Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1495127 A
Publication typeApplication
Application numberCN 03108618
Publication date12 May 2004
Filing date1 Jun 2000
Priority date2 Jun 1999
Also published asCA2375887A1, CA2375887C, CN1360558A, CN100564251C, DE60035875D1, DE60035875T2, EP1192104A1, EP1192104B1, US6333016, US6962892, US6994907, US7094386, US7563428, US20020165091, US20040070009, US20040186011, US20050025696, US20070116630, US20080107588, WO2000073205A1, WO2000073205A9
Publication number03108618.7, CN 03108618, CN 1495127 A, CN 1495127A, CN-A-1495127, CN03108618, CN03108618.7, CN1495127 A, CN1495127A
InventorsD・E・莱萨斯克, DE莱萨斯克, 傺悄, B吉蒂亚南, 哈维尔, JH哈维尔, 瓦勒兹, W艾尔瓦勒兹
Applicant俄克拉何马大学董事会
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Method and catalyst for producing carbon nano tube
CN 1495127 A
Abstract  translated from Chinese
一种通过使含碳气体与金属催化粒子接触来生产碳纳米管的催化剂和方法。 A carbon-containing gas by making contact with the metal catalyst particles to produce catalysts and methods of carbon nanotubes. 催化粒子含有至少一种选自族VIII的金属,包括例如Co、Ni、Ru、Rh、Pd、Ir和Pt,和含有至少一种选自族VIb的金属,包括例如Mo、W和Cr。 Catalytic particles comprising at least one compound selected from Group VIII metals, including, for example Co, Ni, Ru, Rh, Pd, Ir and Pt, and at least one member selected from Group VIb metals containing, for example, including Mo, W and Cr. 金属组分可以沉积在载体上。 Metal component may be deposited on the carrier. 优选所形成的纳米管的显著部分是单壁碳纳米管。 A significant portion of the nanotube is preferably formed by a single-walled carbon nanotubes. 另外,还公开了一种用于确定催化剂组成和反应条件以优化单壁碳纳米管生产的方法。 Also, disclosed is a method for determining catalyst composition and reaction conditions to optimize the production of single-walled carbon nanotubes.
Claims(62)  translated from Chinese
1.一种生产碳纳米管的方法,包括:在反应器单元中使含有至少一种除铁以外的族VIII金属与至少一种族VIb金属的金属催化粒子与有效量的含碳气体在足以催化生产碳纳米管的温度下接触,以使显著部分的碳纳米管是单壁碳纳米管。 1. A method for producing carbon nanotubes, comprising: a reactor unit in the manipulation other than iron contains at least one metal of Group VIII metal catalytic particles and at least one race VIb metal with an effective amount of a carbon-containing gas at sufficient catalytic lower contact temperature produced carbon nanotubes, so that a significant portion of the carbon nanotubes are single-wall carbon nanotubes.
2.根据权利要求1的方法,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物。 2. A method according to claim 1, wherein the Group VIII metal is selected from Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof.
3.根据权利要求1或2中任一项的方法,其中族VIb金属选自Cr、Mo、W及其混合物。 3. The method of any one of claim 1 or 2, wherein the Group VIb metal is selected from Cr, Mo, W and mixtures thereof.
4.根据权利要求1的方法,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物,其中族VIb金属选自Cr、Mo、W及其混合物。 4. The method according to claim 1, wherein the Group VIII metal is selected from Co, Ni, Ru, Rh, Pd, Ir, Pt and mixtures thereof, wherein the Group VIb metal is selected from Cr, Mo, W and mixtures thereof.
5.根据权利要求1-4中任一项的方法,其中所述金属催化粒子进一步含有沉积金属的的载体。 5. A method according to any one of claims 1-4, wherein the metal catalyst particles further contain a carrier of the deposited metal.
6.根据权利要求5的方法,其中载体选自二氧化硅、MCM-41、氧化铝、MgO、Mg(Al)O、ZrO2和分子筛沸石。 6. The method according to claim 5, wherein the carrier is selected from silica, MCM-41, alumina, MgO, Mg (Al) O, ZrO2, and zeolite molecular sieves.
7.根据权利要求1-6中任一项的方法,其中族VIII金属与族VIb金属的比率是约1∶10至约15∶1。 7. The method claimed in any one of claims, wherein the ratio of Group VIII metal and the Group VIb metal is from about 1:10 to about 15.
8.根据权利要求1-7中任一项的方法,其中族VIII金属与族VIb金属的比率是约1∶5至约2∶1。 8. A method according to any one of claims 1-7, wherein the ratio of the Group VIII metal and a Group VIb metal is from about 1:5 to about 2.
9.根据权利要求5或6中任一项的方法,其中催化粒子含有约1-20重量%的金属。 9. A method according to any of claim 5 or 6, wherein the catalytic particles contains from about 1-20% by weight of metal.
10.根据权利要求1-9中任一项的方法,其中含碳气体选自饱和的烃、脂族烃、氧化的烃、芳族烃、一氧化碳及其混合物。 10. A method according to any one of claims 1-9, wherein the carbon-containing gas is selected from saturated hydrocarbons, aliphatic hydrocarbons, oxidized hydrocarbons, aromatic hydrocarbons, carbon monoxide, and mixtures thereof.
11.根据权利要求1-9中任一项的方法,其中含碳气体进一步含有稀释剂气体。 11. A method according to any one of claims 1-9, wherein the carbon-containing gas further comprises a diluent gas.
12.根据权利要求1-11中任一项的方法,其中温度足够地低于所述含碳气体的热分解温度以便避免显著形成热解的碳。 12. A method according to any of claims 1-11, wherein the temperature is sufficiently lower than the thermal decomposition temperature of the carbon-containing gas in order to avoid significant formation of pyrolytic carbon.
13.根据权利要求1-12中任一项的方法,其中所述温度为约500-1200℃。 13. A method according to any of claims 1-12, wherein the temperature is about 500-1200 ℃.
14.根据权利要求1-13中任一项的方法,其中所述温度为约600-850℃。 14. A method according to any of claims 1-13, wherein the temperature is about 600-850 ℃.
15.根据权利要求1-14中任一项的方法,其中所述温度为约650-750℃。 15. A method according to any of claims 1-14, wherein the temperature is about 650-750 ℃.
16.根据权利要求1-15中任一项的方法,其中催化制得的碳纳米管进一步包括多壁碳纳米管。 16. A method according to claim any of 1-15, wherein the catalytic carbon nanotubes obtained further comprising multi-walled carbon nanotubes.
17.根据权利要求1-16中任一项的方法,其中单壁碳纳米管占催化制得的纳米管的至少约60%到至少约95%。 17. A method according to any of claims 1-16, wherein the single-walled carbon nanotubes comprise at least about 60% catalytic nanotubes prepared to at least about 95%.
18.根据权利要求1-17中任一项的方法,其中族VIII金属是Co。 18. A method according to any of claims 1-17, wherein the Group VIII metal is Co.
19.根据权利要求1-17中任一项的方法,其中族VIII金属是Ni。 19. A method according to any of claims 1-17, wherein the Group VIII metal is Ni.
20.根据权利要求1-17中任一项的方法,其中族VIII金属是Ru。 20. A method according to any of claims 1-17, wherein the Group VIII metal is Ru.
21.根据权利要求1-17中任一项的方法,其中族VIII金属是Rh。 21. A method according to any of claims 1-17, wherein the Group VIII metal is Rh.
22.根据权利要求1-17中任一项的方法,其中族VIII金属是Pd。 22. A method according to any of claims 1-17, wherein the Group VIII metal is Pd.
23.根据权利要求1-17中任一项的方法,其中族VIII金属是Ir。 23. A method according to any of claims 1-17, wherein the Group VIII metal is Ir.
24.根据权利要求1-17中任一项的方法,其中族VIII金属是Pt。 24. A method according to any of claims 1-17, wherein the Group VIII metal is Pt.
25.根据权利要求1-24中任一项的方法,其中族VIb金属是Cr。 25. A method according to any of claims 1-24 wherein the Group VIb metal is Cr.
26.根据权利要求1-24中任一项的方法,其中族VIb金属是Mo。 26. The method of any one of claims 1-24, wherein the Group VIb metal is Mo.
27.根据权利要求1-24中任一项的方法,其中族VIb金属是W。 27. A method according to any of claims 1-24, wherein the Group VIb metal is W.
28.根据权利要求1-27中任一项的方法,其中金属催化粒子含有至少一种额外的族VIII金属。 28. The method of any one of claims 1-27, wherein the metallic catalytic particles comprising at least one additional Group VIII metal.
29.根据权利要求1-28中任一项的方法,其中金属催化粒子含有至少一种额外的族VIb金属。 29. The method of any one of claims 1-28, wherein the metallic catalytic particles comprising at least one additional Group VIb metal.
30.根据权利要求1-29中任一项的方法,其中金属催化粒子含有至少一种额外的族VIII金属和至少一种额外的族VIb金属。 30. A method according to any of claims 1-29, wherein the metallic catalytic particles comprising at least one additional Group VIII metal and at least one additional Group VIb metal.
31.根据权利要求1-30中任一项的方法,其中金属催化粒子基本上连续地供应到含碳气体流中。 31. A method according to any of claims 1-30, wherein the metal catalyst particles are substantially continuously supplied to the carbon-containing gas stream.
32.根据权利要求1-31中任一项的方法,其中含碳气体供应到其中装有催化粒子的反应器单元中。 32. The method of any one of claims 1-31, wherein the carbon-containing gas is supplied to the particles which have catalytic reactor units.
33.一种确定催化剂组成以优化单壁碳纳米管生产的方法,包括:提供单壁碳纳米管生产的产物,其中在生产中使用具有这样组成的金属催化粒子,它包括除铁以外的族VIII金属和族VIb金属,且族VIII金属和族VIb金属之间具有预定的比率;取出含有单壁碳纳米管的产物样品;在反应器单元中使含有单壁碳纳米管的产物样品与有效量的含氧气体接触以便氧化样品中存在的碳物质;将反应器单元内的温度从约室温升高到约800℃;检测在约室温至约800℃的给定温度下由样品释放出的二氧化碳量;通过在检测温度下从样品释放出的二氧化碳量来确定样品中存在的特定碳物质;和通过改变族VIII金属、改变族VIb金属和改变两种金属的预定比率中的至少一种方式来改变金属催化粒子的组成,使得单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。 33. A method for determining catalyst composition in order to optimize the production of single-walled carbon nanotubes, comprising: providing a product of single-walled carbon nanotube production, wherein the metal catalyst in the production of particles having such a composition which comprises in addition to iron family between the metal and the family has VIb VIII metal, and family VIII metals and family VIb metal at a predetermined ratio; removing product samples containing single-walled carbon nanotubes; product sample manipulation in the reactor unit containing a single-walled carbon nanotubes and effective amount of oxygen-containing gas in order to oxidize the carbon present in the sample; means the temperature inside the reactor was raised from about room temperature to about 800 ℃; detection at about room temperature to about 800 ℃ given temperature released by the sample by the amount of carbon dioxide released when the detected temperature from the sample to determine the specific carbon species present in the sample;; and by changing the Group VIII metal, changing the Group VIb metal and a change in at least one predetermined ratio of the two metals in the amount of carbon dioxide way to change the composition of the metal catalyst particles, so that there is an amount of single-walled carbon nanotubes is significantly higher than the product of the carbon nanotube-containing samples of all the other carbon materials.
34.一种具有根据权利要求33方法确定的组成的金属催化粒子,其中所述金属催化粒子制得这样的产物,其中存在的碳物质的至少约60%到至少约95%是单壁碳纳米管。 34. A metallic catalytic particles having a composition according to the method defined in claim 33, wherein said metallic catalytic particles thus obtained product, at least about 60% of the carbon material present therein to at least about 95% are single-wall carbon nano tube.
35.根据权利要求34的金属催化粒子,其中催化剂组成包括Co和Mo,其中Co和Mo的预定比率是约1∶10至约15∶1。 35. The catalytic metal particles according to claim 34, wherein the catalyst composition comprises Co and Mo, wherein the predetermined ratio of Co and Mo is from about 1:10 to about 15.
36.根据权利要求33的确定催化剂组成以优化单壁碳纳米管生产的方法,其中在提供单壁碳纳米管生产的产物、其中在生产中使用金属催化粒子的步骤中,生产单壁碳纳米管的方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产含单壁碳纳米管的产物的温度下接触。 36. The composition according to claim 33, in order to determine the catalyst optimization SWNT production, which provides a single-walled carbon nanotubes produced products, which use metal-catalyzed step in the production of particles, the production of single-walled carbon nanotubes tube method involves manipulation of the reactor unit metal catalytic particles and an effective amount of carbon-containing gas at a temperature sufficient to catalyze the production of the product containing the contact of single-walled carbon nanotubes under.
37.一种在生产单壁碳纳米管的方法中优化反应条件的方法,包括:提供单壁碳纳米管生产的产物,其中使用一组反应条件,包括温度、时间和在含碳气体中碳浓度中的至少一种;取出含有单壁碳纳米管的产物样品;在反应器单元中使含有单壁碳纳米管的产物样品与有效量的含氧气体接触以便氧化样品中存在的碳物质;将反应器单元内的温度从约室温升高到约800℃;检测在约室温至约800℃的给定温度下由样品释放出的二氧化碳量;通过在检测温度下从样品释放出的二氧化碳量来确定样品中存在的特定碳物质;和通过改变温度、时间和含碳气体中碳浓度中的至少一种来改进反应条件,使得单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。 37. A method of optimizing the reaction conditions in the production of single-walled carbon nanotubes method, comprising: providing a product of single-walled carbon nanotube production, which uses a set of reaction conditions, including temperature, time, and carbon in the carbon-containing gas at least one concentration of; carbon material in the reactor product sample manipulation unit containing a single-walled carbon nanotubes with an effective amount of oxygen-containing gas to oxidize present in the sample; removing product samples containing single-walled carbon nanotubes; The temperature rise inside the reactor unit of from about room temperature to about 800 ℃; detection at from about room temperature to about 800 ℃ at a given temperature the amount of carbon dioxide released by the sample; by at the detected temperature of the carbon dioxide released from the sample to determine the specific amount of carbon material present in the sample; and by changing the temperature, time, and at least one carbon-containing gas to improve the carbon concentration in the reaction conditions, so that there is the amount of single-walled carbon nanotubes containing carbon nanotubes significantly higher The sample of the product to all other carbon species.
38.根据权利要求37的在生产单壁碳纳米管的方法中优化反应条件的方法,其中在提供单壁碳纳米管产物的步骤中,生产单壁碳纳米管的方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产含单壁碳纳米管的产物的温度下接触,其中金属催化粒子包括除铁以外的族VIII金属和族VIb金属。 38. The method of optimizing the reaction conditions (37) in the process of production of single-walled carbon nanotubes in claim wherein the step of providing a single-walled carbon nanotubes in the product, the production of single-walled carbon nanotubes comprising the reactor unit catalytic metal particles and an effective amount of carbon-containing gas at a temperature sufficient to catalyze the production of the product containing the contact of single-walled carbon nanotubes under which the metal particles are included in addition to the catalytic iron family VIII metals and family VIb metal.
39.一种用于生产碳纳米管的催化粒子,包括至少一种除铁以外的族VIII金属和至少一种族VIb金属。 39. A method for the production of carbon nanotubes catalytic particles, in addition to iron comprises at least one Group VIII metal and at least of one race VIb metal.
40.根据权利要求39的催化粒子,其中族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物。 40. The catalytic particles according to claim 39, wherein the Group VIII metal is selected from Co, Ni, Ru, Rh, Pd, Ir, Pt, and mixtures thereof.
41.根据权利要求39或40的催化粒子。 41. The catalytic particles 39 or claim 40.
42.根据权利要求39-41中任一项的催化粒子,其中所述粒子进一步含有沉积金属的的载体。 42. The catalytic particles as claimed in any one of claim 39-41, wherein the particle further comprises a carrier deposited metals.
43.根据权利要求42的催化粒子,其中载体选自二氧化硅、MCM-41、氧化铝、MgO、Mg(Al)O、ZrO2和分子筛沸石。 43. The catalytic particles according to claim 42, wherein the carrier is selected from silica, MCM-41, alumina, MgO, Mg (Al) O, ZrO2, and zeolite molecular sieves.
44.根据权利要求39-43中任一项的催化粒子,其中族VIII金属与族VIb金属的比率是约1∶10至约15∶1。 44. The catalytic particles according to claim any one of 39-43, wherein the ratio of the Group VIII metal and a Group VIb metal is from about 1:10 to about 15.
45.根据权利要求39-44中任一项的催化粒子,其中族VIII金属与族VIb金属的比率是约1∶5至约2∶1。 45. The catalytic particles according to claim any one of 39-44, wherein the ratio of the Group VIII metal and a Group VIb metal is from about 1:5 to about 2.
46.根据权利要求42或43中任一项的催化粒子,其中催化粒子含有约1-20重量%的金属。 46. The catalytic particles as claimed in any one of claim 42 or 43, wherein the catalytic particle comprises from about 1-20% by weight of metal.
47.根据权利要求39-46中任一项的催化粒子,其中催化粒子含有至少一种额外的族VIII金属。 47. The catalytic particle of any one of claims 39-46, wherein the catalytic particles comprising at least one additional Group VIII metal.
48.根据权利要求39-47中任一项的催化粒子,其中催化粒子含有至少一种额外的族VIb金属。 48. The catalytic particle of any one of claims 39-47, wherein the catalytic particles comprising at least one additional Group VIb metal.
49.一种生产碳纳米管的方法,包括:在反应器单元中使含有至少一种金属的金属催化粒子与有效量的气体在足以催化生产碳纳米管的温度下接触。 49. A method for producing carbon nanotubes, comprising: a reactor unit in the manipulation metal catalytic particles comprising at least one metal with an effective amount of a gas is contacted at a temperature sufficient to catalytically produce carbon nanotubes.
50.一种确定催化剂组成的方法,包括:提供纳米管生产的产物,其中在生产中使用金属催化粒子;取出产物样品;在反应器单元中使产物样品与有效量的气体接触以便氧化样品中存在的碳物质;将反应器单元内的温度升高到约室温以上;确定样品中存在的特定碳物质;和改变金属催化粒子的组成。 50. A method to determine the composition of the catalyst, comprising: providing a product of nanotube production, wherein the metal catalyst used in the production of particles; sample of the product taken; in reactor cells on the sample of the product gas is contacted with an effective amount of a sample so as to oxidize carbon species present; the temperature inside the reactor unit is raised to above about room temperature; determining specific carbon species present in the sample; and changing the composition of the metal catalyst particles.
51.一种在生产纳米管的方法中优化反应条件的方法,包括:提供碳纳米管生产的产物,其中使用一组反应条件,包括温度、时间和在含碳气体中碳浓度中的至少一种;取出产物样品;在反应器单元中使产物样品与有效量的气体接触以便氧化样品中存在的碳物质;将反应器单元内的温度升高到约室温以上;确定样品中存在的特定碳物质;和通过改变温度、时间和在含碳气体中碳浓度中的至少一种来改进反应条件。 51. A method for optimizing reaction conditions in the production method of nanotubes, comprising: providing a product of the production of carbon nanotubes, wherein a set of reaction conditions, including temperature, time and concentration of carbon in the carbon-containing gas in at least one specific carbon present in the sample is determined; sample of the product taken;; in reactor cells on the sample of the product gas is contacted with an effective amount of a carbon material to oxide present in the sample; means the temperature inside the reactor rises above about room species substance; and by varying the temperature, time and concentration of carbon in the carbon-containing gas in at least one of improved reaction conditions.
52.一种用于生产碳纳米管的催化粒子,包含至少一种金属。 52. A method for the production of carbon nanotubes catalytic particles, comprising at least one metal.
53.根据权利要求39的催化粒子,包括:Co和Mo,其比率为1份Co对至少2份或更多份Mo;和载体材料,其中Co、Mo和载体材料组合以具有粒状。 53. The catalytic particles according to claim 39, comprising: Co and Mo, a ratio of one part Co to at least two or more copies Mo; and a carrier material, wherein the Co, Mo and a carrier material in combination with having a granular.
54.根据权利要求53的催化粒子,进一步含有额外的族VIII金属。 54. The catalytic particle of claim 53, further comprising the additional Group VIII metal.
55.根据权利要求53或54的催化粒子,进一步含有额外的族VIb金属。 55. The catalytic particle of claim 53 or 54, further comprising an additional Group VIb metal.
56.根据权利要求53-55中任一项的催化粒子,其中载体材料选自二氧化硅、MCM-41、氧化铝、MgO、ZrO2、铝稳定的氧化镁和分子筛沸石。 56. The catalytic particles according to claim any one of 53-55, wherein the support material is selected from silica, MCM-41, alumina, MgO, ZrO2, MgO and aluminum stable molecular sieve zeolite.
57.根据权利要求53-56中任一项的方法,含有约1-20重量%的Co和Mo。 57. A method according to any one of claims 53-56, comprising from about 1-20% by weight of Co and Mo.
58.根据权利要求39的催化粒子,其中族VIb金属是Cr、Mo和W中的至少一种;其中催化粒子进一步含有载体材料;和其中族VIII金属,Cr、Mo和W中的至少一种与载体材料组合以具有粒状,不包括由载体材料和Co和W或者Co和Mo组成的催化粒子。 58. The catalytic particles according to claim 39, wherein the at least one Group VIb metal is Cr, Mo and W; wherein the catalytic particles further comprise a carrier material; and wherein the Group VIII metal, at least one of Cr, Mo and W In combination with a carrier material having a granular, excluding catalytic particles by the carrier material and W and Co or Co and Mo composition.
59.根据权利要求58的催化粒子,其中至少一种族VIII金属选自Co、Ni、Ru、Rh、Pd、Ir和Pt。 59. The catalytic particles according to claim 58, wherein the at least one race VIII metal is selected from Co, Ni, Ru, Rh, Pd, Ir and Pt.
60.根据权利要求58或59的催化粒子,其中载体材料选自二氧化硅、MCM-41、氧化铝、MgO、ZrO2、铝稳定的氧化镁和分子筛沸石。 60. The catalytic particles according to claim 58 or 59, wherein the carrier material is selected from silica, MCM-41, alumina, MgO, ZrO2, MgO and aluminum stable molecular sieve zeolite.
61.根据权利要求58-60中任一项的催化粒子,含有约1-20重量%的至少一种族VIII金属以及Cr、Mo和W中的至少一种。 61. The catalytic particle of any one of claims 58-60, containing about 1-20 wt% of at least one race VIII metal and at least one Cr, Mo and W.
62.根据权利要求39-48和53-61中任一项的催化粒子,含有二氧化硅载体材料。 62. The catalytic particles claims 39-48 and any one of 53-61, containing a silica carrier material.
Description  translated from Chinese
用于生产碳纳米管的方法和催化剂 Method for the production of carbon nanotubes and catalyst

本申请是中国专利申请00808276.6(申请日2000年6月1日)的分案申请。 This application is a Chinese patent application 00808276.6 (filed on June 1, 2000) of the divisional application.

发明背景本发明涉及用于生产碳纳米管的方法和催化剂,更具体地说,但不限制其范围,本发明涉及用于生产单壁碳纳米管的方法和催化剂。 BACKGROUND OF THE INVENTION The present invention relates to a process and catalyst for the production of carbon nanotubes, and more particularly, but not to limit its scope, the present invention relates to a process and catalyst for the production of single-walled carbon nanotubes.

碳纳米管(也称作碳原纤)是具有完全富勒烯罩的石墨片无缝管,在过渡金属催化剂存在下,它们首先是多层同心管或多壁碳纳米管,然后作为单壁碳纳米管。 Carbon nanotubes (also known as carbon fibrils) having a completely seamless fullerene graphite sheet cover, in the presence of a transition metal catalyst, which is the first multi-layer concentric tubes or multi-walled carbon nanotubes, and then as a single wall carbon nanotubes. 碳纳米管显示有前途的应用,包括纳米级电子设备、高强度材料、电子场发射、扫描探针显微镜的尖端以及气体储存。 Carbon nanotubes show promising applications including nanoscale electronic devices, high strength materials, electron field emission, the scanning probe microscope tip and gas storage.

一般来说,在这些应用中,单壁碳纳米管比多壁碳纳米管更优选,因为前者具有较少的缺陷,所以比相似直径的多壁碳纳米管的强度更高,传导性更强。 Generally, in these applications, the single-walled carbon nanotubes is more preferable than the multi-walled carbon nanotubes, because the former has fewer defects, so the intensity is higher than the diameter of a similar multi-walled carbon nanotubes, conducting more . 与多壁碳纳米管相比,单壁碳纳米管不易于出现缺陷,因为多壁碳纳米管能通过在不饱和碳价之间形成桥而幸免于意外缺陷,而单壁碳纳米管没有可以补偿缺陷的隔壁。 Compared with the multi-walled carbon nanotubes, single-walled carbon nanotubes is not easy to be free from defects, because the multi-walled carbon nanotubes by between unsaturated carbon price formation bridge and survived the accident defects, while the single-walled carbon nanotubes no next door to compensate defects.

但是,这些实际技术所需量的新单壁碳纳米管的可行性仍然存在问题。 However, the feasibility of these new technologies required amount of single-walled carbon nanotubes actual remains problematic. 仍然需要用于生产高质量单壁碳纳米管的大规模方法。 Still require large-scale process for the production of high-quality single-walled carbon nanotubes used.

目前,有三个合成碳纳米管的主要方法。 Currently, there are three main methods of synthesizing carbon nanotubes. 这些包括碳的激光烧蚀(Thess,A等,Science 273,483(1996))、石墨棒的电弧放电(Journet,C等,Nature 388,756(1997))和烃的化学蒸气沉积(Ivanov,V等,Chem.Phys.Lett 223,329(1994);LiA等,Science274,1701(1996))。 These include the laser ablation of carbon (Thess, A, etc., Science 273,483 (1996)), the arc discharge of graphite rod (Journet, C, etc., Nature 388,756 (1997)), and chemical vapor deposition of hydrocarbons (Ivanov, V, etc., Chem.Phys.Lett 223,329 (1994); LiA like, Science274,1701 (1996)). 通过催化烃裂解生产多壁碳纳米管现在已达到工业规模(美国专利5578543),而单壁碳纳米管的生产仍然是通过激光(Rinzler,AG等,Appl.Phys.A,67,29(1998))和电弧(Haffner,JH等,Chem.Phys.Lett.296,195(1998))技术以克级规模生产。 By catalytic cracking of hydrocarbons production of multi-walled carbon nanotubes has now reached an industrial scale (US Patent 5,578,543), and single-walled carbon nanotube production is still by laser (Rinzler, AG, etc., Appl.Phys.A, 67,29 (1998 )) and arc (Haffner, JH, etc., Chem.Phys.Lett.296,195 (1998)) technology to gram-scale production.

与激光和电弧技术不同,在过渡金属催化剂上的碳蒸气沉积倾向于生成多壁碳纳米管作为主要产物,而不是单壁碳纳米管。 With the laser and arc techniques, the transition metal catalyst in a carbon vapor deposition tends to generate a multi-walled carbon nanotubes as a main product instead of single-walled carbon nanotubes. 但是,在从催化烃裂解方法生产单壁碳纳米管方面有一些成功。 However, in the production of single-walled carbon nanotubes from the catalytic cracking of hydrocarbons methods have some success. Dai等(Dai,H等,Chem.Phys.Lett.260,471(1996))证明由加热至1200℃的承载在氧化铝上的一氧化碳(CO)和钼(Mo)催化剂的歧化反应生产网状单壁碳纳米管。 Dai et al. (Dai, H, etc., Chem.Phys.Lett.260,471 (1996)) as evidenced by heating to 1200 ℃ carrying carbon monoxide (CO) on alumina and molybdenum (Mo) catalyst of disproportionation reaction to produce mesh Single-walled carbon nanotubes. 从报告的电子显微图象来看,Mo金属显然附着在纳米管的尖端。 Report from electron microscopy images of view, Mo metal apparently attached to the tip of the nanotube. 单壁碳纳米管的报告直径通常为1-5纳米,并通过Mo的粒径来控制。 Single-walled carbon nanotubes report usually 1-5 nanometers in diameter, and is controlled by the Mo particle size. 含有铁、钴或镍的催化剂在850-1200℃温度下使用,形成多壁碳纳米管(美国专利4663230)。 Catalysts containing iron, cobalt or nickel at a temperature 850-1200 ℃ use, the formation of multi-walled carbon nanotubes (US Patent 4,663,230). 最近,单壁碳纳米管的绳状束通过苯与铁催化剂和硫添加剂在1100-1200℃温度下的热裂解而生成(Cheng,HM等,Appl.Phys.Lett.72,3282(1998);Cheng,HM等,Chem.Phys.Lett.289,602(1998))。 Recently, single-walled carbon nanotube rope bundle by benzene and sulfur and iron catalyst at a temperature of 1100-1200 ℃ pyrolysis generated under (Cheng, HM and other additives, Appl.Phys.Lett.72,3282 (1998); Cheng, HM, etc., Chem.Phys.Lett.289,602 (1998)). 合成的单壁碳纳米管大致以束排列并纺织在一起,与从激光气化或电弧方法得到的那些相似。 Synthesis of SWNT bundles are arranged roughly in order and textiles together, similar to those from a laser or electric arc gasification methods to get. 已提出使用这样的激光目标,它包括一种或多种族VI或族VIII过渡金属以形成单壁碳纳米管(WO98/39250)。 Has been proposed to use such a laser target, which comprises one or more Group VI or VIII transition racial metal to form single-walled carbon nanotubes (WO98 / 39250). 已提出包括铁和选自族V(V、Nb和Ta)、族VI(Cr、Mo和W)、族VII(Mn、Tc和Re)或镧系元素的至少一种元素的金属催化剂的应用(美国专利5707916)。 Application of the metal catalyst include iron have been proposed and are selected from Group V (V, Nb and Ta), Group VI (Cr, Mo and W), Group VII (Mn, Tc and Re) or at least one lanthanide element (U.S. Patent 5,707,916). 但是,使用这些催化剂的方法未教导生产具有单壁碳纳米管与多壁碳纳米管高比例的大量纳米管。 However, methods using these catalysts does not teach producing a single-walled carbon nanotubes and multi-walled carbon nanotubes with high proportion of a large number of nanotubes.

另外,在反应步骤之前或之后的分离步骤占去大部分生产碳纳米管所需的资金和操作成本。 Further, prior to the reaction step or the separation step after the capital and operating costs to account for most of the production of carbon nanotubes needed. 所以,从多壁碳纳米管和污染物(即无定形和石墨碳)提纯出单壁碳纳米管比碳纳米管的实际生产需要更多的时间和费用。 Therefore, from the multi-walled carbon nanotubes and contaminants (ie, amorphous carbon and graphite) purification of SWNTs than the actual production of carbon nanotubes require more time and expense.

另外,目前技术中的最大限制之一是不能对特定合成中所含的不同形式的碳进行简单和直接的定量。 Further, one of the largest limitations art are not specific for different forms of carbon contained in the synthesis of a simple and direct quantification. 目前,透射电子显微术(TEM)是最广泛用于确定在特定样品中的单壁碳纳米管分数的表征技术。 Currently, transmission electron microscopy (TEM) is the most widely used to determine the fraction of single-walled carbon nanotube characterization techniques in particular sample. 但是,透射电子显微术只能提供所生产的碳物质类型的定性描述。 However, transmission electron microscopy can only provide the type of carbon species produced qualitative description. 难以确定给定的透射电子显微图象表示多少总产率。 Difficult to determine whether a given transmission electron microscopy image indicates how many of the total yield. 用任何统计数据半定量地确定样品中不同碳物质的分布是耗时的,且使用透射电子显微术的方法不能用作大规模操作的常规质量控制手段。 With any statistical data samples is determined semi-quantitatively the distribution of different carbon species is time-consuming, and the use of transmission electron microscopy method can not be used as a conventional large-scale operation of the quality control measures.

所以,需要新的和改进的生产纳米管的方法,该方法能在比现有方法更低的温度下合成工业规模量的基本上纯的单壁碳纳米管,以及需要对特定合成中碳的不同形式的直接定量方法。 Therefore, new and improved methods of producing nanotubes desired, the method can be at a lower temperature than the conventional method of substantially pure single-walled carbon nanotube synthesis on an industrial scale the amount of, and the need for specific synthesis of carbon Direct quantitative methods different forms. 本发明涉及这种生产碳纳米管和对合成产物进行定量的方法。 The present invention relates to such methods of producing nanotubes and quantifying synthesis products.

发明概述根据本发明,提供用于生产碳纳米管的催化剂和方法,该方法能避免现有技术的缺陷和缺点。 SUMMARY OF THE INVENTION According to the present invention, there is provided a catalyst and a method for producing carbon nanotubes, the method can avoid drawbacks and disadvantages of the prior art. 具体地说,该方法包括在反应器单元中使金属催化粒子与有效量的含碳气体在足以催化生产碳纳米管的温度下接触,其中显著部分的碳纳米管是单壁碳纳米管,金属催化粒子包括除铁以外的族VIII金属和族VIb金属。 Specifically, the method includes a metal catalytic particles with an effective amount of a carbon-containing gas at a temperature sufficient to catalytically produce carbon nanotubes in contact with cells on the reactor, in which a significant portion of the carbon nanotubes are single-walled carbon nanotubes, metal In addition to iron catalytic particles including family VIII metals and family VIb metal.

另外,根据本发明,提供确定催化剂组成和反应条件的方法,以优化单壁碳纳米管的生产。 In addition, according to the present invention, there is provided a catalyst composition and reaction conditions to determine ways to optimize the production of single-walled carbon nanotubes. 具体地说,该方法包括在反应器单元中使含碳纳米管的产物样品与有效量的含氧气体接触以氧化样品中存在的碳,同时提高反应器单元内的温度。 Specifically, the method comprises a reactor cells on the sample of the product containing carbon nanotubes with an effective amount of oxygen-containing gas to oxidize carbon present in the sample, while increasing the temperature of the reactor unit. 检测由样品释放出的二氧化碳量,并通过在特定温度下从样品释放出的二氧化碳来确定样品中存在的特定碳物质。 Detected by the quantity of carbon dioxide released from the sample, at a specific temperature and by the release of carbon dioxide from the sample to determine the specific carbon species present in the sample. 改变催化剂组成和/或反应条件,直至单壁碳纳米管的存在量显著高于含碳纳米管的产物样品中的所有其它碳物质。 Changing the catalyst composition and / or the reaction conditions, until a single-walled carbon nanotubes present in an amount significantly higher than in the sample of the product containing the carbon nanotubes all other carbon species.

在本发明的一方面,金属催化粒子是沉积在载体例如二氧化硅上的双金属催化剂。 In one aspect of the present invention, the metal catalyst particles are deposited on the carrier bimetallic catalysts supported on silica for example. 在双金属催化剂中的族VIII金属与族VIb金属之比在约1∶5至约2∶1的范围内。 In bimetallic catalyst Group VIII metals than the Group VIb metal and is in the range of about 2 to about 1:5.

本发明的一个目的是提供一种以较大量和在较低温度下生产单壁碳纳米管的方法。 An object of the present invention is to provide a relatively large number of methods at lower temperatures and the production of single-walled carbon nanotubes.

本发明的另一个目的是提供定量地确定样品中存在的不同形式的碳,包括单壁碳纳米管、多壁碳纳米管以及无定形碳,进而确定特定催化剂的选择性和优化生产碳纳米管的反应条件的方法。 Another object of the present invention is to provide a quantitative determination of the sample in the presence of different forms of carbon, including single-walled carbon nanotubes, multi-walled carbon nanotubes and amorphous carbon, and to determine the selectivity of a particular catalyst and optimize the production of carbon nanotubes The reaction conditions of the method.

本发明的其它目的、特征和优点将从以下详细描述结合附图和所附权利要求中表现出来。 Other objects of the present invention, the following detailed features and advantages from the accompanying drawings and the appended claims manifested described.

附图简述图1是由通过在SiO2上的Co/Mo催化剂在约700℃下催化的CO歧化反应得到的单壁碳纳米管的透射电子显微图象(放大倍数约为100000)。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is made by CO disproportionation on SiO2 and Co / Mo catalyst at about 700 ℃ catalyzed single-walled carbon nanotubes obtained by transmission electron microscopy image (magnification of about 100,000).

图2是图1中所用样品在更高分辨率下的透射电子显微图象(放大倍数约为400000),显示单壁碳纳米管的束(SWNTs)。 Figure 2 is a sample used in the transmission electron microscope image at higher resolution (magnification of about 400,000), showing bundles of single-walled carbon nanotubes (SWNTs).

图3是图1中所用样品的透射电子显微图象,显示在束中增长的排列的单壁碳纳米管。 Figure 3 is a transmission electron microscopic image of the sample used in Figure 1, showing the single-walled carbon nanotubes growing in bundles arranged.

图4是图1中所用样品的透射电子显微图象,显示单壁碳纳米管束的端视图。 Figure 4 is a transmission electron microscopic image of the sample used in Figure 1, showing the single-walled carbon nanotube bundles end view.

图5是图1中所用样品的扫描电子显微图象,显示从催化表面增长出来的单壁碳纳米管束。 Figure 5 is a scanning electron microscopic image of the sample in Figure 1, showing an increase from the catalytic surface of single-walled carbon nanotube bundles.

图6是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线。 Figure 6 is a temperature programmed oxidation curve CO disproportionation reaction by Co:Mo / SiO2 catalyst at about 700 ℃ catalyzed product obtained.

图7是由在SiO2上的Co催化剂、在SiO2上的Mo催化剂和在SiO2上的Co∶Mo催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线。 Figure 7 is a temperature program curve by the oxidation of Co on SiO2 catalyst, Mo catalyst and Co:Mo catalyst on SiO2 in SiO2 at about 700 ℃ CO disproportionation catalyzed reaction of the product obtained.

图8是由在SiO2上的Co∶Mo催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变Co∶Mo的摩尔比。 Figure 8 is a temperature program curve CO oxidation reaction by disproportionation of Co:Mo on SiO2 catalyst at about 700 ℃ catalyzed resulting product, wherein the molar ratio of change Co:Mo.

图9是由Co∶Mo/SiO2催化剂催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变反应温度。 Figure 9 is a temperature program curve by the oxidation reaction of CO disproportionation Co:Mo / SiO2 Catalyst the resulting product, wherein the reaction temperature is changed.

图10是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变在CO歧化反应中所用的含碳气体中CO的百分比。 FIG 10 is a temperature program curve CO disproportionation reaction by oxidation Co:Mo / SiO2 catalyst at about 700 ℃ catalyzed resulting product, wherein the percentage of carbon-containing gas used in CO disproportionation reaction in the CO changes.

图11是由Co∶Mo/SiO2催化剂在约700℃下催化的CO歧化反应得到的产物的温度程序氧化曲线,其中改变CO歧化反应的时间。 FIG 11 is a temperature program curve CO disproportionation reaction by oxidation Co:Mo / SiO2 catalyst at about 700 ℃ catalyzed resulting product, wherein the change in time of CO disproportionation reaction.

发明详述本发明涉及用于生产大量单壁碳纳米管的催化剂和方法,其中使有效量的含碳气体在较低温度下通过包括至少一种族VIII金属和至少一种族VIb金属的双金属催化粒子;和涉及能可靠地定量检测在含碳纳米管的产物中单壁碳纳米管产率的方法。 DETAILED DESCRIPTION The present invention is a catalyst and a process for producing a large number of single-walled carbon nanotubes relates, in which the effective amount of at least two-metal-catalyzed carbon-containing gas VIII metal and at least one race a race VIb metal at lower temperatures by including and quantitative methods involve reliably detect products containing carbon nanotubes SWNT yield; particles.

具体地说,用于生产单壁碳纳米管的方法包括使包括族VIII金属和族VIb金属的双金属催化粒子与有效量的含碳气体在被加热到约500-1200℃温度的反应器中接触,优选约600-850℃,更优选约650-750℃,最优选约700℃。 Specifically, the method includes the production of single-walled carbon nanotubes make bimetallic catalytic particles and carbon-containing gases include family VIII metals and family VIb effective amount of metal is heated to a temperature of about 500-1200 ℃ reactor used in contact, preferably about 600-850 ℃, more preferably about 650-750 ℃, most preferably from about 700 ℃. 含碳气体可以连续地供应到反应器中,或含碳气体可以在静止气氛中保持在反应器中。 Carbon-containing gas may be continuously supplied to the reactor, or a carbon-containing gas in the reactor can be maintained in a stationary atmosphere.

本文所用的词语“有效量的含碳气体”指存在的足量的气态碳物质,以使碳在如下所述的较高温度下沉积在金属催化粒子上,从而形成碳纳米管。 As used herein the term "effective amount of a carbon-containing gas" refers to the presence of a sufficient amount of gaseous carbon species to the carbon at elevated temperature as described below is deposited on the metallic catalytic particles, thereby forming a carbon nanotube.

本文所用的金属催化粒子包括催化剂组分。 Metal catalytic particles used herein include a catalyst component. 本发明提供和使用的催化剂是双金属的。 The present invention is the provision and use of the bimetallic catalyst. 双金属催化剂含有至少一种选自族VIII的除铁以外的金属,包括Co、Ni、Ru、Rh、Pd、Ir、Pt及其混合物,和含有至少一种选自族VIb的金属,包括Cr、W、Mo及其混合物。 Bimetallic catalyst contains at least one metal other than iron is selected from Group VIII of the addition, including Co, Ni, Ru, Rh, Pd, Ir, Pt and mixtures thereof, and containing at least one metal selected from Group VIb including Cr , W, Mo, and mixtures thereof. 可用于本发明的双金属催化剂的具体实例包括Co-Cr、Co-W、Co-Mo、Ni-Cr、Ni-W、Ni-Mo、Ru-Cr、Ru-W、Ru-Mo、Rh-Cr、Rh-W、Rh-Mo、Pd-Cr、Pd-W、Pd-Mo、Ir-Cr、Ir-W、Ir-Mo、Pt-Cr、Pt-W和Pt-Mo。 Specific examples of the present invention can be used in the bimetallic catalysts include Co-Cr, Co-W, Co-Mo, Ni-Cr, Ni-W, Ni-Mo, Ru-Cr, Ru-W, Ru-Mo, Rh- Cr, Rh-W, Rh-Mo, Pd-Cr, Pd-W, Pd-Mo, Ir-Cr, Ir-W, Ir-Mo, Pt-Cr, Pt-W, and Pt-Mo. 本发明特别优选的催化剂包括Co-Mo、Co-W、Ni-Mo和Ni-W。 The present invention is particularly preferred catalysts include Co-Mo, Co-W, Ni-Mo and Ni-W.

双金属催化剂的两种金属组分之间存在增效作用,因为与含有族VIII金属或族VIb金属之一作为催化剂的金属催化粒子相比,含有双金属催化剂的金属催化粒子对于生产单壁碳纳米管更有效。 Bimetallic catalysts exist between the two metal components synergies, as one of the family or clan VIb VIII metals as compared to metal-containing catalytic metal particles of the catalyst, the metal catalyst particles containing bimetallic catalysts for the production of single-walled carbon nanotubes more effective. 该双金属催化剂的增效作用将在下面更详细地描述。 Synergism The bimetallic catalyst will be described in more detail below.

在金属催化粒子中族VIII金属与族VIb金属之比还影响本发明方法生产单壁碳纳米管的选择性。 VIII metal particles than the family and the family of metal-catalyzed VIb metal also affects the production method of the present invention SWNT selectivity. 族VIII金属与族VIb金属之比优选是约1∶10至约15∶1,更优选是约1∶5至约2∶1。 VIII metal and family than family VIb metals is preferably from about 1:10 to about 15, more preferably from about 2 to about 1:5. 一般来说,在用于选择性地生产单壁碳纳米管的金属催化粒子中,族VIb金属(例如Mo)的浓度将超过族VIII金属(例如Co)的浓度。 In general, for the selective production of single-walled carbon nanotubes catalytic metal particles, family VIb metal (eg Mo) concentration will exceed ethnic VIII metals (such as Co) concentrations.

金属催化粒子可以含有选自族VIII和族VIb两者的一种以上金属,只要存在至少一种选自其中每个族的金属即可。 Metal catalytic particles may contain selected from Group VIII and Group VIb of both one or more metals, as long as there is at least one metal which can be selected from each family. 例如,金属催化粒子可以含有(1)一种以上的族VIII金属和一种族VIb金属,(2)一种族VIII金属和一种以上的族VIb金属,或(3)一种以上的族VIII金属和一种以上的族VIb金属。 For example, the metal catalyst particles may contain (a) one or more family VIII metal and a race VIb metal, (2) a race VIII metal and one or more family VIb metal, or (3) one or more family VIII metal and one or more family VIb metal.

双金属催化剂可以通过简单地将两种金属混合而制成。 Bimetallic catalyst may be by simply mixing the two metals made. 双金属催化剂还可以通过分解前体化合物而就地形成,前体化合物例如是二(环戊二烯基)钴或二(环戊二烯基)钼的氯化物。 Bimetallic catalyst can also decompose the precursor compound and form in situ, a precursor compound, for example, bis (cyclopentadienyl) cobalt or bis (cyclopentadienyl) molybdenum chloride.

催化剂优选沉积在载体上,载体例如是二氧化硅(SiO2)、MCM-41(Mobil结晶材料-41)、氧化铝(Al2O3)、MgO、Mg(Al)O(铝稳定的氧化镁)、ZrO2、分子筛沸石或本领域公知的其它氧化载体。 The catalyst is preferably deposited on the carrier, the carrier, for example, silicon dioxide (SiO2), MCM-41 (Mobil crystalline material -41), aluminum oxide (Al2O3), MgO, Mg (Al) O (aluminum stabilized magnesium oxide), ZrO2 , molecular sieve zeolite or other known in the art oxide support.

金属催化粒子,即沉积在载体上的催化剂,可以通过在平面基质如石英、玻璃、硅以及氧化硅表面上按照本领域一般技术人员公知的方式蒸发金属混合物而制成。 Metal catalytic particles, i.e. catalyst deposited on the carrier, can be obtained by a plane substrate, such as quartz, glass, silicon and silicon oxide surface made in accordance with those of ordinary skill in known manner evaporated metal mixture.

沉积在载体上的双金属催化剂的总量可以在宽范围内变化,但通常占金属催化粒子总重量的约1-20%,更优选占金属催化粒子总重量的约3-10%。 The total amount deposited on the carrier of the bimetallic catalyst can vary within wide limits, but typically comprise from about 1-20% of the total weight of the metal catalyst particles, more preferably from about 3-10% of the total weight of the metal catalyst particles.

在本发明的另一种实施方案中,双金属催化剂可以不沉积在载体上,在这种情况下,金属组分含有基本上约100%的金属催化粒子。 In another embodiment of the present invention, the bimetallic catalyst may not be deposited on the carrier, in this case, the metal component comprises a substantially about 100% of the metal catalyst particles.

合适的含碳气体的实例包括:饱和的和不饱和的脂族烃,例如甲烷、乙烷、丙烷、丁烷、己烷、乙烯和丙烯;一氧化碳;氧化的烃,例如丙酮、乙炔和甲醇;芳族烃,例如甲苯、苯和萘;以上物质的混合物,例如一氧化碳和甲烷。 Examples of suitable carbon-containing gases include: saturated and unsaturated aliphatic hydrocarbons, such as methane, ethane, propane, butane, hexane, ethylene and propylene; carbon monoxide; oxidation of hydrocarbons, such as acetone, acetylene and methanol; aromatic hydrocarbons, such as toluene, benzene and naphthalene; a mixture of more substances, such as carbon monoxide and methane. 使用乙炔能促进形成多壁碳纳米管,而CO和甲烷是用于形成单壁碳纳米管的优选进料气体。 Acetylene can promote the formation of multi-walled carbon nanotubes, while CO and methane are preferred for the formation of single-walled carbon nanotubes feed gas. 含碳气体可以任选地与稀释剂气体混合,例如氦气、氩气或氢气。 Carbon-containing gas may optionally be mixed with a diluent gas, such as helium, argon or hydrogen.

在本发明的优选实施方案中,双金属催化粒子置于反应器单元内,例如置于炉或烘箱中的石英管,将含碳气体通入反应器单元内。 In a preferred embodiment of the present invention, the bimetallic catalytic particles are disposed within the reactor unit, e.g., placed in a furnace or oven in a quartz tube, the carbon-containing gas is introduced into the reactor unit. 或者,样品可以通过微波辐射加热。 Alternatively, the sample can be heated by microwave radiation. 该方法可以是连续的,其中金属催化粒子和含碳气体连续地进料和在反应器内混合,或该方法可以是间歇方法,其中含碳气体和金属催化粒子置于反应器单元内,并在反应期间保留在反应器单元内。 The method may be continuous, wherein the metallic catalytic particles and carbon-containing gas is continuously fed and mixed, or the process in the reactor can be a batch process, wherein the carbon-containing gas and the metal catalyst particles placed inside the reactor unit, and during the reaction remains in the reactor unit.

或者,金属催化粒子可以与电弧放电系统中的电极混合,以生产单壁碳纳米管和/或多壁碳纳米管。 Alternatively, the metal catalyst particles can be mixed with the electrode arc discharge system to produce single-walled carbon nanotubes and / or multi-walled carbon nanotubes. 或者,可以在暴露于微波诱导等离子体放电的系统中使用金属催化粒子。 Alternatively, you can use the metal catalyst particles exposed to microwave-induced plasma discharge system. 在完成催化过程之后,从反应器中取出金属催化粒子和纳米管。 After completion of the catalytic process, the metal catalyst particles and remove the nanotubes from the reactor. 通过本领域普通技术人员公知的方法从金属催化粒子中分离出纳米管。 Separated nanotubes by those of ordinary skill in methods well known from the metal catalyst particles. 在此处,没有必要进一步讨论从金属催化粒子中分离出碳纳米管的这种方法。 Here, there is no need for further discussion of this method of separating the carbon nanotubes from the metallic catalytic particles.

此处制得的单壁碳纳米管通常具有外径为约0.7-5纳米。 Here prepared SWNTs typically has an outer diameter of about 0.7-5 nm. 此处制得的多壁碳纳米管通常具有外径为约2-50纳米。 Here prepared MWCNTs typically has an outer diameter of about 2-50 nm.

用于对单壁碳纳米管进行可靠的定量检测方法是直接的和易于进行的,从而可以检测到选择性或稳态生产的变化,使重现性和质量控制易于实现。 Single-walled carbon nanotubes for reliable quantitative detection method is straightforward and easy to perform, and thus can detect changes in the steady-state production of selective or make reproducibility and quality control is easy to implement. 该方法基于温度程序氧化(TPO)技术(Krishnankutty,N等,Catalysis Today,37,295(1997))。 The method is based on temperature program oxidation (TPO) technique (Krishnankutty, N, etc., Catalysis Today, 37,295 (1997)). 该技术通常用于评估碳的结晶性,并基于这样的概念,即与具有短程结晶有序的材料相比,高度石墨材料的抗氧化性将更强。 This technique is commonly used to assess the crystallinity of carbon and is based on the concept that as compared with a material having a short-range crystalline order, the oxidation resistance of highly graphitic materials will be stronger. 在本发明中,采用该技术来提供一种确定相对于多壁碳纳米管的生产单壁碳纳米管的选择性的方法,以及由每种碳物质占总固体产物的百分比,每种碳物质不仅包括单壁碳纳米管和多壁碳纳米管,而且包括无定形碳和石墨碳物质。 In the present invention, the use of the technology to provide an alternative method for determining the production of single-walled carbon nanotubes multi-walled carbon nanotubes, and the percentage of the total carbon material from each of the solid product with respect to each carbon material includes not only the single-walled carbon nanotubes and multi-walled carbon nanotubes, but also includes amorphous carbon and graphite carbon material. 所以,该方法与上述碳纳米管的生产方法相结合,将允许受控地生产单壁碳纳米管。 Therefore, the method and production method of the carbon nanotubes combined, will allow the controlled production of single-walled carbon nanotubes. 但是,应该理解的是,该方法还能用于分析任何含有碳纳米管的样品。 However, it should be understood that the method can also be used to analyze any sample containing carbon nanotubes.

具体地说,该方法包括使分散在载体气体中的含氧气体连续流,例如在氦气中的5%氧气,通过含碳纳米管的样品,例如含碳沉积物的催化剂,同时使温度从室温线性升高到约800℃。 Specifically, the method includes dispersed in a carrier gas containing gas continuous flow, for example, in 5% oxygen in helium, through the sample containing the carbon nanotubes, such as a catalyst containing carbon deposits, while the temperature from linear temperature rises to about 800 ℃. 含氧气体的量能够有效地氧化在样品中存在的碳物质。 Amount of oxygen-containing gas can be effectively oxidized in a carbon material present in the sample. 碳物质的氧化导致生成二氧化碳,每种碳物质,例如单壁或多壁碳纳米管、无定形碳或石墨,在不同的温度下被氧化。 Material results in the generation of carbon monoxide carbon dioxide, each carbon material, such as single-walled or multi-walled carbon nanotubes, amorphous carbon or graphite, at different temperatures is oxidized. 通过样品中存在的每种碳物质的氧化作用生成的二氧化碳由质谱监测。 Generated by the action of oxidation of the sample of each carbon species present in the carbon dioxide monitoring by mass spectrum. 所生成的二氧化碳通过用已知量的纯二氧化碳的脉冲和已知量的石墨的氧化来校正,从而直接检测在各温度下被氧化的碳的量。 The carbon dioxide generated by oxidation of the graphite pulse and a known amount of a known amount of pure carbon dioxide to correction amount at each temperature thus oxidized carbon direct detection. 也就是说,由质谱测得的1摩尔二氧化碳对应于1摩尔在给定温度下被氧化的特定种类的碳。 That is, by the mass of one mole of carbon dioxide measured by a specific type of carbon to 1 mol at a given temperature corresponding to the oxidation.

采用温度程序氧化的定量方法在下文中称作温度程序氧化方法,该方法特别适用于定量表征单壁碳纳米管,这是因为单壁碳纳米管在较窄的温度范围内被氧化,该温度范围处于无定形碳的氧化温度以上,且处于多壁碳纳米管和石墨碳的氧化温度以下。 Temperature program using quantitative methods oxidation temperature program referred to in the following oxidation process, the method is particularly suitable for the quantitative characterization of single-walled carbon nanotubes because single-walled carbon nanotubes are oxidized in a narrow temperature range, the temperature range in amorphous carbon oxidation temperature or higher, and in a multi-walled carbon nanotubes and graphitic carbon oxidation temperature. 例如,通过该方法,测得单壁碳纳米管的氧化温度比C60富勒烯的氧化温度高出约100℃,且比多壁碳纳米管的氧化温度低约100℃。 For example, by this method, the measured temperature oxidation of single-walled carbon nanotubes are higher than the C60 fullerene oxidation temperature of about 100 ℃, and lower than the multi-walled carbon nanotubes oxidation temperature of about 100 ℃. 通过热重分析法(TGA)得到相似的结果(Rinzler,AG等,Appl.Phys.A,67,29(1998)),确定该方法对于定量单壁碳纳米管的适用性。 Similar results were obtained by thermal gravimetric analysis (TGA) (Rinzler, AG, etc., Appl.Phys.A, 67,29 (1998)), to determine the applicability of the method for the quantification of single-walled carbon nanotubes.

此处所述的温度程序氧化分析方法可以用于快速检测不同的催化剂配方和碳纳米管生产方法的操作条件,以便优化单壁碳纳米管的生产。 Temperature programmed oxidation analysis method described here can be used for rapid detection of different catalyst formulations and operating conditions of the carbon nanotube production methods in order to optimize the production of single-walled carbon nanotubes. 例如,在金属催化粒子中存在的最佳双金属催化剂,以及两种金属的最佳摩尔比,可以通过温度程序氧化来确定。 For example, the optimum bimetallic catalyst present in the metallic catalytic particles, as well as the optimum molar ratio of the two metals, can be determined by temperature programmed oxidation. 温度程序氧化还可以用于优化反应条件,例如温度、时间和含碳气体中碳的浓度。 The temperature program can also be used to optimize the oxidation reaction conditions, such as temperature, time and concentration of carbon in the carbon-containing gas. 例如,在不同反应温度下产物的温度程序氧化结果显示,碳的沉积量随着温度的降低而增加,但对生产单壁碳纳米管的选择性在低温下较低。 For example, the temperature program results under different oxidation reaction temperature of the product showed that the amount of carbon deposition increases as the temperature decreases, but the selectivity for the production of single-walled carbon nanotubes at low temperatures. 所以,温度程序氧化可以用于发现对于任何特定催化剂的最佳反应温度。 Therefore, the oxidation temperature program can be used to find the optimum for any particular catalyst, the reaction temperature.

现在将理解的是,尽管已详细讨论了单壁碳纳米管生产的优化,但相同的方法可以用于优化多壁碳纳米管的生产。 Now it will be understood that, although has been discussed to optimize the production of single-walled carbon nanotubes in detail, but the same method can be used to optimize the production of multi-walled carbon nanotubes.

石墨、无定形碳和在催化过程中形成的其它碳残渣的量被最小化,这是因为使用了较低的温度。 Graphite, amorphous carbon other carbon residues formed during catalysis and is minimized, because the use of lower temperatures. 石墨或无定形碳的重量小于在该方法期间形成的总固体材料重量的约40%,更优选小于约10%。 By weight of graphite or amorphous carbon is less than about 40% by weight of the total solid material formed during the process, more preferably less than about 10%. 最优选,石墨、无定形碳和其它固体碳残渣的量小于催化过程的总固体产物的约5%。 Most preferably, the amount of graphite, amorphous carbon and other solid carbon residue of less than about 5% of the total solid product of the catalytic process.

此处所述的温度程序氧化方法看来是第一种能不仅确定样品中存在的碳物质、而且能确定样品中存在的每种碳物质百分比的方法。 Temperature program oxidation methods described herein appears to be able to determine not only the first carbon material present in the sample, but also determine the percent of each carbon species present in the sample method. 这特别有助于在单壁碳纳米管用于各种用途中之前确定应该采取何种纯化步骤(如果有的话)。 This is particularly helpful in a single-walled carbon nanotubes for various applications in the purification steps before deciding what (if any) should be taken. 因为与实际的碳纳米管生产本身相比,纯化步骤十分费时和昂贵,所以温度程序氧化方法的价值是显然的。 As compared with the actual carbon nanotube production itself, the purification step is very time consuming and expensive, it is apparent to the value of the temperature program oxidation process.

此处制得的碳纳米管可以用于各种用途。 Carbon nanotubes obtained here can be used for various purposes. 例如,它们可以用作纤维增强的复合材料结构或混杂复合材料结构(即除碳纳米管以外含有增强材料例如连续纤维的复合材料)中的增强材料。 For example, they may be used as the fiber-reinforced composite structures or hybrid composite structures (i.e., other than the carbon nanotube-containing material such as continuous fiber reinforced composite material) reinforcing material. 复合材料可以进一步含有填料,例如炭黑、二氧化硅及其混合物。 Composites may further contain fillers such as carbon black, silica and mixtures thereof. 可增强的基体材料的实例包括无机和有机聚合物、陶瓷(例如卜特兰水泥)、碳和金属(例如铅或铜)。 Examples of reinforced matrix materials include inorganic and organic polymers, ceramics (e.g., Portland cement), carbon, and metals (e.g., lead or copper). 当基体是有机聚合物时,可以是:热固性树脂例如环氧、双马来酰亚胺、聚酰亚胺、或聚酯树脂;热塑性树脂;或反应注射成型树脂。 When the matrix is an organic polymer, may be: a thermosetting resin such as epoxy, bismaleimide, polyimide, or polyester resin; a thermoplastic resin; or a reaction injection molding resin. 碳纳米管还可以用于增强连续的纤维。 Carbon nanotubes can also be used to enhance the continuous fibers. 可被增强或包括在混杂复合材料中的连续纤维的实例包括芳族聚酰胺、碳、玻璃纤维及其混合物。 Can be reinforced or included in hybrid composites are examples of continuous fibers include aramid, carbon, glass fibers, and mixtures thereof. 连续纤维可以是织造的、编织的、卷曲的或直接的。 Continuous fibers can be woven, knit, crimped, or direct.

本发明将通过以下实施例更详细地说明。 The present invention will be explained in more detail by the following examples. 但是,实施例仅仅用于说明本发明的理想方面,而不用于限制本发明的范围。 However, the described embodiments are merely for the ideal aspect of the present invention and are not intended to limit the scope of the invention.

实施例1:含有约10重量%在二氧化硅基质上的混合钴和钼(约1∶1比率)的双金属催化粒子通过初期润湿浸渍方法制备,其中使适宜量的硝酸钴和七钼酸铵四水合物一起溶解在去离子水中,然后逐步滴加在二氧化硅上。 Example 1: bimetallic catalytic particles containing about 10 wt% of silica on the substrate in a mixed cobalt and molybdenum (about 1:1 ratio) was prepared by initial wetting impregnation method, in which a suitable amount of cobalt nitrate and seven molybdenum ammonium tetrahydrate were dissolved in deionized water, and then gradually dropped on the silica. 陶瓷灰砂和研杵用于分散在二氧化硅上的金属。 Ceramic gray sand and pestle for metal dispersed on silica. 所得的双金属催化粒子然后于环境条件下干燥数小时。 The resulting bimetallic catalytic particles are then dried at ambient conditions for several hours. 被部分干燥的双金属催化粒子然后在烘箱中于约80℃下干燥约12小时。 Partially dried bimetallic catalytic particles then dried in an oven for about 12 hours at about 80 ℃. 干的双金属催化粒子然后在流动空气中于约450℃下煅烧。 Dry bimetallic catalytic particles and then calcined at a temperature of about 450 ℃ in flowing air.

为了生产碳纳米管,将约0.1克经煅烧的双金属催化粒子置于立式石英管反应器中,该反应器具有电弧内径为约8毫米。 For the production of carbon nanotubes, about 0.1 g after calcination bimetallic catalytic particles was placed in a vertical quartz tube reactor, the reactor having an arc inside diameter of about 8 mm. 装有经煅烧的双金属催化粒子的立式石英管反应器置于炉内,该炉配备有热电偶和温度控制。 Fitted with a vertical quartz tube reactor calcined bimetallic catalytic particles was placed in the furnace, the furnace is equipped with a thermocouple and temperature control. 使氢气(约85厘米3/分钟)从反应器顶部通入该反应器。 Hydrogen gas (about 85 cm 3 / min) through the top of the reactor into the reactor. 炉温是以约20℃/分钟的速率从室温线性升高到约450℃。 Furnace temperature is about 20 ℃ / min from room temperature at a rate linear to about 450 ℃. 在达到约450℃之后,将氢气流再通入反应器中约30分钟。 After reaching about 450 ℃, the hydrogen stream and then fed into the reactor for about 30 minutes. 反应器温度然后升高到在氦气中的约600-700℃。 The reactor temperature was then raised to in helium about 600-700 ℃. 然后,一氧化碳气体(约50%一氧化碳/50%氦气)以约100厘米3/分钟的流速通入反应器中。 Then, carbon monoxide gas (about 50% carbon monoxide / 50% helium) at about 100 cm 3 / minute flow rate into the reaction vessel. CO与经煅烧的双金属催化粒子的接触时间是约15分钟到约2小时。 The contact time of CO bimetallic catalytic particles and calcined from about 15 minutes to about 2 hours. 在经过上述接触时间之后,关闭该炉,并在氦气中将产物冷却到室温。 After the contact time, closing the furnace, and in the product was cooled to room temperature in helium.

反应之后,样品的颜色恢复到深黑色。 After the reaction, the sample was returned to deep black color. 为了对产物进行透射电子显微镜分析,将一部分产物悬浮在蒸馏水中,用超声波辐照。 To the product was analyzed by transmission electron microscopy, the portion of the product was suspended in distilled water and irradiated with ultrasonic wave. 将几滴该悬浮液沉积在承载在铜栅上的lacey碳上。 A few drops of this suspension is deposited on a copper grid hosting lacey carbon. 然后干燥一部分产物,并用JEOL JEM-2000FX型透射电子显微镜在约200KV下观察。 Portion of the product is then dried, and treated with JEOL JEM-2000FX transmission electron microscope at about 200KV observed. 如透射电子显微镜图象所示(图1-4),可以清晰地看到大量单壁碳纳米管。 Such as transmission electron microscopy images (Fig. 1-4), you can clearly see a lot of single-walled carbon nanotubes. 观察到这些单壁碳纳米管层叠在一起,粗略地排列成束。 These single-walled carbon nanotubes were observed stacked together, roughly arranged in bundles. 透射电子显微镜图象还显示,单壁碳纳米管的束被无定形碳所包覆,与其它方法相似。 Transmission electron microscope image also shows that single-walled carbon nanotube bundles are coated with amorphous carbon, similar to other methods. 大多数管具有约1纳米直径,少部分管具有较大的直径,最多约3.2纳米。 Most tube having a diameter of about 1 nm, a small tube having a larger diameter, up to about 3.2 nm.

在透射电子显微镜分析之后,用JEOL JSM-880型扫描电子显微镜扫描产物。 Following transmission electron microscopic analysis, using JEOL JSM-880 scanning electron microscope scanning product. 图5中的扫描电子显微镜图象显示在二氧化硅表面上的单壁碳纳米管的束。 Figure 5 is a scanning electron microscope image displayed on the silica surface of the single-walled carbon nanotube bundles.

实施例2:含有承载于二氧化硅上的Ni、Co或Mo单金属催化剂的金属催化粒子也通过与实施例1所述相同的方法制备,将其催化性能与含有双金属催化剂的金属催化粒子的催化性能进行比较。 Example 2: comprising silica supported on Ni, Co or Mo metal catalytic particles of single metal catalyst is prepared by the method of Example 1 with the same embodiment, the catalytic performance of catalytic particles containing the bimetallic metal catalyst The catalytic properties were compared. 在进行与实施例1所述相同的在700℃下CO处理之后,进行同样的透射电子显微镜分析,在这些样品中没有观察到单壁碳纳米管。 After performing the same procedure of Example 700 ℃ CO treated at the 1, and the same transmission electron microscopic analysis, in these samples was not observed in the single-walled carbon nanotubes. 该结果表示确实存在CO和Mo之间的增效作用使两种金属的结合成为很有效的配方,而在该温度下,单独的金属不能生产单壁碳纳米管。 This result indicates the existence of synergism between the CO and the bound Mo two metals become very effective formulation, and at this temperature, the metal does not produce individual single-walled carbon nanotubes.

实施例3:在不同的载体(SiO2、MCM-41、Al2O3、Mg(Al)O和ZrO2)上制备一系列含有约6重量%Co-Mo双金属催化剂的金属催化粒子,并比较其碳纳米管的生产能力,然后采用与实施例1相同的CO歧化方法。 Example 3: Preparation of a series containing about 6 wt% Co-Mo bimetallic catalyst of the metal catalyst particles, and carbon nano compared in different vectors (SiO2, MCM-41, Al2O3, Mg (Al) O and ZrO2) on pipe production capacity, and then in Example 1 using the same CO disproportionation method. 表I概括了这些实验的结果。 Table I summarizes the results of these experiments.

实施例4:按照与实施例1相同的步骤,观察到含有沉积在SiO2上的Co-W双金属催化剂的金属催化粒子,其中Co/W摩尔比为约1.0,得到与Co-Mo/SiO2金属催化粒子相似的单壁碳纳米管产率。 Example 4: Following the same procedure as in Example 1, was observed to the metal deposited on the catalytic particles containing SiO2 of Co-W bimetallic catalyst, wherein the Co / W molar ratio of about 1.0, obtained with the Co-Mo / SiO2 Metal SWNT yield similar catalytic particles. 在Co-Mo系列的情况下,观察到仅仅含有W/SiO2、但不含Co的金属催化粒子不能形成单壁碳纳米管。 In the case of Co-Mo series, it was observed containing only W / SiO2, but containing no Co metal catalyst particles can not form a single-wall carbon nanotubes.

实施例5:用温度程序氧化方法分析通过与实施例1所述相同的CO歧化方法用含有承载于二氧化硅上的约6重量%Co-Mo双金属催化剂(约1∶2比率)的金属催化粒子制成的碳物质,如图6所示。 Example 5: Analysis of the temperature programmed oxidation method by using Example% Co-Mo bimetallic catalyst (about 1:2 ratio) metal supported on a silica containing about 6 wt same CO disproportionation method of claim 1 catalytic particles made of a carbon material, as shown in Figure 6.

为了进行温度程序氧化分析,将由约700℃下CO处理产物得到的约50毫克样品放置在与实施例1所用相似的石英管反应器中。 In order to carry out the oxidation temperature program analysis, by the CO for about 50 mg sample of the product was placed in a manner similar to that used in Example quartz tube reactor 1 at about 700 ℃. 将约5%氧气/95%氦气的连续流通入反应器中,炉温以约11℃/分钟的速率从室温升高到约800℃,然后在约800℃保持约1小时。 The continuous flow of about 5% oxygen / 95% helium into the reactor, the furnace temperature at a rate of about 11 ℃ / min from room temperature to about 800 ℃, then maintained at about 800 ℃ for about 1 hour. 所形成的CO2用质谱检测,以确定在各温度下被氧化的碳物质的量。 CO2 formed by mass spectrometry to determine the amount of carbon material at each temperature is oxidized.

质谱检测CO2在石英管内的分压,得到绝对值。 Mass CO2 partial pressure detected in a quartz tube to obtain an absolute value. 然后通过减去基线值来归一化该值,在用约100微升CO2脉冲和已知量的石墨氧化校正之后计算。 Then by subtracting the baseline value to normalize the value, after about 100 microliters with a known amount of CO2 pulses and oxidation of the graphite correction calculation. 调节后的值与在特定温度下被氧化的CO2摩尔量直接成比例,后者又与样品中存在的特定碳物质的摩尔量直接成比例。 Value of the molar amount of CO2 being oxidized at a particular temperature is directly proportional to the regulated, the molar amount of a particular carbon species present in the sample which in turn is directly proportional. 从这些数值可以计算催化方法总固体产物中的单壁碳纳米管百分比。 These values can be calculated from the percentage of carbon nanotubes catalytic methods of total solid product of single-walled.

在Co∶Mo/SiO2金属催化粒子(标为“Co∶Mo 1∶2”)上制得的碳物质的温度程序氧化曲线表示为其中心处于约330℃的小氧化峰,该峰归属于无定形碳的氧化,以及其中心处于约510℃的主要峰,该峰在图中由箭头标出,并归属于单壁碳纳米管的氧化。 In Co:Mo / SiO2 metallic catalytic particles (labeled "Co:Mo 1:2") on the temperature program of the obtained carbon material as its center in the oxidation curve shows a small peak at about 330 ℃ oxidation, which is attributable to the non-peak amorphous carbon oxidation, and its center is the main peak at about 510 ℃, which peaks in the figure indicated by the arrow, and attributed to the oxidation of single-walled carbon nanotubes.

两个参比样品也通过温度程序氧化方法观察,其曲线如图6所示。 Two reference samples were also observed by a temperature programmed oxidation method, which curve shown in Figure 6. 第一个参比样品(标为“石墨”)是与Co∶Mo/SiO2金属催化粒子进行物理混合的石墨粉。 The first reference sample (labeled "Graphite") is Co:Mo / SiO2 metallic catalytic particles physically mixed graphite powder. 这种形式的碳的氧化在很高的温度下进行,开始为约700℃,在约800℃保持约30分钟之后完成。 This form of carbon oxide at high temperatures, beginning from about 700 ℃, maintained at about 800 ℃ complete after about 30 minutes.

第二个参比样品是纯化的单壁碳纳米管的商业样品,购自TubesRice(Rice University,Houston,Texas)。 The second reference sample is a commercial sample of purified single-walled carbon nanotubes, purchased from TubesRice (Rice University, Houston, Texas). 该样品以约5.9克/升含有非离子表面活性剂Triton X-100的液体悬浮液形式提供。 The sample was about 5.9 g / liter of a nonionic surfactant Triton X-100 is provided in the form of a liquid suspension. 为了进行温度程序氧化分析,Co∶Mo/SiO2金属催化粒子用单壁碳纳米管悬浮液浸渍,其中液体/催化剂的重量比率为约1∶1,以便得到在样品上的约0.6重量%单壁碳纳米管。 In order to carry out the oxidation temperature program analysis, Co:Mo / SiO2 metallic catalytic particles is impregnated with a suspension of single-walled carbon nanotubes, wherein the liquid / catalyst weight ratio is about 1, so as to obtain the sample of about 0.6 wt% single-wall carbon nanotubes. 经浸渍的样品(标为“TubesRice”)的温度程序氧化曲线显示两个峰,低温峰对应于表面活性剂的氧化,第二个峰处于约510℃,完全对应于单壁碳纳米管的氧化。 After impregnation the sample (labeled as "TubesRice") oxidation temperature program curve shows two peaks, the peak corresponding to the low-temperature oxidation of the surfactant in the second peak at about 510 ℃, exactly corresponding to the single-walled carbon nanotube oxidation. 为了确定第一个峰确实归属于表面活性剂的氧化,制备具有相同浓度的仅含表面活性剂的空白溶液的样品。 In order to determine the first peak is indeed attributable to the oxidation of the surfactant, a sample was prepared with the same concentration of surfactant containing only blank solution. 其温度程序氧化曲线(标为“空白溶液”)符合“TubesRice”曲线的第一个峰,证明该峰确实对应于表面活性剂Triton。 The oxidation temperature program curve (labeled "Blank solution") in line "TubesRice" first peak curve, show that the peak actually corresponds to the surfactant Triton.

通过温度程序氧化方法从CO2对“TubesRice”参比样品中的单壁碳纳米管的量进行定量,得到约0.64重量%的值,这很好地符合在样品中承载的单壁碳纳米管的量(约0.6重量%)。 From CO2 for "TubesRice" parameter in the sample than the single-walled carbon nanotubes quantified by temperature programmed oxidation method to obtain a value of about 0.64 wt%, which is well in line with single-walled carbon nanotubes in the sample carried tube amount (about 0.6 wt%). 该结果证明本发明的温度程序氧化方法可以用于直接定量特定碳物质的百分比,例如由纳米管生产方法得到的产物中存在的单壁碳纳米管、多壁碳纳米管和无定形碳。 This result demonstrates that the temperature of the oxidation process of the present invention, the program may be used to quantitate directly the percentage of a particular carbon species, such as single-walled carbon nanotube product produced by the method of nanotubes obtained in the presence of multi-walled carbon nanotubes and amorphous carbon. 目前,还没有其它能直接定量特定碳物质占纳米管生产所得总固体产物的分数的方法。 Currently, there is no other direct quantitative specific carbon material accounting fraction obtained by the method of production of nanotubes total solid product.

实施例6:由含有承载于二氧化硅上Co或Mo单金属催化剂的金属催化粒子催化的CO歧化所得产物的温度程序氧化曲线用实施例5的方法得到,并与由双金属催化剂催化的CO歧化所得产物的温度程序氧化曲线进行比较。 Example 6: curve by temperature programmed oxidation catalysis containing Co or Mo supported on a single metal catalyst metal catalytic particles on silica using CO disproportionation of the resulting product obtained by the method in Example 5, and with the bimetallic catalyst by the catalytic CO temperature program curve disproportionation oxidation resulting product were compared. 温度程序氧化方法清楚地证明Co和Mo所显示的增效作用,这在实施例2中也由透射电子显微镜观察到。 Temperature programmed oxidation method clearly demonstrate synergism displayed Co and Mo, which was also observed in 2 by a transmission electron microscope to the embodiment.

如图7所示,含有Mo/SiO2金属催化粒子的样品(标为“Mo”)的温度程序氧化曲线表明单独的Mo不能生产碳纳米管;“Mo”温度程序氧化曲线仅仅包括小的低温峰,对应于无定形碳。 7, the oxidation temperature program curve samples Mo / SiO2 metallic catalytic particles containing the (labeled "Mo") indicates that Mo alone does not produce carbon nanotubes; "Mo" Temperature program oxidation curve comprises only a small lower temperature peak , corresponding to the amorphous carbon. 相似地,含有Co/SiO2金属催化粒子的样品(标为“Co”)的温度程序氧化曲线表明单独的Co对生产单壁碳纳米管没有选择性,并主要生成石墨碳和多壁碳纳米管,如上所述,其在比单壁碳纳米管更高的温度下氧化。 Similarly, a sample containing Co / SiO2 metallic catalytic particles (labeled as "Co") program oxidation temperature curve shows a single Co for the production of single-walled carbon nanotubes is not selective, and primarily generates carbon graphite and multi-walled carbon nanotubes As described above, oxidation at higher than the temperature of the single-walled carbon nanotubes. 相比之下,两种金属的组合得到对单壁碳纳米管的高选择性,含有Co∶Mo/SiO2金属催化粒子的样品(标为“Co∶Mo=1∶2”,其中Co∶Mo比率是约1∶2)显示其中心位于约510℃的大峰,归属于单壁碳纳米管。 In contrast, the combination of the two metals to obtain a high selectivity for single-walled carbon nanotubes, sample Co:Mo / SiO2 metallic catalytic particles (labeled "Co:Mo = 1:2" contain, among Co:Mo ratio is approximately 1:2) to display its center in a large peak at about 510 ℃, and attributable to single-walled carbon nanotubes. 因为没有其它明显的峰,所以可以假设单壁碳纳米管占碳纳米管生产所得总固体产物的大部分百分比。 Because there is no other obvious peaks, it can be assumed that the percentage of single-walled carbon nanotubes accounted for most of the resulting solid product of the total production of carbon nanotubes.

在催化产物中存在的单壁碳纳米管、无定形碳、多壁碳纳米管和石墨的百分比列于表II中,其中所有数字和测量值是近似值。 In the presence of a catalytic product of single-walled carbon nanotubes, the percentage of amorphous carbon, multi-walled carbon nanotubes and graphite are shown in Table II, in which all the numbers and measurements are approximate.

实施例7: Example 7:

将由含有Co∶Mo双金属催化剂的金属催化粒子催化的CO歧化产物的温度程序氧化曲线进行比较,其中Co∶Mo比率为约1∶4、约1∶2、约1∶1和约2∶1,以确定改变Co∶Mo/SiO2金属催化粒子中Co∶Mo摩尔比的作用。 Temperature program curve CO disproportionation product of the oxidation by the metal catalytic particles containing the bimetallic catalyst Co:Mo catalytic compare wherein Co:Mo ratio is from about 1:4, about 1:2, about 1:1 about 2:1, to determine the change Co:Mo / SiO2 metallic catalytic particles role Co:Mo molar ratio. 通过与实施例5所述相同的方法得到温度程序氧化曲线。 5 the same method as the oxidation temperature program curve obtained by Example. 如图8所示,含有Co∶Mo摩尔比为约1∶2和约1∶4的Co∶Mo/SiO2金属催化粒子显示对单壁碳纳米管的最高选择性。 Figure 8 contains Co:Mo molar ratio is about 1:2 about 1:4 of Co:Mo / SiO2 metallic catalytic particles showed the highest selectivity for single-walled carbon nanotubes. 箭头表示对应于单壁碳纳米管氧化的峰中心。 The arrow indicates the oxidation corresponding to the SWNT peak center. 这些样品的温度程序氧化曲线表明这些催化剂制得大部分单壁碳纳米管和少量无定形碳。 Temperature program oxidation curves of these samples indicate that these catalysts prepared and a small amount of most of SWNT amorphous carbon. Co∶Mo比率的增加不会提高单壁碳纳米管的产率,但确实加速形成多壁碳纳米管和石墨碳,如在标为“Co∶Mo=2∶1”的程序温度氧化曲线的约600-700区域中的峰尺寸增加所示。 Co:Mo rate increase will not increase the yield of single-walled carbon nanotubes, but it does speed up the formation of multi-walled carbon nanotubes and graphite, as labeled "Co:Mo = 2:1" program temperature oxidation curves about 600-700 region peak size increases as shown.

从图8的程序温度氧化曲线估计每种催化剂的选择性值,并列于表III中,其中所有数字和测量值是近似值。 Temperature of the oxidation curve estimation routine of Fig. 8 from the selectivity values for each catalyst listed in Table III, wherein all the numbers and measurements are approximations.

实施例8:图9-11表明采用温度程序氧化技术来优化反应条件。 Example 8: Figures 9-11 show that the use of temperature programmed oxidation techniques to optimize the reaction conditions. CO歧化反应用Co∶Mo/SiO2金属催化粒子(约1∶1摩尔比)催化,且所用的方法与实施例1中所述相似,不同的是在图9中改变反应温度,在图10中改变CO的浓度,在图11中改变反应时间。 CO disproportionation catalyzed method Co:Mo / SiO2 metallic catalytic particles (about 1 molar ratio), and as used in Example 1 in a similar, except that the reaction temperature was changed in FIG. 9, in FIG. 10 varying the concentration of CO, the reaction time was changed in FIG. 11. CO歧化产物用实施例5所述的温度程序氧化方法分析。 CO disproportionation product was analyzed by temperature programmed oxidation method embodiment described in Example 5.

在图9中,显示当反应器温度为约600℃、约700℃和约800℃时制得的碳物质的温度程序氧化曲线。 In Figure 9, is displayed when the reactor temperature is about 600 ℃, temperature program from about 700 ℃ and about 800 ℃ carbon material obtained when an oxidation curve. 这些曲线证明碳的沉积量随着温度的降低而增加;但是在较低的温度下,对单壁碳纳米管的选择性较低。 These curves prove that the amount of carbon deposition increases with decreasing temperature; but at a lower temperature, the selectivity of single-walled carbon nanotubes is low. 温度程序氧化可以用于确定任何特定催化剂的最佳反应温度,在这种情况下,最佳温度是约700℃。 The temperature program can be used to determine any optimum oxidation reaction temperature of a specific catalyst in this case, the optimum temperature is about 700 ℃. 单壁碳纳米管、无定形碳、多壁碳纳米管和石墨占催化产物的百分比列于表IV中,其中所有的数字和测量值是近似值。 Single-walled carbon nanotubes, amorphous carbon, graphite multi-walled carbon nanotubes and the percentage accounted for catalytic product are shown in Table IV, in which all the numbers and measurements are approximate.

在图10中,显示当含碳气体中CO浓度为约1%、约20%、约35%和约50%时制得的碳物质的温度程序氧化曲线。 In Figure 10, displayed when the carbon-containing gas in the CO concentration of about 1% to about 20%, temperature program and about 50% to about 35% carbon material obtained by oxidation of the curve. 这些曲线证明单壁碳纳米管的产量与含碳气体中CO浓度有很大的关系。 These curves prove SWNT yield and carbon-containing gas in the CO concentration of a great relationship.

在图11中,显示当反应时间为约3分钟、约10分钟和约1小时时制得的碳物质的温度程序氧化曲线。 In Figure 11, the display when the reaction time is about 3 minutes, about 10 minutes when the temperature program and about 1 hour to obtain a carbon material oxidation curve. 反应时间指使反应器保持在约700℃且CO与金属催化粒子接触的时间。 The reaction time ordered reactor was maintained at about 700 ℃ time in contact with CO and metal catalyst particles. 这些温度程序氧化曲线证明单壁碳纳米管的产率在第一个大约10分钟期间随着时间的延长而显著增加,但超过该时间后,增长的幅度不太显著。 The temperature program oxidation yield curve proved SWNT in the first period of about 10 minutes with time significantly increased, but after this time, the growth rate was significantly less.

现在应该理解的是,温度程序氧化方法是一种催化方法,其中样品中存在的金属催化了碳物质的氧化。 Should now be appreciated that the temperature program a catalytic oxidation process is a method wherein the metal present in the sample catalyze the oxidation of carbon material. 所以,如果催化剂的性质显著改变,则氧化峰的位置可以从上述实施例所述的峰位置发生位移,尽管该峰所表示的碳结构是相同的。 Therefore, if the nature of the catalyst is significantly changed, the position of the oxidation peaks may be displaced from the peak position according to the embodiment, even though the carbon structures represented by the peaks are the same. 例如,已观察到,催化剂载体的改变可以导致这种位移。 For example, it has been observed, the catalyst support can lead to changes such displacement. 所以,对于本发明方法中所用的每种催化剂,催化剂的完整温度程序氧化曲线以及操作条件应该用适宜的参比来进行,以确定峰的位移以及最佳操作条件。 Therefore, for each catalyst used in the process of this invention, the catalyst for the full oxidation temperature program curve and operating conditions should be suitable to the reference, to determine the peak displacement and optimum operating conditions.

实施例9:在本发明方法的一个特别优选的实施方案中,催化剂组成是Co-Mo/二氧化硅催化剂,其中Co∶Mo摩尔比为约1∶2。 Example 9: In a particularly preferred embodiment of the method of the invention, the catalyst composition is a Co-Mo / silica catalyst, wherein the molar ratio is about 1:2 Co:Mo. 单金属Co催化剂或具有较高Co∶Mo摩尔比的催化剂倾向于得到低的选择性,显著制得不利的多壁碳纳米管和石墨。 Co single metal catalysts or catalyst has a higher molar ratio Co:Mo tend to get low selectivity obtained significant disadvantage of multi-walled carbon nanotubes and graphite. 在研究的温度范围内,在没有Co的情况下,Mo基本上对纳米管生产呈惰性。 In the temperature range investigated, without Co,, Mo substantially inert to the production of the nanotubes. 催化剂在氢气中进行预处理,例如在约500℃下,以便部分还原Mo,但不还原Co。 The catalysts were pretreated in hydrogen, for example at about 500 ℃, in order to partially reduced Mo, but does not restore Co. 在没有该预处理步骤的情况下,或在较高温度下进行预还原的情况下(即,不足以还原或过多的还原),催化剂没有效果,且生成较少的SWNT。 In the case where there is no case where pre-treatment step, or pre-reduced at higher temperatures (i.e., not enough reduction or too much reduction) the catalyst has no effect, and generate less SWNT. 其它载体例如氧化铝可以导致差的Co-Mo相互作用,使选择性和产率受到损失。 Other carriers such as alumina may result in poor Co-Mo interaction, so that the selectivity and yield suffer.

高空速(在约30000小时-1以上)是优选的,以使CO2的浓度最小化,CO2是反应的副产物,它抑制向纳米管的转化。 High space velocity (above about 30,000 hours -1) is preferred to minimize the concentration of CO2, CO2 is a byproduct of the reaction, it inhibits the conversion to nanotubes. 高的CO浓度是优选的,以使无定形碳沉积物的形成最小化,因为这种沉积物的形成在低CO浓度下发生。 High CO concentration is preferred so that the formation of amorphous carbon deposits are minimized because the formation of such deposits occur at low CO concentrations. 优选的温度范围的特征在于,低于约650℃时,对SWNT的选择性低;而高于约850℃时,转化率低,这是因为反应的可逆性(放热)和催化剂的去活化。 The preferred temperature range is characterized in that, below about 650 ℃, the selectivity of the SWNT is low; and above about 850 ℃, conversion is low, because the reversible reaction (exothermic) and the deactivation of the catalyst . 所以,最佳温度为约700-800℃;更优选为约725-775℃,和最优选约750℃。 Therefore, the optimum temperature is about 700-800 ℃; more preferably about 725-775 ℃, and most preferably from about 750 ℃.

生产方法设计成这样的方式,使得优选的催化剂配料与高度浓缩的CO流在约750℃下快速接触。 Production methods designed in such a way that the preferred catalyst formulation with a flow of highly concentrated CO at about rapid contact 750 ℃. 否则,产率和选择性将受到很大的影响。 Otherwise, the yield and selectivity will be greatly affected. 由该方法制得的SWNT的质量可以通过包括拉曼光谱、温度程序氧化(TPO)和电子显微术(TEM)的表征技术的组合来确定。 Prepared by the method of the quality of the SWNT may be determined by a combination including Raman spectroscopy, temperature programmed oxidation (TPO) and electron microscopy (TEM) characterization techniques.

优选的方法所以包括使CO气体流(高浓度)与催化粒子在约750℃下以高空速(高于约30000小时-1)在高压下(高于约4826322.99Pa(即高于约4826322.99Nm-2(70psi)))接触约1小时。 A preferred method therefore includes CO gas flow (high concentration) with catalytic particles at about 750 ℃ with high space velocity (above about 30,000 hours -1) at high pressure (greater than about 4826322.99Pa (ie, greater than about 4826322.99N m-2 (70psi))) for approximately one hour.

如果按照上述条件,将得到高产率的SWNT(约20-25克SWNT/约100克在反应器中所装载的初始催化剂)和高选择性(大于约90%)。 If in accordance with the above conditions, the obtained high yields of SWNT (about 20-25 grams of SWNT / about 100 grams initial catalyst loaded in the reactor) and a high selectivity (greater than about 90%).

在不偏离所附权利要求限定的本发明精神和范围的情况下,可以对所述各种组分、元素和组合或所述方法的步骤或步骤顺序进行改变。 In the case of the appended claims without departing from the spirit and scope of the present invention, may be of the order of the steps or the various components, elements and combinations or methods of the changes.

此处描述的本发明可以在没有其中未具体公开的任何因素的情况下适宜地实施。 The present invention described herein may be in the absence of which is not specifically disclosed in any case suitably factors embodiment.

以下权利要求包括本申请的最宽的可能范围。 The present application includes the widest possible scope of the following claims. 权利要求应该不是必要地受限于优选的实施方案或实施例所示的实施方案。 Claims should not necessarily be limited to the preferred embodiment or embodiments illustrated embodiments.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN101905881A *2 Aug 20108 Dec 2010无锡诚信碳材料科技有限公司Preparation method of nano-carbon material with high graphitization degree
CN102648046A *16 Jul 201022 Aug 2012西南纳米科技公司Catalyst and methods for producing multi-wall carbon nanotubes
CN102648046B *16 Jul 201014 Dec 2016西南纳米科技公司用于制备多壁碳纳米管的催化剂和方法
CN103058169A *2 Aug 201024 Apr 2013无锡诚信碳材料科技有限公司Preparation method for carbon nanomaterials with high graphitization degree
CN104024493A *12 Dec 20123 Sep 2014埃克森美孚上游研究公司Method and systems for forming carbon nanotubes
CN104024493B *12 Dec 201224 Aug 2016埃克森美孚上游研究公司形成碳纳米管的方法和系统
US956721912 Dec 201214 Feb 2017Exxonmobil Upstream Research CompanyMethod and systems for forming carbon nanotubes
Classifications
International ClassificationC01B31/02, B01J23/88, D01F9/127, B01J29/78, B01J37/00, B01J23/85
Cooperative ClassificationC01B32/162, Y10T428/2918, Y10S977/843, Y10S977/813, Y10S977/835, Y10S977/75, Y10S977/842, Y10S977/775, Y10S977/742, B82Y40/00, B01J23/882, B01J23/888, D01F9/1278, B01J23/85, B82Y15/00, D01F9/127, B01J21/185, C01B2202/02, D01F9/1272, B82Y30/00, B01J23/88
European ClassificationB82Y30/00, B82Y15/00, C01B31/02B4B2, B01J21/18C, D01F9/127B2, B82Y40/00, B01J23/85, B01J23/882, D01F9/127L, B01J23/888, B01J23/88, D01F9/127
Legal Events
DateCodeEventDescription
12 May 2004C06Publication
14 Jul 2004C10Entry into substantive examination
14 Jan 2005REGReference to a national code
Ref country code: HK
Ref legal event code: DE
Ref document number: 1063772
Country of ref document: HK
2 Dec 2009C14Grant of patent or utility model
14 Jan 2011REGReference to a national code
Ref country code: HK
Ref legal event code: WD
Ref document number: 1063772
Country of ref document: HK