CN1501503A - 利用垂直纳米管的非易失性存储装置 - Google Patents

利用垂直纳米管的非易失性存储装置 Download PDF

Info

Publication number
CN1501503A
CN1501503A CNA200310113815A CN200310113815A CN1501503A CN 1501503 A CN1501503 A CN 1501503A CN A200310113815 A CNA200310113815 A CN A200310113815A CN 200310113815 A CN200310113815 A CN 200310113815A CN 1501503 A CN1501503 A CN 1501503A
Authority
CN
China
Prior art keywords
storage device
layer
nano
electronics
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200310113815A
Other languages
English (en)
Other versions
CN1317768C (zh
Inventor
崔原凤
李兆远
姜虎圭
金桢雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN1501503A publication Critical patent/CN1501503A/zh
Application granted granted Critical
Publication of CN1317768C publication Critical patent/CN1317768C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7923Programmable transistors with more than two possible different levels of programmation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7926Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/16Memory cell being a nanotube, e.g. suspended nanotube
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/943Information storage or retrieval using nanostructure

Abstract

本发明提供一种利用垂直纳米管的非易失性存储装置。该存储装置包括具有源区的衬底;纳米管阵列,其由垂直生长在所述衬底上的多个纳米管柱状体组成,使得所述纳米管阵列的一端与所述源区连接,由此用作电子传输沟道;存储单元,其围绕所述纳米管阵列的外侧表面形成;控制栅极,其围绕所述存储单元的外侧表面形成;以及漏区,其与所述纳米管阵列的另一端连接。

Description

利用垂直纳米管的非易失性存储装置
技术领域
本发明涉及一种存储装置,更具体地,涉及一种利用碳纳米管(carbonnanotube)作为垂直电子传输沟道的高密的存储装置。
背景技术
使用半导体的存储装置通常包括晶体管,该晶体管在信息写入电容器或从电容器读出时用作形成电流通路的开关;和电容器,该电容器存储和保存电荷。为在所述晶体管中传输大密度的电流,所述晶体管需要具有高互导(gm)特性。因此,具有高互导特性的传统的金属氧化物半导体场效应晶体管(MOSFET)近来已被用作半导体存储装置的开关装置。
传统的MOSFET主要包括由掺杂的多晶硅形成的控制栅区和由掺杂的晶体硅形成的源区和漏区。在相同的电压条件下,所述MOSFET的互导与沟道长度和栅极氧化层的厚度成反比而与表面迁移率、所述栅极氧化层的介电常数和沟道宽度成正比。由于表面迁移率和氧化层的介电常数是根据材料而预先确定的,例如具有取向和氧化硅层的硅晶片,所以高互导可以通过增加沟道宽度与沟道长度的比值或者通过减小氧化层的厚度来实现。
但是,为了制造高密度存储装置,传统MOSFET的物理尺寸需要减小,所以栅极尺寸以及源区和漏区尺寸也需要被减小,这导致各种问题。
例如,当控制栅极尺寸减小时,控制栅极的截面积减小,这在晶体管中引起大的电阻。源区和漏区的减小导致厚度(即结的深度)被减小,因而,引起大的电阻或者由于源区和漏区间的距离的减小使得源区的耗尽层接触到漏区的耗尽层从而唯象地产生穿孔。因此,不可能控制电流。另外,这种存储装置的尺寸减小使得用作电流通路的沟道的宽度被减小到30nm以下,因而,电流的流动受到干扰。结果,所述存储装置操作异常。换言之,传统硅MOSFET的使用在实现高密度存储装置中受到限制。
发明内容
本发明提供一种高密度存储装置,该存储装置通过采用纳米管来防止电阻由于小型化而增加,并降低异常操作的风险。
根据本发明的一个方面,提供一存储装置,其包括:衬底,具有源区;纳米管阵列,其由多个垂直生长在所述衬底上的纳米管柱状体组成,使得所述纳米管阵列的一端与源区接触,由此用作电子传输的沟道;存储单元,其围绕所述纳米管阵列的外侧表面形成;控制栅极,其围绕所述存储单元的外侧表面形成;以及漏区,其与所述纳米管阵列的另一端接触。
优选地,所述衬底由氧化铝、硅或者介孔(mesoporous)材料形成。
优选地,多个纳米管柱状体由碳、氮化硼或磷化镓形成。
优选地,所述存储单元包括围绕所述纳米管阵列的外侧表面形成的第一绝缘层;围绕第一绝缘层的外侧表面形成电子存储层;以及围绕所述电子存储层的外侧表面形成的与控制栅极接触的第二绝缘层。
优选地,第一和第二绝缘层为氧化硅层。
优选地,所述电子存储层为硅层或氮化硅层。
优选地,所述电子存储层具有100nm或更小的厚度,并且所述电子存储层为具有填充有电子存储材料的多个纳米点(nanodot)的多孔层。
优选地,所述电子存储材料为硅或氮化硅。
优选地,所述多孔层为氧化铝层。
优选地,所述纳米点具有100nm或更小的直径。
本发明通过利用纳米管作为电子传输沟道并垂直设置多个纳米管柱状体而提供一种高密度和大电容(capacity)的存储装置。
附图说明
通过参照附图来详细地描述本发明的优选实施例,本发明以上的和其他特征和优点将变得更加显而易见,其中:
图1A是根据本发明第一实施例的存储装置的剖面图;
图1B是根据本发明第一实施例的存储装置的透视图;
图2是根据本发明第二实施例的存储装置的剖面图;
图3是根据本发明第一实施例,为了制造存储装置而生长在衬底上碳纳米管的照片;以及
图4是一曲线图,示出了根据本发明第一实施例的存储装置的电流-电压(I-V)特性。
具体实施方式
在下文中,将参照附图对本发明的优选实施例加以详细地描述。
图1A和图1B分别是根据本发明第一实施例的存储装置的剖面图和透视图。请参照图1A和图1B,衬底11包括源区(S)13。纳米管柱状体10被垂直地定位在衬底11的顶表面上,以被连接到源区13。存储单元19围绕纳米管柱状体10的外侧表面形成。控制栅极(G)17围绕存储单元19的外侧表面形成。漏区(D)15形成在纳米管柱状体10和存储单元19的顶表面上。具有这种结构的多个存储装置可以在衬底11上形成阵列。
优选地,衬底11由氧化铝(Al2O3)、硅(Si)或者介孔材料形成。源区13通过对衬底11掺杂离子来形成。
纳米管柱状体10可以采用例如碳纳米管、氮化硼(BN)纳米管或磷化镓的半导体纳米管形成。纳米管根据电学性质分为金属型纳米管和半导体型纳米管。金属型纳米管不受栅极电压的影响,具有线性的电流-电压特性,而半导体纳米管受栅极电压的影响,具有非线性的电流-电压特性。根据本发明的存储装置采用半导体纳米管,使得流过纳米管柱状体10的电子的流动(即电流)根据施加到控制栅极17的栅极电压加以控制。
这里,用作纳米管柱状体10的碳纳米管采用电弧放电、激光汽化、等离子体增强化学汽相沉积(PECVD)、热化学汽相沉积或者汽相生长被生长在衬底11上,使得每个碳纳米管柱状体10的一端与源区13相连。
围绕纳米管柱状体10的外侧表面形成的存储单元19可以由氧化物-氮化物-氧化物(ONO)层形成,其中氧化层19a和19c用作绝缘层,而氮化层用作电子存储层。所述ONO层可以采用化学汽相沉积(CVD)或者热处理来形成。氮化层19b可以由氮化硅(Si3N4)形成。除了氮化层,也可以采用硅层。优选地,存储单元19的厚度小于200nm,而氮化层19b的厚度为100nm或更小。
控制栅极17围绕存储单元19的外侧表面形成。漏区15形成在纳米管柱状体10的顶表面上,而存储单元19与纳米管柱状体10的另一端连接。
图2是根据本发明第二实施例的存储装置的剖面图。图2所示的存储装置具有与图1A和1B所示的根据第一实施例的存储装置相同的结构,不同之处在于存储单元29包括具有填充有电子存储材料的纳米点28的多孔层29b。参考标记29a和29c分别表示与图1A和图1B所示的氧化层19a和19c具有相同功能的层。
当形成多孔层29b时,电被施加到置于硫酸溶液或磷酸溶液中的铝衬底上,以便对所述铝衬底进行阳极化处理,由此形成多个纳米点28。接着,通过CVD或溅射采用例如硅或氮化硅的电子存储材料填充纳米点28。因而,多孔层29b用作电子存储层。
图3是根据本发明第一实施例,为了制造存储装置而生长在衬底上碳纳米管的照片。
图4是一曲线图,示出了根据本发明第一实施例的存储装置的电流-电压(I-V)特性。请参照图4,漏电流Id保持恒定直到栅极电压从负电压增加到0电压,随后当栅极电压增加到0电压以上时漏电流Id显著减小。换言之,根据本发明第一实施例的存储装置清楚地显示了高密度存储装置的操作特性。
根据本发明,利用纳米管可以实现超高密度存储装置。由于在本发明实施时可以利用自组装(self-assembly)方法在无需使用掺杂工艺的情况下将超过密度存储装置构建在衬底上,因而其制造工艺被简化。
虽然本发明已具体地利用它的优选实施例被示出和加以描述,这些优选实施例应该只从描述的角度加以考量,而非为了限定本发明。例如,具有优异的捕获电子能力的材料可以被用作电子存储层或电子存储材料。因此,本发明的保护范围不是由本发明的详细描述而是由所附权利要求所确定的。

Claims (11)

1.一种存储装置,包括:
衬底,其具有源区;
纳米管阵列,其由垂直生长在所述衬底上的多个纳米管柱状体组成,使得所述纳米管阵列的一端与所述源区连接,由此用作电子传输沟道;
存储单元,其围绕所述纳米管阵列的外侧表面形成;
控制栅极,其围绕所述存储单元的外侧表面形成;以及
漏区,其与所述纳米管阵列的另一端连接。
2.如权利要求1所述的存储装置,其中所述衬底是以选自于由氧化铝、硅和介孔材料构成的组中的一种来形成的。
3.如权利要求1所述的存储装置,其中所述多个纳米管柱状体是以选自于由碳、氮化硼和磷化镓构成的组中的一种来形成的。
4.如权利要求1所述的存储装置,其中所述存储单元包括:
第一绝缘层,其围绕所述纳米管阵列的外侧表面形成;
电子存储层,其围绕第一绝缘层的外侧表面形成;以及
第二绝缘层,其围绕所述电子存储层的外侧表面形成并与所述控制电极连接。
5.如权利要求4所述的存储装置,其中第一和第二绝缘层为氧化硅层。
6.如权利要求4所述的存储装置,其中所述电子存储层为硅层和氮化硅层中的一种。
7.如权利要求4所述的存储装置,其中所述电子存储层具有100nm或更小的厚度。
8.如权利要求4所述的存储装置,其中所述电子存储层为包括多个填充有电子存储材料的纳米点的多孔层。
9.如权利要求8所述的存储装置,其中所述电子存储材料为硅和氮化硅中的一种。
10.如权利要求8所述的存储装置,其中所述多孔层为氧化铝层。
11.如权利要求5至7所述的存储装置,其中所述纳米点具有100nm或更小的直径。
CNB2003101138152A 2002-11-15 2003-11-04 利用垂直纳米管的非易失性存储装置 Expired - Lifetime CN1317768C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR71041/2002 2002-11-15
KR1020020071041A KR100790859B1 (ko) 2002-11-15 2002-11-15 수직 나노튜브를 이용한 비휘발성 메모리 소자
KR71041/02 2002-11-15

Publications (2)

Publication Number Publication Date
CN1501503A true CN1501503A (zh) 2004-06-02
CN1317768C CN1317768C (zh) 2007-05-23

Family

ID=32171633

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101138152A Expired - Lifetime CN1317768C (zh) 2002-11-15 2003-11-04 利用垂直纳米管的非易失性存储装置

Country Status (6)

Country Link
US (1) US6930343B2 (zh)
EP (1) EP1420414B1 (zh)
JP (2) JP4047797B2 (zh)
KR (1) KR100790859B1 (zh)
CN (1) CN1317768C (zh)
DE (1) DE60300477T2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689547B (zh) * 2007-05-24 2012-06-27 独立行政法人产业技术综合研究所 存储元件及其读取方法
CN102931237A (zh) * 2012-10-10 2013-02-13 哈尔滨工程大学 垂直非对称环栅mosfet器件的结构及其制造方法
CN101959789B (zh) * 2008-02-04 2014-04-02 乐金显示有限公司 纳米器件、包括该纳米器件的晶体管、用于制造该纳米器件的方法,以及用于制造该晶体管的方法
CN110300727A (zh) * 2017-01-09 2019-10-01 加拿大国家研究委员会 用于单壁碳纳米管应用的可分解的s-四嗪类聚合物

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10250829B4 (de) * 2002-10-31 2006-11-02 Infineon Technologies Ag Nichtflüchtige Speicherzelle, Speicherzellen-Anordnung und Verfahren zum Herstellen einer nichtflüchtigen Speicherzelle
US7274064B2 (en) * 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US6982903B2 (en) * 2003-06-09 2006-01-03 Nantero, Inc. Field effect devices having a source controlled via a nanotube switching element
KR101015498B1 (ko) * 2003-06-14 2011-02-21 삼성전자주식회사 수직 카본나노튜브 전계효과트랜지스터 및 그 제조방법
US7038299B2 (en) 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7374793B2 (en) 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7211844B2 (en) 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US7829883B2 (en) 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US7109546B2 (en) 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US9231201B2 (en) * 2004-06-30 2016-01-05 Nxp B.V. Electric device with a layer of conductive material contacted by nanowires
KR100666187B1 (ko) * 2004-08-04 2007-01-09 학교법인 한양학원 나노선을 이용한 수직형 반도체 소자 및 이의 제조 방법
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
DE102004049452A1 (de) * 2004-10-11 2006-04-20 Infineon Technologies Ag Mikroelektronisches Halbleiterbauelement und Verfahren zum Herstellen eines mikroelektronischen Halbleiterbauelements
KR100657910B1 (ko) * 2004-11-10 2006-12-14 삼성전자주식회사 멀티비트 플래시 메모리 소자, 그 동작 방법, 및 그 제조방법
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
US7535016B2 (en) * 2005-01-31 2009-05-19 International Business Machines Corporation Vertical carbon nanotube transistor integration
KR100688542B1 (ko) * 2005-03-28 2007-03-02 삼성전자주식회사 수직형 나노튜브 반도체소자 및 그 제조방법
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7838943B2 (en) * 2005-07-25 2010-11-23 International Business Machines Corporation Shared gate for conventional planar device and horizontal CNT
US7352607B2 (en) 2005-07-26 2008-04-01 International Business Machines Corporation Non-volatile switching and memory devices using vertical nanotubes
EP1763037A1 (en) 2005-09-08 2007-03-14 STMicroelectronics S.r.l. Nanotube memory cell with floating gate based on passivated nanoparticles and manufacturing process thereof
DE102005046427B4 (de) * 2005-09-28 2010-09-23 Infineon Technologies Ag Leistungstransistor mit parallelgeschalteten Nanodrähten
KR100723412B1 (ko) * 2005-11-10 2007-05-30 삼성전자주식회사 나노튜브를 이용하는 비휘발성 메모리 소자
KR100695167B1 (ko) * 2006-01-04 2007-03-14 삼성전자주식회사 다중벽 탄소나노튜브를 이용한 불휘발성 탄소나노튜브메모리 소자 및 그 동작방법
KR100721020B1 (ko) * 2006-01-20 2007-05-23 삼성전자주식회사 콘택 구조체를 포함하는 반도체 소자 및 그 형성 방법
GB0611557D0 (en) * 2006-06-12 2006-07-19 Univ Belfast Nanostructured systems and a method of manufacture of the same
KR100806129B1 (ko) 2006-08-02 2008-02-22 삼성전자주식회사 탄소 나노 튜브의 형성 방법
KR100749751B1 (ko) 2006-08-02 2007-08-17 삼성전자주식회사 트랜지스터 및 그 제조 방법
KR100745769B1 (ko) * 2006-09-11 2007-08-02 삼성전자주식회사 나노와이어 전기기계 스위칭 소자 및 그 제조방법, 상기나노와이어 전기기계 소자를 이용한 전기기계 메모리 소자
WO2008069485A1 (en) * 2006-12-05 2008-06-12 Electronics And Telecommunications Research Institute The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
KR100820174B1 (ko) 2006-12-05 2008-04-08 한국전자통신연구원 수직구조의 탄소나노튜브를 이용한 전자소자 및 그제조방법
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
GB0801494D0 (en) * 2007-02-23 2008-03-05 Univ Ind & Acad Collaboration Nonvolatile memory electronic device using nanowire used as charge channel and nanoparticles used as charge trap and method for manufacturing the same
WO2008129478A1 (en) * 2007-04-19 2008-10-30 Nxp B.V. Nonvolatile memory cell comprising a nanowire and manufacturing method thereof
KR100866966B1 (ko) 2007-05-10 2008-11-06 삼성전자주식회사 비휘발성 메모리 소자, 그 제조 방법 및 반도체 패키지
US20090179253A1 (en) 2007-05-25 2009-07-16 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US9449831B2 (en) 2007-05-25 2016-09-20 Cypress Semiconductor Corporation Oxide-nitride-oxide stack having multiple oxynitride layers
US8633537B2 (en) 2007-05-25 2014-01-21 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
US8940645B2 (en) 2007-05-25 2015-01-27 Cypress Semiconductor Corporation Radical oxidation process for fabricating a nonvolatile charge trap memory device
JP2011507231A (ja) * 2007-12-07 2011-03-03 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ シリコン−ゲルマニウムナノワイヤ構造およびその形成方法
US20110018053A1 (en) * 2007-12-07 2011-01-27 Agency For Science, Technology And Research Memory cell and methods of manufacturing thereof
EP2313341A4 (en) * 2008-07-07 2011-08-24 Nanunanu Ltd INORGANIC CANNONS
EP2297782A1 (en) 2008-07-09 2011-03-23 QuNano AB Nanostructured memory device
KR101061150B1 (ko) * 2009-05-22 2011-08-31 서울대학교산학협력단 발광 디바이스와 이의 제조 방법
US8350360B1 (en) 2009-08-28 2013-01-08 Lockheed Martin Corporation Four-terminal carbon nanotube capacitors
US8405189B1 (en) * 2010-02-08 2013-03-26 Lockheed Martin Corporation Carbon nanotube (CNT) capacitors and devices integrated with CNT capacitors
TWI476948B (zh) * 2011-01-27 2015-03-11 Hon Hai Prec Ind Co Ltd 外延結構及其製備方法
FR2980918B1 (fr) * 2011-10-04 2014-03-07 Univ Granada Point memoire ram a un transistor
CN111180525B (zh) * 2012-03-31 2023-08-08 经度快闪存储解决方案有限责任公司 具有多个氮氧化物层的氧化物氮化物氧化物堆栈
US9917169B2 (en) * 2014-07-02 2018-03-13 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of formation
CN110176489A (zh) * 2019-05-14 2019-08-27 中国科学院微电子研究所 纳米级晶体管及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392547B2 (ja) * 1994-11-21 2003-03-31 株式会社東芝 不揮発性半導体記憶装置
JPH102002A (ja) * 1996-06-17 1998-01-06 Daiwa:Kk 排水桝と排水桝の内底形成方法
JPH1093083A (ja) * 1996-09-18 1998-04-10 Toshiba Corp 半導体装置の製造方法
JP4658329B2 (ja) * 1999-02-12 2011-03-23 ボード オブ トラスティーズ,オブ ミシガン ステイト ユニバーシティ 帯電粒子を収容するナノカプセル、その用法及び形成法
JP2001077219A (ja) * 1999-06-29 2001-03-23 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
KR100343210B1 (ko) * 1999-08-11 2002-07-10 윤종용 단일 전자 충전 mnos계 메모리 및 그 구동 방법
KR100360476B1 (ko) * 2000-06-27 2002-11-08 삼성전자 주식회사 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법
US6798000B2 (en) * 2000-07-04 2004-09-28 Infineon Technologies Ag Field effect transistor
EP2360298A3 (en) * 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
KR100393189B1 (ko) * 2001-01-10 2003-07-31 삼성전자주식회사 탄소나노튜브를 이용한 mram 및 그 제조 방법
DE60301582T2 (de) * 2002-02-09 2006-06-22 Samsung Electronics Co., Ltd., Suwon Speicheranordnung mit Kohlenstoffnanoröhre und Verfahren zur Herstellung der Speicheranordnung
US6515325B1 (en) * 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689547B (zh) * 2007-05-24 2012-06-27 独立行政法人产业技术综合研究所 存储元件及其读取方法
CN101959789B (zh) * 2008-02-04 2014-04-02 乐金显示有限公司 纳米器件、包括该纳米器件的晶体管、用于制造该纳米器件的方法,以及用于制造该晶体管的方法
CN102931237A (zh) * 2012-10-10 2013-02-13 哈尔滨工程大学 垂直非对称环栅mosfet器件的结构及其制造方法
CN102931237B (zh) * 2012-10-10 2015-07-22 哈尔滨工程大学 垂直非对称环栅mosfet器件的结构及其制造方法
CN110300727A (zh) * 2017-01-09 2019-10-01 加拿大国家研究委员会 用于单壁碳纳米管应用的可分解的s-四嗪类聚合物

Also Published As

Publication number Publication date
CN1317768C (zh) 2007-05-23
DE60300477T2 (de) 2006-02-23
JP2004172616A (ja) 2004-06-17
US20040095837A1 (en) 2004-05-20
KR20040043043A (ko) 2004-05-22
KR100790859B1 (ko) 2008-01-03
US6930343B2 (en) 2005-08-16
DE60300477D1 (de) 2005-05-12
JP2007329500A (ja) 2007-12-20
EP1420414B1 (en) 2005-04-06
EP1420414A1 (en) 2004-05-19
JP4047797B2 (ja) 2008-02-13
JP5307993B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
CN1317768C (zh) 利用垂直纳米管的非易失性存储装置
CN100346456C (zh) 一种mosfet半导体及其制造方法
CN1172357C (zh) 近环绕栅极及制造具有该栅极的硅半导体器件的方法
US8680512B2 (en) Graphene transistor with a self-aligned gate
CN1669160A (zh) 自对准纳米管场效应晶体管及其制造方法
CN1708864A (zh) 场效应晶体管及其制造方法
CN1708855A (zh) 具有u字型栅极结构的半导体器件
JP2011192667A (ja) トランジスタおよびその製造方法
CN1763970A (zh) 薄型绝缘半导体之绝缘间隙壁
KR20210094330A (ko) 2차원 반도체 물질을 포함하는 반도체 소자
US20230275125A1 (en) Transistor and method for fabricating the same
CN1726597A (zh) 垂直绝缘栅晶体管及其制作方法
KR102059131B1 (ko) 그래핀 소자 및 이의 제조 방법
US8158538B2 (en) Single electron transistor operating at room temperature and manufacturing method for same
TW202315119A (zh) Gan垂直溝槽mosfet及其製造方法
CN1949541A (zh) 微电子器件和制造微电子器件的方法
TW202247466A (zh) 半導體裝置
US20100327260A1 (en) Single Electron Transistor Operating at Room Temperature and Manufacturing Method for Same
CN1992344A (zh) 半导体器件的晶体管及其制造方法
CN1111905C (zh) 半导体器件的制造方法
CN113097301B (zh) 半导体结构及半导体结构的形成方法
KR20210119199A (ko) 전자 소자 및 그 제조방법
JP4304332B2 (ja) 炭化ケイ素半導体装置
KR102467857B1 (ko) 강유전체 메모리 소자 및 그 제조 방법
US11929411B2 (en) Recessed access devices and methods of forming a recessed access devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070523