CN1477058A - 新型碳纳米微粒、其制备方法及含有新型碳纳米微粒的透明导电聚合物复合材料 - Google Patents

新型碳纳米微粒、其制备方法及含有新型碳纳米微粒的透明导电聚合物复合材料 Download PDF

Info

Publication number
CN1477058A
CN1477058A CNA031487394A CN03148739A CN1477058A CN 1477058 A CN1477058 A CN 1477058A CN A031487394 A CNA031487394 A CN A031487394A CN 03148739 A CN03148739 A CN 03148739A CN 1477058 A CN1477058 A CN 1477058A
Authority
CN
China
Prior art keywords
carbon
carbon nanoparticle
nanoparticle
micelle
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031487394A
Other languages
English (en)
Other versions
CN1301901C (zh
Inventor
����ֲ
张正植
吴俊鹤
金东喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPORT INTERNATIONAL CO Ltd
Original Assignee
SPORT INTERNATIONAL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020036896A external-priority patent/KR20020062258A/ko
Application filed by SPORT INTERNATIONAL CO Ltd filed Critical SPORT INTERNATIONAL CO Ltd
Publication of CN1477058A publication Critical patent/CN1477058A/zh
Application granted granted Critical
Publication of CN1301901C publication Critical patent/CN1301901C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

本发明涉及一种新型碳纳米微粒、其新型制备方法以及含有所述碳纳米微粒的透明、导电的聚合物复合材料。所述碳纳米微粒具有1-50nm的平均直径以及球形、棒形或其他形状,其是相关领域未公知的新型材料。由于粒径低于可见光最短波长的1/2,含有所述碳纳米微粒的透明树脂能够保持透明性。此外,所述碳纳米微粒具有优良的导电率以及铁磁性,并且可以通过新的、完全不同于富勒烯和碳纳米管的低成本方法来制备。

Description

新型碳纳米微粒、其制备方法及 含有新型碳纳米微粒的透明导电聚合物复合材料
技术领域
本发明涉及新型碳纳米微粒、其制备方法及含有该新型碳纳米微粒的透明导电聚合物复合材料。更具体地说,本发明提供了一种新型碳纳米微粒,其中形成微粒的碳原子在石墨结构中成键,微粒的平均粒径是1至50nm,优选1至10nm并具有球、棒或其他形状,本发明还提供了制备碳纳米微粒的新型方法及含有所述碳纳米微粒的聚合物复合材料,所述聚合物复合材料具有透明性以及优良的导电性,并且在任何情况下均具有铁磁性。
背景技术
近年,信息技术(IT)、生物技术(BT)和纳米技术(NT)作为高度发展的技术吸引了人们广泛的注意。其中,纳米技术的深入研究对仅由碳原子形成并具有埃()或纳米(nm)量级粒径的富勒烯、碳纳米管等正在进行。
富勒烯通常形成足球形,其中60个碳原子成键形成20个六边形和12个五边形结构。形成富勒烯的碳原子数是60、62、64和66等,这取决于富勒烯的种类。最小的C60富勒烯具有约7的直径和球形状。C70富勒烯具有约8的长轴和约7的短轴并形成橄榄球形状。
碳纳米管形成由石墨片(graphene sheet)卷成圆柱形的结构并具有3.5至70nm的直径以及几百至几千倍直径的长度(μm单位)。碳纳米管可以分为由一层石墨片形成的单层壁管和多层壁管,其中2至30层石墨片形成同心圆。碳纳米管的形状及其制备方法公开在美国专利No.4,663,230中。
富勒烯和碳纳米管由基本相同或类似的方法制备。即,它们在惰性气氛下蒸发并冷凝碳原子形成。为了提高产率,已开发出了各种不同的方法。下列方法是制备碳纳米管方法的示例:电弧放电法,该方法基于二个石墨棒电极的电子放电蒸发碳原子;激光汽化法,该方法通过向石墨辐射激光蒸发碳原子;等离子体增强化学蒸气沉积法,该方法施用高频电场辉光放电碳原子;热化学蒸气沉积法;以及汽相生长法。
预期上述碳纳米材料在将来可以应用于许多领域。虽然低于1nm的小粒径富勒烯的应用尚未开发,但已经实现了碳纳米管在多种用途中的应用,如用作复合材料的增强剂、抗静电材料以及电磁屏蔽材料等。
例如,根据美国专利No.5,098,771,通过将0.5-10重量%的碳纳米管加入热塑性树脂,如聚乙烯、聚丙烯、聚酰胺、聚氯乙烯等或热固性塑料树脂,如饱和聚酯、醇酸树脂和环氧树脂等中,有可能获得高导电率。但是,当将碳纳米管加入透明树脂以制备光学透明的导电膜时,在涂布过程中,在碳纳米管之间产生强聚集力,使膜变黑,从而使树脂的透明性显著降低。为了制备透明复合材料,加入树脂中的微粒的粒径或微粒聚集体的粒径应低于可见光最短波长的一半(低于约200nm)。
美国专利No.5,853,877公开了通过碳纳米管的表面处理步骤防止聚集,由此提高复合材料的透明性的方法。但是,由于上述方法需要使用强酸,如硫酸,这使得表面处理步骤困难,而且含有此种表面处理的碳纳米管的复合材料的透明性低于铟锡氧化物(ITO)。
因此,由于碳纳米管粒径的限制或其处理方法的限制,目前已知的碳纳米管不能有效地形成透明复合材料。
而且,由于目前已开发的方法包括蒸发碳原子的步骤,由此种方法制备的碳纳米管较昂贵;因此,不可能以这些方法为基础进行批量生产。
因此,对新型碳纳米材料的需求在不断增大,此种新型材料应具有类似碳纳米管的高导电性以及低于可见光最短波长的1/2的粒径,并能够以较低的成本制备。
发明概述
因此,本发明的目的是提供一种新型的碳纳米微粒、其新型制备方法,以及含有所述新型碳纳米微粒的透明导电聚合物复合材料,所述复合材料能够克服现有技术中所遇到的上述问题。
本发明的第一个目的是提供一种属于新型纳米材料的碳纳米微粒,即,所述材料的粒径处于富勒烯和碳纳米管之间并且其物理性质类似于碳纳米管。而且,本发明的碳纳米微粒具有碳纳米管不具备的特定物理性质:如,透明性、铁磁性等。
本发明的第二个目的是提供制备碳纳米微粒的新型方法。迄今为止,富勒烯、碳纳米管等的常规制备方法是基于碳原子的蒸发/凝聚。但是,在本发明的方法中,通过被称作聚合物的“微乳液聚合”的处理步骤以及在高温下碳化产物的处理步骤来制备碳纳米微粒。上述方法能够以低成本实施。
本发明的第三个目的是提供含有碳纳米微粒的透明和高导电的聚合物复合材料。如上文所述,本发明的碳纳米微粒即使在加入透明聚合物树脂中时仍具有高透明性,也具有高导电性。
本发明的第四个目的是提供具有铁磁性的碳纳米微粒及其制备方法。微乳液聚合反应是本发明制备方法中的一步,其中所用的聚合反应催化剂或者单独加入的物质可以在碳化步骤中被转化成铁磁性物质,从而使碳纳米微粒具有铁磁性。
本发明的发明人通过多次实验和深入研究,结果以一种完全不同于常规的已知方法的新型方法制备出了一种新型的碳纳米微粒,所述微粒具有1-50nm,优选1-10nm的平均粒径,碳原子之间具有石墨结构的键型和优良的导电性。
附图的简要描述
结合附图可以更好地理解本发明,附图仅通过示例的方式给出,因此不限制本发明的范围,其中:
图1是本发明第一个实施例的碳纳米微粒的透射电子显微图(TEM);
图2是按照本发明的第一个实施例制备的碳纳米微粒的X射线衍射(XRD)图;
图3是通过在聚碳酸酯树脂中分别掺混本发明的碳纳米微粒、聚吡咯纳米微粒和碳纳米管制备的复合材料的基于含量的导电率图;和
图4是本发明的第一个实施例的碳纳米微粒基于温度的磁性变化图。
优选实施方案的详细描述
本发明的碳纳米微粒在碳原子之间具有石墨结构的键型,1-50nm的平均粒径以及球形、棒形或其他形状。
粒径大于1nm的金属无机半导体纳米微粒的制备方法已经有报到,但粒径为几纳米的聚合物纳米微粒的制备方法迄今为止仍是未知的(Curr.Opin.Colloid Interface Sci.,第4卷,第6-14页,1999)。而且,在本发明所属领域尚无碳微粒的报道,所述碳微粒具有介于富勒烯和碳纳米管之间的粒径,富勒烯的直径为几埃,碳纳米管的直径为几纳米至几十纳米,其长度是直径的几百至几千倍(约μm)。富勒烯的聚集体可能具有上述范围内的特定粒径,但富勒烯的聚集力低,因此在溶剂或介质中不可能维持纳米单位的大小。而且,为了形成富勒烯,部分碳原子之间的键需要是五边形结构,因此富勒烯的结构不能被称作石墨结构,在石墨结构中碳原子的所有键型均是六边形。
因此,考虑到本发明的碳纳米微粒的粒径和物理性质,可以将其称作介于富勒烯和碳纳米管之间的新型材料。此外,也可以将其称作介于富勒烯和石墨之间的新型材料。
微粒的平均直径优选是1-10nm,更优选1-5nm。微粒的形状优选是球形。可以基于反应条件选择性地调整微粒的粒径(平均直径)和形状。
由于本发明的碳纳米微粒的平均直径不到可见光最短波长的1/2(约200nm),即使将其掺杂和分散在透明聚合物树脂等中,也有可能保持树脂的透明性。此外,与纤维型的碳纳米管不同,由于本发明的碳纳米微粒不具有高聚集力,因此能够容易地进行分散处理,以提高总体处理的效率。而且,已经证实当将碳纳米微粒以一定量加入树脂中时,与碳纳米管的情况相比,树脂具有优良的导电性;因此,对其应用的可能性预期很高。
在另一个实施方案中,可以将本发明的碳纳米微粒制备成具有铁磁性以及优良的导电性。作为制备具有铁磁性和优良导电性的碳纳米微粒的方法,在聚合反应过程中作为掺杂剂存在的聚合反应催化剂或单独加入的物质可以在碳化过程中被转变成铁磁性物质,成为碳纳米微粒的构成部分。例如,作为聚合物反应催化剂或掺杂剂加入的三氯化铁本身不具有铁磁性,但在碳化过程中,它在惰性气氛下与少量的氧反应,转化为具有铁磁性的磁赤铁矿(γ-Fe2O3)。为了使碳纳米微粒具有铁磁性,类似上述物质的必要用量根据不同的条件,如聚合反应催化剂和掺杂剂的种类和性质而不同。因此,不可能对其用量作出限制。但是,有必要加入比聚合反应通常所需要的催化剂用量更多的量。
本发明还提供了用于制备碳纳米微粒的一种新型方法。
根据本发明制备碳纳米微粒的方法包括下列步骤:
(A)向设置为1-40℃的恒温反应器内的水中加入0.01-0.9摩尔表面活性剂,然后搅拌形成平均直径为1-50nm的胶粒;
(B)向水中缓慢滴加单体,然后溶解单体,以将单体引入胶粒中;
(C)向水中加入聚合反应催化剂,然后在胶粒中聚合单体;
(D)破坏胶粒,以回收平均粒径为1-50nm的纳米聚合物;和
(E)在惰性气氛下,在600-1200℃碳化纳米聚合物微粒,以制备碳纳米微粒。
在本发明说明书的描述中,只要没有在本发明中具体限定数值范围,如含量、直径、温度等,上述范围表示本发明的制备方法可以被优化。
在本发明的碳纳米微粒的制备方法中,使用胶粒作为聚合反应的反应空间,从而将所获得的聚合物微粒的粒径限制在纳米级范围(1-50nm)。在下一步中,在高温下对有机聚合物微粒进行碳化。
本发明的碳纳米微粒的制备方法的特征之一是在1-40℃的低温形成胶粒并在其中进行聚合反应。表面活性剂的活性在低温下大幅度降低。因此,胶粒孔的体积也降低,从而可以将聚合物微粒的粒径限制在纳米级的范围。如果水温过低,将由于水的冰冻而不能形成胶粒。另一方面,如果水温高于特定的范围,胶粒孔的体积增大,不可能获得纳米级的聚合物。优选水温为1-25℃。
表面活性剂在水中的浓度影响胶粒的粒径。如果表面活性剂在水中的浓度低于0.01摩尔,它仍处于自由分子态,因此不能形成胶粒。如果表面活性剂的浓度高于0.9摩尔,由于液晶的形成以及粘度的提高,不容易进行搅拌处理。
本发明的方法中所使用的表面活性剂没有特别的限制:例如,阴离子表面活性剂,如烷基苯磺酸盐、烷基硫酸盐、聚氧乙烯烷基醚硫酸盐、聚氧乙烯烷基苯基醚硫酸盐、高级脂肪酸盐等;非离子表面活性剂,如聚氧乙烯烷基醚盐、聚氧乙烯烷基苯基醚盐等和阳离子表面活性剂,如一烷基铵盐、二烷基铵盐、三烷基铵盐、四烷基铵盐等。其中,优选阳离子表面活性剂,如辛基三甲基溴化铵(OTAB)、癸基三甲基溴化铵(DeTAB)、十二烷基三甲基溴化铵(DTAB)、十四烷基三甲基溴化铵(TTAB)和十六烷基三甲基溴化铵(CTAB)等。
本发明方法中所使用的单体和催化剂没有特别的限制,只要可以在低温下用于乳液聚合反应即可。单体的例子包括苯乙烯、丁二烯、吡咯、苯胺、噻吩(thiopen)、甲基丙烯酸甲酯、聚(3,4-亚乙基二氧噻吩)(PEDOT)等。特别地,优选的单体是生成导电聚合物聚吡咯的吡咯。催化剂的例子包括过氧化氢、过氧化异丙苯、FeCl3、过硫酸铵、CuCl2等。其中,优选的催化剂是用于吡咯聚合反应的FeCl3。对于本发明的聚合方法,优选使用能够在低温下促进反应发生的氧化还原聚合反应,也可以使用能够精确控制反应的原子转移自由基聚合反应(ATRP)。美国专利No.5,763,548详细描述了ATRP的内容,在此将其引作参考。
可以将所述催化剂溶解在少量水中再加入反应混合物。优选每摩尔单体的催化剂用量为1至5摩尔。
聚合反应的反应时间取决于所使用的单体和催化剂的种类以及其他反应条件,通常为1至12小时。
可以加入醇,以破坏其中聚合反应完成的胶粒;例如,甲醇溶解表面活性剂,从而破坏胶粒,甲醇也溶解催化剂如FeCl3。为了促进分离合成的聚合物纳米微粒,可以加入一定量的非溶剂,如异辛烷等。
分离的聚合物纳米微粒具有约1-50nm,优选1-10nm,更优选1-5nm的平均粒径。微粒的形状可以按照胶粒的形状而不同。通常,当所使用的表面活性剂的量增大时,球形会变为棒形。合成的聚合物纳米微粒通过自聚集可能具有四面体、立方体、针、麦杆、带等形状。
在碳化前需要干燥所分离的聚合物纳米微粒,优选在室温自然干燥,以获得纯聚合物。
然后在惰性气体气氛或真空中,在600-1200℃的高温下碳化干燥的聚合物纳米微粒。优选在充满惰性气体,如氩气的电炉中进行碳化处理。优选的碳化温度是800-1000℃。在碳化处理后微粒的粒径略微降低,但粒径仍在碳化处理前的聚合物纳米微粒粒径为1-50nm的范围内。
对碳化的纳米微粒进行的原子分析和红外光谱分析表明纳米微粒仅由碳原子组成。而且,X射线衍射(XRD)分析表明纳米微粒具有石墨结构。
在本发明的范围内,可以在上述制备方法中包括其他处理。例如,在碳化处理前,可以将纳米聚合物分散在极性溶剂,如甲醇中,以形成独特的自聚集,如树状结构和球粒形状。此外,可以加入少量的过渡金属和/或氯化物,用于在碳化过程中加速石墨化并提高导电率。过渡金属和氯化物在碳化过程中的此类效果是众所周知的(Oka,H.等,《固态离子》(Solid state ionics)121,151-163(1999)。
如上文所述,为了使碳纳米微粒除了具有高导电率以外还具有铁磁性,可以加入一种物质,该物质本身不具有铁磁性,但在碳化过程中,通过与惰性气体气氛中的少量氧反应转变为铁磁性物质,如磁赤铁矿(γ-Fe2O3)。但是,当使用FeCl3作为聚合反应催化剂时,聚合反应结束后,FeCl3可以作为掺杂剂留下并在碳化过程中转变为铁磁性物质,从而即使没有如上文所述加入其他物质,也可以使所获得的碳纳米微粒具有铁磁性。
本发明还提供了含有碳纳米微粒的透明导电的聚合物复合材料。
如上文所述,为了使聚合物复合材料透明,所加入微粒的粒径或微粒聚集体的粒径必须低于可见光最短波长的1/2。由于本发明的碳纳米微粒具有1-50nm,优选1-10nm,更优选1-5nm的平均粒径,并且易于分散在聚合物树脂中,它满足了维持透明性的要求。因此,通过将本发明的碳纳米微粒掺混在透明聚合物树脂中,有可能制备透明并且同时维持其导电性的聚合物复合材料。
用于本发明的透明聚合物树脂的例子包括聚乙烯、聚丙烯、聚苯乙烯、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚甲基丙烯酸甲酯等。其中,鉴于强度和抗划痕性能,优选使用聚碳酸酯。
仅仅出于提供导电性的考虑,可以向树脂中加入大量的碳纳米微粒;但是,考虑到聚合物复合材料的透明性,优选碳纳米微粒的添加量是聚合物复合材料重量的5-15重量%。
这些透明导电的聚合物复合材料可以用于各种用途:例如,抗静电材料、电磁波屏蔽材料、ITO-替代材料、电灯辐射装置等。该导电聚合物复合材料可以制成不同的形状,优选膜形。
本发明具有几个纳米粒径的碳纳米微粒的特征之一是其表面积大。此种碳纳米微粒可以用于与环境相关的处理,例如,利用其铁磁性通过碳纳米微粒的表面修饰回收重金属,也可以用于回收和循环碳纳米微粒本身以及用于给药系统(DDS)。
由于含有固体微粒的聚合物复合材料的制备方法是本发明所属技术领域已知的,在本说明书中省略了对其的描述。
下文将结合实施例详细描述本发明,本发明的范围不受实施例的限制。
实施例1
向1L的反应器中加入约80ml蒸馏水,所述反应器上安装有设定为25℃的恒温浴。此后,加入6g十二烷基三甲基溴化铵(DTAB),然后以约400rpm的速率搅拌,以形成胶粒。使用滴管向反应器中缓慢滴加2g吡咯单体。将11.12g FeCl3(吡咯/FeCl3的摩尔比=1/2.3)溶解在10ml蒸馏水中,然后将此溶液加入反应器中。在25℃搅拌约4小时后,向反应器中加入约500ml甲醇以破坏胶粒。将反应溶液转移至分液漏斗,然后平稳地摇动分液漏斗几次以帮助混合溶液。为了提高合成的聚合物纳米微粒(聚吡咯纳米微粒)的分离率,向分液漏斗中加入约100ml异辛烷作为非溶剂。使用移液管转移上层异辛烷和甲醇,然后在室温下自然蒸发残余的下层,回收聚吡咯纳米微粒。将这些聚吡咯纳米微粒转移至电炉中,然后在氮气气氛下加热至约900℃,加热速率是3℃/分钟。此后,在约900℃碳化微粒约5小时,然后在室温下冷却,以获得碳纳米微粒。
图1示出了碳纳米微粒的透射电子显微图(TEM)及其衍射图。如图1所示,它证实获得了平均粒径为2nm的晶型碳球形微粒。此外,图2示出了碳纳米微粒的X-射线衍射分析图。如图2所示,它证实碳纳米微粒具有石墨结构(002,石墨的100布拉格反射(100 Bragreflection of the graphene))。
实施例2
分别以1重量%、3重量%和10重量%的比例,将实施例1中制备的平均粒径为2nm的碳纳米微粒溶液掺混(solution-blend)在聚碳酸酯(平均分子量:13,800)中。然后以270nm(通过α步骤方法测得)的厚度将掺混物旋涂在盖玻片上,以制备膜。使用四氢呋喃(THF)作为溶液掺混的溶剂。作为对比,将没有进行实施例1的碳化处理的未碳化的聚合物纳米微粒(聚吡咯纳米微粒)和碳纳米管(来自Aldrich公司)分别与聚碳酸酯溶液掺混,以制备膜。使用UV/VIS分光光度计在可见光区测量膜的透射比。下表1示出了基于该波长的平均透射比。如图1所示,碳纳米微粒比碳纳米管具有更高的平均透射比。例如,在加入10重量%的碳纳米微粒时,含有本发明的碳纳米微粒的聚碳酸酯(PC)复合材料具有83%的透射比,而含有碳纳米管的PC复合材料膜的透射比是68%。
表1
    膜的种类   添加量(重量%)   平均透射比(%)
聚碳酸酯(PC)膜     -     95
含有聚吡咯纳米聚合物的PC膜     1     92
    3     90
    10     85
含有碳纳米微粒的PC膜     1     91
    3     89
    10     83
含有碳纳米管的PC膜     1     86
    3     80
    10     68
实施例3
以与实施例2相同的方式制备样品,不同之处是分别加入1重量%、2重量%、3重量%、5重量%和10重量%的聚合物纳米微粒(聚吡咯纳米微粒)、碳纳米微粒和碳纳米管并制成片状。按照四点量测法(Van der Pauw)测量样品的导电率。上述测量结果示于图3中。如图3所示,含有本发明的碳纳米微粒的PC样品比任何其他样品具有更高的导电率。例如,在加入10重量%时,含有碳纳米微粒的PC样品具有16×10-4s/cm的导电率,而含有碳纳米管的PC样品的导电率是14×10-4s/cm,这表明含有本发明的碳纳米微粒的PC样品比含有碳纳米管的PC样品具有明显高的导电率。
实施例4
使用超导量子干涉装置(SQUID)以温度为函数测量实施例1中制备的平均粒径为2nm的碳纳米微粒的铁磁性。测量温度范围是5K至300K,所施加的磁场强度是100Oe(奥斯特)。上述测量结果示于图4中。如图4所示,基于测量值所获得的磁各向异性系数值(magneticanisotropic coefficient value)是2.4×108erg/cm3,这意味着本发明的碳纳米微粒具有铁磁性。
如上文所述,本发明的碳纳米微粒是一种到目前为止尚未在本发明所属技术领域公开的新型材料。由于本发明的碳纳米微粒具有低于可见光最短波长1/2的粒径,即使将其加入透明聚合物树脂中,它也表现出透明性以及优良的导电率,并且在任何情况下均具有铁磁性。此外,可以通过不同于富勒烯或碳纳米管的新型方法以非常低的成本可制备本发明的碳纳米微粒。因此,可以将本发明的碳纳米微粒作为具有优良导电性的添加剂或具有铁磁性的添加剂使用,因此,可以预期将其作为一种新型的多功能材料,如光学显示材料、电磁波屏蔽材料以及抗静电材料在将来使用。
由于本发明可以体现多种形式而不偏离其精神或实质特征,也应当理解,除非特别说明,上述实施例不应受到上文所述的任何细节的限制,而应当在所附权利要求书所限定的实质和范围内对其做广义的解释。因此,所有落入权利要求书范围的变化和改进或其等同技术均包括在所附权利要求书中。

Claims (12)

1.一种碳纳米微粒,其中碳原子间具有石墨结构键型,平均粒径是1至50nm,形状为球形、棒形或其他形状。
2.权利要求1所述的碳纳米微粒,其中所述微粒的平均直径是1至10nm。
3.权利要求1所述的碳纳米微粒,其中所述微粒的平均直径是1至5nm。
4.权利要求1所述的碳纳米微粒,其中所述微粒含有来自聚合反应催化剂和/或单独加入的铁磁性化合物。
5.一种权利要求1所述的碳纳米微粒的制备方法,所述方法包括下列步骤:
(A)向设定为1-40℃的恒温反应器内的水中加入0.01至0.9摩尔表面活性剂,然后搅拌形成平均直径为1-50nm的胶粒;
(B)向水中缓慢滴加单体并溶解,以向胶粒中引入单体;
(C)向水中加入催化剂,以在胶粒中聚合单体;
(D)破坏胶粒,回收平均粒径为1-50nm的聚合物纳米微粒;和
(E)在惰性气体气氛下,在600-1200℃碳化聚合物纳米微粒,以制备碳纳米微粒。
6.权利要求5所述的方法,其中水温是1-25℃,碳化温度是800-1000℃。
7.权利要求5所述的方法,其中所述表面活性剂选自辛基三甲基溴化铵(OTAB)、癸基三甲基溴化铵(DeTAB)、十二烷基三甲基溴化铵(DTAB)、十四烷基三甲基溴化铵(TTAB)和十六烷基三甲基溴化铵(CTAB)。
8.权利要求5所述的方法,其中所述单体是吡咯,所述催化剂是FeCl3
9.权利要求5所述的方法,其中通过加入甲醇破坏胶粒,并通过加入异辛烷加快聚合物纳米微粒的回收。
10.权利要求8所述的方法,其中用作聚合反应催化剂的所述FeCl3在碳化过程中被转化为铁磁性物质磁赤铁矿。
11.一种透明、导电的聚合物复合材料,其中以所述复合材料的总重量为基础,所述复合材料在透明聚合物树脂中含有1-12重量%的权利要求1所述的碳纳米微粒。
12.权利要求12所述的透明导电聚合物复合材料,其中所述透明树脂是聚碳酸酯,以及复合材料的形状是膜形。
CNB031487394A 2002-06-28 2003-06-24 新型碳纳米微粒、其制备方法及含有新型碳纳米微粒的透明导电聚合物复合材料 Expired - Fee Related CN1301901C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020020036896A KR20020062258A (ko) 2002-06-28 2002-06-28 폴리피롤 나노입자를 이용한 극미세 탄소 나노입자의제조방법 및 이를 이용한 고전도성 필름
KR36896/2002 2002-06-28
KR56448/2002 2002-09-17
KR10-2002-0056448A KR100518117B1 (ko) 2002-06-28 2002-09-17 신규한 탄소나노입자와 그것의 제조방법 및 그것을 함유한투명한 도전성 고분자 복합체

Publications (2)

Publication Number Publication Date
CN1477058A true CN1477058A (zh) 2004-02-25
CN1301901C CN1301901C (zh) 2007-02-28

Family

ID=29718469

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031487394A Expired - Fee Related CN1301901C (zh) 2002-06-28 2003-06-24 新型碳纳米微粒、其制备方法及含有新型碳纳米微粒的透明导电聚合物复合材料

Country Status (4)

Country Link
US (1) US6919063B2 (zh)
EP (1) EP1375425B1 (zh)
JP (1) JP3606855B2 (zh)
CN (1) CN1301901C (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431951C (zh) * 2006-08-17 2008-11-12 暨南大学 一种炭材料的合成方法
CN100537411C (zh) * 2004-08-20 2009-09-09 财团法人工业技术研究院 具有杂原子的纳米碳球及其制法
CN102947372A (zh) * 2010-04-22 2013-02-27 阿克马法国公司 基于碳纳米管和石墨烯的热塑性和/或弹性复合材料
CN102015893B (zh) * 2008-05-07 2013-02-27 出光兴产株式会社 芳香族聚碳酸酯树脂组合物及其成形体
CN101689568B (zh) * 2007-04-20 2014-02-26 凯博瑞奥斯技术公司 复合透明导体及其形成方法
CN104136367A (zh) * 2012-02-13 2014-11-05 锦湖石油化学株式会社 碳纳米材料粒料和由碳纳米材料粉末制备粒料的方法
TWI496738B (zh) * 2009-12-24 2015-08-21 Toray Industries 碳微粒子及其製造方法
CN105139920A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 一种导电颗粒及其制备方法、导电胶、显示装置

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091496A1 (en) * 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
US7816709B2 (en) * 1999-06-02 2010-10-19 The Board Of Regents Of The University Of Oklahoma Single-walled carbon nanotube-ceramic composites and methods of use
US6413487B1 (en) * 2000-06-02 2002-07-02 The Board Of Regents Of The University Of Oklahoma Method and apparatus for producing carbon nanotubes
US6919064B2 (en) * 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US7829622B2 (en) * 2002-06-19 2010-11-09 The Board Of Regents Of The University Of Oklahoma Methods of making polymer composites containing single-walled carbon nanotubes
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
EP1546283B1 (en) * 2002-09-24 2012-06-20 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
ATE404609T1 (de) * 2002-09-24 2008-08-15 Du Pont Wasserdispergierbare polythiophene hergestellt unter verwendung von kolloiden auf basis von polymersäuren
US7317047B2 (en) * 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
JP2006500461A (ja) * 2002-09-24 2006-01-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子工学用途のための、ポリマー酸コロイドを用いて製造された水分散性ポリアニリン
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
US20040211942A1 (en) * 2003-04-28 2004-10-28 Clark Darren Cameron Electrically conductive compositions and method of manufacture thereof
US20040232389A1 (en) * 2003-05-22 2004-11-25 Elkovitch Mark D. Electrically conductive compositions and method of manufacture thereof
US20040262581A1 (en) * 2003-06-27 2004-12-30 Rodrigues David E. Electrically conductive compositions and method of manufacture thereof
US7026432B2 (en) * 2003-08-12 2006-04-11 General Electric Company Electrically conductive compositions and method of manufacture thereof
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
US7309727B2 (en) * 2003-09-29 2007-12-18 General Electric Company Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
CA2549428A1 (en) * 2003-12-15 2005-07-21 Daniel E. Resasco Rhenium catalysts and methods for production of single-walled carbon nanotubes
EP1748837A4 (en) * 2004-01-09 2009-11-11 Olga Matarredona CARBON NANOTUBLE PASTE AND USE METHODS
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
US20060293434A1 (en) * 2004-07-07 2006-12-28 The Trustees Of The University Of Pennsylvania Single wall nanotube composites
JP2006069818A (ja) * 2004-08-31 2006-03-16 Keio Gijuku 炭素微粒子
GB2419883A (en) * 2004-11-03 2006-05-10 Carbon Cones As Matrix containing carbon cones or disks
US20060291142A1 (en) * 2004-12-13 2006-12-28 Ohio State University Research Foundation Composite material containing nanotubes and an electrically conductive polymer
KR100635546B1 (ko) * 2004-12-24 2006-10-17 학교법인 포항공과대학교 전계 효과 트랜지스터 채널 구조를 갖는 스캐닝 프로브마이크로 스코프의 탐침 및 그 제조 방법
US7462656B2 (en) * 2005-02-15 2008-12-09 Sabic Innovative Plastics Ip B.V. Electrically conductive compositions and method of manufacture thereof
US20060191835A1 (en) * 2005-02-28 2006-08-31 Petrik Viktor I Compositions and methods of remediation devices with nanostructured sorbent
JP2006310154A (ja) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc 透明導電膜および透明導電膜用コーティング組成物
CN101365830B (zh) * 2005-06-28 2013-06-12 俄克拉荷马州大学评议会 生长和收获碳纳米管的方法
KR101356296B1 (ko) * 2005-06-28 2014-02-06 이 아이 듀폰 디 네모아 앤드 캄파니 높은 일 함수의 투명한 도체
WO2007002740A2 (en) 2005-06-28 2007-01-04 E. I. Du Pont De Nemours And Company Buffer compositions
DE102005032072A1 (de) * 2005-07-08 2007-01-11 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung e.V. Kohlenstoff-Nanopartikel, deren Herstellung und deren Verwendung
US7888419B2 (en) * 2005-09-02 2011-02-15 Naturalnano, Inc. Polymeric composite including nanoparticle filler
US8133637B2 (en) * 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7887771B2 (en) * 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US8252405B2 (en) * 2005-10-27 2012-08-28 The Board Of Trustees Of The Leland Stanford Junior University Single-walled carbon nanotubes and methods of preparation thereof
US7604049B2 (en) * 2005-12-16 2009-10-20 Schlumberger Technology Corporation Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications
US20070145097A1 (en) * 2005-12-20 2007-06-28 Intel Corporation Carbon nanotubes solder composite for high performance interconnect
US8264137B2 (en) 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
US7935276B2 (en) * 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
US8017563B2 (en) * 2006-03-09 2011-09-13 M-I L.L.C. Diverting compositions, fluid loss control pills, and breakers thereof
US8017239B2 (en) * 2006-03-31 2011-09-13 Hewlett-Packard Development Company, L.P. Metamaterials and methods of making the same
US8030376B2 (en) 2006-07-12 2011-10-04 Minusnine Technologies, Inc. Processes for dispersing substances and preparing composite materials
GB2454617B (en) * 2006-08-22 2011-07-06 Pamela A Menges Article having multi-functional elements
CN101192492B (zh) * 2006-11-22 2010-09-29 清华大学 透明导电膜的制备方法
US8124678B2 (en) * 2006-11-27 2012-02-28 Naturalnano, Inc. Nanocomposite master batch composition and method of manufacture
US20080191172A1 (en) * 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
US8648132B2 (en) * 2007-02-07 2014-02-11 Naturalnano, Inc. Nanocomposite method of manufacture
KR100859690B1 (ko) * 2007-04-11 2008-09-23 삼성에스디아이 주식회사 발광 장치 및 이 발광 장치를 백라이트 유닛으로 사용하는액정 표시 장치
US8241526B2 (en) * 2007-05-18 2012-08-14 E I Du Pont De Nemours And Company Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives
US20090326133A1 (en) * 2007-05-23 2009-12-31 Naturalnano Research, Inc. Fire and flame retardant polymer composites
US7905992B1 (en) 2007-07-13 2011-03-15 Brunswick Corporation Submerged surface with conductive nanoparticles
JP4936069B2 (ja) * 2007-10-31 2012-05-23 株式会社デンソー モータ制御装置
EP2101335A1 (en) * 2008-03-10 2009-09-16 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Mouldable material.
US8535604B1 (en) 2008-04-22 2013-09-17 Dean M. Baker Multifunctional high strength metal composite materials
US8277690B2 (en) * 2008-06-09 2012-10-02 Council Of Scientific & Industrial Research Conducting copolymer ferromagnetic composite and a process for the preparation thereof
US8318122B2 (en) * 2008-10-10 2012-11-27 Headwaters Tech Innovation Llc Preparation of a carbon nanomaterial using a reverse microemulsion
KR20100073506A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
TW201100480A (en) 2009-03-12 2011-01-01 Du Pont Electrically conductive polymer compositions for coating applications
JP5587980B2 (ja) 2009-04-21 2014-09-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 導電性ポリマー組成物およびそれから作製されたフィルム
CN102395627B (zh) 2009-04-24 2015-04-01 E.I.内穆尔杜邦公司 导电聚合物组合物和由其制得的膜
KR101798061B1 (ko) * 2009-06-25 2017-11-16 삼성전자주식회사 음극 활물질, 이를 포함하는 음극, 음극의 제조 방법 및 리튬 전지
US8227386B2 (en) * 2009-08-18 2012-07-24 GM Global Technology Operations LLC Nanographene layers and particles and lubricants incorporating the same
US20120238725A1 (en) * 2009-09-04 2012-09-20 Northwestern University Primary carbon nanoparticles
US8610161B2 (en) * 2010-10-28 2013-12-17 Tsmc Solid State Lighting Ltd. Light emitting diode optical emitter with transparent electrical connectors
US9859063B2 (en) * 2011-02-13 2018-01-02 Indiana University Research & Technology Corporation High surface area nano-structured graphene composites and capacitive devices incorporating the same
US9656862B2 (en) 2011-02-13 2017-05-23 Indiana University Research And Technology Corporation High surface area nano-structured graphene composites and capacitive devices incorporating the same
JP5747649B2 (ja) * 2011-05-11 2015-07-15 マツダ株式会社 球状炭素材含有樹脂材及びその製造方法
US8748504B2 (en) * 2011-10-11 2014-06-10 Yale University Polymeric composites having oriented nanomaterials and methods of making the same
US8691915B2 (en) 2012-04-23 2014-04-08 Sabic Innovative Plastics Ip B.V. Copolymers and polymer blends having improved refractive indices
US10320000B2 (en) 2013-07-18 2019-06-11 Ut-Battelle, Llc Pyrolytic carbon black composite and method of making the same
US10839975B2 (en) * 2014-03-10 2020-11-17 The Boeing Company Graphene coated electronic components
US10020500B2 (en) 2014-03-25 2018-07-10 Indiana University Research And Technology Corporation Carbonized polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets for li-ion battery anodes
CN104616838B (zh) 2015-02-10 2018-02-06 京东方科技集团股份有限公司 一种电子器件的制作方法及电子器件
CN104934551B (zh) * 2015-05-14 2017-07-28 京东方科技集团股份有限公司 一种柔性电极层及其制备方法、显示基板、显示装置
US9941058B2 (en) 2015-05-26 2018-04-10 Ut-Battelle, Llc Flexible and conductive waste tire-derived carbon/polymer composite paper as pseudocapacitive electrode
KR102033401B1 (ko) * 2016-01-05 2019-11-08 한국전자통신연구원 효율적으로 파일을 생성하기 위한 분산 파일 시스템 및 방법
US9884804B2 (en) 2016-05-24 2018-02-06 Ut-Battelle, Llc Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
US10464044B1 (en) 2016-05-27 2019-11-05 Precision Combustion, Inc. High capacity regenerable graphene-based sorbent
US11602788B2 (en) 2018-05-04 2023-03-14 Dean Baker Dissolvable compositions and tools including particles having a reactive shell and a non-reactive core
US11762109B2 (en) * 2020-09-30 2023-09-19 Corvid Technologies LLC Scintillation detectors and methods of preparation and use thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5098771A (en) 1989-07-27 1992-03-24 Hyperion Catalysis International Conductive coatings and inks
CN1064777A (zh) * 1991-03-10 1992-09-23 王骥 全频道电视节目自动监视器
US5547748A (en) * 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
US5763548A (en) 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
JP3412975B2 (ja) * 1995-07-25 2003-06-03 日本化薬株式会社 フラーレン含有微粒子の製造方法
JP3029391B2 (ja) * 1995-09-19 2000-04-04 醇 西脇 樹脂分散用の炭素質導電性材の処理方法
JP3682792B2 (ja) * 1995-10-20 2005-08-10 ソニー株式会社 発光体
JPH09115334A (ja) * 1995-10-23 1997-05-02 Mitsubishi Materiais Corp 透明導電膜および膜形成用組成物
US5576162A (en) * 1996-01-18 1996-11-19 Eastman Kodak Company Imaging element having an electrically-conductive layer
US5853877A (en) 1996-05-31 1998-12-29 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film
US6080470A (en) * 1996-06-17 2000-06-27 Dorfman; Benjamin F. Hard graphite-like material bonded by diamond-like framework
US6051096A (en) * 1996-07-11 2000-04-18 Nagle; Dennis C. Carbonized wood and materials formed therefrom
JP3074170B1 (ja) * 1999-05-27 2000-08-07 大澤 映二 ナノサイズ真球状黒鉛製造方法
US6790426B1 (en) * 1999-07-13 2004-09-14 Nikkiso Co., Ltd. Carbonaceous nanotube, nanotube aggregate, method for manufacturing a carbonaceous nanotube
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
EP1269797A4 (en) * 2000-03-07 2006-06-21 Robert P H Chang CARBON NANOSTRUCTURES AND PROCESSES FOR PREPARING THE SAME
US6537515B1 (en) * 2000-09-08 2003-03-25 Catalytic Materials Llc Crystalline graphite nanofibers and a process for producing same
US6740403B2 (en) * 2001-04-02 2004-05-25 Toyo Tanso Co., Ltd. Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof
US6740224B1 (en) * 2001-06-11 2004-05-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of manufacturing carbon nanotubes
US6749826B2 (en) * 2001-06-13 2004-06-15 The Regents Of The University Of California Carbon nanotube coatings as chemical absorbers
US6743500B2 (en) * 2001-08-03 2004-06-01 Hitachi Chemical Company, Ltd. Hollow carbon fiber and production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100537411C (zh) * 2004-08-20 2009-09-09 财团法人工业技术研究院 具有杂原子的纳米碳球及其制法
CN100431951C (zh) * 2006-08-17 2008-11-12 暨南大学 一种炭材料的合成方法
CN101689568B (zh) * 2007-04-20 2014-02-26 凯博瑞奥斯技术公司 复合透明导体及其形成方法
CN102015893B (zh) * 2008-05-07 2013-02-27 出光兴产株式会社 芳香族聚碳酸酯树脂组合物及其成形体
TWI496738B (zh) * 2009-12-24 2015-08-21 Toray Industries 碳微粒子及其製造方法
CN102947372A (zh) * 2010-04-22 2013-02-27 阿克马法国公司 基于碳纳米管和石墨烯的热塑性和/或弹性复合材料
CN102947372B (zh) * 2010-04-22 2016-05-11 阿克马法国公司 基于碳纳米管和石墨烯的热塑性和/或弹性复合材料
CN104136367A (zh) * 2012-02-13 2014-11-05 锦湖石油化学株式会社 碳纳米材料粒料和由碳纳米材料粉末制备粒料的方法
CN104136367B (zh) * 2012-02-13 2015-11-25 锦湖石油化学株式会社 碳纳米材料粒料和由碳纳米材料粉末制备粒料的方法
US9837180B2 (en) 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
CN105139920A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 一种导电颗粒及其制备方法、导电胶、显示装置
US10479914B2 (en) 2015-09-25 2019-11-19 Boe Technology Group Co., Ltd. Conductive particle and preparation method thereof, conductive adhesive and display device

Also Published As

Publication number Publication date
US20040009346A1 (en) 2004-01-15
JP2004035386A (ja) 2004-02-05
US6919063B2 (en) 2005-07-19
EP1375425A1 (en) 2004-01-02
CN1301901C (zh) 2007-02-28
JP3606855B2 (ja) 2005-01-05
EP1375425B1 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
CN1301901C (zh) 新型碳纳米微粒、其制备方法及含有新型碳纳米微粒的透明导电聚合物复合材料
Yu et al. Synthesis and characterization of carbon nanotube/polypyrrole core–shell nanocomposites via in situ inverse microemulsion
Reddy et al. Synthesis of MWCNTs‐core/thiophene polymer‐sheath composite nanocables by a cationic surfactant‐assisted chemical oxidative polymerization and their structural properties
Pan et al. A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization
Zhang et al. Surfactant‐directed polypyrrole/CNT nanocables: Synthesis, characterization, and enhanced electrical properties
Barraza et al. SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization
Li et al. Electrical properties of soluble carbon nanotube/polymer composite films
Ayranci et al. Carbon based nanomaterials for high performance optoelectrochemical systems
Zhang et al. Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties
Tsai et al. Plastic superconducting polymer− NbSe2 nanocomposites
Liang et al. Electrical properties of percolative polystyrene/carbon nanofiber composites
Patil et al. Characterization of composites based on biodegradable poly (vinyl alcohol) and nanostructured fly ash with an emphasis on polymer–filler interaction
Curran et al. Electrical transport measurements of highly conductive carbon nanotube/poly (bisphenol A carbonate) composite
Tran et al. Electroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization
CN1974667A (zh) 多壁纳米碳管/聚苯胺导电复合材料的制备方法
CN1640933A (zh) 一种制备聚合物/碳纳米管复合材料的方法
Prusty et al. Dispersion of multiwalled carbon nanotubes in polyacrylonitrile‐co‐starch copolymer matrix for enhancement of electrical, thermal, and gas barrier properties
Song et al. Latex-based polystyrene nanocomposites with non-covalently modified carbon nanotubes
Abutalip et al. Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites
Ningaraju et al. Ionic and electronic transport in PSF/NiO and PSF/TiO2 polymer nanocomposites: A positron lifetime study
Gunjal et al. Humidity sensing performance of polyaniline-neodymium oxide composites
Wang et al. Preparation and properties of polysiloxane grafting multi‐walled carbon nanotubes/polycarbonate nanocomposites
Xiong et al. Electrochemical preparation of covalently bonded PEDOT‐graphene oxide composite electrochromic materials using Thiophene‐2‐methylanine as bridging group
CN1302486C (zh) 一种导电高分子-碳纳米管纳米电缆及其制备方法
Sun et al. Fabrication of High Thermally Conductive and Electrical Insulating Composites by Boron Nitride‐Nanosheet‐Coated PEEK Fiber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070228

Termination date: 20190624