CN1495127A - 用于生产碳纳米管的方法和催化剂 - Google Patents

用于生产碳纳米管的方法和催化剂 Download PDF

Info

Publication number
CN1495127A
CN1495127A CNA031086187A CN03108618A CN1495127A CN 1495127 A CN1495127 A CN 1495127A CN A031086187 A CNA031086187 A CN A031086187A CN 03108618 A CN03108618 A CN 03108618A CN 1495127 A CN1495127 A CN 1495127A
Authority
CN
China
Prior art keywords
metal
carbon nanotube
viii
family metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031086187A
Other languages
English (en)
Other versions
CN100564251C (zh
Inventor
De
D·E·莱萨斯克
B·吉蒂亚南
ά
J·H·哈维尔
W·艾尔瓦勒兹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Oklahoma
Original Assignee
University of Oklahoma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Oklahoma filed Critical University of Oklahoma
Publication of CN1495127A publication Critical patent/CN1495127A/zh
Application granted granted Critical
Publication of CN100564251C publication Critical patent/CN100564251C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1278Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/813Of specified inorganic semiconductor composition, e.g. periodic table group IV-VI compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/835Chemical or nuclear reactivity/stability of composition or compound forming nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Abstract

一种通过使含碳气体与金属催化粒子接触来生产碳纳米管的催化剂和方法。催化粒子含有至少一种选自族VIII的金属,包括例如Co、Ni、Ru、Rh、Pd、Ir和Pt,和含有至少一种选自族VIb的金属,包括例如Mo、W和Cr。金属组分可以沉积在载体上。优选所形成的纳米管的显著部分是单壁碳纳米管。另外,还公开了一种用于确定催化剂组成和反应条件以优化单壁碳纳米管生产的方法。

Description

用于生产碳纳米管的方法和催化剂
本申请是中国专利申请00808276.6(申请日2000年6月1日)的分案申请。
                       发明背景
本发明涉及用于生产碳纳米管的方法和催化剂,更具体地说,但不限制其范围,本发明涉及用于生产单壁碳纳米管的方法和催化剂。
碳纳米管(也称作碳原纤)是具有完全富勒烯罩的石墨片无缝管,在过渡金属催化剂存在下,它们首先是多层同心管或多壁碳纳米管,然后作为单壁碳纳米管。碳纳米管显示有前途的应用,包括纳米级电子设备、高强度材料、电子场发射、扫描探针显微镜的尖端以及气体储存。
一般来说,在这些应用中,单壁碳纳米管比多壁碳纳米管更优选,因为前者具有较少的缺陷,所以比相似直径的多壁碳纳米管的强度更高,传导性更强。与多壁碳纳米管相比,单壁碳纳米管不易于出现缺陷,因为多壁碳纳米管能通过在不饱和碳价之间形成桥而幸免于意外缺陷,而单壁碳纳米管没有可以补偿缺陷的隔壁。
但是,这些实际技术所需量的新单壁碳纳米管的可行性仍然存在问题。仍然需要用于生产高质量单壁碳纳米管的大规模方法。
目前,有三个合成碳纳米管的主要方法。这些包括碳的激光烧蚀(Thess,A等,Science 273,483(1996))、石墨棒的电弧放电(Journet,C等,Nature 388,756(1997))和烃的化学蒸气沉积(Ivanov,V等,Chem.Phys.Lett 223,329(1994);LiA等,Science274,1701(1996))。通过催化烃裂解生产多壁碳纳米管现在已达到工业规模(美国专利5578543),而单壁碳纳米管的生产仍然是通过激光(Rinzler,A.G.等,Appl.Phys.A,67,29(1998))和电弧(Haffner,J.H.等,Chem.Phys.Lett.296,195(1998))技术以克级规模生产。
与激光和电弧技术不同,在过渡金属催化剂上的碳蒸气沉积倾向于生成多壁碳纳米管作为主要产物,而不是单壁碳纳米管。但是,在从催化烃裂解方法生产单壁碳纳米管方面有一些成功。Dai等(Dai,H等,Chem.Phys.Lett.260,471(1996))证明由加热至1200℃的承载在氧化铝上的一氧化碳(CO)和钼(Mo)催化剂的歧化反应生产网状单壁碳纳米管。从报告的电子显微图象来看,Mo金属显然附着在纳米管的尖端。单壁碳纳米管的报告直径通常为1-5纳米,并通过Mo的粒径来控制。含有铁、钴或镍的催化剂在850-1200℃温度下使用,形成多壁碳纳米管(美国专利4663230)。最近,单壁碳纳米管的绳状束通过苯与铁催化剂和硫添加剂在1100-1200℃温度下的热裂解而生成(Cheng,H.M.等,Appl.Phys.Lett.72,3282(1998);Cheng,H.M.等,Chem.Phys.Lett.289,602(1998))。合成的单壁碳纳米管大致以束排列并纺织在一起,与从激光气化或电弧方法得到的那些相似。已提出使用这样的激光目标,它包括一种或多种族VI或族VIII过渡金属以形成单壁碳纳米管(WO98/39250)。已提出包括铁和选自族V(V、Nb和Ta)、族VI(Cr、Mo和W)、族VII(Mn、Tc和Re)或镧系元素的至少一种元素的金属催化剂的应用(美国专利5707916)。但是,使用这些催化剂的方法未教导生产具有单壁碳纳米管与多壁碳纳米管高比例的大量纳米管。
另外,在反应步骤之前或之后的分离步骤占去大部分生产碳纳米管所需的资金和操作成本。所以,从多壁碳纳米管和污染物(即无定形和石墨碳)提纯出单壁碳纳米管比碳纳米管的实际生产需要更多的时间和费用。
另外,目前技术中的最大限制之一是不能对特定合成中所含的不同形式的碳进行简单和直接的定量。目前,透射电子显微术(TEM)是最广泛用于确定在特定样品中的单壁碳纳米管分数的表征技术。但是,透射电子显微术只能提供所生产的碳物质类型的定性描述。难以确定给定的透射电子显微图象表示多少总产率。用任何统计数据半定量地确定样品中不同碳物质的分布是耗时的,且使用透射电子显微术的方法不能用作大规模操作的常规质量控制手段。
所以,需要新的和改进的生产纳米管的方法,该方法能在比现有方法更低的温度下合成工业规模量的基本上纯的单壁碳纳米管,以及需要对特定合成中碳的不同形式的直接定量方法。本发明涉及这种生产碳纳米管和对合成产物进行定量的方法。
                           发明概述
根据本发明,提供用于生产碳纳米管的催化剂和方法,该方法能避免现有技术的缺陷和缺点。具体地说,该方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产碳纳米管的温度下接触,其中显著部分的碳纳米管是单壁碳纳米管,金属催化粒子包括除铁以外的族VIII金属和族VIb金属。
另外,根据本发明,提供确定催化剂组成和反应条件的方法,以优化单壁碳纳米管的生产。具体地说,该方法包括在反应器单元中使含碳纳米管的产物样品与有效量的含氧气体接触以氧化样品中存在的碳,同时提高反应器单元内的温度。检测由样品释放出的二氧化碳量,并通过在特定温度下从样品释放出的二氧化碳来确定样品中存在的特定碳物质。改变催化剂组成和/或反应条件,直至单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。
在本发明的一方面,金属催化粒子是沉积在载体例如二氧化硅上的双金属催化剂。在双金属催化剂中的族VIII金属与族VIb金属之比在约1∶5至约2∶1的范围内。
本发明的一个目的是提供一种以较大量和在较低温度下生产单壁碳纳米管的方法。
本发明的另一个目的是提供定量地确定样品中存在的不同形式的碳,包括单壁碳纳米管、多壁碳纳米管以及无定形碳,进而确定特定催化剂的选择性和优化生产碳纳米管的反应条件的方法。
本发明的其它目的、特征和优点将从以下详细描述结合附图和所附权利要求中表现出来。
                          附图简述
图1是由通过在SiO2上的Co/Mo催化剂在约700℃下催化的CO歧化反应得到的单壁碳纳米管的透射电子显微图象(放大倍数约为100000)。
图2是图1中所用样品在更高分辨率下的透射电子显微图象(放大倍数约为400000),显示单壁碳纳米管的束(SWNTs)。
图3是图1中所用样品的透射电子显微图象,显示在束中增长的排列的单壁碳纳米管。
图4是图1中所用样品的透射电子显微图象,显示单壁碳纳米管束的端视图。
图5是图1中所用样品的扫描电子显微图象,显示从催化表面增长出来的单壁碳纳米管束。
图6是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线。
图7是由在SiO2上的Co催化剂、在SiO2上的Mo催化剂和在SiO2上的Co∶Mo催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线。
图8是由在SiO2上的Co∶Mo催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变Co∶Mo的摩尔比。
图9是由Co∶Mo/SiO2催化剂催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变反应温度。
图10是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变在CO歧化反应中所用的含碳气体中CO的百分比。
图11是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变CO歧化反应的时间。
                          发明详述
本发明涉及用于生产大量单壁碳纳米管的催化剂和方法,其中使有效量的含碳气体在较低温度下通过包括至少一种族VIII金属和至少一种族VIb金属的双金属催化粒子;和涉及能可靠地定量检测在含碳纳米管的产物中单壁碳纳米管产率的方法。
具体地说,用于生产单壁碳纳米管的方法包括使包括族VIII金属和族VIb金属的双金属催化粒子与有效量的含碳气体在被加热到约500-1200℃温度的反应器中接触,优选约600-850℃,更优选约650-750℃,最优选约700℃。含碳气体可以连续地供应到反应器中,或含碳气体可以在静止气氛中保持在反应器中。
本文所用的词语“有效量的含碳气体”指存在的足量的气态碳物质,以使碳在如下所述的较高温度下沉积在金属催化粒子上,从而形成碳纳米管。
本文所用的金属催化粒子包括催化剂组分。本发明提供和使用的催化剂是双金属的。双金属催化剂含有至少一种选自族VIII的除铁以外的金属,包括Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物,和含有至少一种选自族VIb的金属,包括Cr、W、Mo及其混合物。可用于本发明的双金属催化剂的具体实例包括Co-Cr、Co-W、Co-Mo、Ni-Cr、Ni-W、Ni-Mo、Ru-Cr、Ru-W、Ru-Mo、Rh-Cr、Rh-W、Rh-Mo、Pd-Cr、Pd-W、Pd-Mo、Ir-Cr、Ir-W、Ir-Mo、Pt-Cr、Pt-W和Pt-Mo。本发明特别优选的催化剂包括Co-Mo、Co-W、Ni-Mo和Ni-W。
双金属催化剂的两种金属组分之间存在增效作用,因为与含有族VIII金属或族VIb金属之一作为催化剂的金属催化粒子相比,含有双金属催化剂的金属催化粒子对于生产单壁碳纳米管更有效。该双金属催化剂的增效作用将在下面更详细地描述。
在金属催化粒子中族VIII金属与族VIb金属之比还影响本发明方法生产单壁碳纳米管的选择性。族VIII金属与族VIb金属之比优选是约1∶10至约15∶1,更优选是约1∶5至约2∶1。一般来说,在用于选择性地生产单壁碳纳米管的金属催化粒子中,族VIb金属(例如Mo)的浓度将超过族VIII金属(例如Co)的浓度。
金属催化粒子可以含有选自族VIII和族VIb两者的一种以上金属,只要存在至少一种选自其中每个族的金属即可。例如,金属催化粒子可以含有(1)一种以上的族VIII金属和一种族VIb金属,(2)一种族VIII金属和一种以上的族VIb金属,或(3)一种以上的族VIII金属和一种以上的族VIb金属。
双金属催化剂可以通过简单地将两种金属混合而制成。双金属催化剂还可以通过分解前体化合物而就地形成,前体化合物例如是二(环戊二烯基)钴或二(环戊二烯基)钼的氯化物。
催化剂优选沉积在载体上,载体例如是二氧化硅(SiO2)、MCM-41(Mobil结晶材料-41)、氧化铝(Al2O3)、MgO、Mg(Al)O(铝稳定的氧化镁)、ZrO2、分子筛沸石或本领域公知的其它氧化载体。
金属催化粒子,即沉积在载体上的催化剂,可以通过在平面基质如石英、玻璃、硅以及氧化硅表面上按照本领域一般技术人员公知的方式蒸发金属混合物而制成。
沉积在载体上的双金属催化剂的总量可以在宽范围内变化,但通常占金属催化粒子总重量的约1-20%,更优选占金属催化粒子总重量的约3-10%。
在本发明的另一种实施方案中,双金属催化剂可以不沉积在载体上,在这种情况下,金属组分含有基本上约100%的金属催化粒子。
合适的含碳气体的实例包括:饱和的和不饱和的脂族烃,例如甲烷、乙烷、丙烷、丁烷、己烷、乙烯和丙烯;一氧化碳;氧化的烃,例如丙酮、乙炔和甲醇;芳族烃,例如甲苯、苯和萘;以上物质的混合物,例如一氧化碳和甲烷。使用乙炔能促进形成多壁碳纳米管,而CO和甲烷是用于形成单壁碳纳米管的优选进料气体。含碳气体可以任选地与稀释剂气体混合,例如氦气、氩气或氢气。
在本发明的优选实施方案中,双金属催化粒子置于反应器单元内,例如置于炉或烘箱中的石英管,将含碳气体通入反应器单元内。或者,样品可以通过微波辐射加热。该方法可以是连续的,其中金属催化粒子和含碳气体连续地进料和在反应器内混合,或该方法可以是间歇方法,其中含碳气体和金属催化粒子置于反应器单元内,并在反应期间保留在反应器单元内。
或者,金属催化粒子可以与电弧放电系统中的电极混合,以生产单壁碳纳米管和/或多壁碳纳米管。或者,可以在暴露于微波诱导等离子体放电的系统中使用金属催化粒子。在完成催化过程之后,从反应器中取出金属催化粒子和纳米管。通过本领域普通技术人员公知的方法从金属催化粒子中分离出纳米管。在此处,没有必要进一步讨论从金属催化粒子中分离出碳纳米管的这种方法。
此处制得的单壁碳纳米管通常具有外径为约0.7-5纳米。此处制得的多壁碳纳米管通常具有外径为约2-50纳米。
用于对单壁碳纳米管进行可靠的定量检测方法是直接的和易于进行的,从而可以检测到选择性或稳态生产的变化,使重现性和质量控制易于实现。该方法基于温度程序氧化(TPO)技术(Krishnankutty,N等,Catalysis Today,37,295(1997))。该技术通常用于评估碳的结晶性,并基于这样的概念,即与具有短程结晶有序的材料相比,高度石墨材料的抗氧化性将更强。在本发明中,采用该技术来提供一种确定相对于多壁碳纳米管的生产单壁碳纳米管的选择性的方法,以及由每种碳物质占总固体产物的百分比,每种碳物质不仅包括单壁碳纳米管和多壁碳纳米管,而且包括无定形碳和石墨碳物质。所以,该方法与上述碳纳米管的生产方法相结合,将允许受控地生产单壁碳纳米管。但是,应该理解的是,该方法还能用于分析任何含有碳纳米管的样品。
具体地说,该方法包括使分散在载体气体中的含氧气体连续流,例如在氦气中的5%氧气,通过含碳纳米管的样品,例如含碳沉积物的催化剂,同时使温度从室温线性升高到约800℃。含氧气体的量能够有效地氧化在样品中存在的碳物质。碳物质的氧化导致生成二氧化碳,每种碳物质,例如单壁或多壁碳纳米管、无定形碳或石墨,在不同的温度下被氧化。通过样品中存在的每种碳物质的氧化作用生成的二氧化碳由质谱监测。所生成的二氧化碳通过用已知量的纯二氧化碳的脉冲和已知量的石墨的氧化来校正,从而直接检测在各温度下被氧化的碳的量。也就是说,由质谱测得的1摩尔二氧化碳对应于1摩尔在给定温度下被氧化的特定种类的碳。
采用温度程序氧化的定量方法在下文中称作温度程序氧化方法,该方法特别适用于定量表征单壁碳纳米管,这是因为单壁碳纳米管在较窄的温度范围内被氧化,该温度范围处于无定形碳的氧化温度以上,且处于多壁碳纳米管和石墨碳的氧化温度以下。例如,通过该方法,测得单壁碳纳米管的氧化温度比C60富勒烯的氧化温度高出约100℃,且比多壁碳纳米管的氧化温度低约100℃。通过热重分析法(TGA)得到相似的结果(Rinzler,A.G.等,Appl.Phys.A,67,29(1998)),确定该方法对于定量单壁碳纳米管的适用性。
此处所述的温度程序氧化分析方法可以用于快速检测不同的催化剂配方和碳纳米管生产方法的操作条件,以便优化单壁碳纳米管的生产。例如,在金属催化粒子中存在的最佳双金属催化剂,以及两种金属的最佳摩尔比,可以通过温度程序氧化来确定。温度程序氧化还可以用于优化反应条件,例如温度、时间和含碳气体中碳的浓度。例如,在不同反应温度下产物的温度程序氧化结果显示,碳的沉积量随着温度的降低而增加,但对生产单壁碳纳米管的选择性在低温下较低。所以,温度程序氧化可以用于发现对于任何特定催化剂的最佳反应温度。
现在将理解的是,尽管已详细讨论了单壁碳纳米管生产的优化,但相同的方法可以用于优化多壁碳纳米管的生产。
石墨、无定形碳和在催化过程中形成的其它碳残渣的量被最小化,这是因为使用了较低的温度。石墨或无定形碳的重量小于在该方法期间形成的总固体材料重量的约40%,更优选小于约10%。最优选,石墨、无定形碳和其它固体碳残渣的量小于催化过程的总固体产物的约5%。
此处所述的温度程序氧化方法看来是第一种能不仅确定样品中存在的碳物质、而且能确定样品中存在的每种碳物质百分比的方法。这特别有助于在单壁碳纳米管用于各种用途中之前确定应该采取何种纯化步骤(如果有的话)。因为与实际的碳纳米管生产本身相比,纯化步骤十分费时和昂贵,所以温度程序氧化方法的价值是显然的。
此处制得的碳纳米管可以用于各种用途。例如,它们可以用作纤维增强的复合材料结构或混杂复合材料结构(即除碳纳米管以外含有增强材料例如连续纤维的复合材料)中的增强材料。复合材料可以进一步含有填料,例如炭黑、二氧化硅及其混合物。可增强的基体材料的实例包括无机和有机聚合物、陶瓷(例如卜特兰水泥)、碳和金属(例如铅或铜)。当基体是有机聚合物时,可以是:热固性树脂例如环氧、双马来酰亚胺、聚酰亚胺、或聚酯树脂;热塑性树脂;或反应注射成型树脂。碳纳米管还可以用于增强连续的纤维。可被增强或包括在混杂复合材料中的连续纤维的实例包括芳族聚酰胺、碳、玻璃纤维及其混合物。连续纤维可以是织造的、编织的、卷曲的或直接的。
本发明将通过以下实施例更详细地说明。但是,实施例仅仅用于说明本发明的理想方面,而不用于限制本发明的范围。
实施例1:
含有约10重量%在二氧化硅基质上的混合钴和钼(约1∶1比率)的双金属催化粒子通过初期润湿浸渍方法制备,其中使适宜量的硝酸钴和七钼酸铵四水合物一起溶解在去离子水中,然后逐步滴加在二氧化硅上。陶瓷灰砂和研杵用于分散在二氧化硅上的金属。所得的双金属催化粒子然后于环境条件下干燥数小时。被部分干燥的双金属催化粒子然后在烘箱中于约80℃下干燥约12小时。干的双金属催化粒子然后在流动空气中于约450℃下煅烧。
为了生产碳纳米管,将约0.1克经煅烧的双金属催化粒子置于立式石英管反应器中,该反应器具有电弧内径为约8毫米。装有经煅烧的双金属催化粒子的立式石英管反应器置于炉内,该炉配备有热电偶和温度控制。使氢气(约85厘米3/分钟)从反应器顶部通入该反应器。炉温是以约20℃/分钟的速率从室温线性升高到约450℃。在达到约450℃之后,将氢气流再通入反应器中约30分钟。反应器温度然后升高到在氦气中的约600-700℃。然后,一氧化碳气体(约50%一氧化碳/50%氦气)以约100厘米3/分钟的流速通入反应器中。CO与经煅烧的双金属催化粒子的接触时间是约15分钟到约2小时。在经过上述接触时间之后,关闭该炉,并在氦气中将产物冷却到室温。
反应之后,样品的颜色恢复到深黑色。为了对产物进行透射电子显微镜分析,将一部分产物悬浮在蒸馏水中,用超声波辐照。将几滴该悬浮液沉积在承载在铜栅上的lacey碳上。然后干燥一部分产物,并用JEOL JEM-2000FX型透射电子显微镜在约200KV下观察。如透射电子显微镜图象所示(图1-4),可以清晰地看到大量单壁碳纳米管。观察到这些单壁碳纳米管层叠在一起,粗略地排列成束。透射电子显微镜图象还显示,单壁碳纳米管的束被无定形碳所包覆,与其它方法相似。大多数管具有约1纳米直径,少部分管具有较大的直径,最多约3.2纳米。
在透射电子显微镜分析之后,用JEOL JSM-880型扫描电子显微镜扫描产物。图5中的扫描电子显微镜图象显示在二氧化硅表面上的单壁碳纳米管的束。
实施例2:
含有承载于二氧化硅上的Ni、Co或Mo单金属催化剂的金属催化粒子也通过与实施例1所述相同的方法制备,将其催化性能与含有双金属催化剂的金属催化粒子的催化性能进行比较。在进行与实施例1所述相同的在700℃下CO处理之后,进行同样的透射电子显微镜分析,在这些样品中没有观察到单壁碳纳米管。该结果表示确实存在CO和Mo之间的增效作用使两种金属的结合成为很有效的配方,而在该温度下,单独的金属不能生产单壁碳纳米管。
实施例3:
在不同的载体(SiO2、MCM-41、Al2O3、Mg(Al)O和ZrO2)上制备一系列含有约6重量%Co-Mo双金属催化剂的金属催化粒子,并比较其碳纳米管的生产能力,然后采用与实施例1相同的CO歧化方法。表I概括了这些实验的结果。
实施例4:
按照与实施例1相同的步骤,观察到含有沉积在SiO2上的Co-W双金属催化剂的金属催化粒子,其中Co/W摩尔比为约1.0,得到与Co-Mo/SiO2金属催化粒子相似的单壁碳纳米管产率。在Co-Mo系列的情况下,观察到仅仅含有W/SiO2、但不含Co的金属催化粒子不能形成单壁碳纳米管。
    表I催化剂载体对碳沉积形态学的影响
催化剂 观察到的碳沉积物的形态学
Co∶Mo/SiO2 主要量的单壁碳纳米管,少量多壁碳纳米管和石墨
Co∶Mo/MCM-41 主要量的单壁碳纳米管,少量多壁碳纳米管和石墨
Co∶Mo/Al2O3 少量的单壁碳纳米管、多壁碳纳米管和石墨
Co∶Mo/Mg(Al)O 少量石墨、少量单壁碳纳米管
Co∶Mo/ZrO2 少量石墨、少量单壁碳纳米管
实施例5:
用温度程序氧化方法分析通过与实施例1所述相同的CO歧化方法用含有承载于二氧化硅上的约6重量%Co-Mo双金属催化剂(约1∶2比率)的金属催化粒子制成的碳物质,如图6所示。
为了进行温度程序氧化分析,将由约700℃下CO处理产物得到的约50毫克样品放置在与实施例1所用相似的石英管反应器中。将约5%氧气/95%氦气的连续流通入反应器中,炉温以约11℃/分钟的速率从室温升高到约800℃,然后在约800℃保持约1小时。所形成的CO2用质谱检测,以确定在各温度下被氧化的碳物质的量。
质谱检测CO2在石英管内的分压,得到绝对值。然后通过减去基线值来归一化该值,在用约100微升CO2脉冲和已知量的石墨氧化校正之后计算。调节后的值与在特定温度下被氧化的CO2摩尔量直接成比例,后者又与样品中存在的特定碳物质的摩尔量直接成比例。从这些数值可以计算催化方法总固体产物中的单壁碳纳米管百分比。
在Co∶Mo/SiO2金属催化粒子(标为“Co∶Mo 1∶2”)上制得的碳物质的温度程序氧化曲线表示为其中心处于约330℃的小氧化峰,该峰归属于无定形碳的氧化,以及其中心处于约510℃的主要峰,该峰在图中由箭头标出,并归属于单壁碳纳米管的氧化。
两个参比样品也通过温度程序氧化方法观察,其曲线如图6所示。第一个参比样品(标为“石墨”)是与Co∶Mo/SiO2金属催化粒子进行物理混合的石墨粉。这种形式的碳的氧化在很高的温度下进行,开始为约700℃,在约800℃保持约30分钟之后完成。
第二个参比样品是纯化的单壁碳纳米管的商业样品,购自TubesRice(Rice University,Houston,Texas)。该样品以约5.9克/升含有非离子表面活性剂Triton X-100的液体悬浮液形式提供。为了进行温度程序氧化分析,Co∶Mo/SiO2金属催化粒子用单壁碳纳米管悬浮液浸渍,其中液体/催化剂的重量比率为约1∶1,以便得到在样品上的约0.6重量%单壁碳纳米管。经浸渍的样品(标为“TubesRice”)的温度程序氧化曲线显示两个峰,低温峰对应于表面活性剂的氧化,第二个峰处于约510℃,完全对应于单壁碳纳米管的氧化。为了确定第一个峰确实归属于表面活性剂的氧化,制备具有相同浓度的仅含表面活性剂的空白溶液的样品。其温度程序氧化曲线(标为“空白溶液”)符合“TubesRice”曲线的第一个峰,证明该峰确实对应于表面活性剂Triton。
通过温度程序氧化方法从CO2对“TubesRice”参比样品中的单壁碳纳米管的量进行定量,得到约0.64重量%的值,这很好地符合在样品中承载的单壁碳纳米管的量(约0.6重量%)。该结果证明本发明的温度程序氧化方法可以用于直接定量特定碳物质的百分比,例如由纳米管生产方法得到的产物中存在的单壁碳纳米管、多壁碳纳米管和无定形碳。目前,还没有其它能直接定量特定碳物质占纳米管生产所得总固体产物的分数的方法。
实施例6:
由含有承载于二氧化硅上Co或Mo单金属催化剂的金属催化粒子催化的CO歧化所得产物的温度程序氧化曲线用实施例5的方法得到,并与由双金属催化剂催化的CO歧化所得产物的温度程序氧化曲线进行比较。温度程序氧化方法清楚地证明Co和Mo所显示的增效作用,这在实施例2中也由透射电子显微镜观察到。
如图7所示,含有Mo/SiO2金属催化粒子的样品(标为“Mo”)的温度程序氧化曲线表明单独的Mo不能生产碳纳米管;“Mo”温度程序氧化曲线仅仅包括小的低温峰,对应于无定形碳。相似地,含有Co/SiO2金属催化粒子的样品(标为“Co”)的温度程序氧化曲线表明单独的Co对生产单壁碳纳米管没有选择性,并主要生成石墨碳和多壁碳纳米管,如上所述,其在比单壁碳纳米管更高的温度下氧化。相比之下,两种金属的组合得到对单壁碳纳米管的高选择性,含有Co∶Mo/SiO2金属催化粒子的样品(标为“Co∶Mo=1∶2”,其中Co∶Mo比率是约1∶2)显示其中心位于约510℃的大峰,归属于单壁碳纳米管。因为没有其它明显的峰,所以可以假设单壁碳纳米管占碳纳米管生产所得总固体产物的大部分百分比。
在催化产物中存在的单壁碳纳米管、无定形碳、多壁碳纳米管和石墨的百分比列于表II中,其中所有数字和测量值是近似值。
    表II Co和Mo所表现的增效作用
    催化剂     无定形碳% 单壁碳纳米管% 多壁碳纳米管和石墨%
    Co     38     11     51
    Mo     95     5     0
    Co∶Mo(1∶2)     8     88     4
实施例7:
将由含有Co∶Mo双金属催化剂的金属催化粒子催化的CO歧化产物的温度程序氧化曲线进行比较,其中Co∶Mo比率为约1∶4、约1∶2、约1∶1和约2∶1,以确定改变Co∶Mo/SiO2金属催化粒子中Co∶Mo摩尔比的作用。通过与实施例5所述相同的方法得到温度程序氧化曲线。如图8所示,含有Co∶Mo摩尔比为约1∶2和约1∶4的Co∶Mo/SiO2金属催化粒子显示对单壁碳纳米管的最高选择性。箭头表示对应于单壁碳纳米管氧化的峰中心。这些样品的温度程序氧化曲线表明这些催化剂制得大部分单壁碳纳米管和少量无定形碳。Co∶Mo比率的增加不会提高单壁碳纳米管的产率,但确实加速形成多壁碳纳米管和石墨碳,如在标为“Co∶Mo=2∶1”的程序温度氧化曲线的约600-700区域中的峰尺寸增加所示。
从图8的程序温度氧化曲线估计每种催化剂的选择性值,并列于表III中,其中所有数字和测量值是近似值。
    表III Co∶Mo摩尔比对单壁碳纳米管生产的作用
Co∶Mo催化剂的摩尔比   无定形碳% 单壁碳纳米管% 多壁碳纳米管和石墨%
    2∶1     12     57     31
    1∶1     16     80     4
    1∶2     8     88     4
    1∶4     5     94     1
实施例8:
图9-11表明采用温度程序氧化技术来优化反应条件。CO歧化反应用Co∶Mo/SiO2金属催化粒子(约1∶1摩尔比)催化,且所用的方法与实施例1中所述相似,不同的是在图9中改变反应温度,在图10中改变CO的浓度,在图11中改变反应时间。CO歧化产物用实施例5所述的温度程序氧化方法分析。
在图9中,显示当反应器温度为约600℃、约700℃和约800℃时制得的碳物质的温度程序氧化曲线。这些曲线证明碳的沉积量随着温度的降低而增加;但是在较低的温度下,对单壁碳纳米管的选择性较低。温度程序氧化可以用于确定任何特定催化剂的最佳反应温度,在这种情况下,最佳温度是约700℃。单壁碳纳米管、无定形碳、多壁碳纳米管和石墨占催化产物的百分比列于表IV中,其中所有的数字和测量值是近似值。
在图10中,显示当含碳气体中CO浓度为约1%、约20%、约35%和约50%时制得的碳物质的温度程序氧化曲线。这些曲线证明单壁碳纳米管的产量与含碳气体中CO浓度有很大的关系。
    表IV  反应器温度对单壁碳纳米管生产的作用
    温度   无定形碳% 单壁碳纳米管% 多壁碳纳米管和石墨%
    600℃     16     55     29
    700℃     16     80     4
    800℃     25     61     14
在图11中,显示当反应时间为约3分钟、约10分钟和约1小时时制得的碳物质的温度程序氧化曲线。反应时间指使反应器保持在约700℃且CO与金属催化粒子接触的时间。这些温度程序氧化曲线证明单壁碳纳米管的产率在第一个大约10分钟期间随着时间的延长而显著增加,但超过该时间后,增长的幅度不太显著。
现在应该理解的是,温度程序氧化方法是一种催化方法,其中样品中存在的金属催化了碳物质的氧化。所以,如果催化剂的性质显著改变,则氧化峰的位置可以从上述实施例所述的峰位置发生位移,尽管该峰所表示的碳结构是相同的。例如,已观察到,催化剂载体的改变可以导致这种位移。所以,对于本发明方法中所用的每种催化剂,催化剂的完整温度程序氧化曲线以及操作条件应该用适宜的参比来进行,以确定峰的位移以及最佳操作条件。
实施例9:
在本发明方法的一个特别优选的实施方案中,催化剂组成是Co-Mo/二氧化硅催化剂,其中Co∶Mo摩尔比为约1∶2。单金属Co催化剂或具有较高Co∶Mo摩尔比的催化剂倾向于得到低的选择性,显著制得不利的多壁碳纳米管和石墨。在研究的温度范围内,在没有Co的情况下,Mo基本上对纳米管生产呈惰性。催化剂在氢气中进行预处理,例如在约500℃下,以便部分还原Mo,但不还原Co。在没有该预处理步骤的情况下,或在较高温度下进行预还原的情况下(即,不足以还原或过多的还原),催化剂没有效果,且生成较少的SWNT。其它载体例如氧化铝可以导致差的Co-Mo相互作用,使选择性和产率受到损失。
高空速(在约30000小时-1以上)是优选的,以使CO2的浓度最小化,CO2是反应的副产物,它抑制向纳米管的转化。高的CO浓度是优选的,以使无定形碳沉积物的形成最小化,因为这种沉积物的形成在低CO浓度下发生。优选的温度范围的特征在于,低于约650℃时,对SWNT的选择性低;而高于约850℃时,转化率低,这是因为反应的可逆性(放热)和催化剂的去活化。所以,最佳温度为约700-800℃;更优选为约725-775℃,和最优选约750℃。
生产方法设计成这样的方式,使得优选的催化剂配料与高度浓缩的CO流在约750℃下快速接触。否则,产率和选择性将受到很大的影响。由该方法制得的SWNT的质量可以通过包括拉曼光谱、温度程序氧化(TPO)和电子显微术(TEM)的表征技术的组合来确定。
优选的方法所以包括使CO气体流(高浓度)与催化粒子在约750℃下以高空速(高于约30000小时-1)在高压下(高于约4826322.99Pa(即高于约4826322.99N·m-2(70psi)))接触约1小时。
如果按照上述条件,将得到高产率的SWNT(约20-25克SWNT/约100克在反应器中所装载的初始催化剂)和高选择性(大于约90%)。
在不偏离所附权利要求限定的本发明精神和范围的情况下,可以对所述各种组分、元素和组合或所述方法的步骤或步骤顺序进行改变。
此处描述的本发明可以在没有其中未具体公开的任何因素的情况下适宜地实施。
以下权利要求包括本申请的最宽的可能范围。权利要求应该不是必要地受限于优选的实施方案或实施例所示的实施方案。

Claims (62)

1.一种生产碳纳米管的方法,包括:
在反应器单元中使含有至少一种除铁以外的族VIII金属与至少一种族VIb金属的金属催化粒子与有效量的含碳气体在足以催化生产碳纳米管的温度下接触,以使显著部分的碳纳米管是单壁碳纳米管。
2.根据权利要求1的方法,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物。
3.根据权利要求1或2中任一项的方法,其中族VIb金属选自Cr、Mo、W及其混合物。
4.根据权利要求1的方法,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物,其中族VIb金属选自Cr、Mo、W及其混合物。
5.根据权利要求1-4中任一项的方法,其中所述金属催化粒子进一步含有沉积金属的的载体。
6.根据权利要求5的方法,其中载体选自二氧化硅、MCM-41、氧化铝、MgO、Mg(Al)O、ZrO2和分子筛沸石。
7.根据权利要求1-6中任一项的方法,其中族VIII金属与族VIb金属的比率是约1∶10至约15∶1。
8.根据权利要求1-7中任一项的方法,其中族VIII金属与族VIb金属的比率是约1∶5至约2∶1。
9.根据权利要求5或6中任一项的方法,其中催化粒子含有约1-20重量%的金属。
10.根据权利要求1-9中任一项的方法,其中含碳气体选自饱和的烃、脂族烃、氧化的烃、芳族烃、一氧化碳及其混合物。
11.根据权利要求1-9中任一项的方法,其中含碳气体进一步含有稀释剂气体。
12.根据权利要求1-11中任一项的方法,其中温度足够地低于所述含碳气体的热分解温度以便避免显著形成热解的碳。
13.根据权利要求1-12中任一项的方法,其中所述温度为约500-1200℃。
14.根据权利要求1-13中任一项的方法,其中所述温度为约600-850℃。
15.根据权利要求1-14中任一项的方法,其中所述温度为约650-750℃。
16.根据权利要求1-15中任一项的方法,其中催化制得的碳纳米管进一步包括多壁碳纳米管。
17.根据权利要求1-16中任一项的方法,其中单壁碳纳米管占催化制得的纳米管的至少约60%到至少约95%。
18.根据权利要求1-17中任一项的方法,其中族VIII金属是Co。
19.根据权利要求1-17中任一项的方法,其中族VIII金属是Ni。
20.根据权利要求1-17中任一项的方法,其中族VIII金属是Ru。
21.根据权利要求1-17中任一项的方法,其中族VIII金属是Rh。
22.根据权利要求1-17中任一项的方法,其中族VIII金属是Pd。
23.根据权利要求1-17中任一项的方法,其中族VIII金属是Ir。
24.根据权利要求1-17中任一项的方法,其中族VIII金属是Pt。
25.根据权利要求1-24中任一项的方法,其中族VIb金属是Cr。
26.根据权利要求1-24中任一项的方法,其中族VIb金属是Mo。
27.根据权利要求1-24中任一项的方法,其中族VIb金属是W。
28.根据权利要求1-27中任一项的方法,其中金属催化粒子含有至少一种额外的族VIII金属。
29.根据权利要求1-28中任一项的方法,其中金属催化粒子含有至少一种额外的族VIb金属。
30.根据权利要求1-29中任一项的方法,其中金属催化粒子含有至少一种额外的族VIII金属和至少一种额外的族VIb金属。
31.根据权利要求1-30中任一项的方法,其中金属催化粒子基本上连续地供应到含碳气体流中。
32.根据权利要求1-31中任一项的方法,其中含碳气体供应到其中装有催化粒子的反应器单元中。
33.一种确定催化剂组成以优化单壁碳纳米管生产的方法,包括:
提供单壁碳纳米管生产的产物,其中在生产中使用具有这样组成的金属催化粒子,它包括除铁以外的族VIII金属和族VIb金属,且族VIII金属和族VIb金属之间具有预定的比率;
取出含有单壁碳纳米管的产物样品;
在反应器单元中使含有单壁碳纳米管的产物样品与有效量的含氧气体接触以便氧化样品中存在的碳物质;
将反应器单元内的温度从约室温升高到约800℃;
检测在约室温至约800℃的给定温度下由样品释放出的二氧化碳量;
通过在检测温度下从样品释放出的二氧化碳量来确定样品中存在的特定碳物质;和
通过改变族VIII金属、改变族VIb金属和改变两种金属的预定比率中的至少一种方式来改变金属催化粒子的组成,使得单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。
34.一种具有根据权利要求33方法确定的组成的金属催化粒子,其中所述金属催化粒子制得这样的产物,其中存在的碳物质的至少约60%到至少约95%是单壁碳纳米管。
35.根据权利要求34的金属催化粒子,其中催化剂组成包括Co和Mo,其中Co和Mo的预定比率是约1∶10至约15∶1。
36.根据权利要求33的确定催化剂组成以优化单壁碳纳米管生产的方法,其中在提供单壁碳纳米管生产的产物、其中在生产中使用金属催化粒子的步骤中,生产单壁碳纳米管的方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产含单壁碳纳米管的产物的温度下接触。
37.一种在生产单壁碳纳米管的方法中优化反应条件的方法,包括:
提供单壁碳纳米管生产的产物,其中使用一组反应条件,包括温度、时间和在含碳气体中碳浓度中的至少一种;
取出含有单壁碳纳米管的产物样品;
在反应器单元中使含有单壁碳纳米管的产物样品与有效量的含氧气体接触以便氧化样品中存在的碳物质;
将反应器单元内的温度从约室温升高到约800℃;
检测在约室温至约800℃的给定温度下由样品释放出的二氧化碳量;
通过在检测温度下从样品释放出的二氧化碳量来确定样品中存在的特定碳物质;和
通过改变温度、时间和含碳气体中碳浓度中的至少一种来改进反应条件,使得单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。
38.根据权利要求37的在生产单壁碳纳米管的方法中优化反应条件的方法,其中在提供单壁碳纳米管产物的步骤中,生产单壁碳纳米管的方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产含单壁碳纳米管的产物的温度下接触,其中金属催化粒子包括除铁以外的族VIII金属和族VIb金属。
39.一种用于生产碳纳米管的催化粒子,包括至少一种除铁以外的族VIII金属和至少一种族VIb金属。
40.根据权利要求39的催化粒子,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物。
41.根据权利要求39或40的催化粒子。
42.根据权利要求39-41中任一项的催化粒子,其中所述粒子进一步含有沉积金属的的载体。
43.根据权利要求42的催化粒子,其中载体选自二氧化硅、MCM-41、氧化铝、MgO、Mg(Al)O、ZrO2和分子筛沸石。
44.根据权利要求39-43中任一项的催化粒子,其中族VIII金属与族VIb金属的比率是约1∶10至约15∶1。
45.根据权利要求39-44中任一项的催化粒子,其中族VIII金属与族VIb金属的比率是约1∶5至约2∶1。
46.根据权利要求42或43中任一项的催化粒子,其中催化粒子含有约1-20重量%的金属。
47.根据权利要求39-46中任一项的催化粒子,其中催化粒子含有至少一种额外的族VIII金属。
48.根据权利要求39-47中任一项的催化粒子,其中催化粒子含有至少一种额外的族VIb金属。
49.一种生产碳纳米管的方法,包括:
在反应器单元中使含有至少一种金属的金属催化粒子与有效量的气体在足以催化生产碳纳米管的温度下接触。
50.一种确定催化剂组成的方法,包括:
提供纳米管生产的产物,其中在生产中使用金属催化粒子;
取出产物样品;
在反应器单元中使产物样品与有效量的气体接触以便氧化样品中存在的碳物质;
将反应器单元内的温度升高到约室温以上;
确定样品中存在的特定碳物质;和
改变金属催化粒子的组成。
51.一种在生产纳米管的方法中优化反应条件的方法,包括:
提供碳纳米管生产的产物,其中使用一组反应条件,包括温度、时间和在含碳气体中碳浓度中的至少一种;
取出产物样品;
在反应器单元中使产物样品与有效量的气体接触以便氧化样品中存在的碳物质;
将反应器单元内的温度升高到约室温以上;
确定样品中存在的特定碳物质;和
通过改变温度、时间和在含碳气体中碳浓度中的至少一种来改进反应条件。
52.一种用于生产碳纳米管的催化粒子,包含至少一种金属。
53.根据权利要求39的催化粒子,包括:
Co和Mo,其比率为1份Co对至少2份或更多份Mo;和
载体材料,其中Co、Mo和载体材料组合以具有粒状。
54.根据权利要求53的催化粒子,进一步含有额外的族VIII金属。
55.根据权利要求53或54的催化粒子,进一步含有额外的族VIb金属。
56.根据权利要求53-55中任一项的催化粒子,其中载体材料选自二氧化硅、MCM-41、氧化铝、MgO、ZrO2、铝稳定的氧化镁和分子筛沸石。
57.根据权利要求53-56中任一项的方法,含有约1-20重量%的Co和Mo。
58.根据权利要求39的催化粒子,其中族VIb金属是Cr、Mo和W中的至少一种;其中催化粒子进一步含有载体材料;和其中族VIII金属,Cr、Mo和W中的至少一种与载体材料组合以具有粒状,不包括由载体材料和Co和W或者Co和Mo组成的催化粒子。
59.根据权利要求58的催化粒子,其中至少一种族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir和Pt。
60.根据权利要求58或59的催化粒子,其中载体材料选自二氧化硅、MCM-41、氧化铝、MgO、ZrO2、铝稳定的氧化镁和分子筛沸石。
61.根据权利要求58-60中任一项的催化粒子,含有约1-20重量%的至少一种族VIII金属以及Cr、Mo和W中的至少一种。
62.根据权利要求39-48和53-61中任一项的催化粒子,含有二氧化硅载体材料。
CNB031086187A 1999-06-02 2000-06-01 用于生产碳纳米管的方法和催化剂 Expired - Lifetime CN100564251C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13720699P 1999-06-02 1999-06-02
US60/137,206 1999-06-02
US09/389,553 1999-09-03
US09/389,553 US6333016B1 (en) 1999-06-02 1999-09-03 Method of producing carbon nanotubes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN00808276A Division CN1360558A (zh) 1999-06-02 2000-06-01 用于生产碳纳米管的方法和催化剂

Publications (2)

Publication Number Publication Date
CN1495127A true CN1495127A (zh) 2004-05-12
CN100564251C CN100564251C (zh) 2009-12-02

Family

ID=26835027

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB031086187A Expired - Lifetime CN100564251C (zh) 1999-06-02 2000-06-01 用于生产碳纳米管的方法和催化剂
CN00808276A Pending CN1360558A (zh) 1999-06-02 2000-06-01 用于生产碳纳米管的方法和催化剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN00808276A Pending CN1360558A (zh) 1999-06-02 2000-06-01 用于生产碳纳米管的方法和催化剂

Country Status (12)

Country Link
US (7) US6333016B1 (zh)
EP (1) EP1192104B1 (zh)
JP (1) JP4777518B2 (zh)
CN (2) CN100564251C (zh)
AT (1) ATE369314T1 (zh)
AU (1) AU780726B2 (zh)
BR (1) BR0011106A (zh)
CA (1) CA2375887C (zh)
DE (1) DE60035875T2 (zh)
ES (1) ES2291212T3 (zh)
MX (1) MXPA01012386A (zh)
WO (1) WO2000073205A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905881A (zh) * 2010-08-02 2010-12-08 无锡诚信碳材料科技有限公司 一种石墨化程度高的纳米碳材料制备方法
CN102216212A (zh) * 2008-11-18 2011-10-12 马来西亚理科大学 一种生产碳纳米管(CNTs)的方法
CN102648046A (zh) * 2009-07-17 2012-08-22 西南纳米科技公司 用于制备多壁碳纳米管的催化剂和方法
CN103058169A (zh) * 2010-08-02 2013-04-24 无锡诚信碳材料科技有限公司 一种石墨化程度高的纳米碳材料制备方法
CN104024493A (zh) * 2011-12-12 2014-09-03 埃克森美孚上游研究公司 形成碳纳米管的方法和系统
CN102648046B (zh) * 2009-07-17 2016-12-14 西南纳米科技公司 用于制备多壁碳纳米管的催化剂和方法
CN113663690A (zh) * 2021-08-30 2021-11-19 福建海梵领航科技有限公司 一种制备小管径单壁碳纳米管的催化剂及制备方法和应用

Families Citing this family (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0927331B1 (en) * 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US6319872B1 (en) 1998-08-20 2001-11-20 Conoco Inc Fischer-Tropsch processes using catalysts on mesoporous supports
AU746882B2 (en) * 1998-08-20 2002-05-02 Conoco Inc. Fischer-tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids
US6692717B1 (en) 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
KR100775878B1 (ko) 1998-09-18 2007-11-13 윌리엄 마쉬 라이스 유니버시티 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한 단일벽 탄소 나노튜브의 화학적 유도체화 및 그 유도체화된 나노튜브의 사용 방법
US7150864B1 (en) 1998-09-18 2006-12-19 William Marsh Rice University Ropes comprised of single-walled and double-walled carbon nanotubes
US6835366B1 (en) 1998-09-18 2004-12-28 William Marsh Rice University Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes
DE69939329D1 (de) 1998-11-03 2008-09-25 Univ Rice William M Gasphasenabscheidund und wachstum von einwändigen kohlenstoffnanoröhren aus kohlenstoffmonoxid unter hochdruck
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US6518218B1 (en) * 1999-03-31 2003-02-11 General Electric Company Catalyst system for producing carbon fibrils
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US20030091496A1 (en) * 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US7816709B2 (en) * 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US7336474B2 (en) * 1999-09-23 2008-02-26 Schlumberger Technology Corporation Microelectromechanical devices
US6923946B2 (en) * 1999-11-26 2005-08-02 Ut-Battelle, Llc Condensed phase conversion and growth of nanorods instead of from vapor
KR100350535B1 (ko) * 1999-12-10 2002-08-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
US7879308B1 (en) * 2000-03-17 2011-02-01 University Of Central Florida Research Foundation, Inc. Multiwall carbon nanotube field emitter fabricated by focused ion beam technique
US20030159283A1 (en) * 2000-04-22 2003-08-28 White Craig W. Optical fiber cable
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6919064B2 (en) 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
ATE546412T1 (de) * 2000-06-16 2012-03-15 Penn State Res Found Verfahren zur herstellung von kohlenstofffasern
WO2002004345A1 (en) * 2000-07-07 2002-01-17 National University Of Singapore Method for hydrogen production
JP3610325B2 (ja) 2000-09-01 2005-01-12 キヤノン株式会社 電子放出素子、電子源及び画像形成装置の製造方法
JP3639808B2 (ja) * 2000-09-01 2005-04-20 キヤノン株式会社 電子放出素子及び電子源及び画像形成装置及び電子放出素子の製造方法
JP3639809B2 (ja) * 2000-09-01 2005-04-20 キヤノン株式会社 電子放出素子,電子放出装置,発光装置及び画像表示装置
JP3658346B2 (ja) * 2000-09-01 2005-06-08 キヤノン株式会社 電子放出素子、電子源および画像形成装置、並びに電子放出素子の製造方法
US6953562B2 (en) * 2001-12-11 2005-10-11 Catalytic Materials, Llc Preparation of multifaceted graphitic nanotubes
US6716409B2 (en) 2000-09-18 2004-04-06 President And Fellows Of The Harvard College Fabrication of nanotube microscopy tips
JP3634781B2 (ja) * 2000-09-22 2005-03-30 キヤノン株式会社 電子放出装置、電子源、画像形成装置及びテレビジョン放送表示装置
AU2001294876A1 (en) 2000-09-29 2002-04-08 President And Fellows Of Harvard College Direct growth of nanotubes, and their use in nanotweezers
AU2002254367B2 (en) * 2001-03-26 2007-12-06 Eikos, Inc. Coatings containing carbon nanotubes
EP1385481A4 (en) * 2001-03-26 2006-06-07 Eikos Inc CARBON NANOTUBES IN STRUCTURES AND REPAIR COMPOSITIONS
JP3768908B2 (ja) * 2001-03-27 2006-04-19 キヤノン株式会社 電子放出素子、電子源、画像形成装置
US6890506B1 (en) * 2001-04-12 2005-05-10 Penn State Research Foundation Method of forming carbon fibers
JP4622145B2 (ja) * 2001-04-25 2011-02-02 ソニー株式会社 電子放出装置の製造方法、冷陰極電界電子放出素子の製造方法、及び、冷陰極電界電子放出表示装置の製造方法
CA2450014A1 (en) 2001-06-08 2002-12-19 Eikos, Inc. Nanocomposite dielectrics
US6670300B2 (en) * 2001-06-18 2003-12-30 Battelle Memorial Institute Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
ES2238582T5 (es) * 2001-07-03 2010-05-26 Facultes Universitaires Notre-Dame De La Paix Soportes de catalizador y nanotubos de carbono producidos sobre dichos soportes.
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7118693B2 (en) * 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
US6897603B2 (en) 2001-08-24 2005-05-24 Si Diamond Technology, Inc. Catalyst for carbon nanotube growth
US6596187B2 (en) * 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
JP3703415B2 (ja) * 2001-09-07 2005-10-05 キヤノン株式会社 電子放出素子、電子源及び画像形成装置、並びに電子放出素子及び電子源の製造方法
JP3605105B2 (ja) * 2001-09-10 2004-12-22 キヤノン株式会社 電子放出素子、電子源、発光装置、画像形成装置および基板の各製造方法
US20030072942A1 (en) * 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
SG126710A1 (en) * 2001-10-31 2006-11-29 Univ Singapore Carbon nanotubes fabrication and hydrogen production
WO2003037792A1 (en) * 2001-10-31 2003-05-08 National University Of Singapore Large-scale synthesis of single-walled carbon nanotubes by group viiib catalysts promoted by group vib metals
JP3579689B2 (ja) * 2001-11-12 2004-10-20 独立行政法人 科学技術振興機構 吸熱性反応を利用した機能性ナノ材料の製造方法
US20040265210A1 (en) * 2001-11-28 2004-12-30 Hisanori Shinohara Method for preparing hollow nanofiber, hollow nanofiber and catalyst composition for preparing hollow nanofiber
WO2003052182A1 (en) * 2001-12-18 2003-06-26 Yale University Controlled growth of single-wall carbon nanotubes
US7485279B2 (en) * 2001-12-18 2009-02-03 Yale University Growth of nanostructures with controlled diameter
US7338648B2 (en) * 2001-12-28 2008-03-04 The Penn State Research Foundation Method for low temperature synthesis of single wall carbon nanotubes
US6784028B2 (en) * 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
JP4404961B2 (ja) * 2002-01-08 2010-01-27 双葉電子工業株式会社 カーボンナノ繊維の製造方法。
TWI236505B (en) * 2002-01-14 2005-07-21 Nat Science Council Thermal cracking chemical vapor deposition process for nanocarbonaceous material
KR101016763B1 (ko) * 2002-02-13 2011-02-25 도레이 카부시키가이샤 단층 카본 나노튜브의 제조방법
CN1176014C (zh) * 2002-02-22 2004-11-17 清华大学 一种直接合成超长连续单壁碳纳米管的工艺方法
WO2003072859A1 (en) * 2002-02-22 2003-09-04 Rensselaer Polytechnic Institute Direct synthesis of long single-walled carbon nanotube strands
US6858197B1 (en) 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US6774333B2 (en) * 2002-03-26 2004-08-10 Intel Corporation Method and system for optically sorting and/or manipulating carbon nanotubes
CA2584508A1 (en) * 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
WO2003101908A1 (fr) * 2002-06-03 2003-12-11 Zakrytoe Akcionernoe Obschestvo 'astrin-Holding' Composition destinee a la preparation de materiaux de construction
US7829622B2 (en) * 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
KR100481736B1 (ko) * 2002-07-10 2005-04-08 주식회사 동운인터내셔널 콜로이드 실리카 템플레이트를 이용한 수 나노미터에서수십 나노 미터크기의 탄소나노캡슐의 제조방법
GB0216654D0 (en) * 2002-07-17 2002-08-28 Univ Cambridge Tech CVD Synthesis of carbon nanoutubes
US7250148B2 (en) * 2002-07-31 2007-07-31 Carbon Nanotechnologies, Inc. Method for making single-wall carbon nanotubes using supported catalysts
US7098056B2 (en) * 2002-08-09 2006-08-29 Nanoink, Inc. Apparatus, materials, and methods for fabrication and catalysis
DK1394115T3 (da) * 2002-08-24 2010-01-04 Haldor Topsoe As Rhenium (iv) sulfid-nanorörmateriale og fremgangsmåde til fremstilling
JP3625467B2 (ja) * 2002-09-26 2005-03-02 キヤノン株式会社 カーボンファイバーを用いた電子放出素子、電子源および画像形成装置の製造方法
US7078008B2 (en) * 2002-10-01 2006-07-18 Conocophillips Company Process for converting alkanes to carbon filaments
WO2004035883A2 (en) * 2002-10-17 2004-04-29 Nexen Nano Tech Co., Ltd Fibrous nano-carbon and preparation method thereof
KR20030013351A (ko) * 2002-10-18 2003-02-14 이영희 국부적 가열을 이용한 탄소나노튜브 열분해 합성법
WO2005000739A1 (en) * 2002-10-29 2005-01-06 President And Fellows Of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
JP3876313B2 (ja) * 2002-11-12 2007-01-31 国立大学法人 北海道大学 繊維状固体炭素集合体の製造方法
US6998103B1 (en) 2002-11-15 2006-02-14 The Regents Of The University Of California Method for producing carbon nanotubes
KR20050091705A (ko) * 2002-11-15 2005-09-15 맥길 유니버시티 Dc 비전사형 열 플라즈마 토치를 사용하여 카본나노튜브를 제조하는 방법
JP2006505483A (ja) * 2002-11-26 2006-02-16 カーボン ナノテクノロジーズ インコーポレーテッド カーボンナノチューブ微粒子、組成物及びその使用法
US20040109652A1 (en) * 2002-12-04 2004-06-10 Alcatel Fiber optic cables with a hydrogen absorbing material
US7282191B1 (en) * 2002-12-06 2007-10-16 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube growth
AU2003300816A1 (en) * 2002-12-06 2004-06-30 The Penn State Research Foundation Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
EP1586146A4 (en) * 2002-12-20 2006-02-01 Alnaire Laboratoires Corp OPTICAL PUMP LASER
US20050112051A1 (en) * 2003-01-17 2005-05-26 Duke University Systems and methods for producing single-walled carbon nanotubes (SWNTS) on a substrate
US6764874B1 (en) * 2003-01-30 2004-07-20 Motorola, Inc. Method for chemical vapor deposition of single walled carbon nanotubes
EP1445236A1 (fr) 2003-02-05 2004-08-11 Université de Liège Procédé et installation pour la fabrication de nanotubes de carbone
US7419601B2 (en) 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
DE602004007898T2 (de) * 2003-03-07 2008-04-17 SeldonTechnologies, LLC, Windsor Reinigung von fluiden medien mit nanomaterialien
US7335344B2 (en) * 2003-03-14 2008-02-26 Massachusetts Institute Of Technology Method and apparatus for synthesizing filamentary structures
US7531158B2 (en) * 2003-03-20 2009-05-12 Cheol Jin Lee Vapor phase synthesis of double-walled carbon nanotubes
WO2004096725A2 (en) * 2003-04-28 2004-11-11 Leandro Balzano Single-walled carbon nanotube-ceramic composites and methods of use
CN100528547C (zh) * 2003-04-28 2009-08-19 利安德罗·鲍尔詹诺 单壁碳纳米管-陶瓷复合物与其使用方法
WO2005007565A2 (en) * 2003-06-10 2005-01-27 Nuvotec, Inc. Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
US8187703B2 (en) * 2003-06-16 2012-05-29 William Marsh Rice University Fiber-reinforced polymer composites containing functionalized carbon nanotubes
US20050104258A1 (en) * 2003-07-02 2005-05-19 Physical Sciences, Inc. Patterned electrospinning
US7790135B2 (en) * 2003-07-02 2010-09-07 Physical Sciences, Inc. Carbon and electrospun nanostructures
GB0316367D0 (en) 2003-07-11 2003-08-13 Univ Cambridge Tech Production of agglomerates from gas phase
KR20060060682A (ko) * 2003-08-08 2006-06-05 제너럴 일렉트릭 캄파니 탄소 나노튜브를 포함하는 전기 전도성 조성물 및 그의제조방법
US7351444B2 (en) * 2003-09-08 2008-04-01 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
US20050112450A1 (en) * 2003-09-08 2005-05-26 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
US8211593B2 (en) 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US7597941B2 (en) * 2003-09-09 2009-10-06 University Of Louisville Research Foundation, Inc. Tubular carbon nano/micro structures and method of making same
US20050214197A1 (en) * 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US7235159B2 (en) * 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US7347981B2 (en) * 2003-09-25 2008-03-25 The Penn State Research Foundation Directed flow method and system for bulk separation of single-walled tubular fullerenes based on helicity
US20060024227A1 (en) * 2003-10-16 2006-02-02 Shigeo Maruyama Array of single-walled carbon nanotubes and process for preparaton thereof
US6885010B1 (en) 2003-11-12 2005-04-26 Thermo Electron Corporation Carbon nanotube electron ionization sources
US7163967B2 (en) * 2003-12-01 2007-01-16 Cryovac, Inc. Method of increasing the gas transmission rate of a film
JP2007521664A (ja) 2003-12-11 2007-08-02 イエール ユニバーシティ 制御された直径を有するホウ素ナノ構造体の成長
JP2007520409A (ja) * 2003-12-12 2007-07-26 イエール ユニバーシティ 窒化ナノ構造体の制御された成長
WO2005065100A2 (en) * 2003-12-15 2005-07-21 Resasco Daniel E Rhenium catalysts and methods for production of single-walled carbon nanotubes
US20050133258A1 (en) * 2003-12-23 2005-06-23 Schlumberger Technology Corporation [nanotube electron emission thermal energy transfer devices]
US7618300B2 (en) * 2003-12-24 2009-11-17 Duke University Method of synthesizing small-diameter carbon nanotubes with electron field emission properties
US20050147746A1 (en) * 2003-12-30 2005-07-07 Dubin Valery M. Nanotube growth and device formation
US7335327B2 (en) * 2003-12-31 2008-02-26 Cryovac, Inc. Method of shrinking a film
WO2005069765A2 (en) * 2004-01-09 2005-08-04 Olga Matarredona Carbon nanotube pastes and methods of use
AU2005230961B2 (en) * 2004-01-15 2010-11-11 Nanocomp Technologies, Inc. Systems and methods for synthesis of extended length nanostructures
JP4239848B2 (ja) * 2004-02-16 2009-03-18 富士ゼロックス株式会社 マイクロ波用アンテナおよびその製造方法
JP2007529884A (ja) * 2004-03-12 2007-10-25 エイコス・インコーポレーテッド カーボンナノチューブ剥離溶液および方法
US8632699B2 (en) * 2004-04-07 2014-01-21 Eikos, Inc. Fugitive viscosity and stability modifiers for carbon nanotube compositions
US7144563B2 (en) * 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
US7802441B2 (en) * 2004-05-12 2010-09-28 Electro Industries, Inc. Heat pump with accumulator at boost compressor output
US7169374B2 (en) * 2004-05-12 2007-01-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Templated growth of carbon nanotubes
US20110024697A1 (en) * 2004-05-18 2011-02-03 Board Of Trustees Of The University Of Arkansas Methods of Producing Carbon Nanotubes and Applications of Same
JP4245514B2 (ja) * 2004-05-24 2009-03-25 日信工業株式会社 炭素繊維複合材料及びその製造方法、炭素繊維複合金属材料の製造方法、炭素繊維複合非金属材料の製造方法
WO2005119772A2 (en) * 2004-06-02 2005-12-15 Douglas Joel S Coatings comprising carbon nanotubes
US8367034B2 (en) * 2004-06-04 2013-02-05 The Trustees Of Columbia University In The City Of New York Methods for preparing single-walled carbon nanotubes
DE102004028276B4 (de) * 2004-06-11 2008-08-21 Universität Karlsruhe Vorrichtung zur Reinigung von Abgasen einer Verbrennungskraftmaschine
US7838165B2 (en) * 2004-07-02 2010-11-23 Kabushiki Kaisha Toshiba Carbon fiber synthesizing catalyst and method of making thereof
US20060008403A1 (en) * 2004-07-09 2006-01-12 Clean Technologies International Corporation Reactant liquid system for facilitating the production of carbon nanostructures
US7550128B2 (en) * 2004-07-09 2009-06-23 Clean Technologies International Corporation Method and apparatus for producing carbon nanostructures
US7563426B2 (en) * 2004-07-09 2009-07-21 Clean Technologies International Corporation Method and apparatus for preparing a collection surface for use in producing carbon nanostructures
US7922993B2 (en) * 2004-07-09 2011-04-12 Clean Technology International Corporation Spherical carbon nanostructure and method for producing spherical carbon nanostructures
JP2006027948A (ja) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd 単層カーボンナノチューブの製法
JP2006027947A (ja) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd 単層カーボンナノチューブの製法
JP2006027949A (ja) * 2004-07-15 2006-02-02 Electric Power Dev Co Ltd 炭素酸化物含有ガスの利用方法
US20060025515A1 (en) * 2004-07-27 2006-02-02 Mainstream Engineering Corp. Nanotube composites and methods for producing
US7587985B2 (en) * 2004-08-16 2009-09-15 Clean Technology International Corporation Method and apparatus for producing fine carbon particles
JP5374801B2 (ja) * 2004-08-31 2013-12-25 富士通株式会社 炭素元素からなる線状構造物質の形成体及び形成方法
US20060078489A1 (en) * 2004-09-09 2006-04-13 Avetik Harutyunyan Synthesis of small and narrow diameter distributed carbon single walled nanotubes
EP1795501A4 (en) * 2004-09-22 2011-03-23 Showa Denko Kk STEAM-PHASE PROCESS FOR THE MANUFACTURE OF CARBON NANOTUBE
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
WO2006135439A2 (en) * 2004-10-22 2006-12-21 Hyperion Catalysis International, Inc. Improved ozonolysis of carbon nanotubes
US7923403B2 (en) * 2004-11-16 2011-04-12 Hyperion Catalysis International, Inc. Method for preparing catalysts supported on carbon nanotubes networks
AU2005307779A1 (en) * 2004-11-16 2006-05-26 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes
DE602005026167D1 (de) * 2004-11-16 2011-03-10 Hyperion Catalysis Internat Inc Verfahren zur herstellung von trägerkatalysatoren aus metallbeladenen kohlenstoffnanoröhrchen
US7485600B2 (en) * 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
JP2008520540A (ja) * 2004-11-17 2008-06-19 ハイピリオン カタリシス インターナショナル インコーポレイテッド 単壁カーボンナノチューブからの触媒担体及び担持触媒の調製方法
US20060122056A1 (en) * 2004-12-02 2006-06-08 Columbian Chemicals Company Process to retain nano-structure of catalyst particles before carbonaceous nano-materials synthesis
US7718223B1 (en) * 2004-12-07 2010-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Control of carbon nanotube density and tower height in an array
US7704547B1 (en) 2004-12-07 2010-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Carbon nanotube growth density control
US7871591B2 (en) * 2005-01-11 2011-01-18 Honda Motor Co., Ltd. Methods for growing long carbon single-walled nanotubes
WO2007092021A2 (en) * 2005-02-07 2007-08-16 Hyperion Catalysis International, Inc. Single-walled carbon nanotube catalyst
JP2006219362A (ja) * 2005-02-08 2006-08-24 Microphase Co Ltd 液相中への気相導入によるカーボンナノチューブ膜の合成方法および合成装置
JP2006231107A (ja) * 2005-02-22 2006-09-07 National Institute Of Advanced Industrial & Technology ナノカーボン材料製造用触媒、触媒微粒子、ナノカーボン材料製造用触媒の製造方法
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
KR100698393B1 (ko) 2005-03-23 2007-03-23 한국기계연구원 수용성 촉매를 이용한 단일층 탄소나노튜브의 선택적성장방법 및 이에 의해 형성된 단일층 탄소나노튜브를포함하는 전자소자 또는 광전소자
US7947247B2 (en) * 2005-03-29 2011-05-24 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
WO2006110346A1 (en) * 2005-03-29 2006-10-19 Hyperion Catalysis International, Inc. Method for preparing single walled carbon nanotubes from a metal layer
US20060223243A1 (en) * 2005-03-30 2006-10-05 Marko Radosavljevic Carbon nanotube - metal contact with low contact resistance
US20060223191A1 (en) * 2005-04-05 2006-10-05 Avetik Harutyunyan Methods for measuring carbon single-walled nanotube content of carbon soot
ATE529734T1 (de) * 2005-04-06 2011-11-15 Harvard College Molekulare charakterisierung mit kohlenstoff- nanoröhrchen-steuerung
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
US7596751B2 (en) * 2005-04-22 2009-09-29 Hewlett-Packard Development Company, L.P. Contact sheet based image management
US20060245996A1 (en) * 2005-04-27 2006-11-02 Peking University Method of synthesizing single walled carbon nanotubes
US20080286546A1 (en) * 2005-05-03 2008-11-20 Nanocomp Technologies, Inc. Continuous glassy carbon composite materials reinforced with carbon nanotubes and methods of manufacturing same
EP2570385A3 (en) * 2005-05-03 2013-10-16 Nanocomp Technologies, Inc. Carbon composite materials and methods of manufacturing same
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
US20080199389A1 (en) * 2005-05-23 2008-08-21 Chiu Wilson K S Method and device for producing carbon nanotubes
EP2112249A1 (en) * 2005-05-26 2009-10-28 Nanocomp Technologies, Inc. Systems and methods for thermal management of electronic components
AU2006312250B2 (en) 2005-06-28 2011-07-07 The Board Of Regents Of The University Of Oklahoma Methods for growing and harvesting carbon nanotubes
US20080274036A1 (en) * 2005-06-28 2008-11-06 Resasco Daniel E Microstructured catalysts and methods of use for producing carbon nanotubes
US20070006583A1 (en) * 2005-07-06 2007-01-11 Schlumberger Technology Corporation Nanotube electron emission thermal energy transfer devices
US7993620B2 (en) 2005-07-28 2011-08-09 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
JP2009521535A (ja) * 2005-08-08 2009-06-04 キャボット コーポレイション ナノチューブを含むポリマー組成物
US7678841B2 (en) * 2005-08-19 2010-03-16 Cryovac, Inc. Increasing the gas transmission rate of a film comprising fullerenes
US20070116629A1 (en) * 2005-09-15 2007-05-24 Avetik Harutyunyan Methods for synthesis of high quality carbon single-walled nanotubes
US8252405B2 (en) * 2005-10-27 2012-08-28 The Board Of Trustees Of The Leland Stanford Junior University Single-walled carbon nanotubes and methods of preparation thereof
EP1966851B1 (en) * 2005-11-04 2013-03-20 Nanocomp Technologies, Inc. Nanostructured antenna
US9440003B2 (en) * 2005-11-04 2016-09-13 Boston Scientific Scimed, Inc. Medical devices having particle-containing regions with diamond-like coatings
CA2629849A1 (en) * 2005-11-16 2008-05-02 Hyperion Catalysis International, Inc. Mixed structures of single walled and multi walled carbon nanotubes
JP4984498B2 (ja) * 2005-11-18 2012-07-25 ソニー株式会社 機能素子及びその製造方法
US8264137B2 (en) * 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
JP2009530214A (ja) * 2006-01-30 2009-08-27 本田技研工業株式会社 カーボン単層ナノチューブの成長のための触媒
WO2008016388A2 (en) * 2006-01-30 2008-02-07 Honda Motor Co., Ltd. Method and apparatus for growth of high quality carbon single-walled nanotubes
US8124503B2 (en) * 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
KR20080113269A (ko) * 2006-03-29 2008-12-29 하이페리온 커탤리시스 인터내셔널 인코포레이티드 균일한 단일 벽 탄소 나노튜브의 제조방법
US8129463B2 (en) * 2006-03-31 2012-03-06 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US8283403B2 (en) * 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US8445587B2 (en) * 2006-04-05 2013-05-21 Applied Nanotech Holdings, Inc. Method for making reinforced polymer matrix composites
TW200801223A (en) * 2006-06-01 2008-01-01 Ritek Corp Method of preparing single wall carbon nanotubes
TW200800387A (en) * 2006-06-01 2008-01-01 Ritek Corp Catalyst for catalyzing carbon nanotubes growth
US20080233402A1 (en) * 2006-06-08 2008-09-25 Sid Richardson Carbon & Gasoline Co. Carbon black with attached carbon nanotubes and method of manufacture
US20100137528A1 (en) * 2006-08-29 2010-06-03 Sample Jennifer L Method for Functionalizing Nanotubes and Improved Polymer-Nanotube Composites Formed Using Same
US20080292835A1 (en) * 2006-08-30 2008-11-27 Lawrence Pan Methods for forming freestanding nanotube objects and objects so formed
JP5343228B2 (ja) * 2006-09-22 2013-11-13 大塚化学株式会社 カーボンナノチューブ担持金属酸化物粒子及び顆粒状カーボンナノチューブ
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US20100279569A1 (en) * 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US8158217B2 (en) 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US8075869B2 (en) * 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8092778B2 (en) * 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8021448B2 (en) * 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
CA2679401A1 (en) * 2007-02-27 2008-09-04 Nanocomp Technologies, Inc. Materials for thermal protection and methods of manufacturing same
US8813352B2 (en) * 2007-05-17 2014-08-26 The Boeing Company Methods for fabricating a conductor
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
JP5110574B2 (ja) * 2007-06-25 2012-12-26 独立行政法人産業技術総合研究所 高アスペクト比のカーボンナノチューブとイオン液体から構成される導電性薄膜、アクチュエータ素子
ES2785044T3 (es) 2007-07-09 2020-10-05 Nanocomp Technologies Inc Alineación de nanotubos quimicamente asistida dentro de estructuras extensibles
JP5496887B2 (ja) * 2007-07-25 2014-05-21 ナノコンプ テクノロジーズ インコーポレイテッド ナノチューブのキラリティを制御するシステムおよび方法
CA2695853A1 (en) 2007-08-07 2009-02-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
WO2009045473A2 (en) * 2007-10-02 2009-04-09 President And Fellows Of Harvard College Carbon nanotube synthesis for nanopore devices
CN101469453B (zh) * 2007-12-28 2012-01-25 北京化工大学 一种合金纳米管及其制备方法
US8852547B2 (en) * 2008-01-25 2014-10-07 Hyperion Catalysis International, Inc. Processes for the recovery of catalytic metal and carbon nanotubes
US20090205254A1 (en) * 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel
CN101481788A (zh) * 2008-03-04 2009-07-15 浙江大学 单壁碳纳米管薄膜的制备方法
US9073045B2 (en) * 2008-03-07 2015-07-07 Hitachi Chemical Company, Ltd. Carbon nano-tube manfuacturing method and carbon nano-tube manufacturing apparatus
EP2276341A1 (en) * 2008-03-07 2011-01-26 Dow AgroSciences LLC Stabilized oil-in-water emulsions including meptyl dinocap
DE102008023229B4 (de) * 2008-05-02 2013-06-27 Helmholtz-Zentrum Dresden - Rossendorf E.V. Verfahren zur Herstellung von Kohlenstoffnanoröhrchen auf einem Trägersubstrat, durch das Verfahren hergestellte Kohlenstoffnanoröhrchen und deren Verwendung
CA2723619A1 (en) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Nanostructure-based heating devices and method of use
EP2279512B1 (en) 2008-05-07 2019-10-23 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US8133793B2 (en) * 2008-05-16 2012-03-13 Sandisk 3D Llc Carbon nano-film reversible resistance-switchable elements and methods of forming the same
US8569730B2 (en) * 2008-07-08 2013-10-29 Sandisk 3D Llc Carbon-based interface layer for a memory device and methods of forming the same
JP5409094B2 (ja) 2008-07-17 2014-02-05 富士フイルム株式会社 曲面状成形体及びその製造方法並びに車両灯具用前面カバー及びその製造方法
WO2010014650A2 (en) * 2008-07-29 2010-02-04 Honda Motor Co., Ltd. Preferential growth of single-walled carbon nanotubes with metallic conductivity
US20100032639A1 (en) * 2008-08-07 2010-02-11 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US8835892B2 (en) * 2008-10-30 2014-09-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having boron nitride-based liners, and methods of forming the same
US8421050B2 (en) * 2008-10-30 2013-04-16 Sandisk 3D Llc Electronic devices including carbon nano-tube films having carbon-based liners, and methods of forming the same
US20100108976A1 (en) * 2008-10-30 2010-05-06 Sandisk 3D Llc Electronic devices including carbon-based films, and methods of forming such devices
US8354291B2 (en) 2008-11-24 2013-01-15 University Of Southern California Integrated circuits based on aligned nanotubes
WO2010144161A2 (en) 2009-02-17 2010-12-16 Lockheed Martin Corporation Composites comprising carbon nanotubes on fiber
CA2752525C (en) 2009-02-27 2017-05-16 Applied Nanostructured Solutions, Llc Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US8324087B2 (en) * 2009-03-19 2012-12-04 University Of Southern California Scalable light-induced metallic to semiconducting conversion of carbon nanotubes and applications to field-effect transistor devices
US8183121B2 (en) * 2009-03-31 2012-05-22 Sandisk 3D Llc Carbon-based films, and methods of forming the same, having dielectric filler material and exhibiting reduced thermal resistance
US20100272891A1 (en) * 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100260933A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
CA2757474A1 (en) * 2009-04-10 2010-10-14 Applied Nanostructured Solutions, Llc Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
PE20121017A1 (es) 2009-04-17 2012-08-08 Seerstone Llc Metodo para la produccion de carbono solido mediante la reduccion de oxidos de carbono
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
BRPI1016244A2 (pt) 2009-04-24 2016-04-26 Applied Nanostructured Sols compósito de proteção contra emi infundido com cnt e revestimento.
KR101696207B1 (ko) 2009-04-27 2017-01-13 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 복합 구조물 제빙을 위한 cnt계 저항 가열
US20100279010A1 (en) * 2009-04-30 2010-11-04 Lockheed Martin Corporation Method and system for close proximity catalysis for carbon nanotube synthesis
US8354593B2 (en) 2009-07-10 2013-01-15 Nanocomp Technologies, Inc. Hybrid conductors and method of making same
BR112012002233A2 (pt) * 2009-07-31 2019-09-24 Massachustts Institute Of Tech sietmas e métodos relacionados à formação de nanoestruturas a base de carbono.
AU2010279709A1 (en) 2009-08-03 2012-01-19 Applied Nanostructured Solutions, Llc. Incorporation of nanoparticles in composite fibers
EP2889268A1 (en) * 2009-09-10 2015-07-01 The University of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
WO2011041379A1 (en) * 2009-09-29 2011-04-07 Hyperion Catalysis International, Inc. Gasket containing carbon nanotubes
RU2414296C1 (ru) * 2009-10-29 2011-03-20 Инфра Текнолоджиз Лтд. Катализатор для синтеза углеводородов из со и h2 и способ его получения
EP2496739A4 (en) * 2009-11-02 2014-07-02 Applied Nanostructured Sols CNT-FOUNDED ARAMID FIBER MATERIALS AND METHOD THEREFOR
US20110101302A1 (en) * 2009-11-05 2011-05-05 University Of Southern California Wafer-scale fabrication of separated carbon nanotube thin-film transistors
KR20120117978A (ko) 2009-11-23 2012-10-25 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. 카본 나노튜브-주입된 섬유 재료를 포함하는 세라믹 복합재료 및 이의 제조방법
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
JP2013511429A (ja) 2009-11-23 2013-04-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Cntを適合された宇宙ベース複合材料構造体
EP2513250A4 (en) 2009-12-14 2015-05-27 Applied Nanostructured Sols FIRE-RESISTANT COMPOSITE MATERIALS AND ARTICLES WITH CARBON NANOTUBES-INFUNDED FIBER MATERIALS
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
BR112012018244A2 (pt) 2010-02-02 2016-05-03 Applied Nanostructured Sols materiais de fibra infundidos com nanotubo de carbono contendo nanotubos de carbono alinhados em paralelo, métodos para produção dos mesmos e materiais compósitos derivados dos mesmos
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
BR112012021968A2 (pt) 2010-03-02 2016-06-07 Applied Nanostructured Sols dispositivos elétricos enrolados em espiral que contêm materiais de eletrodo infundidos por nanotubo de carbono e métodos e aparelhos para a produção dos mesmos
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US8809230B2 (en) 2010-08-02 2014-08-19 Lawrence Livermore National Security, Llc Porous substrates filled with nanomaterials
US8198498B2 (en) * 2010-08-19 2012-06-12 Kamyar Keyvanloo Carbon nanotube catalyst for olefin production
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
CN104475313B (zh) 2010-09-14 2017-05-17 应用奈米结构公司 长有碳纳米管玻璃基板及其制造方法
AU2011305809A1 (en) 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
US8853932B2 (en) * 2010-09-23 2014-10-07 Indian Institute Of Technology Kanpur Filament including carbon nanotubes and method of making a filament including carbon nanotubes
CN103443870A (zh) 2010-09-23 2013-12-11 应用纳米结构方案公司 作为自屏蔽线材用于增强的电力传输线的cnt并入的纤维
US9663368B2 (en) 2010-10-28 2017-05-30 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
US20120125700A1 (en) * 2010-11-22 2012-05-24 Bailey Sr Rudolph Volroy Electric and other vehicles with wind turbine charging devices
US8664198B2 (en) 2011-02-28 2014-03-04 The University Of Central Oklahoma Immunologically modified carbon nanotubes for cancer treatment
US8692230B2 (en) 2011-03-29 2014-04-08 University Of Southern California High performance field-effect transistors
US9583231B2 (en) 2011-05-13 2017-02-28 National University Corporation Kumamoto University Carbon nanotube composite electrode and method for manufacturing the same
US8860137B2 (en) * 2011-06-08 2014-10-14 University Of Southern California Radio frequency devices based on carbon nanomaterials
CN102502580B (zh) * 2011-10-27 2014-08-27 清华大学 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
CN102500364A (zh) * 2011-11-30 2012-06-20 西安理工大学 一种在Si衬底上制备纳米Pt催化剂颗粒的方法
KR101431953B1 (ko) * 2012-01-11 2014-08-19 주식회사 엘지화학 카본나노튜브용 균질 담지 촉매의 제조방법
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US10543509B2 (en) 2012-04-09 2020-01-28 Nanocomp Technologies, Inc. Nanotube material having conductive deposits to increase conductivity
WO2013158161A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods and systems for capturing and sequestering carbon and for reducing the mass of carbon oxides in a waste gas stream
JP6379085B2 (ja) 2012-04-16 2018-08-22 シーアストーン リミテッド ライアビリティ カンパニー 炭素酸化物を含有するオフガスを処理するための方法
MX2014012548A (es) 2012-04-16 2015-04-10 Seerstone Llc Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos.
NO2749379T3 (zh) 2012-04-16 2018-07-28
MX354529B (es) 2012-04-16 2018-03-07 Seerstone Llc Métodos para producir carbono sólido mediante la reducción de dióxido de carbono.
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN103537293B (zh) * 2012-07-12 2015-12-16 北京大学 用于制备手性选择性和导电性选择性单壁碳纳米管的催化剂及其制备方法和应用
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN107215882A (zh) 2012-07-13 2017-09-29 赛尔斯通股份有限公司 用于形成氨和固体碳产物的方法和系统
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
EP2875081B1 (en) 2012-07-23 2018-03-07 HP Indigo B.V. Electrostatic ink compositions
TWI482192B (zh) 2012-08-22 2015-04-21 Univ Nat Defense 場發射陰極元件之製造方法、其場發射陰極元件及其場發射發光燈源
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9458017B2 (en) 2012-11-14 2016-10-04 Pontificia Universidad Catolica Madre Y Maestra Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
JP6373284B2 (ja) 2013-02-28 2018-08-15 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. ナノ構造フィルムのカートリッジベース払い出し
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
WO2014150944A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Methods of producing hydrogen and solid carbon
EP3129135A4 (en) 2013-03-15 2017-10-25 Seerstone LLC Reactors, systems, and methods for forming solid products
EP3129321B1 (en) 2013-03-15 2021-09-29 Seerstone LLC Electrodes comprising nanostructured carbon
ES2943257T3 (es) 2013-06-17 2023-06-12 Nanocomp Technologies Inc Agentes exfoliantes-dispersantes para nanotubos, haces y fibras
WO2015195773A1 (en) 2014-06-18 2015-12-23 Sid Richardson Carbon, Ltd Nanospike hybrid carbon black
CN104226362A (zh) * 2014-10-16 2014-12-24 北京师范大学 一种非均相芬顿催化剂及其用途
US9379327B1 (en) 2014-12-16 2016-06-28 Carbonics Inc. Photolithography based fabrication of 3D structures
WO2016126818A1 (en) 2015-02-03 2016-08-11 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
KR101785774B1 (ko) * 2015-02-06 2017-10-17 주식회사 엘지화학 부정형 알파-알루미나를 함유하는 카본나노튜브 합성용 촉매 및 이를 이용한 카본나노튜브의 제조방법
KR102106262B1 (ko) 2016-03-04 2020-05-06 에이치피 인디고 비.브이. 정전식 잉크 조성물
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
CN109399611A (zh) * 2017-08-16 2019-03-01 东北林业大学 一种碳纳米管的制备方法
WO2020022822A1 (ko) * 2018-07-27 2020-01-30 주식회사 엘지화학 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2020148670A2 (en) * 2019-01-15 2020-07-23 Sabinano (Pty) Ltd. Carbon nanotubes and method of producing carbon nanotubes
KR102405026B1 (ko) * 2019-06-17 2022-06-02 전남대학교산학협력단 탄소나노튜브 합성용 촉매 입자 집합체 제조 방법 및 이를 이용한 에미터용 탄소나노튜브 제조 방법
US11508498B2 (en) 2019-11-26 2022-11-22 Trimtabs Ltd Cables and methods thereof

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746657A (en) 1971-06-28 1973-07-17 Standard Oil Co Catalyst manufacturing process
US4361711A (en) 1981-12-18 1982-11-30 The Standard Oil Company Alcohols from olefins and synthesis gas
US4574120A (en) 1984-10-15 1986-03-04 Shell Oil Company Method for preparing high activity silica supported hydrotreating catalysts
US5707916A (en) 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US6375917B1 (en) 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
BR8905294A (pt) * 1988-01-28 1990-08-21 Hyperion Catalysis Int Fibrilas de carbono,composto tendo fibrilas de carbono,fibrilas continuas reforcada,composto compreendendo matriz reforcada por fibrilas,processo para preparar volume de fibrilas de carbone e catalizador metalico nao-aquoso
US5445327A (en) 1989-07-27 1995-08-29 Hyperion Catalysis International, Inc. Process for preparing composite structures
ZA907803B (en) * 1989-09-28 1991-07-31 Hyperion Catalysis Int Electrochemical cells and preparing carbon fibrils
DE4004911C2 (de) 1990-02-16 1999-09-23 Horst Grochowski Verfahren und Vorrichtung zum Behandeln von wenigstens einem Fluid mittels eines als Schüttgut vorliegenden Feststoffes in einem Wanderbettreaktor
US5227038A (en) 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
JP2687794B2 (ja) 1991-10-31 1997-12-08 日本電気株式会社 円筒状構造をもつ黒鉛繊維
US5300203A (en) 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
US6573643B1 (en) 1992-03-16 2003-06-03 Si Diamond Technology, Inc. Field emission light source
JPH06122489A (ja) 1992-10-07 1994-05-06 Dainippon Printing Co Ltd 花束用包装袋
US5591312A (en) 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
TW295579B (zh) 1993-04-06 1997-01-11 Showa Denko Kk
US5424054A (en) 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
US5641466A (en) 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
AU7211494A (en) 1993-06-28 1995-01-17 William Marsh Rice University Solar process for making fullerenes
JPH0822733B2 (ja) 1993-08-04 1996-03-06 工業技術院長 カーボンナノチューブの分離精製方法
US5543378A (en) 1993-10-13 1996-08-06 E. I. Du Pont De Nemours And Company Carbon nanostructures encapsulating palladium
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP2611179B2 (ja) 1994-02-25 1997-05-21 工業技術院長 フラーレンの製造方法及び装置
WO1995026925A1 (en) 1994-03-30 1995-10-12 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
JP3298735B2 (ja) 1994-04-28 2002-07-08 科学技術振興事業団 フラーレン複合体
JP2595903B2 (ja) 1994-07-05 1997-04-02 日本電気株式会社 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JP2590442B2 (ja) 1994-09-27 1997-03-12 工業技術院長 カーボンナノチューブの分離精製方法
US5780101A (en) 1995-02-17 1998-07-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
US5814290A (en) 1995-07-24 1998-09-29 Hyperion Catalysis International Silicon nitride nanowhiskers and method of making same
US6183714B1 (en) 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
JP2873930B2 (ja) 1996-02-13 1999-03-24 工業技術院長 カーボンナノチューブを有する炭素質固体構造体、炭素質固体構造体からなる電子線源素子用電子放出体、及び炭素質固体構造体の製造方法
BR9710709A (pt) * 1996-05-15 1999-08-17 Hyperion Catalysis Int Estruturas de carbono porosas e rigidas processos de fabrica-Æo processos de uso e produtos que as cont-m
CN1057940C (zh) * 1996-07-17 2000-11-01 厦门大学 过渡金属氧化物催化剂及用于制备均匀管径碳纳米管的方法
EP0927331B1 (en) * 1996-08-08 2004-03-31 William Marsh Rice University Macroscopically manipulable nanoscale devices made from nanotube assemblies
US5753088A (en) 1997-02-18 1998-05-19 General Motors Corporation Method for making carbon nanotubes
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
AU6545698A (en) 1997-03-07 1998-09-22 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3183845B2 (ja) 1997-03-21 2001-07-09 財団法人ファインセラミックスセンター カーボンナノチューブ及びカーボンナノチューブ膜の製造方法
US6221330B1 (en) 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
US5997823A (en) 1997-08-18 1999-12-07 Noxso Corporation Processes and apparatus for removing acid gases from flue gas
JP3363759B2 (ja) * 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
JP3415038B2 (ja) 1998-03-25 2003-06-09 株式会社島津製作所 カーボンの製造方法
US6426134B1 (en) 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
US6346189B1 (en) 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US7282260B2 (en) 1998-09-11 2007-10-16 Unitech, Llc Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
DE69934127T2 (de) 1998-09-18 2007-10-31 William Marsh Rice University, Houston Katalytisches wachstum von einwandigen kohlenstoffnanoröhren aus metallpartikeln
KR100775878B1 (ko) 1998-09-18 2007-11-13 윌리엄 마쉬 라이스 유니버시티 단일벽 탄소 나노튜브의 용매화를 용이하게 하기 위한 단일벽 탄소 나노튜브의 화학적 유도체화 및 그 유도체화된 나노튜브의 사용 방법
US6692717B1 (en) 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US6479939B1 (en) 1998-10-16 2002-11-12 Si Diamond Technology, Inc. Emitter material having a plurlarity of grains with interfaces in between
DE69939329D1 (de) * 1998-11-03 2008-09-25 Univ Rice William M Gasphasenabscheidund und wachstum von einwändigen kohlenstoffnanoröhren aus kohlenstoffmonoxid unter hochdruck
US6518218B1 (en) * 1999-03-31 2003-02-11 General Electric Company Catalyst system for producing carbon fibrils
US6333016B1 (en) 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US20030091496A1 (en) * 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6312303B1 (en) 1999-07-19 2001-11-06 Si Diamond Technology, Inc. Alignment of carbon nanotubes
US6664722B1 (en) 1999-12-02 2003-12-16 Si Diamond Technology, Inc. Field emission material
US6401526B1 (en) 1999-12-10 2002-06-11 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotubes and methods of fabrication thereof using a liquid phase catalyst precursor
US6599961B1 (en) 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6413487B1 (en) 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US20020102193A1 (en) 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing two zones for making single-wall carbon nanotubes
US6752977B2 (en) * 2001-02-12 2004-06-22 William Marsh Rice University Process for purifying single-wall carbon nanotubes and compositions thereof
US7090819B2 (en) * 2001-02-12 2006-08-15 William Marsh Rice University Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
US20030077515A1 (en) 2001-04-02 2003-04-24 Chen George Zheng Conducting polymer-carbon nanotube composite materials and their uses
US6596187B2 (en) 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
US6656339B2 (en) 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
JP2005508067A (ja) 2001-10-29 2005-03-24 ハイピリオン カタリシス インターナショナル インコーポレイテッド 官能化されたカーボンナノチューブを含むポリマー
US7138100B2 (en) 2001-11-21 2006-11-21 William Marsh Rice Univesity Process for making single-wall carbon nanotubes utilizing refractory particles
US6699457B2 (en) 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
US7148269B2 (en) 2002-03-11 2006-12-12 Trustees Of The University Of Pennsylvania Interfacial polymer incorporation of nanotubes
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
JP3606855B2 (ja) 2002-06-28 2005-01-05 ドン ウン インターナショナル カンパニー リミテッド 炭素ナノ粒子の製造方法
WO2004096725A2 (en) 2003-04-28 2004-11-11 Leandro Balzano Single-walled carbon nanotube-ceramic composites and methods of use
JP2006228824A (ja) 2005-02-15 2006-08-31 Tokyo Coil Engineering Kk インダクタ及びその製造方法
JP5002794B2 (ja) 2006-12-19 2012-08-15 旭精工株式会社 硬貨入出金機の硬貨補給装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102216212A (zh) * 2008-11-18 2011-10-12 马来西亚理科大学 一种生产碳纳米管(CNTs)的方法
CN102648046A (zh) * 2009-07-17 2012-08-22 西南纳米科技公司 用于制备多壁碳纳米管的催化剂和方法
CN102648046B (zh) * 2009-07-17 2016-12-14 西南纳米科技公司 用于制备多壁碳纳米管的催化剂和方法
CN106829925A (zh) * 2009-07-17 2017-06-13 西南纳米科技公司 用于制备多壁碳纳米管的催化剂和方法
CN101905881A (zh) * 2010-08-02 2010-12-08 无锡诚信碳材料科技有限公司 一种石墨化程度高的纳米碳材料制备方法
CN103058169A (zh) * 2010-08-02 2013-04-24 无锡诚信碳材料科技有限公司 一种石墨化程度高的纳米碳材料制备方法
CN104024493A (zh) * 2011-12-12 2014-09-03 埃克森美孚上游研究公司 形成碳纳米管的方法和系统
CN104024493B (zh) * 2011-12-12 2016-08-24 埃克森美孚上游研究公司 形成碳纳米管的方法和系统
US9567219B2 (en) 2011-12-12 2017-02-14 Exxonmobil Upstream Research Company Method and systems for forming carbon nanotubes
CN113663690A (zh) * 2021-08-30 2021-11-19 福建海梵领航科技有限公司 一种制备小管径单壁碳纳米管的催化剂及制备方法和应用
CN113663690B (zh) * 2021-08-30 2023-08-15 福建海梵领航科技有限公司 一种制备小管径单壁碳纳米管的催化剂及制备方法和应用

Also Published As

Publication number Publication date
US7563428B2 (en) 2009-07-21
US20020165091A1 (en) 2002-11-07
CA2375887C (en) 2008-09-23
EP1192104B1 (en) 2007-08-08
ATE369314T1 (de) 2007-08-15
JP4777518B2 (ja) 2011-09-21
CN100564251C (zh) 2009-12-02
US6962892B2 (en) 2005-11-08
AU780726B2 (en) 2005-04-14
US7094386B2 (en) 2006-08-22
BR0011106A (pt) 2002-03-05
MXPA01012386A (es) 2002-11-07
AU5462200A (en) 2000-12-18
WO2000073205A1 (en) 2000-12-07
US6994907B2 (en) 2006-02-07
DE60035875D1 (de) 2007-09-20
US20080107588A1 (en) 2008-05-08
US6333016B1 (en) 2001-12-25
ES2291212T3 (es) 2008-03-01
US20050025696A1 (en) 2005-02-03
DE60035875T2 (de) 2008-04-30
EP1192104A1 (en) 2002-04-03
US20040070009A1 (en) 2004-04-15
US20040186011A1 (en) 2004-09-23
US20070116630A1 (en) 2007-05-24
WO2000073205A9 (en) 2002-06-20
CN1360558A (zh) 2002-07-24
JP2003500326A (ja) 2003-01-07
CA2375887A1 (en) 2000-12-07

Similar Documents

Publication Publication Date Title
CN1495127A (zh) 用于生产碳纳米管的方法和催化剂
Zahid et al. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review
Journet et al. Production of carbon nanotubes.
CN100340476C (zh) 由高压co气相成核和生长单壁碳质毫微管
KR101785593B1 (ko) 카본 나노튜브 및 수소의 동시 제조 방법, 및, 카본 나노튜브 및 수소의 동시 제조 장치
JP5594961B2 (ja) 狭小な直径のカーボン単層ナノチューブの合成
Takenaka et al. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts
JP5102633B2 (ja) 長いカーボン単層ナノチューブを成長させるための方法
JP5661677B2 (ja) 化学気相成長法によるカーボン単層ナノチューブの合成の方法
JP4602324B2 (ja) フィラメント状構造体を合成するための方法及び装置
CN1922347A (zh) 铼催化剂和用于生产单壁碳纳米管的方法
EP2269950A1 (en) Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
CN1673073A (zh) 一种合成单壁碳纳米管的方法
Prabu et al. Highly active Ni–Mg–Al catalyst effect on carbon nanotube production from waste biodegradable plastic catalytic pyrolysis
Song et al. Efficiently producing single-walled carbon nanotube rings and investigation of their field emission properties
Kónya Catalytic production, purification, characterization and application of single-and multiwall carbon nanotubes
CN1960942A (zh) 原料喷射式高效率碳纳米结构体制造方法及装置
Resasco et al. Structure and Applications of Single-Walled Carbon Nanotubes (SWCNTs) Synthesized Using the CoMoCAT® Method
Tang et al. Upcycling of waste plastics to carbon nanomaterials
CN1648037A (zh) 一种生产纳米碳纤维的工艺及装置
Modekwe et al. Recent advancements in the use of plastics as a carbon source for carbon nanotubes synthesis-A review
Matzinger Evolution of metal catalyst during CVD synthesis of carbon nanotubes
AU2005203047B2 (en) Method of producing carbon nanotubes and catalysts therefor
WO2010120572A1 (en) Methods of producing carbon nanotubes and applications of same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1063772

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1063772

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20091202

CX01 Expiry of patent term