CN1484865A - 电诱发纳米结构击穿的系统及方法 - Google Patents

电诱发纳米结构击穿的系统及方法 Download PDF

Info

Publication number
CN1484865A
CN1484865A CNA018217087A CN01821708A CN1484865A CN 1484865 A CN1484865 A CN 1484865A CN A018217087 A CNA018217087 A CN A018217087A CN 01821708 A CN01821708 A CN 01821708A CN 1484865 A CN1484865 A CN 1484865A
Authority
CN
China
Prior art keywords
nanotubes
nanotube
semiconducting
metallic
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018217087A
Other languages
English (en)
Other versions
CN100347874C (zh
Inventor
P
P·阿沃里斯
P·科林斯
ض�
R·马特尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1484865A publication Critical patent/CN1484865A/zh
Application granted granted Critical
Publication of CN100347874C publication Critical patent/CN100347874C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/18Memory cell being a nanowire having RADIAL composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/845Purification or separation of fullerenes or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Abstract

一种方法被提供来形成一器件。该方法提供一绝缘衬底,其包含一源极电极,一漏极电极,及一栅极电极。该方法提供包含金属之碳纳米管束及半导电组分纳米管与该衬底接触。该方法施加一电压至该栅极电极,以耗尽该半导电组分纳米管之载流子,施加一电流经由该纳米管,由一源极电极至一漏极电极,及破裂至少一个金属组分纳米管,以形成一场效应晶体管。该碳纳米管束可以为一多层壁纳米管或一单层壁纳米管索。

Description

电诱发纳米结构击穿的系统及方法
发明领域
本发明涉及纳米结构,更明确地说,涉及一种电诱发纳米结构击穿的系统与方法。
发明背景
於分子纳米之领域中,少数材料展现成为纳米管之希望,特别是碳纳米管,其包含直径几埃之中空圆柱石墨。纳米管取决於纳米管之电气特性,可以作成很小之电子装置,例如二极管及晶体管。纳米管对於其尺寸,形状及物理特性均是独特的。结构上,一碳纳米管像碳被卷成为一圆柱之六角晶格。
除了於低温展现有趣量子行为外,碳纳米管展现了至少两项重要特性:一纳米管可以取决於其空间的螺旋特性(即构象几何),而为金属或半导体。金属纳米管可以在定电阻率下,承载巨大之电流密度。半导电纳米管可以被电学上切换开及关,而成为场效应晶体管(FET)。此两类型可以共价结合(共享电子)。这些特点使得纳米管成为制作纳米尺寸之半导体电路的绝佳材料。
现行研究纳米管之方法系取决於金属及半导电纳米管的随机形成。於现行中并没有已知方法,以可靠地备制具有特定特性之纳米管,更谈不上备制纳米管展现出例如晶体管,二极管等之结行为。同时,这些藉由选择合成或後合成以作纳米管分离之已知方法,也完全未证明出有任何之成功。於此之前,纳米管必须由金属及半导电纳米管之混合中个别分离或必须被随机放置於予以研究之电极上。然而,於此等方法并未看到具有一致性。
此等纳米管之缺乏控制及复合成束的倾向已经阻碍了纳米管物理学之研究,并且,成为包含基于纳米管的电子技术的纳米管开发中之主要障碍。因此,需要有一种系统及方法,用以备制具有想要特性之纳米管。
发明概述
本发明提供一种形成一器件之方法,其包含步骤:提供一衬底,提供多个纳米管与该衬底接触,及使用一电流选择性地破裂一纳米管。优选该方法更包含步骤:用电流耗尽一半导电纳米管之载流子。
优选耗尽一半导电纳米管之多个载流子更包含步骤:施加一电压至衬底上一栅极电极。优选该方法包含施加电流经由该纳米管由一源极电极至一漏极电极。
优选该多个纳米管系为多层壁纳米管,其包含金属及半导电纳米管。优选该方法包括选择性破裂的步骤,选择性破裂的步骤包括破裂外部金属纳米管。
优选该多个纳米管为单层壁纳米管索,其包含金属及半导电纳米管,其中破裂的步骤包括破裂至少一个金属纳米管。
优选纳米管之密度系於一单层及百分之一覆盖率之十分之一之间。
优选该衬底为一绝缘体并包含金属垫片阵列。
优选衬底系为基于硅石的并包含金属垫片阵列。
优选每一垫片包含源极电极、漏极电极及栅极电极之一。
优选提供一衬底系藉由使用光刻术完成,以在一绝缘衬底上形成一垫片阵列,每一垫片包含一相应电极。
优选纳米管系为碳纳米管。
优选该方法还包括破裂多个杂散纳米管的步骤。
依据另一方面,本发明提供了一种修改一纳米管之至少一个特征之方法,该方法包含提供纳米管之混合体,及施加一电流至该混合体,诱发该纳米管混合体之选择击穿的步骤。优选该方法更包含由一半导电纳米管上去除载流子。
优选该电流选择地破裂金属纳米管。优选施加至该混合体之功率系约500∶W。
优选该纳米管为多层壁纳米管及单层壁纳米管索之一。
优选其特徵为直径、密度及电导之一。
优选该混合体包含金属及半导电纳米管。
优选该电流密度系大於109安每平方厘米。
依据另一方面,本发明提供了一种形成一器件之方法,该器件提供一绝缘衬底,其包含一源极电极,漏极电极,及一栅极电极,提供碳纳米管束,其包含有金属及半导电组分纳米管与衬底接触,其中诸纳米管系提供於约百分之一覆盖率之密度,该方法还包括施加一电压给栅极电极,以耗尽该半导电组分纳米管之载流子,由一源极电极施加一电流经纳米管至一漏极电极,并破裂至少一个金属组分纳米管,以形成一场效应晶体管。
优选该碳纳米管束可以为多层壁纳米管或单层壁纳米管索。
附图简述
本发明之较佳实施例将参考附图加以详细说明如下:
第1a,1b,及1c图为一纳米管及组成六角环之示意图;
第2a图为显示一多层壁纳米管之示意图;
第2b图显示一单层壁纳米管索之示意图;
第3图为於定电压时之多层壁纳米管之部份电击穿时间图表;
第4a图为一图表,显示由於每一击穿阶段之多层壁纳米管之最外壳之充电本质,造成之半导电及金属行为间之低偏压电导交替;
第4b图为一图表,显示於最後金属壳由多层壁纳米管上去除後,所残留之半导电壳之电导;
第4c图为一表格,显示於壳号,直径及相对带隙能量间之关系;
第5图为一图表,显示一多层壁纳米管之每一外壳之电流(I)对电压的关系;
第6a,6b,6c及6d图为分子导体(纳米管)随机混合体之几个转换成半导体场效应晶体管的例子;
第7a图为一图,显示一电极阵列;及
第7b图为一包含源极,漏极及栅极之基于单层壁纳米索之场效应晶体管的示意图。
发明详细说明
依据本发明提供一种永久地修改一多层壁纳米管(MWNT)或一单层壁纳米管(SWNT)索或束之方法。一纳米管取决於其空间的螺旋特性(即构象几何),可以为金属或是半导体。两种类均可以於MWNT及SWNT中找到。依据本发明之方法使用电流感应电击穿,以消除具有一特定特徵之个别纳米管。该方法也能藉由改变组分纳米菅之比例,而调整一复合纳米管之特性。应注意的是,虽然本发明系使用基于碳的纳米管加以描述,但所例示之方法系可以适用於任何之任何分子结构中,其中只要电流可以选择性地施加至特定表面区域即可。例如,本发明可以用於氮化硼(BN)及基于金属二硫属化合物(MX2)之纳米结构。
碳纳米管可以忍受超出109安每平方厘米之电流密度,部份是由於碳-碳键之强度(例如对於单一C-C键之键强度约347kJ/mol)。然而,最後,於足够高电流时,纳米管将最後故障。例如,对於一MWNT,於空气中之故障发生於某一临限功率,例如约500∶W,超过该值会启始最外层之碳壳之快速氧化。功率系等於电流乘以电位差(即电压)。因为无缺陷石墨之热诱发氧化只进行於极端之高温,例如>2000MC,所以,於依据本发明之启始击穿之主要因素为电流诱发缺陷的形成,自加热系为一第二影响。
参考第1a图,一纳米菅102包含碳或其他分子之六角晶格。当为碳时,环104可以被建立为包含六个碳彼此共价结合。第1b图显示一个别碳环,每一交接点106表示一个别碳原子,键结系被表示为107。可替换结构为硼-氮化物环,其一种形式系示於第1c图中。硼-氮化物环可以以另一配置下,包含三个硼原子,例如110,结合至三个氮原子,例如108。
藉由利用电流诱发缺陷的形成,一依据本发明之方法选择地破裂承载电流的纳米管,而不必影响平行的纳米管,当平行的纳米管承载很少或不承载电流时。例如,如於第2a图所示之MWNT有利於最外壳102,因为其系与外部电极(例如源极及漏极)直接接触。此分布可以使最内壳承载很少或未承载电流,而於电流诱发氧化时,保护它们。如於第2b图所示之SWNT索中,个别纳米管(例如102)系被平行排放。经由SWNT索之电流分布系较经过一MWNT者更均匀,因为SWNT索之个别纳米管可以同时与外部电极作良好接触。
一般而言,并没有理由使电流独厚一些SWNT,然而,依据本发明之一实施例,一静电耦合栅极电极可以选择地耗尽组分半导电纳米管之其载流子。换句话说,对於跨越一源极电极及一漏极电极之SWNT或MWNT,藉由施加一电压至一相应栅极电极,载流子可以由组分半导电纳米管中排出。一旦耗尽後,半导电纳米管系被保护不受伤害,及源极电极所施加至SWNT或MWNT之高电流密度可以被用以启始组分金属纳米管之氧化。因此,这些方法可以保护於一SWNT索中之半导电纳米管及一外部半导电MWNT外壳。
碳纳米管之由这些复合导体去除可以被以电学上及显微镜加以观察。电学上,一单一碳纳米管之击穿造成一部份电导下降,典型系完成於几毫秒内。当加压於足够高偏压时,多数独立下降发生,因为一碳壳接著另一碳壳地破裂。用於击穿中之电子系能控制已破裂之纳米管之数量。於电流中该出一下降例如约19∶A时,诸电子仪器能停止击穿过程,因而控制所展现之特徵。
参考第3图,以定电压应力之MWNT之部份电击穿进行一连串之分立步骤,诸步骤相对应於MWNT之八个个别层之损失。这些结果系以约450∶W之功率,及约2伏之电位差时取得。每壳之约19∶A电流之正常击穿可以於第3图中看出。一部份击穿MWNT之半径的降低系等於内壳间距(0.34纳米)乘以所完成击穿步骤之数量。一类似薄化可以以具有金属SWNT之SWNT束被选择地破裂,只留下半导电SWNT加以完成。
击穿系藉由纳米管对外部应力之敏感度加以协助,因为相当小电场及电流可以作用个别分子。例如,一直径1纳米之半导电纳米管可以为几百纳米之栅极电极所静电地耗尽电载流子。电流密度(足够以作用纳米管击穿)作为触媒剂,并启始於纳米管及周围气体间之化学反应。例如,对於空气中之碳纳米管,反应可以被写成为:
本发明同时考量其他环境,其中非破坏性电流协助之反应可以化学地修改特定纳米管。所得装置可以加入电开关及化学敏感性。例如,使用纳米管之敏感性至各种气体上,化学修改可以用於一化学纳米传感器之范围中,其中,纳米传感器(纳米管)之导电率变化通知一特定气体的出现。
纳米管之受控破坏允许了半导电SWNT自SWNT之混合体(包含金属及半导电SWNT)中分离及基于纳米管之场效应晶体管(FET)之备制。应注意的是,於此所述之各种方法可以取决於纳米管之特性及衬底设计,而用以备制晶体管(例如,FET),二极管,及电阻器。
基本上,本制程可以促成复杂电子结构之研究及MWNT及SWNT索之传送特性。藉由移除於个别传导步骤发生时之应力(电流),这些复合纳米线可以於每一构成导体(纳米管)之损失时,再被特徵化。例如,特徵化系表示於一击穿处理中,由一阶段至另一阶段时之NWNT或SWNT索之导电特性。例如,多个互补传送测量可以越来越深探测进入MWNT之更内壳中,允许特徵化,及经由每一壳之传送的直接比较。
一MWNT之不同壳系被假定以随机方式交替於金属及半导电之间。这可以藉由使用受控击穿随後以低偏压或低温测量加以直接测试,该测量探测一MWNT之最外壳。於SWNT上之先前测量後,半导电及金属壳可以藉由使用一相当小之10毫伏源-漏极偏压,而测量电导G成为栅电压Vg之函数加以区分。一金属壳系特徵於一G,其系无关於Vg,或接近如此,而一半导电壳可以为该栅极所静电耗尽载流子。
参考第4a图,藉由停止於每一击穿事件上之应力,一MWNT可以於每一组成壳之损失後加以特徵化。第4a图显示由於於每一击穿阶段中之最外壳之变化的本质,低偏压电导(G(Vg))交替於半导电(例如402及406)及金属(例如404)行为之间。於第4b图中,当最後金属壳(n-9)被去除时,残留半导电壳可以完全地耗尽,以给予零电导之区域。将於G(Vg)中之所示峰值相应於电导及共价带边缘,不同壳之带隙可以决定在一定值或一比例内。基於期待直径依附关系之计算符合相对宽度系如於第4c图所示,其中参数只为管之启始直径及於相关壳间之0.34纳米之间距。
第4a图显示於一WMNT内之各种不同层之室温G(Vg)。开始时,MWNT具有9.5纳米之直径,n外壳,及一金属G(Vg)。第4a图显示於移除三层壳402後所看到之G(Vg)中之强列调变。去除一第四层壳造成一金属G(Vg)404,及去除第六层壳产生另一半导电G(Vg)406。此交替系被解释为被移除之碳壳之交替特性之签章。
对於一特定半导电壳之G不下降至零之因素为内金属壳之贡献之故,该内金属壳持续导电。壳n-3及n-4展现:对於壳n-3之G(Vg)曲线之耗尽最小值与下层之壳n-4 408之电导相重合。於此时,外半导电壳n-3可以为栅极所完全地耗尽,但所测量之电导包含经由下层金属壳之泄漏。其他测量显示此泄漏於低温中被强力地冻结,低偏压限制表示壳间之耦合被热激活。MWNT及SWNT索之逐渐薄化可以用例如具击穿步阶数及於视直径上之变化间之线性相依性之原子力及扫描电子显微镜加以解析。
於移除第十碳壳时,MWNT开始表现出如同一完美本征场效应晶体管(FET),由於载流子之完全耗尽,即使於室温具有零电导之区域(例如第4b图)。虽然所用之SWNT系为强p-型并没有对称之G(Vg)特徵,但类似特徵可以於个别半导电SWNT中找到。MWNT之完全耗尽表示未残留金属壳,并且,此行为持续,直到第十四碳壳被移除为止,於此时,MWNT电路开路。基於接近0.34纳米之已知壳间间距,配合一壳一壳地计数,一此直径之MWNT可以具有至多14壳。
第4b图显示当最後半导电壳被去除时,零电导区域之逐渐增加。此区域之宽度系成比例於半导体之能带隙(需要破坏一键结之能量),电导於能隙上下分别由於电子状及空穴状载流子而导通。由於使用高压脉冲以破裂各壳,捕获电荷之一些重新排列发生於下层之SiO2衬底上。为了简化於各壳间之比较,示於第4b图之曲线系以接近Vg=0处为中心。半导电碳纳米管之特徵系在於能带隙之能量系反比於直径,使得逐渐变小之碳壳展现更大之能带隙,能带隙之宽度决定了材料之类型(导体,半导体,绝缘体)。只使用启始MWNT直径及壳间间距,於最内壳之能带隙间之期待比例可以被计算出来。如於第4c图所示,这些比例符合於电导间隙之任一侧上之电导峰值所定义并如第4c图所示之实验比例。
现参考第5图,藉由损失个别外壳後重新特徵化MWNT,每一壳对I-V之贡献可以加以决定。基於I-V顺序之均匀间距,每一壳於相同电流饱和,及所有壳均於中及高偏压下对导通有所贡献。虚线表示I-V未被取得之位置。选定的I-V之半对数图表示出,由於在最内壳及外电极间之有效阻障之故,最内壳有一朝向指数I-V之倾向。类似阻障也於所有壳中扮演类似角色,除了最外之外壳外,并且,解释於部份MWNT所看到之非线性而非其它。
第5图显示一系列高偏压电流-电压特性(I-V)之结果,其有效地重新特徵化具有n,n-1,n-2等壳之MWNT,直到残留单一壳为止。高偏压I-V必须於高真空中取得,例如<1毫巴或於一惰性环境中取得,以抑制有害之氧化。於每一曲线间,MWNT被曝露至空气中,以可控制地移除单一碳壳。四探针及两探针测量法系被周期地比较,以监视每一纳米管之接触电阻(Rc)。於此所示之系为经由一连串之测量,展现几千欧姆之定Rc的样品。具有高Rc之样品相反於於此所述之一壳一壳机制,倾向於接触时故障。每一I-V显示於一稳定增加偏压处之电流饱和,类似於个别SWNT所看到者,但其系於相当高之电流。由MWNT移除每一外壳配合第3图似乎会降低此饱和程度约20微安之固定量。此一阶一阶地降低清楚地表示一高偏压,表示所有MWNT壳均对传送及饱和有相等之贡献。
除了电流饱和值之降低外,当诸外壳被移除时,於第5图中之I-V结果同时也展现增加非线性之情形。所选择之I-V之半对数图显示由一线性I-V朝向形式I=Aexp(V/V0)之指数特徵的倾向,其中V0=0.50伏。明显地,一隧穿势垒支配最内壳之I-V,更可能因为这些壳只可以经由一由很多石墨层所构成之势垒而耦合至外部电极之故。对於未与电极直接接触之中间壳,由於深度有关之势垒与纳米管之本征纵长I-V特徵串联之故,所量得之I-V之不规则形状可以定性了解。此串联势垒解释了到达如於第5图所示之电流饱和之所需偏压的逐渐增加。再者,於此所看到线性至非线性I-V转移及於文献中之类似非线性I-V之丰度建议传输实验经常并不直接关连一MWNT之承载电流之碳壳,而以透射电子显微镜观看,接触部份或不完全之外壳。
第4a、4b、4c及5图确认MWNT壳之变化本质,定性检测於这些壳间之耦合,及试图隔离一单一外壳之对整个电导之贡献。直到现在,理论及实验已经分散於这些观点上。一方面,MWNT太复杂而无法实现理论上之实际模型化,另一方面,并没有实验可以直接探测内碳壳。於此引入之受控击穿之强有力的技术潜在地对进入这些复杂导体之传送特性提供新的视野。另外,一MWNT可以选择地被转换於金属及具有不同能带隙之半导体之间。
於此所述用於MWNT之方法可以应用至SWNT索。虽然MWNT及SWNT均为复合纳米管,但SWNT展现一些不同。例如,於一索内之多数SWNT可以接触其潜在氧化环境,允许很多碳外壳同时故障,而不是於MWNT所看到之均匀之一壳一壳地故障(例如第3图)。另外,於一索内之诸SWNT并不会如於MWNT之外壳般有效地彼此作静电屏蔽。结果,於一索中之击穿可以藉由耗尽半导体SWNT之载流子,而直接只进行於金属SWNT中(於此时,於施加应力以耗尽主要为p型SWNT之载流子时,Vg被保持为+10伏)。於基于碳的SWNT中之载流子密度可以范围由约100至约1000电子∶m。另一不同是於一小索中之每一SWNT个别地连接至外部电极。因此,不同於MWNT,一索可以被模型化为一独立平行导体,其具有总电导G(Vg)=Gm+Gs(Vg),其中Gm为金属纳米管之作用,及Gs为半导电纳米管之栅有关的电导。
参考第6a及6b图,藉由施加应力至包含半导电及金属SWNT之混合体之SWNT索,同时对该束加栅极电压,则於金属SWNT之选择性击穿中,半导体之载流子被耗尽。此启始SWNT束602及606包含金属及半导电SWNT,同时,被减薄之SWNT束604及608包含半导电SWNT之相当高之比例。同样地,MWNT之半导电纳米管壳可以被有效地绝缘,藉由使用类似於SWNT所用之类似方法,而耗尽诸壳之载流子。因此,一MWNT之击穿可以被控制,以取得想要之特徵(例如金属或半导电性质)。复合纳米管之选择击穿可以藉由金属及半导电纳米管於栅极电压上之相关依附性而加以解释。金属纳米管之电导显示与栅极电压很低之依附性,但,半导电纳米管之电导则显示与栅极电压很强之依附性。
因此,如於第6a及6b图所示,在正栅极电压,SWNT之电导接近於零,而於负栅极电压,当载流子增加,电导增加。第6a及6b图描绘分别於受控击穿前及後,两小SWNT索之G(Vg)。如同於MWNT之情况,不受干扰之样品具有一电导,其可以部份地为栅极电极所调变。当於索中之金属SWNT被破坏时,下层电导Gm降低至零。相反地,调变Gs范围并未改变。测量显示出,藉由於击穿处理时,耗尽该半导电SWNT之载流子,它们可以有效地防止受破坏。此结果建议於索中之不同SWNT间之很少电子相互作用。测量G(Vg)之温度相关之变化可以针对相互作用的观点并决定能量范围为何,若有的话,此等相互作用变得很重要。
於不受影响之半导电SWNT中,G(Vg)曲线系依据金属SWNT之贡献,而快速地向下位移。参考第6c图,即使对於含百计之SWNT之很大索,这些样品可以有效地被转换为FET。然而,於此时,Gm之逐渐降低在其到达零之前停止,可能因为於索中之核心处之金属SWNT系为半导电SWNT所包围之故。这些弱耦合金属SWNT之最终破坏需要较高电压,并可能牺牲部份周围之半导电SWNT。结果,具有很多半导电通道及一大启始调变Gs>10μS之索可能只造成具有Gs~1μS之FET。
除了对研究MWNT及SWNT相互作用有用外,受控击穿技术系极端有用於基于纳米管之电子装置的制造。直到现在,SWNT FET已经被个别地制造。典型地,很低之表面覆盖率已经确保於此密度中,至多一个SWNT连接一源极及漏极电极,最有希望电路保持断路,但部份则加入一金属SWNT,而其他则具有一半导电SWNT。
虽然此技术已经证明对SWNT特性之启始特徵化有价值,但实际应用需要很多装置平行地可靠地生产。例如,完成密集封装之FET需要於足够密度之纯半导电SWNT互连於所有想要位置。纳米管可以以已知技术,例如以化学气相淀积之原位成长或外部成长及淀积加以提供。高表面密度有利於多重SWNT,而由於SWNT特性之可变性,SWNT索系为金属管所支配,无用于半导体通道。於现在,并没有方法可以合成纯半导电SWNT或用以由SWNT混合体中分离开半导电SWNT。
参考第7a图,显示出一使用标准光刻术制造之小阵列之可独立寻址之SWNT FET。一阵列之金属垫片(例如701)系被提供,每一垫片包含一源极704,漏极706或栅极电极702。用於这些垫片之衬底可以是任何之绝缘材料,较佳系为基于硅石。衬底及金属垫片之组合系被称为用於纳米管之衬底。每一FET包含一源极,一漏极,一栅极,及连接该源极及漏极之至少一纳米管。诸纳米管系被提供以连接每一源极至一相关漏极。参考第7b图,一栅极氧化物708将栅极702与电极(704,706)分离。SWNT密度可以被调整,以确保至少一索(例如710)短路每一组电极,同时最小化於装置间之不想要的连接。较佳地,纳米管之密度没有厚度,例如低於一单层或100%覆盖率。部份结果显示低於百分之一1之密度系足以确保每一源极-漏极对被至少一纳米管所连接,虽然密度低至约衬底之千分之一也可以提供连接性给一阵列中之每一源极-漏极对。於源极及漏极电极间之索(例如710)系藉由选择性地击穿金属纳米管,而被转换为FET,而杂散纳米管系藉由完成击穿而被整个移除。
虽然,因为其金属构成之故,这些索开始时显示很低或是没有切换,但最後,可以可靠地获得如於第6d图所示之具良好FET特徵之器件。部份结果显示,SWNT FET之生产可以由无序之启始材料,以大於90%之确定性加以完成。第6d图总结加入一或多数SWNT索之三十二个器件之结果。於修改前,例如610,个别索之电导由於索大小之分布及接触作用,而广泛地变化,几乎没有器件可以为栅极所基本上耗尽。
於破裂金属SWNT时,每一索之电导被降低,但残留之通道只有半导电的并可被完全地耗尽。所得器件可以具有主要为接触电阻所限制之合理的FET特徵,该接触电阻将分开说明。多数小的SWNT束可以藉由化学气相生长而产生,并可以减轻大束所遭遇的困难,并造成具有优良导电率及切换比率之FET。
虽然本申请系针对於碳纳米管之特定系统,但相同原理可以广泛地适用至各种分子电子学系统中。一般而言,分子器件阵列可以藉由使用外部电气机构之设计加以生产,而不必纳米规格之实际控制。任意修改允许由一随机混合体定义有用电子元件。虽然此解决方案已经应用以解决碳纳米管之固有变化的问题,但本领域技术人员可以以本揭示得知,类似结果可以使用其他分子之混合体加以完成。
由於已经说明使用电击穿以作出碳纳米管及纳米管电路的系统及方法的实施例,吾人可以应知道各种修改及变化可以由上述教导而由本领域技术人员所完成。因此,可以了解的是,应可以对於此所揭示之本发明之实施例作出仍在所附权利要求所定义之本发明之范围及精神内之各种变化。本发明系依此明述诸细节及为专利法所要求之细节,但本发明所要求及为专利证书所保护者系於所附权利要求中。

Claims (11)

1.一种用以形成一器件之方法,该方法包含步骤:
提供一衬底;
提供多个纳米管与该衬底接触;及
使用一电流以选择性地破裂一纳米管。
2.如权利要求1所述之方法,其中该衬底是绝缘衬底。
3.如权利要求1所述之方法,更包含耗尽一半导电纳米管之多个载流子之步骤。
4.如权利要求3所述之方法,其中上述之耗尽一半导电纳米管之多个载流子之步骤更包含施加一电压至衬底上一栅极电极之步骤。
5.如权利要求4所述之方法,更包含经由该纳米管,施加该电流由一源极电极至一漏极电极的步骤。
6.如权利要求1所述之方法,其中上述之多个纳米管系为单层壁纳米管索或多层壁纳米管,其包含金属及半导电纳米管。
7.如权利要求6所述之方法,其中上述之选择性地破裂的步骤包含破裂一外金属纳米管、或破裂至少一个金属纳米管或破裂多个杂散纳米管。
8.如权利要求1所述之方法,其中上述纳米管为碳纳米管。
9.一种修改一纳米管之至少一种特徵的方法,该方法包含步骤:
提供纳米管之混合体;及
施加一电流至该混合体,诱发该纳米管混合体之选择击穿。
10.如权利要求9所述之方法,更包含步骤由一半导电纳米管移除多数载流子。
11.如权利要求10所述之方法,其中上述之电流选择性地破裂诸金属纳米管。
12.一种形成一器件之方法,该方法至少包含步骤:
提供一绝缘衬底,其包含一源极电极,一漏极电极,及一栅极电极;
提供多个碳纳米管束,其包含金属及半导电组分纳米管与衬底接触,其中诸纳米管系提供於约百分之一覆盖率之密度;
施加一电压至该栅极电极,以使半导电组分纳米管之多个载流子耗尽;
施加一电流经由该纳米管,由一源极电极至一漏极电极;及
破裂至少一个金属组分纳米管,以形成一场效应晶体管。
CNB018217087A 2001-01-03 2001-12-21 电诱发纳米结构击穿的方法 Expired - Fee Related CN100347874C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/753,845 US6423583B1 (en) 2001-01-03 2001-01-03 Methodology for electrically induced selective breakdown of nanotubes
US09/753,845 2001-01-03

Publications (2)

Publication Number Publication Date
CN1484865A true CN1484865A (zh) 2004-03-24
CN100347874C CN100347874C (zh) 2007-11-07

Family

ID=25032396

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018217087A Expired - Fee Related CN100347874C (zh) 2001-01-03 2001-12-21 电诱发纳米结构击穿的方法

Country Status (11)

Country Link
US (2) US6423583B1 (zh)
EP (1) EP1350277B1 (zh)
JP (1) JP4099063B2 (zh)
KR (1) KR100621444B1 (zh)
CN (1) CN100347874C (zh)
AT (1) ATE526690T1 (zh)
CA (1) CA2431064C (zh)
IL (2) IL156523A0 (zh)
MY (1) MY127407A (zh)
TW (1) TW523797B (zh)
WO (1) WO2002054505A2 (zh)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733594B (zh) * 2004-08-02 2010-12-08 索尼株式会社 碳纳米管及定位方法、晶体管及制造方法、半导体器件
CN101582446B (zh) * 2008-05-14 2011-02-02 鸿富锦精密工业(深圳)有限公司 薄膜晶体管
US7923731B2 (en) 2008-05-14 2011-04-12 Tsinghua University Thin film transistor
US7947977B2 (en) 2008-05-14 2011-05-24 Tsinghua University Thin film transistor
US7947542B2 (en) 2008-05-14 2011-05-24 Tsinghua University Method for making thin film transistor
US7973305B2 (en) 2008-05-14 2011-07-05 Tsinghua University Thin film transistor
US8053291B2 (en) 2008-05-30 2011-11-08 Tsinghua University Method for making thin film transistor comprising flocculating of carbon nanotubes
CN101582449B (zh) * 2008-05-14 2011-12-14 清华大学 薄膜晶体管
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8154011B2 (en) 2008-05-16 2012-04-10 Tsinghua University Thin film transistor
US8154012B2 (en) 2008-05-14 2012-04-10 Tsinghua University Thin film transistor
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
CN101625466B (zh) * 2008-07-09 2012-12-19 清华大学 触摸式液晶显示屏
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8597990B2 (en) 2008-05-23 2013-12-03 Tsinghua University Method for making thin film transistor
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
CN105097939A (zh) * 2014-04-24 2015-11-25 清华大学 薄膜晶体管
CN105474006A (zh) * 2013-05-29 2016-04-06 Csir公司 场效应晶体管和包括多个场效应晶体管的气体检测器

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251962C (zh) * 2000-07-18 2006-04-19 Lg电子株式会社 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
GB2382718B (en) * 2000-07-18 2004-03-24 Lg Electronics Inc Field effect transistor using horizontally grown carbon nanotubes
EP1374309A1 (en) 2001-03-30 2004-01-02 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2002341060A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 複合電気部品、地板構造体及びこれを用いた電子時計
JP2003017508A (ja) * 2001-07-05 2003-01-17 Nec Corp 電界効果トランジスタ
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6919592B2 (en) * 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6835591B2 (en) 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7259410B2 (en) * 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6574130B2 (en) 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US7385262B2 (en) * 2001-11-27 2008-06-10 The Board Of Trustees Of The Leland Stanford Junior University Band-structure modulation of nano-structures in an electric field
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
KR100837393B1 (ko) * 2002-01-22 2008-06-12 삼성에스디아이 주식회사 탄소와 친화도가 높은 금속을 전극으로 구비하는 전자소자
US20030186059A1 (en) * 2002-02-08 2003-10-02 Masukazu Hirata Structure matter of thin film particles having carbon skeleton, processes for the production of the structure matter and the thin-film particles and uses thereof
EP1341184B1 (en) * 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
US6515325B1 (en) 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US7392230B2 (en) * 2002-03-12 2008-06-24 Knowmtech, Llc Physical neural network liquid state machine utilizing nanotechnology
US7412428B2 (en) * 2002-03-12 2008-08-12 Knowmtech, Llc. Application of hebbian and anti-hebbian learning to nanotechnology-based physical neural networks
US6889216B2 (en) * 2002-03-12 2005-05-03 Knowm Tech, Llc Physical neural network design incorporating nanotechnology
US8156057B2 (en) * 2003-03-27 2012-04-10 Knowm Tech, Llc Adaptive neural network utilizing nanotechnology-based components
US7398259B2 (en) * 2002-03-12 2008-07-08 Knowmtech, Llc Training of a physical neural network
US9269043B2 (en) 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US20040039717A1 (en) * 2002-08-22 2004-02-26 Alex Nugent High-density synapse chip using nanoparticles
US6891227B2 (en) * 2002-03-20 2005-05-10 International Business Machines Corporation Self-aligned nanotube field effect transistor and method of fabricating same
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
DE10217362B4 (de) * 2002-04-18 2004-05-13 Infineon Technologies Ag Gezielte Abscheidung von Nanoröhren
JP4974263B2 (ja) * 2002-05-20 2012-07-11 富士通株式会社 半導体装置の製造方法
US7752151B2 (en) * 2002-06-05 2010-07-06 Knowmtech, Llc Multilayer training in a physical neural network formed utilizing nanotechnology
JP3933664B2 (ja) * 2002-08-01 2007-06-20 三洋電機株式会社 光センサ、光センサの製造方法および駆動方法、ならびに光強度検出方法
US7827131B2 (en) * 2002-08-22 2010-11-02 Knowm Tech, Llc High density synapse chip using nanoparticles
CN100411979C (zh) * 2002-09-16 2008-08-20 清华大学 一种碳纳米管绳及其制造方法
WO2004032191A2 (en) * 2002-09-30 2004-04-15 Nanosys, Inc. Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
TWI309845B (en) * 2002-09-30 2009-05-11 Nanosys Inc Large-area nanoenabled macroelectronic substrates and uses therefor
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
KR101043578B1 (ko) * 2002-09-30 2011-06-23 나노시스, 인크. 나노와이어 트랜지스터를 사용하는 집적 디스플레이
US7619562B2 (en) * 2002-09-30 2009-11-17 Nanosys, Inc. Phased array systems
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
WO2005000739A1 (en) 2002-10-29 2005-01-06 President And Fellows Of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
JP4251268B2 (ja) * 2002-11-20 2009-04-08 ソニー株式会社 電子素子及びその製造方法
JP4501339B2 (ja) * 2002-11-29 2010-07-14 ソニー株式会社 pn接合素子の製造方法
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
KR100881201B1 (ko) * 2003-01-09 2009-02-05 삼성전자주식회사 사이드 게이트를 구비하는 소노스 메모리 소자 및 그제조방법
CN1720345A (zh) * 2003-01-13 2006-01-11 南泰若股份有限公司 利用薄金属层制造碳纳米管薄膜、层、织品、条带、元件及物品之方法
US8937575B2 (en) 2009-07-31 2015-01-20 Nantero Inc. Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices
US7666382B2 (en) * 2004-12-16 2010-02-23 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
US6762073B1 (en) 2003-02-24 2004-07-13 Donald P. Cullen Method of fabricating electronic interconnect devices using direct imaging of dielectric composite material
GB0304623D0 (en) * 2003-02-28 2003-04-02 Univ Surrey Methods for the fabrication of nanoscale structures and semiconductor devices
US7641863B2 (en) * 2003-03-06 2010-01-05 Ut-Battelle Llc Nanoengineered membranes for controlled transport
US7335344B2 (en) * 2003-03-14 2008-02-26 Massachusetts Institute Of Technology Method and apparatus for synthesizing filamentary structures
EP1609188A4 (en) * 2003-03-28 2007-11-07 Nantero Inc NANOTUBE ON GRID TEC STRUCTURES AND CORRESPONDING APPLICATIONS
US7294877B2 (en) 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
EP1631812A4 (en) * 2003-05-14 2010-12-01 Nantero Inc SENSOR PLATFORM HAVING A HORIZONTAL NANOPHONE ELEMENT
US7274064B2 (en) * 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
CA2528804A1 (en) 2003-06-09 2005-01-06 Nantero, Inc Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US7426501B2 (en) * 2003-07-18 2008-09-16 Knowntech, Llc Nanotechnology neural network methods and systems
JP4296252B2 (ja) * 2003-07-18 2009-07-15 独立行政法人科学技術振興機構 光検出素子
CN1852863A (zh) * 2003-07-29 2006-10-25 威廉马歇莱思大学 碳纳米管的选择性官能化
US7115960B2 (en) * 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
US7583526B2 (en) 2003-08-13 2009-09-01 Nantero, Inc. Random access memory including nanotube switching elements
US7289357B2 (en) 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
JP2007502545A (ja) 2003-08-13 2007-02-08 ナンテロ,インク. 複数の制御装置を有するナノチューブを基礎とする交換エレメントと上記エレメントから製造される回路
US7416993B2 (en) * 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7375369B2 (en) 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US7242041B2 (en) * 2003-09-22 2007-07-10 Lucent Technologies Inc. Field-effect transistors with weakly coupled layered inorganic semiconductors
US7347981B2 (en) * 2003-09-25 2008-03-25 The Penn State Research Foundation Directed flow method and system for bulk separation of single-walled tubular fullerenes based on helicity
US7378715B2 (en) * 2003-10-10 2008-05-27 General Electric Company Free-standing electrostatically-doped carbon nanotube device
US6890780B2 (en) * 2003-10-10 2005-05-10 General Electric Company Method for forming an electrostatically-doped carbon nanotube device
GB0324189D0 (en) * 2003-10-16 2003-11-19 Univ Cambridge Tech Short-channel transistors
US6921684B2 (en) * 2003-10-17 2005-07-26 Intel Corporation Method of sorting carbon nanotubes including protecting metallic nanotubes and removing the semiconducting nanotubes
JP3944155B2 (ja) * 2003-12-01 2007-07-11 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
WO2005057665A1 (ja) * 2003-12-08 2005-06-23 Matsushita Electric Industrial Co., Ltd. 電界効果トランジスタ及び電気素子アレイ、並びにそれらの製造方法
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7038299B2 (en) * 2003-12-11 2006-05-02 International Business Machines Corporation Selective synthesis of semiconducting carbon nanotubes
US7211844B2 (en) * 2004-01-29 2007-05-01 International Business Machines Corporation Vertical field effect transistors incorporating semiconducting nanotubes grown in a spacer-defined passage
US20050167655A1 (en) 2004-01-29 2005-08-04 International Business Machines Corporation Vertical nanotube semiconductor device structures and methods of forming the same
US7528437B2 (en) * 2004-02-11 2009-05-05 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
US7829883B2 (en) * 2004-02-12 2010-11-09 International Business Machines Corporation Vertical carbon nanotube field effect transistors and arrays
US7253431B2 (en) 2004-03-02 2007-08-07 International Business Machines Corporation Method and apparatus for solution processed doping of carbon nanotube
AU2005228383A1 (en) * 2004-03-26 2005-10-13 Foster-Miller, Inc. Carbon nanotube-based electronic devices made by electronic deposition and applications thereof
US7508039B2 (en) * 2004-05-04 2009-03-24 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Carbon nanotube (CNT) multiplexers, circuits, and actuators
WO2005124888A1 (en) * 2004-06-08 2005-12-29 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US7164744B2 (en) 2004-06-18 2007-01-16 Nantero, Inc. Nanotube-based logic driver circuits
US7652342B2 (en) 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
US7288970B2 (en) * 2004-06-18 2007-10-30 Nantero, Inc. Integrated nanotube and field effect switching device
US7167026B2 (en) * 2004-06-18 2007-01-23 Nantero, Inc. Tri-state circuit using nanotube switching elements
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US7161403B2 (en) * 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US7109546B2 (en) * 2004-06-29 2006-09-19 International Business Machines Corporation Horizontal memory gain cells
US7776307B2 (en) * 2004-09-16 2010-08-17 Etamota Corporation Concentric gate nanotube transistor devices
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7462890B1 (en) 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
WO2006121461A2 (en) 2004-09-16 2006-11-16 Nantero, Inc. Light emitters using nanotubes and methods of making same
EP1792320A4 (en) * 2004-09-21 2010-08-04 Nantero Inc RESISTIVE ELEMENTS USING CARBON NANOTUBES
US7233071B2 (en) * 2004-10-04 2007-06-19 International Business Machines Corporation Low-k dielectric layer based upon carbon nanostructures
US7345307B2 (en) * 2004-10-12 2008-03-18 Nanosys, Inc. Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires
US20070246784A1 (en) * 2004-10-13 2007-10-25 Samsung Electronics Co., Ltd. Unipolar nanotube transistor using a carrier-trapping material
US7473943B2 (en) * 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
US7567414B2 (en) * 2004-11-02 2009-07-28 Nantero, Inc. Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches
US20100147657A1 (en) * 2004-11-02 2010-06-17 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US7569503B2 (en) 2004-11-24 2009-08-04 Nanosys, Inc. Contact doping and annealing systems and processes for nanowire thin films
US7560366B1 (en) 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
US8362525B2 (en) * 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
US7502769B2 (en) * 2005-01-31 2009-03-10 Knowmtech, Llc Fractal memory and computational methods and systems based on nanotechnology
US7409375B2 (en) * 2005-05-23 2008-08-05 Knowmtech, Llc Plasticity-induced self organizing nanotechnology for the extraction of independent components from a data stream
US20100065820A1 (en) * 2005-02-14 2010-03-18 Atomate Corporation Nanotube Device Having Nanotubes with Multiple Characteristics
WO2006096613A2 (en) * 2005-03-04 2006-09-14 Northwestern University Separation of carbon nanotubes in density gradients
US7824946B1 (en) 2005-03-11 2010-11-02 Nantero, Inc. Isolated metal plug process for use in fabricating carbon nanotube memory cells
US9287356B2 (en) 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8000127B2 (en) 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US8941094B2 (en) 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
US9390790B2 (en) 2005-04-05 2016-07-12 Nantero Inc. Carbon based nonvolatile cross point memory incorporating carbon based diode select devices and MOSFET select devices for memory and logic applications
EP2348300A3 (en) 2005-04-06 2011-10-12 The President and Fellows of Harvard College Molecular characterization with carbon nanotube control
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7835170B2 (en) 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US8183665B2 (en) * 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7479654B2 (en) 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7394687B2 (en) * 2005-05-09 2008-07-01 Nantero, Inc. Non-volatile-shadow latch using a nanotube switch
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8008745B2 (en) * 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US8217490B2 (en) * 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
TWI324773B (en) * 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
TWI264271B (en) * 2005-05-13 2006-10-11 Delta Electronics Inc Heat sink
US7575693B2 (en) * 2005-05-23 2009-08-18 Nantero, Inc. Method of aligning nanotubes and wires with an etched feature
US7928521B1 (en) 2005-05-31 2011-04-19 Nantero, Inc. Non-tensioned carbon nanotube switch design and process for making same
US7915122B2 (en) * 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US7541216B2 (en) * 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
US7420396B2 (en) * 2005-06-17 2008-09-02 Knowmtech, Llc Universal logic gate utilizing nanotechnology
US20060292716A1 (en) * 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
US7599895B2 (en) 2005-07-07 2009-10-06 Knowm Tech, Llc Methodology for the configuration and repair of unreliable switching elements
US7687841B2 (en) * 2005-08-02 2010-03-30 Micron Technology, Inc. Scalable high performance carbon nanotube field effect transistor
WO2007018542A1 (en) * 2005-08-08 2007-02-15 The Regents Of The University Of California Local manipulation of nanostructures
EP1922551A2 (en) 2005-09-06 2008-05-21 Nantero, Inc. Carbon nanotube resonators
WO2007030484A2 (en) * 2005-09-06 2007-03-15 Nantero, Inc. Nanotube fabric-based sensor systems and methods of making same
US8525143B2 (en) * 2005-09-06 2013-09-03 Nantero Inc. Method and system of using nanotube fabrics as joule heating elements for memories and other applications
WO2008054364A2 (en) 2005-09-06 2008-05-08 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
WO2007038164A2 (en) * 2005-09-23 2007-04-05 Nanosys, Inc. Methods for nanostructure doping
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
JP2009528238A (ja) * 2005-12-19 2009-08-06 ナンテロ,インク. カーボンナノチューブの生成
JP5034231B2 (ja) * 2005-12-21 2012-09-26 富士通株式会社 カーボンナノチューブトランジスタアレイ及びその製造方法
KR100668355B1 (ko) * 2006-02-16 2007-01-12 삼성전자주식회사 캐리어 트래핑 물질을 구비한 유니폴라 탄소나노튜브 및유니폴라 전계효과 트랜지스터
JP5029600B2 (ja) * 2006-03-03 2012-09-19 富士通株式会社 カーボンナノチューブを用いた電界効果トランジスタとその製造方法及びセンサ
US7714386B2 (en) 2006-06-09 2010-05-11 Northrop Grumman Systems Corporation Carbon nanotube field effect transistor
US8217386B2 (en) * 2006-06-29 2012-07-10 University Of Florida Research Foundation, Inc. Short channel vertical FETs
KR101425690B1 (ko) 2006-08-30 2014-08-06 노쓰웨스턴유니버시티 단분산 단일벽 탄소 나노튜브 군집 및 그를 제공하는 관련된 방법
US20080070331A1 (en) * 2006-09-18 2008-03-20 Chuan Ke, Hsi-Tien Chang, Pu Shen Method for manufacturing a strongly refractive microlens for a light emitting diode with condensation silicone
WO2008039496A2 (en) 2006-09-27 2008-04-03 The Trustees Of Columbia University Growth and applications of ultralong carbon nanotubes
US8758717B2 (en) * 2006-10-19 2014-06-24 Rensselaer Polytechnic Institute Electrical current-induced structural changes and chemical functionalization of carbon nanotubes
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
WO2008075642A1 (ja) * 2006-12-18 2008-06-26 Nec Corporation 半導体装置及びその製造方法
US8168495B1 (en) 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
US7930257B2 (en) 2007-01-05 2011-04-19 Knowm Tech, Llc Hierarchical temporal memory utilizing nanotechnology
KR101311301B1 (ko) 2007-02-09 2013-09-25 엘지디스플레이 주식회사 나노와이어 트랜지스터와 그 제조방법
US20080238882A1 (en) * 2007-02-21 2008-10-02 Ramesh Sivarajan Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
WO2008112764A1 (en) 2007-03-12 2008-09-18 Nantero, Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
US20080272361A1 (en) * 2007-05-02 2008-11-06 Atomate Corporation High Density Nanotube Devices
TWI461350B (zh) * 2007-05-22 2014-11-21 Nantero Inc 使用奈米結構物之三極管及其製造方法
US8134220B2 (en) * 2007-06-22 2012-03-13 Nantero Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
JP2010538422A (ja) * 2007-08-29 2010-12-09 ノースウェスタン ユニバーシティ 分類されたカーボンナノチューブから調整される透明導電体およびその調整方法
US8470408B2 (en) * 2007-10-02 2013-06-25 President And Fellows Of Harvard College Carbon nanotube synthesis for nanopore devices
CN101676832B (zh) * 2008-09-19 2012-03-28 清华大学 台式电脑
CN101620454A (zh) * 2008-07-04 2010-01-06 清华大学 便携式电脑
EP2062515B1 (en) * 2007-11-20 2012-08-29 So, Kwok Kuen Bowl and basket assembly and salad spinner incorporating such an assembly
CN101933125A (zh) * 2007-12-31 2010-12-29 伊特蒙塔公司 边缘接触型垂直碳纳米管晶体管
KR100930997B1 (ko) * 2008-01-22 2009-12-10 한국화학연구원 탄소나노튜브 트랜지스터 제조 방법 및 그에 의한탄소나노튜브 트랜지스터
US8659940B2 (en) * 2008-03-25 2014-02-25 Nantero Inc. Carbon nanotube-based neural networks and methods of making and using same
KR101410933B1 (ko) * 2008-04-11 2014-07-02 성균관대학교산학협력단 탄소나노튜브를 구비한 트랜지스터의 도핑방법 및 도핑이온의 위치 제어방법 및 트랜지스터
CN101582451A (zh) * 2008-05-16 2009-11-18 清华大学 薄膜晶体管
CN101599495B (zh) * 2008-06-04 2013-01-09 清华大学 薄膜晶体管面板
WO2010005707A1 (en) * 2008-06-16 2010-01-14 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US8587989B2 (en) * 2008-06-20 2013-11-19 Nantero Inc. NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same
US8022393B2 (en) 2008-07-29 2011-09-20 Nokia Corporation Lithographic process using a nanowire mask, and nanoscale devices fabricated using the process
US8357921B2 (en) 2008-08-14 2013-01-22 Nantero Inc. Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
CN101676452B (zh) * 2008-09-19 2011-11-30 清华大学 碳纳米管纱的制备方法
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
KR101026160B1 (ko) 2008-11-26 2011-04-05 한국원자력연구원 하이브리드형 나노소자 논리회로 및 그 제조 방법
KR101076767B1 (ko) 2009-02-11 2011-10-26 광주과학기술원 나노소자 논리회로 및 그 제조방법
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) * 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US20110034008A1 (en) * 2009-08-07 2011-02-10 Nantero, Inc. Method for forming a textured surface on a semiconductor substrate using a nanofabric layer
US8551806B2 (en) * 2009-10-23 2013-10-08 Nantero Inc. Methods for passivating a carbonic nanolayer
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
US8351239B2 (en) * 2009-10-23 2013-01-08 Nantero Inc. Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array
US9126836B2 (en) 2009-12-28 2015-09-08 Korea University Research And Business Foundation Method and device for CNT length control
US8222704B2 (en) * 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
KR101709823B1 (ko) 2010-02-12 2017-02-23 난테로 인크. 나노튜브 직물 층 및 필름 내의 밀도, 다공도 및/또는 간극 크기를 제어하는 방법
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
JP6130787B2 (ja) 2010-03-30 2017-05-17 ナンテロ,インク. ネットワーク、ファブリック及びフィルム内にナノスケール要素を配列させるための方法
US10661304B2 (en) 2010-03-30 2020-05-26 Nantero, Inc. Microfluidic control surfaces using ordered nanotube fabrics
EP2557567A1 (en) 2011-08-09 2013-02-13 Thomson Licensing Programmable read-only memory device and method of writing the same
CN103101898B (zh) * 2011-11-10 2015-05-20 中国科学院微电子研究所 金属性纳米管去除方法
US8664091B2 (en) * 2011-11-10 2014-03-04 Institute of Microelectronics, Chinese Academy of Sciences Method for removing metallic nanotube
US20130181352A1 (en) * 2012-01-16 2013-07-18 Industry-Academic Cooperation Foundation at NamSeoul Unversity Method of Growing Carbon Nanotubes Laterally, and Lateral Interconnections and Effect Transistor Using the Same
US20130285019A1 (en) * 2012-04-26 2013-10-31 Postech Academy-Industry Foundation Field effect transistor and method of fabricating the same
JP6426102B2 (ja) 2012-11-05 2018-11-21 ユニバーシティー オブ フロリダ リサーチ ファウンデーション,インコーポレイテッドUniversity Of Florida Research Foundation,Inc. ディスプレイにおける輝度補償
US9007732B2 (en) 2013-03-15 2015-04-14 Nantero Inc. Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same
US9650732B2 (en) 2013-05-01 2017-05-16 Nantero Inc. Low defect nanotube application solutions and fabrics and methods for making same
US10654718B2 (en) 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
JP6256912B2 (ja) * 2013-11-12 2018-01-10 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体を用いた電界効果トランジスタ
JP6300300B2 (ja) * 2013-11-12 2018-03-28 国立研究開発法人産業技術総合研究所 カーボンナノチューブ集合体を用いた電界効果トランジスタ
US9147824B1 (en) * 2014-05-08 2015-09-29 International Business Machines Corporation Reactive contacts for 2D layered metal dichalcogenides
US9741811B2 (en) 2014-12-15 2017-08-22 Samsung Electronics Co., Ltd. Integrated circuit devices including source/drain extension regions and methods of forming the same
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
US9947400B2 (en) 2016-04-22 2018-04-17 Nantero, Inc. Methods for enhanced state retention within a resistive change cell
US9941001B2 (en) 2016-06-07 2018-04-10 Nantero, Inc. Circuits for determining the resistive states of resistive change elements
US9934848B2 (en) 2016-06-07 2018-04-03 Nantero, Inc. Methods for determining the resistive states of resistive change elements
US10665798B2 (en) * 2016-07-14 2020-05-26 International Business Machines Corporation Carbon nanotube transistor and logic with end-bonded metal contacts
US10665799B2 (en) 2016-07-14 2020-05-26 International Business Machines Corporation N-type end-bonded metal contacts for carbon nanotube transistors
CN113130620B (zh) * 2020-01-15 2023-07-18 清华大学 场效应晶体管
CN113851536A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 场效应晶体管及其制备方法、半导体结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036333A1 (fr) * 1996-03-26 1997-10-02 Samsung Electronics Co., Ltd Dispositif a effet de tunnel et procede de fabrication de ce dispositif
US6290861B1 (en) * 1997-07-15 2001-09-18 Silverbrook Research Pty Ltd Method of manufacture of a conductive PTFE bend actuator vented ink jet printer
JP2904346B1 (ja) * 1998-06-08 1999-06-14 日本電気株式会社 カーボンナノチューブのヘテロ接合形成方法
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
KR100277881B1 (ko) * 1998-06-16 2001-02-01 김영환 트랜지스터
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
WO2001031671A1 (en) * 1999-10-26 2001-05-03 Stellar Display Corporation Method of fabricating a field emission device with a lateral thin-film edge emitter
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733594B (zh) * 2004-08-02 2010-12-08 索尼株式会社 碳纳米管及定位方法、晶体管及制造方法、半导体器件
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237675B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8101953B2 (en) 2008-05-14 2012-01-24 Tsinghua University Thin film transistor having a plurality of carbon nanotubes
CN101582449B (zh) * 2008-05-14 2011-12-14 清华大学 薄膜晶体管
US8053760B2 (en) 2008-05-14 2011-11-08 Tsinghua University Thin film transistor
US7973305B2 (en) 2008-05-14 2011-07-05 Tsinghua University Thin film transistor
US7947542B2 (en) 2008-05-14 2011-05-24 Tsinghua University Method for making thin film transistor
US7947977B2 (en) 2008-05-14 2011-05-24 Tsinghua University Thin film transistor
US7923731B2 (en) 2008-05-14 2011-04-12 Tsinghua University Thin film transistor
US8154012B2 (en) 2008-05-14 2012-04-10 Tsinghua University Thin film transistor
CN101582446B (zh) * 2008-05-14 2011-02-02 鸿富锦精密工业(深圳)有限公司 薄膜晶体管
US8154011B2 (en) 2008-05-16 2012-04-10 Tsinghua University Thin film transistor
US8597990B2 (en) 2008-05-23 2013-12-03 Tsinghua University Method for making thin film transistor
US8053291B2 (en) 2008-05-30 2011-11-08 Tsinghua University Method for making thin film transistor comprising flocculating of carbon nanotubes
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8237680B2 (en) 2008-07-04 2012-08-07 Tsinghua University Touch panel
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
CN101625466B (zh) * 2008-07-09 2012-12-19 清华大学 触摸式液晶显示屏
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
CN105474006A (zh) * 2013-05-29 2016-04-06 Csir公司 场效应晶体管和包括多个场效应晶体管的气体检测器
CN105097939A (zh) * 2014-04-24 2015-11-25 清华大学 薄膜晶体管
CN105097939B (zh) * 2014-04-24 2018-08-17 清华大学 薄膜晶体管

Also Published As

Publication number Publication date
TW523797B (en) 2003-03-11
JP4099063B2 (ja) 2008-06-11
US6706566B2 (en) 2004-03-16
US20020173083A1 (en) 2002-11-21
CN100347874C (zh) 2007-11-07
EP1350277A2 (en) 2003-10-08
IL156523A0 (en) 2004-01-04
KR20030068175A (ko) 2003-08-19
KR100621444B1 (ko) 2006-09-08
MY127407A (en) 2006-11-30
US6423583B1 (en) 2002-07-23
WO2002054505A3 (en) 2002-11-14
ATE526690T1 (de) 2011-10-15
CA2431064A1 (en) 2002-07-11
IL156523A (en) 2007-05-15
CA2431064C (en) 2006-04-18
JP2004517489A (ja) 2004-06-10
EP1350277B1 (en) 2011-09-28
WO2002054505A2 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
CN1484865A (zh) 电诱发纳米结构击穿的系统及方法
McEuen et al. Single-walled carbon nanotube electronics
Collins et al. Multishell conduction in multiwalled carbon nanotubes
Avouris Carbon nanotube electronics
Poncharal et al. Room temperature ballistic conduction in carbon nanotubes
Yao et al. Electrical transport through single-wall carbon nanotubes
Graham et al. Carbon nanotubes for microelectronics?
Anantram et al. Physics of carbon nanotube electronic devices
Martel et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes
Collins Defects and disorder in carbon nanotubes
Lee et al. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots
Sharma et al. Recent advances in carbon nanotube-based electronics
JP4512176B2 (ja) カーボンナノチューブ電子素子および電子源
Lefebvre et al. Single-wall carbon nanotube based devices
Forro et al. Electronic and mechanical properties of carbon nanotubes
WO2004047183A1 (ja) 電子素子及びその製造方法
Stokes et al. Evaluating defects in solution-processed carbon nanotube devices via low-temperature transport spectroscopy
H Khan et al. Variable range hopping in carbon nanotubes
Collins et al. The electronic properties of carbon nanotubes
Zhbanov et al. Nanoelectronic devices based on carbon nanotubes
Mishra et al. ESD behavior of MWCNT interconnects—Part I: Observations and insights
CN1251247C (zh) 一种提高纳米材料电性能的方法
Shrivastava et al. ESD behavior of metallic carbon nanotubes
Caldwell Synthesis and electronic transport in single-walled carbon nanotubes of known chirality
Yi Ballistic conduction in multiwalled carbon nanotubes at room temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171107

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171107

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071107

Termination date: 20191221