 이용한 특징벡터 추출방법과 이를이용한 영상인식방법 및 장치
JP4077430B2 (ja) * 2003-07-31 2008-04-16 佳知 高石 骨密度評価装置および骨密度評価方法
US8290564B2 (en) * 2003-09-19 2012-10-16 Imatx, Inc. Method for bone structure prognosis and simulated bone remodeling
EP1663002A4 (en) * 2003-09-19 2007-11-28 Imaging Therapeutics Inc BONE STRUCTURE PROGNOSTIC METHOD AND SIMULATED BONE REMODELING
GB0325523D0 (en) * 2003-10-31 2003-12-03 Univ Aberdeen Apparatus for predicting bone fracture risk
US20050258404A1 (en) 2004-05-22 2005-11-24 Mccord Stuart J Bismuth compounds composite
WO2006034018A2 (en) * 2004-09-16 2006-03-30 Imaging Therapeutics, Inc. System and method of predicting future fractures
DE102005021327A1 (de) * 2005-05-04 2006-11-16 "Stiftung Caesar" (Center Of Advanced European Studies And Research) Verfahren und System zur Knochendichtekalibrierung
US7471761B2 (en) * 2005-09-15 2008-12-30 Schick Technologies, Inc. System and method for computing oral bone mineral density with a panoramic x-ray system
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
EP1981409B1 (en) 2006-02-06 2017-01-11 ConforMIS, Inc. Patient selectable joint arthroplasty devices and surgical tools
JP2008036068A (ja) * 2006-08-04 2008-02-21 Hiroshima Univ 骨粗鬆症診断支援装置および方法、骨粗鬆症診断支援プログラム、骨粗鬆症診断支援プログラムを記録したコンピュータ読み取り可能な記録媒体、骨粗鬆症診断支援用lsi
EP2114312B1 (en) 2007-02-14 2014-01-08 ConforMIS, Inc. Method for manufacture of an implant device
US7959742B2 (en) * 2007-07-11 2011-06-14 Whirlpool Corporation Outer support body for a drawer-type dishwasher
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
WO2010018407A1 (en) 2008-08-12 2010-02-18 Wyeth Pharmaceuticals Inc. Morphometry of the human knee joint and prediction for ostearthritis
WO2010018406A1 (en) 2008-08-12 2010-02-18 Wyeth Pharmaceuticals Inc. Morphometry of the human hip joint and prediction of osteoarthritis
WO2010025131A1 (en) * 2008-08-27 2010-03-04 Tufts Medical Center Bone mineral density ratios as a predictor of osteoarthritis
KR101087137B1 (ko) * 2008-12-04 2011-11-25 한국전자통신연구원 악골밀도 측정 방법 및 악골밀도 측정을 위한 보조장치
US8939917B2 (en) * 2009-02-13 2015-01-27 Imatx, Inc. Methods and devices for quantitative analysis of bone and cartilage
US8808303B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
EP2405865B1 (en) 2009-02-24 2019-04-17 ConforMIS, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US8808297B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
BRPI1014917A2 (pt) 2009-04-16 2016-04-19 Conformis Inc "dispositivos de artroplastia de junta específica para páciente para reparo de ligamento"
JPWO2010122923A1 (ja) * 2009-04-21 2012-10-25 株式会社ニックス 口腔内x線撮影補助装具および口腔内x線撮影システム
CA2782137A1 (en) 2009-12-11 2011-06-16 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
EP2754419B1 (en) 2011-02-15 2024-02-07 ConforMIS, Inc. Patient-adapted and improved orthopedic implants
EP2736414B1 (en) * 2011-07-29 2017-09-27 Gammex, Inc. Computed tomography perfusion phantom and method of use thereof
US9486226B2 (en) 2012-04-18 2016-11-08 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
JP6310859B2 (ja) 2012-11-30 2018-04-11 株式会社トプコン 眼底撮影装置
US8708562B1 (en) 2013-03-05 2014-04-29 Nosil DSC Innovations, Inc. Phantom systems and methods for diagnostic x-ray equipment
JP6335287B2 (ja) * 2013-07-03 2018-05-30 ゼネラル・エレクトリック・カンパニイ 造影式乳房撮像方法及び造影剤基準挿入体
EP3035891B1 (en) 2013-08-21 2020-05-27 Laboratoires Bodycad Inc. Anatomically adapted orthopedic implant
EP3035872B1 (en) 2013-08-21 2018-03-07 Laboratoires Bodycad Inc. Bone resection guide and method of manufacture
KR20150057013A (ko) * 2013-11-18 2015-05-28 주식회사바텍 Ct 촬영 장치, ct 촬영 방법, ct 촬영을 위한 표적 팬텀 및 이를 이용한 ct 영상
US9936935B1 (en) 2014-02-14 2018-04-10 Nosil DSC Innovations, Inc. Phantom systems and methods for diagnostic radiographic and fluoroscopic X-ray equipment
USD808524S1 (en) 2016-11-29 2018-01-23 Laboratoires Bodycad Inc. Femoral implant
EP3569149A4 (en) * 2017-01-10 2020-11-04 Media Co., Ltd. BONE DENSITY MEASURING DEVICE, BONE DENSITY MEASURING SYSTEM AND IMAGING ASSISTANT TOOL
US11182920B2 (en) 2018-04-26 2021-11-23 Jerry NAM Automated determination of muscle mass from images
US11189045B2 (en) 2019-11-07 2021-11-30 National Yang Ming Chiao Tung University Focal spot auto-calculation algorithm
US11158046B2 (en) 2020-01-24 2021-10-26 Overjet, Inc. Estimating measurements of craniofacial structures in dental radiographs
US11963846B2 (en) 2020-01-24 2024-04-23 Overjet, Inc. Systems and methods for integrity analysis of clinical data
CN113804708A (zh) * 2021-08-28 2021-12-17 南昌大学 一种x射线屏蔽材料的屏蔽性能测试方法

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US196966A (en) * 1877-11-13 Improvement in toy money-boxes
DE2042009C3 (de) * 1970-08-25 1975-02-27 Siemens Ag, 1000 Berlin U. 8000 Muenchen Anordnung zur zerstörungsfreien Dichtemessung von Stoffen lebender Objekte mittels durchdringender Strahlen
US4012638A (en) * 1976-03-09 1977-03-15 Altschuler Bruce R Dental X-ray alignment system
GB2023920A (en) 1978-06-19 1980-01-03 Thoro Ray Inc Dental X-ray apparatus
US4251732A (en) * 1979-08-20 1981-02-17 Fried Alan J Dental x-ray film holders
US4356400A (en) * 1980-08-04 1982-10-26 General Electric Company X-Ray apparatus alignment method and device
US4400827A (en) * 1981-11-13 1983-08-23 Spears James R Method and apparatus for calibrating rapid sequence radiography
JPH07102210B2 (ja) 1986-05-14 1995-11-08 帝人株式会社 歯槽骨の骨萎縮度評価法
US4782502A (en) * 1986-10-01 1988-11-01 Schulz Eloy E Flexible calibration phantom for computer tomography system
US4985906A (en) * 1987-02-17 1991-01-15 Arnold Ben A Calibration phantom for computer tomography system
CA1288176C (en) 1987-10-29 1991-08-27 David C. Hatcher Method and apparatus for improving the alignment of radiographic images
US4922915A (en) * 1987-11-27 1990-05-08 Ben A. Arnold Automated image detail localization method
US5001738A (en) * 1989-04-07 1991-03-19 Brooks Jack D Dental X-ray film holding tab and alignment method
FR2649883B1 (fr) * 1989-07-20 1991-10-11 Gen Electric Cgr Procede de correction de la mesure de la densite osseuse dans un scanner
US5562448A (en) * 1990-04-10 1996-10-08 Mushabac; David R. Method for facilitating dental diagnosis and treatment
US5122664A (en) * 1990-04-27 1992-06-16 Fuji Photo Film Co., Ltd. Method and apparatus for quantitatively analyzing bone calcium
DE9016046U1 (zh) * 1990-11-26 1991-02-14 Kalender, Willi, Dr., 8521 Kleinseebach, De
JP2641078B2 (ja) * 1991-03-28 1997-08-13 富士写真フイルム株式会社 骨塩定量分析方法
US5200993A (en) * 1991-05-10 1993-04-06 Bell Atlantic Network Services, Inc. Public telephone network including a distributed imaging system
US5335260A (en) * 1992-11-25 1994-08-02 Arnold Ben A Calibration phantom and improved method of quantifying calcium and bone density using same
US5592943A (en) * 1993-04-07 1997-01-14 Osteo Sciences Corporation Apparatus and method for acoustic analysis of bone using optimized functions of spectral and temporal signal components
FR2705785B1 (fr) * 1993-05-28 1995-08-25 Schlumberger Ind Sa Procédé pour déterminer la fonction d'atténuation d'un objet par rapport à la transmission d'une épaisseur de référence d'un matériau de référence et dispositif pour la mise en Óoeuvre du procédé.
US5931780A (en) * 1993-11-29 1999-08-03 Arch Development Corporation Method and system for the computerized radiographic analysis of bone
DE69321244T3 (de) * 1993-12-24 2003-03-13 Agfa Gevaert Nv Verfahren mit einer teildurchsichtigen Abschirmung zum Ausgleich der Röntgenbilddarstellung von Streustrahlen in Röntgenbildern
AU1837495A (en) * 1994-10-13 1996-05-06 Horus Therapeutics, Inc. Computer assisted methods for diagnosing diseases
SE9601065L (sv) * 1996-03-20 1997-03-03 Siemens Elema Ab Narkossystem
US5565678A (en) * 1995-06-06 1996-10-15 Lumisys, Inc. Radiographic image quality assessment utilizing a stepped calibration target
US6038287A (en) 1995-10-10 2000-03-14 Miles; Dale A. Portable X-ray device
US6215846B1 (en) * 1996-02-21 2001-04-10 Lunar Corporation Densitometry adapter for compact x-ray fluoroscopy machine
US5785041A (en) 1996-03-26 1998-07-28 Hologic Inc. System for assessing bone characteristics
AU2763597A (en) * 1996-05-06 1997-11-26 Torsana A/S A method of estimating skeletal status
JP3863963B2 (ja) 1997-03-27 2006-12-27 大日本印刷株式会社 X線撮影画像のデジタルデータ補正、保存方法及びその装置
US6226393B1 (en) * 1997-07-04 2001-05-01 Torsana Osteoporosis Diagnostics A/S Method for estimating the bone quality or skeletal status of a vertebrate
AU766783B2 (en) 1997-08-19 2003-10-23 Philipp Lang Ultrasonic transmission films and devices, particularly for hygienic transducer surfaces
US5917877A (en) * 1997-09-05 1999-06-29 Cyberlogic, Inc. Plain x-ray bone densitometry apparatus and method
US6064716A (en) * 1997-09-05 2000-05-16 Cyberlogic, Inc. Plain x-ray bone densitometry apparatus and method
US5852647A (en) * 1997-09-24 1998-12-22 Schick Technologies Method and apparatus for measuring bone density
US5862647A (en) * 1997-11-06 1999-01-26 Mima Incorporated Quick thread wrapping machine stretch head and wrapping film method
JPH11239165A (ja) * 1998-02-20 1999-08-31 Fuji Photo Film Co Ltd メディカルネットワークシステム
US6320931B1 (en) * 1998-03-02 2001-11-20 Image Analysis, Inc. Automated x-ray bone densitometer
WO1999045845A1 (en) 1998-03-09 1999-09-16 Philipp Lang Methods and devices for improving broadband ultrasonic attenuation and speed of sound measurements
US6077224A (en) * 1998-03-23 2000-06-20 Lang; Philipp Methods and device for improving broadband ultrasonic attenuation and speed of sound measurements using anatomical landmarks
US6442287B1 (en) 1998-08-28 2002-08-27 Arch Development Corporation Method and system for the computerized analysis of bone mass and structure
DE19853965A1 (de) 1998-11-23 2000-05-31 Siemens Ag Verfahren zum Ermitteln von für die Planung und/oder Auswahl von Prothesenimplantaten relevanter Knochenstrukturen und Knochenstrukturen sowie Röntgenanlage zur Durchführung dieses Verfahrens
US6302582B1 (en) * 1998-12-22 2001-10-16 Bio-Imaging Technologies, Inc. Spine phantom simulating cortical and trabecular bone for calibration of dual energy x-ray bone densitometers
US6430427B1 (en) 1999-02-25 2002-08-06 Electronics And Telecommunications Research Institute Method for obtaining trabecular index using trabecular pattern and method for estimating bone mineral density using trabecular indices
US6178225B1 (en) * 1999-06-04 2001-01-23 Edge Medical Devices Ltd. System and method for management of X-ray imaging facilities
US6356621B1 (en) 1999-07-14 2002-03-12 Nitto Denko Corporation Pressure-sensitive adhesive sheet for radiography
US6246745B1 (en) * 1999-10-29 2001-06-12 Compumed, Inc. Method and apparatus for determining bone mineral density
KR100343777B1 (ko) * 1999-12-10 2002-07-20 한국전자통신연구원 톱니 모양의 래크를 이용한 골소주 지표 보정방법
NL1013863C2 (nl) 1999-12-16 2001-06-21 Koninkl Kpn Nv Voice Respons systeem voor telefonie-abonnees.
WO2001063488A2 (en) 2000-02-25 2001-08-30 Healthscreen International, Inc. Method for centralized health data management
AU2001238726A1 (en) 2000-03-01 2001-09-12 Medeview.Com, Inc. A medical diagnosis and prescription communications delivery system, method and apparatus
US6904123B2 (en) * 2000-08-29 2005-06-07 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
US20020186818A1 (en) * 2000-08-29 2002-12-12 Osteonet, Inc. System and method for building and manipulating a centralized measurement value database
US7467892B2 (en) * 2000-08-29 2008-12-23 Imaging Therapeutics, Inc. Calibration devices and methods of use thereof
JP4049312B2 (ja) * 2000-08-29 2008-02-20 イメージング セラピューティクス,インコーポレーテッド X線画像の定量解析法および装置
US7050534B2 (en) * 2000-08-29 2006-05-23 Imaging Therapeutics, Inc. Methods and devices for quantitative analysis of x-ray images
AU1319302A (en) * 2000-10-11 2002-04-22 Osteonet Com Inc Methods and devices for analysis of x-ray images
DE20100641U1 (de) 2001-01-27 2001-07-26 Steer Sebastian Universell verstellbares Halter-System zur einfachen Positionierung eines Aufnahmemediums bei Röntgenaufnahmen
US6829378B2 (en) * 2001-05-04 2004-12-07 Biomec, Inc. Remote medical image analysis
DE60233485D1 (de) * 2001-05-25 2009-10-08 Imaging Therapeutics Inc Verfahren zur diagnose, behandlung und prävention von knochenverlust
JP3799603B2 (ja) 2002-02-13 2006-07-19 勇 鹿島 骨梁構造の解析方法及び骨梁構造の改善効果判定支援方法
DE60226841D1 (de) 2002-03-27 2008-07-10 Agfa Healthcare Nv Verfahren zur geometrischen Vermessung von digitalen Röntgenbildern unter Benutzung graphischer Vorlagen
US20050168460A1 (en) 2002-04-04 2005-08-04 Anshuman Razdan Three-dimensional digital library system
WO2004025541A1 (en) * 2002-09-16 2004-03-25 Imaging Therapeutics, Inc. Imaging markers in musculoskeletal disease
US7840247B2 (en) * 2002-09-16 2010-11-23 Imatx, Inc. Methods of predicting musculoskeletal disease
US6836557B2 (en) * 2002-10-02 2004-12-28 VirtualS{tilde over (c)}opics, LLC Method and system for assessment of biomarkers by measurement of response to stimulus
US20040101186A1 (en) 2002-11-27 2004-05-27 Xin Tong Initializing model-based interpretations of digital radiographs
CA2519187A1 (en) * 2003-03-25 2004-10-14 Imaging Therapeutics, Inc. Methods for the compensation of imaging technique in the processing of radiographic images
EP1663002A4 (en) * 2003-09-19 2007-11-28 Imaging Therapeutics Inc BONE STRUCTURE PROGNOSTIC METHOD AND SIMULATED BONE REMODELING
DE602004015739D1 (de) 2004-05-18 2008-09-25 Agfa Healthcare Nv Verfahren zur automatischen Positionierung von geometrischen Objekten in medizinischen Bildern
WO2006034018A2 (en) * 2004-09-16 2006-03-30 Imaging Therapeutics, Inc. System and method of predicting future fractures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113222951A (zh) * 2021-05-20 2021-08-06 吉林大学 一种识别髋关节x线的骨质疏松人工智能诊断装置
CN113222951B (zh) * 2021-05-20 2023-05-02 吉林大学 一种识别髋关节x线的骨质疏松人工智能诊断装置

Also Published As

Publication number Publication date
US20030063704A1 (en) 2003-04-03
EP1478918A4 (en) 2007-01-03
US7292674B2 (en) 2007-11-06
AU2003217932A1 (en) 2003-09-09
WO2003071934A2 (en) 2003-09-04
US20080219412A1 (en) 2008-09-11
US20090225958A1 (en) 2009-09-10
JP2005518832A (ja) 2005-06-30
US20060210018A1 (en) 2006-09-21
US7050534B2 (en) 2006-05-23
CA2473621A1 (en) 2003-09-04
WO2003071934A3 (en) 2004-02-26
US20070274444A1 (en) 2007-11-29
EP1478918A2 (en) 2004-11-24
US7379529B2 (en) 2008-05-27

Similar Documents

Publication Publication Date Title
CN1633594A (zh) X射线图像定量分析的方法和装置
US7245697B2 (en) Methods and devices for quantitative analysis of x-ray images
US7545964B2 (en) Methods and devices for quantitative analysis of x-ray images
EP1324695B1 (en) Methods and devices for analysis of x-ray images
AU2001286892A1 (en) Methods and devices for quantitative analysis of x-ray images
AU2002213193B2 (en) Methods and devices for analysis of X-ray images
AU2007201613A1 (en) Methods and devices for analysis of X-ray images
AU2002213193A1 (en) Methods and devices for analysis of X-ray images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication