Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN1440258 A
Publication typeApplication
Application numberCN 01812407
PCT numberPCT/US2001/015346
Publication date3 Sep 2003
Filing date14 May 2001
Priority date12 May 2000
Also published asCA2408176A1, CN100506183C, DE60136535D1, EP1280467A1, EP1280467B1, EP1280467B8, US6936047, US20040006337, WO2001087172A1, WO2001087172A9
Publication number01812407.0, CN 01812407, CN 1440258 A, CN 1440258A, CN-A-1440258, CN01812407, CN01812407.0, CN1440258 A, CN1440258A, PCT/2001/15346, PCT/US/1/015346, PCT/US/1/15346, PCT/US/2001/015346, PCT/US/2001/15346, PCT/US1/015346, PCT/US1/15346, PCT/US1015346, PCT/US115346, PCT/US2001/015346, PCT/US2001/15346, PCT/US2001015346, PCT/US200115346
InventorsM纳萨布, EKY陈
Applicant咖帝玛股份有限公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Multi-channel RF energy delivery with coagulum reduction
CN 1440258 A
Abstract  translated from Chinese
一种利用关于RF能量与生物组织之间的相互作用的新概念,利用用于导管消融的消融导管,对心脏组织进行射频(RF)能量的有效输送的系统。 An advantage of the new concept of RF energy and biological interactions between organizations, the use of catheter ablation for catheter ablation of cardiac tissue system radiofrequency (RF) energy efficient transport. 此外,将给出用于在RF消融期间的凝结块缩减的方法中的新的见识,以及将引入一种定量模型,用于确定在RF消融期间的凝结块形成的倾向。 Further, in the agglomerates will be given for RF ablation during reduction method of the new knowledge, and will introduce a quantitative model for determining the tendency to agglomerate formation during RF ablation. 给出了有效的实用技术,用于多通道同时RF能量输送,以及对凝结块指数的实时计算,该凝结块指数估计凝结块形成的概率。 Gives practical and effective technique for multi-channel simultaneous RF energy delivery, as well as real-time calculation of the index agglomerates, which agglomerates index clot formation probability estimates. 该信息用于反馈和控制算法,该算法有效地降低了在消融期间的凝结块形成概率。 This information is used for feedback and control algorithm, which effectively reduces the clot formation during ablation probability. 对于各消融通道,电耦合通过消融导管的消融电极输送RF电流,并且把温度传感器置于相对于所述消融电极,用于测量与所述消融电极接触的心脏组织的温度。 For each ablation channel, electrically coupled through the ablation catheter ablation electrode RF current delivery, and the temperature sensor is disposed relative to the ablation electrodes, for measuring the temperature of the electrode in contact with the cardiac tissue ablation. 在各通道电路中提供电流传感器,用于测量通过所述电耦合输送的电流,并且信息处理器和RF输出控制器耦合至所述温度传感器和所述电流传感器,用于估计凝结块形成的可能性。 Each channel provided in the current sensor circuit, electrically coupled through said current measurement for delivery, and the information processor and RF output controller coupled to said temperature sensor and said current sensor, for estimating the possibility of the formation of agglomerates sex. 当同时通过多条消融通道传播该功能性时,所产生的线性或曲线性损伤是较深的,并带有较少的缝隙。 When propagate simultaneously through the plurality of functional ablation channel, the generated linear or curvilinear injury is deep, and with fewer gaps. 因此,由于改进的损伤完整性而改进了临床结果。 Therefore, the damage due to the improved integrity and improved clinical outcomes.
Claims(22)  translated from Chinese
1.一种用于利用消融导管对心脏组织进行射频(RF)能量的有效输送的系统,其特征在于所述系统包括:(a)RF发生器;(b)有效用于通过多个消融电极从RF发生器向心脏组织输送电流的电耦合,以及RF电流通过一参考电极的返回通路,所述多个消融电极在所述消融导管的末端处以线性或曲线装配排列;(c)多个温度传感器,每个温度传感器位于与所述多个消融电极的每一个的接近处,所述多个温度传感器有效用于测量与所述多个消融电极接触的心脏组织的温度;以及(d)信息处理器和RF输出控制器,有效用于控制通过所述电耦合而输送的RF功率的量,以在初始斜线上升阶段在实时计算的RF功率中提供渐进的增加,并根据与所述一系列消融电极相接触的心脏组织的温度,限制通过所述电耦合的RF功率的输送,从而降低在RF能量对心脏组织的输送期间的凝结块形成的可能性。 1. A method for utilizing cardiac tissue ablation catheter system radio frequency (RF) energy efficient transport, wherein said system comprises: (a) RF generator; (b) effective for the plurality of ablation electrodes by supplying current from the RF generator electrically coupled to the heart tissue, and RF current return path by means of a reference electrode, said plurality of ablation electrodes at the end of the ablation catheter assembly impose a linear or curvilinear arrangement; (c) a plurality of temperature sensor, a temperature sensor is located at each of the plurality of ablation electrodes at each of the proximity, the plurality of temperature sensors effective for measuring the temperature of the ablation electrode contacts of the plurality of heart tissue; and (d) Information processor and RF output controller for controlling an effective amount of RF power conveyed by the electrical coupling to provide a gradual increase in RF power calculated in real time in the initial ramp up phase, and according to the a Series ablation electrode in contact with cardiac tissue temperature, limited by the electrical coupling of the RF power delivery, thereby reducing the likelihood of condensation in the block RF energy delivery during cardiac tissue formation.
2.如权利要求1所述的系统,其特征在于进一步包括电流传感器,有效用于测量通过所述电耦合输送的电流,以及电压传感器,有效用于测量通过所述电耦合输送的电压,其中所述信息处理器和RF输出控制器能够实时计算RF功率,并根据测量的电流和电压中的变化以及计算的功率来终止通过所述电耦合的RF能量的输送,并且其中所述信息处理器和RF输出控制器以用户可选择的方式同时向所述多个电极的全部或任意组合提供RF能量。 2. The system according to claim 1, characterized by further comprising a current sensor effective for measuring current through the electrically coupling delivered, and a voltage sensor effective for measuring the electrical coupling through the voltage transported, wherein said information processor and RF output controller is capable of calculating RF power in real time, and based on the current and voltage measurements of change and the calculated power to be terminated by the electrically coupling RF energy delivery, and wherein said information processor and RF output controller user-selectable manner while providing RF energy to the whole or any combination of the plurality of electrodes.
3.如权利要求1所述的系统,其特征在于所述信息处理器和RF输出控制器把在所述一系列温度传感器处测量的温度与用户对心脏组织的消融选择的目标温度相比较,并且其中所述信息处理器和RF输出控制器限制通过所述电耦合的电流的输送,以在心脏组织处保持目标温度。 3. The system of claim 1, wherein said information processor and RF output controller compares the temperature sensor in the range of temperature measured at the cardiac tissue ablation user selected target temperature, and wherein said information processor and RF output controller limits the current through the electrically coupling the conveyor to maintain the target temperature at the cardiac tissue.
4.如权利要求3所述的系统,其特征在于所述一系列温度传感器的每个温度传感器邻近于所述一系列电极中的一个电极,并且所述信息处理器和RF输出控制器利用所述电极装配的各电极的两侧上的温度传感器的组合的温度读数,来单独地控制对各电极的电流的输送。 4. The system of claim 3, wherein each of said series of temperature sensor is a temperature sensor adjacent to said series of electrodes one electrode, and said information processor and RF output controller utilizes the combination of temperature sensors on both sides of the electrode assembly of each electrode on a temperature reading, to individually control the delivery of current of each electrode.
5.如权利要求1所述的系统,其特征在于所述信息处理器和RF输出控制器计算在所述温度传感器测量的温度斜线上升到目标温度所流逝的时间,对上升到目标温度的测量表示功率曲线,指示出传送到心脏组织的功率,所述信息处理器和RF输出控制器对一消融事件,从所流逝的时间和目标温度计算功率曲线的斜率,以确定凝结块形成的可能性。 5. The system of claim 1, wherein said information processor and RF output controller calculates the temperature measured by the temperature sensor to the target temperature ramp time lapsed, the target temperature to rise to measurement represents power curve indicating power transferred to cardiac tissue, said information processor and RF output controller for an ablation event, calculated from the elapsed time and the target temperature slope of the power curve, in order to determine the possible clot formation sex.
6.如权利要求5所述的系统,其特征在于所述信息处理器和RF输出控制器通过把功率曲线的斜率除以通过消融电极输送的电流的平方,来计算指示出凝结块的可能性的指数。 6. The system of claim 5, wherein said information processor and RF output controller by the possibility of the slope of the clot curve by the power delivered through the ablation electrode square of the current, indicating calculated index.
7.如权利要求1所述的系统,其特征在于所述系统进一步包括多个电流和电压传感器,并且所述信息处理器和RF输出控制器包括通过把消融点处的至少一个阻抗的实时测量、消融点上的差动阻抗以及消融点上的温度与最大设定值比较,来终止对所述一系列消融电极的RF能量输送的功能。 7. The system of claim 1, wherein said system further comprises a plurality of current and voltage sensors and the information processor and RF output controller comprises melting point by at least one real-time measurement of the impedance temperature differential impedance and ablation spot ablation point on the maximum setting compared to terminate the series of ablation electrode RF energy delivery functions.
8.如权利要求7所述的系统,其特征在于所述功能利用模拟方法用于信息处理,以及脉宽调制用于RF能量控制。 8. The system of claim 7, wherein said function using analog methods for information processing and pulse width modulation for RF energy control.
9.如权利要求8所述的系统,其特征在于所述信息处理器和RF输出控制把与心脏组织的消融的电容特性相关联的凝结块指数计算为与指示凝结块形成的可能性的指数成比例。 9. The system of claim 8, wherein said information processor and RF output control of the agglomerates index capacitance characteristic with cardiac tissue ablation is associated with the calculated index indicating the likelihood of clot formation proportional.
10.如权利要求9所述的系统,其特征在于提供所述消融导管的凝结块指数用于匹配对所述心脏组织的消融确定的阻抗。 10. The system of claim 9, wherein said ablation catheter to provide agglomerates index for matching the ablation of cardiac tissue to determine the impedance.
11.如权利要求1所述的系统,其特征在于根据温度测量值,对信息处理使用模拟方法以及对RF能量控制使用脉宽调制,来限制电流的输送。 11. The system according to claim 1, characterized in that the basis of the temperature measurements, the use of the information processing method, and a simulation of the RF power control using pulse width modulation to limit current delivery.
12.一种用于通过使用带有消融电极的消融导管,从射频(RF)发生器向心脏组织的消融点输送RF能量,来形成心脏损伤的方法,其特征在于所述方法包括:a)对消融点选择温度设定值;b)把消融导管施加到消融点,以在消融电极和消融点之间建立接触,c)通过监控消融点温度、以及可选的消融点处的至少一个阻抗、RF发生器的功率以及通过消融点的电流来监控消融电极和消融点之间的有效接触;d)起动并在斜线上升阶段渐进增加RF发生器的功率,以增加消融点处的组织的温度,当消融点处的温度达到大约温度设定值的温度时,终止所述斜线上升阶段;以及e)通过调节RF发生器的功率,把消融点处的温度保持在大约所述温度设定值处,在形成心脏损伤之后,所述保持终止,自动地调节所述起动和增加步骤和所述保持步骤,并且如果有效接触不存在则过早地终止,从而降低凝结块形成。 12. A method for using the electrode ablation catheter with an ablation, RF energy delivery from the generator frequency (RF) ablation points to the cardiac tissue to form cardiac injury, characterized in that the method comprises: a) for the ablation temperature set point selection value; b) is applied to the ablation catheter ablation point, to establish contact between the ablation electrode and the ablation points, c) by monitoring the ablation point temperature, and optionally at least one melting point impedance , the power of the RF generator and the current through the ablation points to monitor the effective point of contact between the ablation electrode and the ablation; d) start and ramp up phase of gradual increase in power of the RF generator, to increase the melting point of the tissue temperature, when the temperature reaches the melting point at a temperature of about the temperature set point, terminating the ramp phase; and e) by adjusting the power of the RF generator, the temperature at the point of ablation is maintained at approximately the temperature set at a fixed value, after the formation of heart damage, the hold end, to automatically adjust the start and increasing step and the holding step, and if it does not exist an effective contact prematurely terminated, thereby reducing the formation of agglomerates.
13.如权利要求12所述的方法,其特征在于把所述RF发生器的最大功率设置在大约35瓦特之下,并且调节温度以保持在离开所述温度设定值5℃或更少的范围内。 13. The method according to claim 12, characterized in that the maximum power of the RF generator disposed below about 35 watts, and adjusting the temperature to maintain the temperature setpoint leaving 5 ℃ or less range.
14.如权利要求12所述的方法,其特征在于把所述RF发生器的功率设置在大约7W至15W,并且调节温度以保持在离开所述温度设定值5℃或更少的范围内。 14. The method of claim 12, wherein said RF power generator disposed about 7W to 15W, and adjusting the temperature to maintain the temperature setpoint leaving 5 ℃ or less within the range of .
15.如权利要求12所述的方法,其特征在于所述凝结块指数处于或低于大约12的值。 15. The method of claim 12, wherein said agglomerates index at or below a value of about 12.
16.如权利要求12所述的方法,其特征在于所述凝结块指数处于或低于大约8的值。 16. The method of claim 12, wherein said agglomerates index at or below a value of about 8.
17.如权利要求12所述的方法,其特征在于通过对消融点处的至少一个阻抗、消融点处的差动阻抗以及消融点处的温度的实时测量,来确定消融电极和消融点之间的有效接触。 Between 17. The method according to claim 12, characterized in that the ablation points by at least one impedance, ablation time measurement of the differential impedance point and the temperature at the ablation points, to determine the ablation electrode and the ablation points effective contact.
18.如权利要求12所述的方法,其特征在于所述消融电极是一种多个消融电极,并且使用来自位于消融电极的装配的消融电极之间的多个热电耦传感器的温度反馈来调节保持温度。 18. The method of claim 12, wherein a plurality of the ablation electrode is an ablation electrode, and ablation electrode temperature from using ablation electrode assembly located between the plurality of thermocouple sensors feedback to adjust to maintain the temperature.
19.如权利要求18所述的方法,其特征在于通过对各电极比较相邻的热电耦的温度,对各电极单独地进行所述保持温度。 19. The method according to claim 18, characterized in that each of the electrodes by comparing adjacent thermocouple temperature, performed separately for each electrode of the holding temperature.
20.如权利要求12所述的方法,其特征在于通过电学方法将2个或多个相邻的热电耦传感器的温度相减,并使用结果来控制脉宽调制器的脉宽持续期,来进行所述保持温度。 20. The method according to claim 12, characterized in that the temperature of the electrical method by two or more adjacent thermocouple sensor subtraction, and use the result to control the pulse width of the pulse duration modulator, to make the holding temperature.
21.如权利要求12所述的方法,其特征在于所述温度设定值是可由用户选择的。 21. The method of claim 12, wherein said temperature set value is selectable by the user.
22.如权利要求12所述的方法,其特征在于通过多个线性或曲线性的消融电极的同时的RF能量输送的配置是可由用户选择的。 22. The method according to claim 12, characterized in that it is provided by a plurality of linear or curvilinear ablation electrode, while the RF energy delivery is selectable by the user.
Description  translated from Chinese
用以凝结块缩减的多通道RF能量输送 To reduce clot multichannel RF energy delivery

发明背景射频能量可用于通过消融心脏组织来治疗诸如肌肉纤维性颤动之类的某些心脏异常。 Background of the invention can be used by radiofrequency energy ablation of cardiac tissue for the treatment of certain cardiac abnormalities such as type of muscle fibrillation. 在两个阶段中由RF发生器输出射频能量:(i)“斜线上升”阶段,在其中把相对较多量的功率输送到消融电极,直到由热电耦或热敏电阻感测到一希望的设定温度为止,以及(ii)“调节”阶段,在其中仍然在输送功率,但是调节在一较低的电平上,以保持希望的设定温度。 In two stages by the RF generator output RF energy: (i) "ramped up" stage, in which the relatively large amount of power delivered to the ablation electrode, until the measured by thermocouple or thermistor to sense a desired set temperature, and (ii) "adjust" stage, in which the transmission power is still, but adjusted on a lower level, in order to maintain a desired set temperature. 由操作者预定该目标温度,并且对于心脏组织的消融,该温度一般为50至55℃。 Predetermined by the operator of the target temperature, and for cardiac tissue ablation, the temperature is generally 50 to 55 ℃.

多数RF发生器具有软件模块,在RF能量输出期间所述软件模块在便携式计算机上同时运行,以记录消融事件。 Most RF generators have software modules, during the RF energy output of said software modules run on a portable computer, in order to record the event ablation. 一般地,记录的参数是感测的阻抗、输送的功率以及由热敏电阻或热电耦感测的组织温度。 In general, the recorded parameters are sensed impedance, power delivered, and the thermistor or thermocouple sensed tissue temperature. 当前,该信息一般用于后程序上的再观察。 Currently, this information is generally used to re-observe the procedures.

心脏组织的RF消融中的难题是在心脏组织中建立深损伤,而同时避免凝结块形成。 RF ablation of cardiac tissue in the puzzle is built deep in the heart tissue damage, while avoiding the formation of agglomerates. 它遵循必须有效地把RF能量输送入组织,而不输送到或丢失于血液媒介中。 It follows the RF energy to be effectively transported into the tissue, rather than transported to or loss of the blood medium. 当前的方法和系统不足以确保能在消融过程期间把RF能量有效地输送到心脏组织。 Current methods and systems are not adequate to ensure that during the ablation process to efficiently deliver RF energy to the heart tissue.

RF能量的输送中的现有研究已示出当电极-组织接触是间歇的时候,阻抗值波动,并且输送的功率也必须迅速地适应,以便达到或保持目标温度。 RF energy delivery in the prior studies have shown when the electrode - tissue contact is intermittent, when the resistance value fluctuation, and the power delivered must quickly adapt in order to achieve or maintain a target temperature. 因此,快速交替的阻抗值致使输出功率波形也迅速波动。 Therefore, rapid alternating impedance value resulting output waveform fluctuate rapidly. 如果RF功率波形的上升时间尖锐,并且调制于RF源信号上的噪声具有足够高的幅度,则它将有助于凝结块形成,因为它将令人不希望地近似由电外科单元使用的凝结波形。 If the rise time of the RF power waveform is sharp, and the modulation signal to the noise on the RF source having a sufficiently high amplitude, it will contribute to clot formation, coagulation waveform because it undesirably approximated by the use of an electrosurgical unit . 因此,仍然存在对执行RF消融的系统和方法的需要,其中确保了与目标心脏组织的有效接触,以实现较深的损伤和缩减的凝结块形成。 Thus, there remains a need exists for a system and method for RF ablation which ensure effective contact with the target heart tissue in order to achieve deeper injury and reduce the formation of agglomerates.

本发明的方法和系统提供了利用消融导管把射频(RF)能量有效地输送到心脏组织,从而产生连续有效的RF消融过程以及提高的患者的结果。 The method and system of the present invention provides the use of the ablation catheter to radiofrequency (RF) energy is efficiently delivered to cardiac tissue, resulting in a continuous and effective RF ablation procedure and the results improve patient.

发明概述本发明的方法和系统以设计成使由于凝结块形成而造成的无效消融过程的危险性降至最低的方式,同时通过一系列通道把RF能量输送到心脏组织。 SUMMARY OF THE INVENTION The method and system of the present invention are designed so that the invalid block forming an ablation procedure due to condensation caused by the way of lowest risk of falls, while the passage through a series of RF energy to the heart tissue. 所述方法和系统利用信息处理器和RF输出控制器,以精细地控制从RF发生器输送到正被消融的心脏组织的RF能量的速率和数量,以提高消融过程的有效性。 The method and system using the information processor and RF output controller, in order to finely control the delivery of RF energy from the RF generator to the cardiac tissue being ablated the rate and amount, in order to improve the effectiveness of the ablation process. 所述信息处理器和RF输出控制器确保在初始斜线上升阶段期间,逐渐地增加RF能量。 Said information processor and RF output controller to ensure that during the initial ramp up phase, gradually increasing RF energy. 此外,所述信息处理器和RF输出控制器在消融事件期间,使用从一系列传感器收集的信息来调节RF能量的输送,所述传感器提供到消融点,最好是作为消融导管的一部分。 Furthermore, the information processor and RF output controller during the ablation event, using information gathered from a series of sensors to adjust the RF energy delivery, the sensor is supplied to the point of ablation, preferably as part of the ablation catheter. 所述一系列传感器包括温度传感器和/或多个电流传感器。 The series of sensors include a temperature sensor and / or a plurality of current sensors. 该反馈控制确保在消融点保持适当的温度,并提供如果在整个消融过程中没有建立或保持有效的组织接触,则放弃消融过程的能力。 The feedback control to ensure that the ablation point to maintain proper temperature and provide effective if not establish or maintain contact with the tissues throughout the ablation process, you give up the ability of the ablation process.

附图简述在附属的权利要求中提出了本发明的新颖特征。 Brief Description of the proposed novel features of the invention as claimed in the appended claims. 然而,结合附图和附录,参考下面的实施例的详细描述,将最佳地理解本发明自身以及使用的较佳模式、进一步的目标和优点,其中:图1A和图1B是本发明的信息处理器和RF输出控制器和系统的实施例(图1A),以及信息处理器和RF输出控制器的用户接口(图1B)的实施例的示意图。 However, the accompanying drawings and appendices, with reference to the detailed description of the embodiments below, will be best understood from the preferred mode of the present invention itself, as well as to use, further objects and advantages, of which: Figures 1A and 1B are the information of the present invention Example processor and RF output controller and system (Fig. 1A), and a user interface (FIG. 1B) of the information processor and RF output controller is a schematic view of an embodiment.

图2A-B示出了用于有效消融的导管配置。 Figures 2A-B shows a catheter configured for effective ablation.

图3和图4示出了根据本发明的用于通过消融导管调节对心脏组织的RF能量的输送的信息处理器和RF输出控制器的示意框图。 Figures 3 and 4 shows according to the present invention by a schematic block diagram of the ablation catheter regulating cardiac tissue of RF energy delivery information processor and RF output controller.

图5A和5B给出了温度测量的流程图,以及图5C是说明电压阻抗和功率的实时模拟计算的框图。 Figures 5A and 5B shows the flow chart of temperature measurement, and FIG. 5C is a block diagram of voltage impedance and power of real-time simulation.

图6示出了用于根据温度读数调节RF能量的温度调节电路的示意图。 Figure 6 shows a schematic view of the temperature for adjusting the RF energy based on temperature readings adjusting circuit.

图7是一框图,示出由根据本发明的一个实施例的信息处理器和RF输出控制器进行的对RF能量的输送的调节,它使用数字逻辑分别调节输送到一系列消融电极的各消融电极的电流。 Figure 7 is a block diagram showing the regulation of delivery of RF energy in accordance with the present invention by an information processor and RF output controller of the embodiment will be, which were adjusted using digital logic delivered to each ablation electrode of a series of ablation current electrodes.

图8示出了使用本发明的方法和过程的典型消融事件的记录。 Figure 8 shows a typical ablation event record using the present invention, methods and processes.

图9是以凝结块的估计概率作为因变量,以CI作为预测变量的数理逻辑函数。 Figure 9 is a block to estimate the probability of condensation as the dependent variable, with CI as a predictor of mathematical logic functions. 图10A和10B示出了来自两个RF消融病例的凝结块指数的散布图。 10A and 10B illustrate a case from two RF ablation agglomerates index scatter diagram. 图10A示出了当未施加渐进的功率输送以及把最大功率设置在50W时从病例研究中得出的结果。 10A shows a gradual power delivery when not applied and the results of the maximum power setting at 50W when drawn from the case study. 图10B示出了使用根据本发明的系统和方法的从病例研究中得出的结果,其中对每个消融事件施加渐进的功率输送,并把RF发生器的最大功率设置在30W。 Figure 10B illustrates the use derived from the case according to the study results of the system and method of the present invention, wherein for each ablation event applied to progressive power delivery, the RF generator and the maximum power setting at 30W.

较佳实施例的详细描述本发明的方法和系统利用新颖的信息处理器和RF输出控制器(这里也称为多通道RF消融接口),通过连接至消融导管的一系列消融电极的电耦合,来调节来自RF发生器(这里也称为RF能量源)的对心脏组织的射频(RF)能量的输送。 Detailed description of the preferred embodiment of the method and system of the present invention utilizes a novel information processor and RF output controller (also called a multi-channel RF ablation interface), by being connected to a series of ablation the ablation electrode electrically coupled to the catheter, to adjust the heart tissue frequency (RF) from an RF generator (also referred to herein RF energy source) energy delivery. 信息处理器和RF输出控制器确保在初始斜线上升阶段期间,以逐渐增加的方式输送能量至一消融温度设定值,并在此后以一反馈调节的速率保持消融点上的心脏组织的设定值温度。 Information processor and RF output controller to ensure that during the initial ramp up phase to gradually increase the delivery of energy to the way a melting temperature setpoint, and thereafter to maintain a feedback regulation of the rate of cardiac tissue ablation points on the set setpoint temperature. 所述温度设定值最好可由用户选择。 The temperature set value is preferably selectable by the user. 并且最好还由诸如阻抗、电流和/或输送到消融导管的功率之类的其它参数来反馈调节能量的输送,以确保保持消融电极和心脏组织之间的有效接触。 And preferably also by such as impedance, current, and / or delivered to the other parameters of the ablation catheter or the like to the power feedback regulation of energy delivery, in order to ensure effective contact between the electrode and the cardiac tissue ablation is maintained.

本发明的信息处理器和RF输出控制器能够独立地向一系列消融电极的各消融电极输送能量。 The information processor and RF output controller of the present invention is capable of independently to each of a series of ablation electrodes delivering energy ablation electrode. 在这里所描述的某些较佳实施例中,信息处理器和RF输出控制器使用模拟方法进行信息处理,并使用脉宽调制进行RF能量控制。 In certain preferred embodiments described herein, the information processor and RF output controller uses analog information processing method, and uses RF energy pulse width modulation control.

在较佳实施例中,信息处理器和RF输出控制器能够以这里所描述的方法的任何顺序或组合来向一系列消融电极的各消融电极输送RF能量。 In the preferred embodiment, the information processor and RF output controller is capable of methods in any order or combination as described herein for each ablation electrode ablation electrode to a series of RF energy delivery. 较佳的是,用户能够选择信息处理器和RF输出控制器将对其输送能量的电极或电极的组合。 Preferably, the user can select the information processor and RF output controller in combination of its electrode or electrodes of energy delivery.

如图1A中所示,所描述的信息处理器和RF输出控制器100(这里也称为多通道RF消融接口)试图连同商业上可获得的射频(RF)损伤发生器(RF发生器)150以及诸如由Cardima制造的消融导管160一起,在人的心脏中制造心脏损伤。 As shown, the described information processor and RF output controller 100 1A (also referred to as multi-channel RF ablation interface) together with a commercially available attempt to radio frequency (RF) generator injury (RF generator) 150 as well as manufactured by Cardima ablation catheter 160 together, manufacturing heart damage in the human heart. 接口借助使用嵌于导管160中的热电耦传感器162的读数,以及诸如阻抗和差动阻抗之类的其它参数的温度反馈,来调节从RF发生器150对消融导管160的RF能量输送。 Interface means using the embedded conduit 160 at a temperature of thermocouple sensor 162 readings, and other parameters such as impedance and differential impedance feedback like, from the RF generator 150 to adjust the ablation catheter 160. RF energy delivery. 信息处理器和RF输出控制器与导管之间的电通信通过电耦合170而发生。 Electrical communication information processor and RF output controller and the catheter occurs between electrically coupled through 170. 反馈调节起把电极温度保持在预置温度值附近的功能,并确保已对从电极164至心脏组织的能量的有效传送保持了消融电极164和心脏组织之间的有效接触。 The feedback from the electrode temperature is maintained at a temperature close to the preset value of the function, and ensure the effective transfer of energy from the electrode 164 to maintain an effective cardiac tissue ablation electrode 164 and the contact between the heart tissue.

本发明的多通道RF消融接口(即信息处理器和RF输出控制器)的一般的设计特征包括大约470至大约510kHz的工作RF频率范围;多个,较佳的是8个调节电极通道;大约100瓦特的最大功率RF能量输入;对每个30瓦特通道的最大功率RF能量输出;以及在启动时提供渐进的能量输送的功能。 The present invention is a multi-channel RF ablation interface (i.e., the information processor and RF output controller) of the general design features include from about 470 to about 510kHz operating RF frequency range; plurality, preferably eight adjusting electrode channels; about 100 watts maximum power RF energy input; maximum power 30 watts of RF energy for each channel output; and provide gradual energy delivery function at startup. 如下所述,较佳的是把对各通道的功率设置为大约25至35瓦特,最好是大约30瓦特。 As described below, preferably the power settings for each channel is from about 25 to 35 watts, and preferably about 30 watts. 信息处理器和RF输出控制器一般能够接收来自消融导管160上的感测器162的实时温度监控信息,并把该信息与用户规定的设定温度相比较。 The information processor and RF output controller is capable of receiving from the general catheter ablation sensor 160 on the real-time temperature monitoring information 162 and sends the information to the user compared to a predetermined set temperature. 该温度信息用于控制RF能量的滴定,以达到和保持设定温度,或用于如果达到某一过温切断点则关断RF能量输送。 This temperature information is used to control the titration of RF energy to reach and maintain the set temperature, or for, if it reaches a certain point of the over-temperature cut off RF energy delivery. 信息处理器和RF输出控制器还根据从电路感测的测量值来计算实时阻抗和输出功率,然后把该计算出的信息与用户设定限制相比较,其中如果超过了一限制,则终止能量的输送。 The information processor and RF output controller is further based on the measured values from the sensing circuit to calculate the real-time impedance and output power, then the calculated information is compared with the limit set by the user, wherein if it exceeds a limit, the energy is terminated delivery. 信息处理器和RF输出控制器100最好能够能对电路的各输出通道接收并处理该信息。 The information processor and RF output controller 100 is preferably able to receive and process the information for each output channel circuits. 信息处理器和RF输出控制器可使用模拟或数字方法,来接收并处理来自传感器的监控信息。 The information processor and RF output controller may use analog or digital methods for receiving and processing monitoring information from the sensors. 在较佳实施例中,使用实时模拟数据采集和计算方法。 In the preferred embodiment, the use of real-time analog data acquisition and computation methods.

信息处理器和RF输出控制器和/或RF源具有这样的能力,即当启动能量输送时,以渐进的方式输送RF能量。 Information processor and RF output controller and / or RF source has the ability, that is when you start the energy delivery, in a progressive manner RF energy delivery. 也就是,或者以手动的方式或者最好以自动的方式,在对消融电极的RF能量输送的启动时,以低于最大功率电平的电平启动功率。 That is, or in a manual manner or preferably in an automatic manner, at startup of the ablation electrode RF energy delivered to the maximum power level below the level of the starting power. 该最大功率电平用于为被消融的心脏组织获得温度设定值。 The maximum power level used for the ablated cardiac tissue to obtain a temperature setpoint. 然后,在大约8至15秒,较佳的是10秒的持续时间上逐渐增加功率,一般直到它达到最大功率为止。 Then, about 8-15 seconds, preferably gradually increases the power 10 seconds duration, typically until it reaches the maximum power reached. 例如,但不是限制,当以手动模式使用Radionics RFG-3E发生器时,功率可以10瓦特的设定开始,并然后通过调节RF发生器上的功率旋钮,在10秒内逐渐增加功率,以达到50℃的设定温度,而不过冲30瓦特的最大功率,并始终保持60秒的RF输送时间。 For example, but not limitation, when the manual mode Radionics RFG-3E generator, a power setting of 10 watts can be started, and then by adjusting the power knob on the RF generator, the power is gradually increased within 10 seconds, in order to achieve set at 50 ℃, while overshooting 30 watts maximum power, and always keep RF transfer time of 60 seconds. 如下面更详细的描述,本发明的较佳的信息处理器和RF输出控制器和RF输出控制器一当RF能量输送启动时就自动地逐渐增加功率,而不是以手动受控模式。 As described in more detail below, the preferred information processor and RF output controller and RF output controller of the present invention, when a power is automatically increased gradually during RF energy delivery to start, rather than manually controlled mode.

如图1B所示,信息处理器和多通道同时RF输出控制器一般包含用户接口,该用户接口包含一系列显示器105和110,以及调节旋钮115、120、125、130、135,以便于对上述参数的监控和控制。 1B, the information processor and multichannel simultaneous RF output controller typically includes a user interface, the user interface includes a series of display 105 and 110, and adjustment knob 115,120,125,130,135, to facilitate the above parameter monitoring and control. 例如,该用户接口可包含参数值显示器105,以及较佳的可包含分开的热电耦数字显示器110。 For example, the user interface may include a parameter value display unit 105, and preferably may comprise a separate thermocouple digital display 110.

用户接口一般包含一系列调节旋钮115、120、125、130、135,以便于对上述的参数设置值。 The user interface consists of a series knob 115,120,125,130,135 general, in order to set the value of the above parameters. 例如,信息处理器和RF输出控制器一般包括消融温度设定值控制115以及过温设定值控制120。 For example, the information processor and RF output controller typically include melting temperature setpoint control 115 and 120 over-temperature setpoint control. 消融温度设定值控制115一般具有从大约50℃至大约70℃的范围,以及过温设定值控制120具有从大约55℃至大约75℃的范围。 Ablation temperature set point control 115 typically has a range from about 50 ℃ to about 70 ℃, and the over-temperature set point control 120 has a range from about 55 ℃ to about 75 ℃ range. 此外,信息处理器和RF输出控制器最好能够确定阻抗和差动阻抗,一般测量功率输出,并包括功率限制调节旋钮125。 In addition, the information processor and RF output controller is best able to determine the impedance and differential impedance, typically measuring power output and includes power limit adjustment knob 125. 较佳的是,信息处理器和RF输出控制器具有阻抗限制控制130,它一般可被设置于大约50至1000欧姆的范围内。 Preferably, the information processor and RF output controller has an impedance limit control 130 which typically can be provided in the range of about 50 to 1000 ohms. 此外,信息处理器和RF输出控制器最好具有从10至300欧姆的差动阻抗设定值控制135。 Furthermore, the information processor and RF output controller preferably having from 10 to 300 ohm differential impedance setpoint control 135.

最后,信息处理器和RF输出控制器用户接口可包含故障状态指示器140,如果信息处理器和RF输出控制器检测到超过预置限制的一参数值,则它可投映出用户可检测的任何类型的信号。 Finally, the information processor and RF output controller user interface may contain a fault status indicator 140, if the information processor and RF output controller detects that a parameter exceeds a preset limit value, it can be administered to any detectable reflected user signal type. 例如,如果心脏组织的温度超过由用户设定的最大温度,则可触发该故障状态指示器。 For example, if the temperature of the cardiac tissue exceeds a maximum temperature set by the user, the fault status indicator may be triggered. 该故障状态指示器可投映出视觉或声音信号。 The fault status indicator can vote reflected a visual or sound signal. 在某些较佳实施例中,用户接口包括复位开关,它使故障状态指示器复位。 In certain preferred embodiments, the user interface includes a reset switch, which makes fault status indicator is reset.

如在下面揭示的具体实施例中更详细的描述那样,信息处理器和RF输出控制器上的用户接口可具有一个或多个下述额外附加特征:1.消融/步速模式选择开关,以在消融和心电图记录模式之间切换;2.消融、RF有效以及步速指示器LED;3.双极调步激励器选择器开关;4.参数显示按钮开关;5.照明开/关电极选择开关;以及6.实时参数数据收集,用于在诸如但不限于LabView和Excel格式之类的商业软件中进行后处理和数据分析。 In specific embodiments as disclosed in the following more detailed description, as the user information processor and RF output controller interface may have additional one or more of the following additional features: 1. Ablation / pace mode select switch to between the ablation and ECG recording mode switching; 2 ablation, RF effective and pace indicator LED;. 3 bipolar pacing actuator selector switch; 4 parameter display button switch; 5. Lighting On / Off electrode selection switch; and 6. Real-time data collection parameters for processing and data analysis carried out in such as, but not limited to, LabView and Excel formats like commercial software.

如上所述,本发明的信息处理器和RF输出控制器调节RF能量同时通过多条通道从RF能量源对心脏组织的输送。 As described above, the present invention is the information processor and RF output controller adjusts the RF energy simultaneously through multiple channels from the RF power source to the heart tissue delivery. 为组织消融而开发的所有射频(RF)能量源的主要功能组成部件是称为振荡器的电子电路,它以某些特定工作频率产生正弦波形。 All radiofrequency tissue ablation developed for the main function (RF) energy source is an electronic circuit components called oscillator, which generates the operating frequency in certain sinusoidal waveform. 放大该波形以输送组织消融所要求的瓦特数。 Enlarge this waveform wattage to deliver the desired tissue ablation. 该RF振荡器的工作频率一般在470至510kHz的范围之内。 The RF oscillator frequency is generally in the range of 470 to 510kHz of the. 振荡器的质量和辅助电子设计影响所产生的工作频率的稳定性。 Stability and supporting electronic design affects the quality of the resulting oscillator operating frequency. 因此,如果振荡器设计是不稳定的,则该工作频率可能稍微“偏移”。 Thus, if the oscillator design is unstable, the operating frequency may be a little "offset." 一般地,该频率抖动对产生的组织损伤有难以察觉的影响。 In general, the frequency jitter imperceptible impact on the tissue damage produced. 然而,某些RF振荡器或相关电子系统产生扭曲的或失真的正弦波形,在该正弦波形顶部有寄生噪声尖峰和/或谐波。 However, certain RF oscillators or associated electronics systems generate distorted or distorted sinusoidal waveform at the top of the sinusoidal waveform has spurious noise spikes and / or harmonics. 这样的“有噪声的”和扭曲的RF波形可造成不希望的噪声产物,如果在消融过程中存在这些噪声,则它们可能促进凝结块形成。 Such a "noisy" and the RF waveform distortion can cause undesirable noise product, if this noise exists during ablation, they may promote the formation of agglomerates. 因此,希望本发明使用能产生相对纯的和稳定的正弦波的RF源,最好是尽可能的纯的和稳定的正弦波。 It is therefore desirable to use the present invention produces a relatively pure and stable sine wave of the RF source, preferably as pure and stable sine wave.

如上所述,把信息处理器和RF输出控制器连接至RF能量,并调节输送到多个电极的RF能量,所述多个电极在一导管的末端处以各种配置方式排列。 As described above, the information processor and RF output controller is connected to the RF energy, and adjust the RF energy delivered to the plurality of electrodes, said plurality of electrodes at the end of a conduit arranged impose a variety of configurations. 在导管消融中,导管的电极把RF电流输送到生物组织中。 In catheter ablation, a catheter electrode to the RF current delivered to the biological tissue. 随后该RF能量通过在由电场包围的组织和流体中引起离子摩擦而加热组织。 Then the RF energy through friction caused by ions in tissues and fluids surrounded by an electric field and heat the tissue. 当受到监控时,由电能向热能的转换引起的该温度上升可用作RF导管消融中的指导。 When monitored, the temperature caused by the conversion of electrical energy to thermal energy can be used as RF catheter ablation increased guidance. 由热传感器(热电耦或热敏电阻)在消融电极之下或与之并置的布置来便于测量。 By thermal sensor (thermocouple or thermistor) under or in connection with the ablation electrode juxtaposed arranged to facilitate measurements. 感测的温度不仅可用于确定电极-组织的质量并预测损伤尺寸,它还能由RF发生器用作反馈信号,以自动地调节输出功率,以达到或保持由终端用户预定的温度设定值。 Sensed temperature may be used to determine not only the electrode - tissue mass and predict lesion size, it can be used as a feedback signal from the RF generator, to automatically adjust the output power to achieve or maintain a predetermined temperature by the end user set value.

许多消融导管在本领域中是已知的,并可与本发明的系统和方法一起使用。 Many ablation catheters are known in the art and may be used with the systems and methods of this invention. 一般地,如上所述,用于本发明的导管具有多个电极以及最接近于这些电极的热传感器。 In general, as described above, the catheter used in the present invention has a plurality of electrodes, and these electrodes are closest to the thermal sensor. 而且,较佳的导管允许相对较高的电极电流密度,这允许较低的最大RF发生器功率设置,使得可在35W上进行有效消融,并最好是30W而不是50W。 Furthermore, preferred catheters allow relatively higher electrode current densities which allow lower maximum RF generator power settings, such that effective ablation can be performed on a 35W, 30W and preferably not 50W.

图2A-2B中图示了用于本发明的较佳导管(即CRADIMA RevelationTMTX 3.7 Fr导管)的例子。 Figures 2A-2B illustrates an example used in the preferred catheter of the present invention (i.e. CRADIMA RevelationTMTX 3.7 Fr catheter) of. 该导管是为右心房线性MAZE消融而开发的,并具有8个电极,其中热电耦位于电极之间,以精确地感测在消融点处的定位的组织温度。 The catheter is for right atrial linear MAZE ablation developed, and has eight electrodes, wherein the thermocouple is located between the electrodes, to accurately sense the temperature of the tissue at the point in the positioning of the ablation. 该较佳导管具有带有2mm电极间间隔的8个6mm线圈电极,以及在所述电极间间隔中最接近各电极的8个热电耦。 This preferred catheter has eight 6mm between the coil electrodes with electrode spacing of 2mm, and the interval between the electrodes of each electrode 8 closest thermocouple. 可连同该导管一起使用称为NaviportTM的9 Fr可操纵的引导导管,以帮助放置。 Together with the catheter can be used with a 9 Fr called NaviportTM steerable guide catheter to help place. 使用3.7 Fr REVELATION Tx微导管的经验已示出它能成功地建立比标准8 Fr消融导管更窄的透壁损伤并带有更小的表面积。 Using the 3.7 Fr REVELATION Tx microcatheter has shown that it can experience successfully established than the standard 8 Fr ablation catheters narrower transmural injury with a smaller surface area.

为了在多个电极中的每一个与它们对应的热电耦或热敏电阻之间切换,以发展了把多个电极对接到单通道RF发生器的手动开关盒,以及自动定序多通道RF能量发生器,并且在市场中可以获得。 To switch between each one and their corresponding thermocouple or thermistor in the plurality of electrodes in order to develop a plurality of electrodes connected to a single-channel RF generator manual switch box, and automatic sequencing multichannel RF energy generator, and can be obtained in the market. 这些开关盒和多通道RF发生器以连续的顺序的方式把RF能量输送到这些电极。 The switch box and the multi-channel RF generator in a continuous sequence of the RF energy delivered to the electrodes. 此外,还有更新的、更高功率(如150W)的RF发生器,可同时向多个电极输送RF能量。 In addition, newer, higher power (e.g., 150W) RF generator, which can convey RF energy to the plurality of electrodes. 后面的这些系统在设计方面中不同,即如何在各个电极通道之间分离RF能量。 These latter systems differ in the design aspect, that is, how the RF energy separation between each electrode channel. 本发明提出了一多通道RF消融系统,它使用脉宽调制来支配输送到个通道的RF能量的量,结合每通道的以及来自相邻通道的温度反馈信息。 The present invention proposes a multi-channel RF ablation system which uses pulse width modulation to dictate the amount of energy delivered to the RF channels, the combination of temperature from the adjacent channels and each channel feedback information.

图3和图4图示了一具有根据本发明的用于对心脏组织进行RF能量输送的系统的这些一般特征的详细实施例。 Figures 3 and 4 illustrate a detailed embodiment having these general characteristics of RF energy delivery system according to the present invention to the heart tissue. 所描述的实施例提供了具有图1A和1B中说明的一般特征的一具体的多通道RF消融系统。 The described embodiments provide a specific multi-channel RF FIGS. 1A and 1B illustrate the general characteristics of the ablation system. 多通道信息处理器和RF能量控制器向导管的电极提供多达8条通道(开关可选)的精确RF能量,以及实时地显示组织温度和阻抗。 Electrode provides multi-channel information processor and RF power controller wizard pipe up eight channels (switch selectable) accurate RF energy, as well as real-time display of temperature and tissue impedance. 还提供了对输送给组织的RF功率、RF电流和RF电压以及各消融元件的差动电阻的测量。 Also provides a measure of the differential resistance of the RF power delivered to the tissue, RF current, and RF voltage, and each of the ablation element. 所有的信号都可由计算机监控,或可选择地通过前面板数字仪表显示。 All signals can be monitored by a computer, or alternatively via the front panel digital instrument display. 该系统结合了由国际安全机构批准的医用级电源。 The system combines the safety agency approved by the International medical grade power. 该电源可用于各种线电压和频率,而不用任何修改。 The power supply can be used for various line voltages and frequencies without any modification. 把该系统设计成处理多达100瓦特的输入功率RF能量。 Designed to handle up to 100 watts of input power RF energy to the system. 利用模拟计算机单元,该系统连续地监控并调节输送给各电极的精确RF能量。 Using an analog computer unit, the system continuously monitors and adjusts the precise RF energy delivered to each electrode.

下述是本系统的脉宽调制实现的特征:(1)软启动通电操作;(2)对热电耦响应时间中的滞后的补偿;以及(3)对所有8条通道的PWM同步。 The following is a pulse width modulation implementation of the present system is characterized in: (1) soft start power-on operation; (2) the response time of the thermocouple lag compensation; and (3) PWM synchronization for all eight channels.

对该系统的每条通道提供过温检测。 Each channel of the system to provide over-temperature detection. 如果检测到过温条件,则对整个系统摆脱RF能量。 If over-temperature condition is detected, then the whole system to get rid of RF energy. 通过功率循环或按钮复位,重新开始操作。 Through the power cycle or reset button to restart operations. 断开热电耦检测仅抑制故障通道的操作。 Disconnect the thermocouple fault detection only inhibit the operation of the channel. 当清除了故障时,自动地重新开始操作。 When the fault is cleared automatically resume operation. 该系统设计成符合国际电安全法规的要求和标准。 Designed to meet international electrical safety regulations and standards of the system. 它对所有的患者连接利用隔离电路,即使有有故障的部件,也保证患者安全。 It is connected to all of the patients through isolation circuit, even if there is a faulty component, but also to ensure patient safety. 这应用于热电耦放大器和RF输出电路。 This applies to the thermocouple amplifier and RF output circuit. 提供过温关断限制,以在任一热电耦达到预置过温限制时,关断输送给导管的所有功率。 Provide overtemperature shutdown limits to either a thermocouple reaches the preset limit overtemperature shutdown of all of the power delivered to the catheter. 该功能的调节范围是55℃至75℃。 The function of the adjustment range is 55 ℃ to 75 ℃.

提供了前面板控制和显示单元,它允许用户设置若干参数。 Provides a front panel control and display unit, which allows the user to set a number of parameters. 例如,前面板控制和显示可用于设置发送到任一电极的最大功率值(调节范围:1-30瓦特)。 For example, the front panel control and display can be used to set the transmission to either a maximum power value electrode (Adjustment range: 1-30 watts). 阻抗切断电路单独监控各条通道,并当一给定电极的阻抗上升超过预置限制时,将致使从该给定电极断开功率输送。 Disconnection circuit impedance monitoring for each channel individually, and when the impedance of a given electrode to rise exceeding a preset limit, the resulting disconnection of power delivery from the given electrode. 前面板控制和显示(整个单元一个)提供控制按钮或旋钮,用于设置阻抗切断限制(调节范围:50-1000欧姆)。 Front panel controls and displays (whole unit a) provides control button or knob for setting the impedance off limit (adjustment range: 50-1000 ohms). 差动阻抗切断电路单独监控各通道,并且如果一给定电极的阻抗上升达一预置差额(在给定消融运行期间超过最低值),则将断开输送到该给定电极的功率。 Differential impedance monitoring for each channel individually cut off the circuit, and if a given electrode impedance to rise up to a preset balance (ablation during a given run than the minimum value), then transported to disconnect the power given electrode. 前面板控制和显示提供一旋钮,用于设置差动阻抗切断限制(调节范围:10-200欧姆)。 Front panel controls and displays provide a knob for setting off the differential impedance limit (adjustment range: 10-200 ohms). 为了防止由于低阻抗造成的RF发生器断开(如当若干电极同时地并行运行时可能发生),在RF发生器和消融电路之间放置一有源阻抗网络(虚负载)。 In order to prevent the low impedance caused by RF generator off (such as when a number of electrodes simultaneously in parallel running may occur), placing an active impedance network (dummy loads) between the RF generator and the ablation circuitry.

提供一种模式开关(消融/步速),用于消融与心电图记录模式之间切换,以及步速预置阈值判定模式。 Provides a mode switch (ablation / pace) for switching between the ablation and ECG recording mode, and the pace preset threshold determination mode. 设计适当的滤波,以允许在消融或调步模式期间记录心电图。 Design appropriate filtering to allow during ablation or pacing mode recording ECG. 操作模式:(模式1)用于利用电极间的热电耦(如最接近于热电耦2的热电耦1)的导管。 Operating mode :( mode 1) for the use of thermocouples between the electrodes (eg closest to the thermocouple thermocouple 2 1) of the catheter. 系统将监控各电极(除了最末端的电极值,该最末端电极仅具有一个最接近的热电耦)两端的温度,并根据较高的温度来调节该温度。 The system will monitor the respective electrodes (except the most distal electrode value, the endmost electrode having only one nearest thermocouple) temperature at both ends, and the higher temperature is adjusted according to the temperature.

(模式2)用于利用在各电极之下或直接焊接在各电极之上的热电耦的导管。 (Mode 2) for use under the respective electrodes or directly welded on top of each electrode thermocouple catheter.

系统10的通道插件功能框图(图3和图4)提供了热电耦输入和患者隔离12,脉宽调制器14、功率输出RF控制16、模拟计算机和参数测量18、阻抗和差动阻抗20、故障锁存控制22以及故障状态28。 System channel plug-in function block diagram (FIG. 3 and FIG. 4) 10 provides thermocouple inputs and patient isolation 12, pulse width modulator 14, power output RF control 16, analog computer and parameter measurement 18, impedance and differential impedance 20, fault latch control 22 and 28 failed state.

共模输入滤波器设计成处理热电耦上的RF能量电平的高共模。 The common mode input filter is designed to deal with thermocouples on RF energy level high common-mode. 隔离电路(电源和热电耦放大器)设计成以2500伏特使患者与主电源隔离。 Isolation circuit (power and thermocouple amplifiers) designed to 2500 volts patient isolated from the mains.

脉宽调制器(PWM)14通过把输送的RF功率(由模拟计算机计算)与预置值(PLIMIT)相比较,来调节RF能量。 Pulse width modulator (PWM) 14 delivered by the RF power (calculated by the analog computer) with the preset value (PLIMIT) compared to adjust RF energy. 还对每条通道插件提供软启动,以及对所有8条通道提供同步电路。 Each channel also provides plug-in soft-start, and for all eight channels provide synchronization circuit. 软启动是在通电时有效的安全装置,它逐渐地斜线增加电压,以防止电极上出现尖峰。 Soft start is effective safety device when energized, it gradually increases the voltage slash to prevent spikes on the electrodes.

如图5A-5B中所示,输送给RF耦合变压器的能量的量直接与由PWM电路基于来自导管的热电耦的温度反馈而产生的脉冲宽度成比例。 As shown in Figure 5A-5B, the amount of energy delivered to the RF coupling transformer is directly proportional to the pulse width by the PWM circuit based on a feedback from the duct temperature thermocouple generated. 在上述的本发明的消融导管的较佳例子中,各通道具有对应的热电耦(T/C)传感器,它提供直接最接近于输送RF能量的电极的组织点处的温度反馈信息。 In the ablation catheter of the preferred example of the present invention described above, each channel has a corresponding thermocouple (T / C) sensor, which is closest to the electrode to provide direct delivery of RF energy at the point of tissue temperature feedback. 由通道插件上的PWM芯片对各电极的RF输出进行调制。 By a PWM chip on the channel plug modulate RF output of each electrode. 所使用的商业上可获得的PWM器件是Unitrode高速PWM控制器UC3823或由MicroLinear制造的相当的芯片ML4823。 Commercial use of the available high-speed PWM devices are Unitrode UC3823 PWM controller chip or equivalent ML4823 manufactured by MicroLinear. 从相邻TC感测的温度输入信号用于控制脉宽调制器(PWM)输出。 TC adjacent sensed temperature input signal is used to control the pulse width modulator (PWM) outputs. 对应于输入温度的输入电压越低,“接通时间”持续期越长。 Corresponding to the input temperature of the input voltage is lower, "on-time" longer duration. 相反,对应于感测的输入温度的输入电压越高,“接通时间”持续期越短。 On the contrary, corresponding to the sensed input temperature of the input voltage is higher, the "on time" duration shorter.

图6中详细示出了本详细实施例的温度调节电路。 Figure 6 shows in detail a detailed embodiment of the present temperature conditioning circuit. 如上所述,各电极164具有对应的热电耦传感器162,它提供直接最接近于输送RF能量的电极的组织点处的温度反馈信息。 As described above, each electrode 164 has a corresponding thermocouple sensor 162 that provides direct RF energy closest to the delivery temperature of the electrode at the point of tissue feedback. 各电极的RF输出由位于各通道插件上的PWM电路180控制。 RF output of the electrodes by a PWM circuit 180 located on each channel plug control. 用电学方法把从相邻热电耦感测的温度输入信号彼此相减,以形成将控制RF能量输出的量的新的脉冲宽度。 Electrical means input signals from the temperature sensed by the thermocouple adjacent subtracted from each other to form the control of the amount of RF energy output of a new pulse width. 例如,图6说明了对电极#5两端的监控,并产生将对该电极控制RF电路的差动PWM。 For example, Figure 6 illustrates a pair of electrodes # 5 at both ends of the monitoring, and generating the control electrode of the RF circuit of the differential PWM. 如所示,使用数字逻辑,这里是“与非”门185,其输入由从邻近于电极的热电耦获得的温度阈值设置。 As shown, the use of digital logic, where a "NAND" gate 185 having an input coupled to the temperature obtained from the adjacent electrode of the thermoelectric threshold setting.

在通道插件以及公共电子板上实现将外部RF发生器(耦合变压器)与电源隔离的安全装置。 Channel plug-in and external public electronic board to achieve RF generator (coupling transformer) and power isolation of safety devices.

由模拟计算机单元(ACU)计算电压、电流、阻抗和输出功率以及相关的高精度RMS-DC转换器电路。 By the analog computer unit (ACU) calculate the voltage, current, impedance, and output power, and the associated high precision RMS-DC converter circuit. 对于系统的精确控制和稳定性来说,由ACU产生的信息是至关重要的。 For the precise control and stability of the system, the information generated by the ACU is crucial. 这提供了对导管的参数的实时监控,并对恒定的能量流保持预置温度稳定,以便建立清洁和精确的损伤。 This provides real-time monitoring of the catheter parameters, and a constant flow of energy to maintain the preset temperature stable, clean and precise in order to establish damage.

如图5A-B中所示,该接口对各通道单独提供一阻抗和Δ阻抗截止。 As shown in Figure 5A-B, this interface provides an impedance for each channel and Δ impedance off separately. 当给定电极的阻抗上升超过预置限制时,这将致使该给定电极断开功率输送。 When given to the impedance of the electrodes rises above a preset limit, which will cause the given electrode disconnect power delivery.

在这里所述的信息处理器和RF输出控制器的较佳例子(即IntelliTemp系统)中实现了过温、断开热电耦、高阻抗以及高Δ阻抗检测电路。 The information processor and RF output controller of the preferred example described herein (i.e. IntelliTemp System) implemented overtemperature disconnect thermocouple, high impedance, and high Δ impedance detection circuit. 对于任一通道上的过温,系统关闭都会发生。 For any channel on the over-temperature, system shutdown will occur. 断开热电耦仅将抑制受影响的通道上的操作,在余下的通道上进行正常操作。 Disconnect the thermocouple will inhibit only affected operating on the channel, normal operations on the rest of the channel.

下面的参数用于根据上述信息处理器和RF输出控制器的详细例子的电压阻抗和功率的实时模拟计算:输入参数:通过输入变压器的次级端感测的交流(AC)电压Vin。 The following parameters are used according to the detailed example of the above-described information processor and RF output controller of voltage impedance and power of real-time simulation: Input parameters: through the input transformer secondary side sensed AC (AC) voltage Vin.

通过精确无感电阻器和相关电路感测的AC电流Iin。 By precisely no sense resistors and associated circuitry sensing AC current Iin. 输出参数:计算出的RMS电压Vout,100mV/RMS表示1伏特(V)。 Output parameters: the calculated RMS voltage Vout, 100mV / RMS represents 1 volt (V).

计算出的RMS电流Iout,10mV/RMS表示1毫安(mA)。 The calculated RMS current Iout, 10mV / RMS represents one milliampere (mA).

计算出的阻抗Zout,1mV/RMS表示1欧姆(Ω)。 The calculated impedance Zout, 1mV / RMS represents 1 ohm (Ω).

计算出的RMS功率Pout,100mV/RMS表示1瓦特(W)。 The calculated RMS power Pout, 100mV / RMS represents one watt (W). 指令:图3-7示出的信息处理器和RF输出控制器的详细例子不依靠数字电路(模数(A/D)转换器、数字锁存器、寄存器和微处理器),来确定感测的电压、阻抗和功率。 Instruction: 3-7 detailed example of an information processor and RF output controller illustrated in FIG does not rely on digital circuitry (analog to digital (A / D) converters, digital latches, registers, and a microprocessor) to determine the sense of sensed voltage, impedance and power. 相反,它利用模拟方法来提供对RMS输出、电压、电流、阻抗和功率的实时计算。 Instead, it utilizes analog methods to provide real-time computation of RMS output, voltage, current, impedance and power.

图5C中说明了实时模拟计算机的组成部件,并在随后的图中得到了描述。 Figure 5C illustrates the components of the real-time computer simulation, and has been described in the subsequent figures.

1.该模拟计算电路的主要组成部件是模拟器件AD538实时模拟计算单元(ACU),它提供精确的模拟乘法、除法和取幂。 1. The main components of the analog computing circuits Analog Devices AD538 is a real-time simulation unit (ACU), which provides precision analog multiplication, division, and exponentiation. 前两种数学运算使用如下:ACU具有这样的转移函数:V输出,ACU=Vy(Vz/Vx)应注意,该V输出,ACU不是模拟计算系统的总输出V输出;它仅是所使用的AD538器件的输出。 The first two use the following math: ACU has the transfer function: V output, ACU = Vy (Vz / Vx) It should be noted that V output, ACU is not a simulation system of total output V output; it is only used AD538 output device. Vz是直流(DC)值,它是来自下述第2组组成部件,即RMS-DC转换器的输出参数。 Vz is a direct current (DC) value, which is the second from the group consisting of the following components, i.e., the output parameter RMS-DC converter. 该DC值表示在电极处正被输送的RF能量的RMS电压(V)。 This DC value indicates the electrode is being transported RF energy RMS voltage (V). 类似地,Vx是DC值,以将其转变成在电极处正被输送的RF能量的RMS电流(mA)。 Similarly, Vx is the DC value, to be converted into at the electrodes of the RF energy being transported RMS current (mA). 该器件还允许把比例因子Vy乘到所述输出转移函数中。 The device also allows the scale factor Vy ride to the output transfer function. 由于输入变压器的主线圈和次线圈之比是10,把该比例因子设置为值0.1。 Since the input ratio of the transformer primary coil and the secondary coil 10, the value of the scale factor set to 0.1. 由于Vz表示电压,以及Vx表示电流,因此V输出,ACU表示计算出的实时阻抗(Ω)。 Since Vz shows the voltage, and Vx represents current, therefore V OUT, ACU represents the computed real-time impedance (Ω).

2.次级组成部件是模拟设备AD637高精度宽带RMS-DC转换器,它用于计算进入的AC波形的真实RMS值,并把该RMS值表示为相当的DC输出电压。 2. The secondary components is an analog device AD637 precision broadband RMS-DC converter, which is used to calculate the true RMS value of the incoming AC waveform, and the RMS value is expressed as the equivalent DC output voltage. 把这些单元的输出作为输入参数而馈入上述的ACU,它还提供可能比平均整流信号更有用的信号的真实RMS值,因为它直接与输入信号的功率相关。 The outputs of these units are fed as input parameters and the above ACU, it may provide the true RMS value more useful than an average rectified signal of the signal, because it is directly related to the power of the input signal.

3.最后的组成部件是模拟器件AD7344象限乘法器/除法器,它用于把表示RMS电压的DC值与表示RMS电流的DC值相乘,以提供这两项的乘积,该乘积等于输出功率,因为P输出=V输出I输出(W,瓦特)。 3. Finally, the components are analog devices AD7344 quadrant multiplier / divider, which is used to represent the DC value and RMS voltage of the DC value represents the RMS current multiplied by two to provide the product, the product is equal to the output power because P = V Output Output Output I (W, W).

4.因此全部实时地计算了V输出、I输出、Z输出和P输出的输出。 4. Therefore, all in real-time calculation of V output, I output, the output Z output and P outputs.

每通道的RF输出由“与非”门(摩托罗拉器件号MC74HC10A)的三个输入支配:i.该特定通道的脉宽调制器的“接通时间”。 RF output of each channel by the "NAND" gate (Motorola part number MC74HC10A) of three inputs dominate: i pulse width modulator for that particular channel "on time.".

ii.最接近上述通道的通道的脉宽调制器的“接通时间”。 ii. pulse width modulator proximate to said passage channel "on time."

iii.对所有通道共用的功率限制设定值。 iii. limit set value for all channels share the power. 它由仪器前面板上的控制旋钮手动设置。 It is set by the control knob on the front panel of the instrument manually.

作为例子,图7中示出了在确定通道3输出中通道3输入与通道2输出之间的交互动作的功能原理,其中在通道3电极输出的时序图中(右下角)有少量的传输延迟。 As an example, Figure 7 shows the functional principle of the interaction of an input channel 3 and the channel between the second output in determining Channel 3 output, wherein the timing diagram of the Channel 3 electrode output (lower right corner) with a small amount of transmission delay .

PWM工作循环由振荡器支配,它由一电阻器和一电容器部件确定的振荡频率设置。 PWM duty cycle dominated by the oscillator, which consists of a resistor and a capacitor component determines the oscillation frequency setting. 在本实施例中,把该频率设置为1.7kHz。 In the present embodiment, the frequency is set to 1.7kHz. 然而,如果需要“减慢”反馈响应电路的灵敏度,以增加在组织中的热量积聚,则可降低该频率。 However, if the need to "slow down" the sensitivity of the feedback response circuit, in order to increase heat accumulation in the tissue, this frequency can be reduced.

图8示出了使用上述本发明的详细实施例的典型消融事件。 Figure 8 shows a typical ablation event in detail using embodiments of the present invention. 接触力是一已由实验方法在实验设置条件下测量的参数,以确定电极-组织接触的质量;它与温度上升有高的相关性(达97%)。 The contact force is a parameter of a test method has been provided under the experimental conditions of the measurement, to determine the electrode - the quality of tissue contact; it rises with temperature have high correlation (97%). 从而,当有极好的电极-组织接触时,就会有规则的RF能量流传送进入组织,并转换成热能。 Thus, when there is excellent electrode - tissue contact time, there will be a regular streaming RF energy into the tissue, and converted into heat. 当该条件存在时,所监控的组织阻抗和电压相对恒定。 When this condition exists, the monitored tissue impedance and voltage is relatively constant. 因此,所测量的组织阻抗是另一关键参数,因为它是电极-组织接触的指示器。 Therefore, the measured tissue impedance is another key parameter, because it is the electrode - tissue contact indicator.

如上所述,本发明的信息处理器和RF输出控制器以及本发明的系统和方法设计成通过使凝结块形成降低至最低限度而使消融过程的功效最大化。 Systems and methods described above, the information processor and RF output controller of the present invention and the present invention is designed to maximize reduce to a minimum the effect of leaving the ablation process by causing the formation of agglomerates. 不受理论限制,这些信息处理器和RF输出控制器、系统和方法利用了下面的考虑的好处。 Bound by theory, these information processor and RF output controllers, systems, and methods of use of the benefits of the following considerations. 当组织接触是好的和稳定时,阻抗相对较低并恒定。 When the tissue contact is good and stable, relatively low impedance and constant. 结果,要求较少的能量以达到所希望的设定温度,需要较短的“斜线上升”时间和较低的瓦特来保持设定温度。 As a result, requires less energy to achieve the desired set temperature, requires a shorter "ramp up" time and a lower wattage to maintain the set temperature. 凝结块形成的危险是低的,因为RF能量有效地输送到组织内,并且在组织内而不是在血液层上生成热量。 Risk clot formation is low because RF energy is effectively delivered to the tissue, and heat is generated within the tissue rather than on the blood layer.

相反,当电极-组织接触是断续的时候,阻抗值波动,并且输送的功率也必须快速地适应,以便达到或保持设定温度。 On the contrary, when the electrode - tissue contact is intermittent, when the impedance value fluctuation, and the power delivered must quickly adapt in order to achieve or maintain the set temperature. 该波动的波形可能导致凝结块形成,因为在高低阻抗之间的快速来回切换造成输出功率波形近似用于电外科的凝结波形。 The waveform fluctuations may result in clot formation, because the fast switching back and forth between high and low impedance output waveform caused by condensation wave approximation for electric surgery.

当电极-组织接触是临界的或差的时候,阻抗可迅速上升,从而要求以快速响应而输送更多的RF能量,以实现相同的设定温度。 When the electrode - tissue contacting is time critical or poor, impedance can rise rapidly, thus requiring a quick response and deliver more RF energy to achieve the same set temperature. 在该最后一个情况中,由于差的电极-组织接触,RF能量在围绕电极的血液层中损失的概率很高,从而加热了血液而不是组织,并促进凝结块形成。 In this last case, due to the difference of the electrode - tissue contact, a high probability of RF energy in the blood layer surrounding the electrode loss, thus heating the blood rather than tissue, and to promote the formation of agglomerates. 随着凝结块在电极上形成,阻抗上升得更高,因此引起上升的瓦特和逐步增加的血栓形成的恶性循环。 As the clot formed on the electrode, impedance rises too high, thereby causing a vicious cycle watts and rise gradually increasing thrombus formation. 因此,当由突然的阻抗上升时,必须立即终止功率输送,并且应收回这一点上的导管,以清除导管上的凝结块。 Therefore, when the sudden rise in impedance, must immediately terminate power delivery, and this point should withdraw the catheter to clear the clot catheter.

下面的例子描述和说明了本发明的方法、系统和设备。 The following examples describe and illustrate the method of the present invention, systems and equipment. 该例子仅是本发明的说明,并且既不在本发明的范围也不在本发明的要旨中限制本发明。 The examples are merely illustrative of the invention, and is neither nor limit the invention in the gist of the present invention in the scope of the invention. 除非另外指出,所有的百分比和比值都是按权计算。 Unless otherwise indicated, all percentages and ratios are calculated according to the right. 本领域的技术人员将容易地理解到可使用这些例子中描述的器材、条件和过程的各种变型。 Those skilled in the art will readily appreciate that various modifications to the equipment may be used, conditions, and processes described in these examples. 所有在这里引用的参考都通过引用而结合。 All references cited herein are incorporated by reference.

实例进行了研究,以分析在心脏消融期间影响凝结块形成的因素,并设置参数以在该过程期间使凝结块形成降至最低限度。 Examples were studied in order to analyze the factors affecting cardiac ablation during clot formation, and set parameters to make during the course of clot formation to a minimum. 尤其至少部分地进行所述研究,以分析对于目标温度设定值的通过消融导管电极的RF功率传送的速率,并确定其与凝结块形成的对应。 In particular, the study carried out at least in part, to analyze the rate of transmission for the ablation catheter electrodes through RF power of the target temperature set point and to determine its correspondence with the formation of agglomerates.

该研究是基于来自从CARDIMA REVELATIONTMTx US多中心临床实验的阶段II随机选择的15个病例中得出的398个独立的消融事件的RF消融数据。 The study is based on RF from 15 cases drawn from stage CARDIMA REVELATIONTMTx US II multi-center clinical trial in 398 randomly selected independent ablation ablation event data. 患者的登记条件是有征兆的突发性心室纤维颤动(PAF)、至少2种抗心律失常药物难以治愈,在30天的基准观察周期内有3次PAF事件。 Registration condition of the patient is symptomatic sudden ventricular fibrillation (PAF), at least two kinds of anti-arrhythmic drugs is difficult to cure, within 30 days of baseline observation period three times PAF events. 在该多中心临床协定中,对所有接受RF消融的患者遵循这些方针使用抗凝结药剂:在过程前间断Coumadin(下丙酮香豆素钠)OK药3天,并且在过程之前的一天使用低分子量肝素。 In this multi-center clinical Agreement, all patients received RF ablation follow these guidelines to use anti-coagulant agents: process interrupted before Coumadin (acetone, sodium coumarin) OK medicine three days, and the use of low-molecular-weight one day before the course heparin. 在过程时刻,检查国际标准化比例小于1.8,并且获得活性凝结时间(ACT)值。 In the course of time, international normalized ratio of less than 1.8 check, and get active clotting time (ACT) values. 实施初始静脉内肝素大丸剂,并在过程期间持续地实施以保持大约200至300秒的ACT。 Embodiment the initial intravenous heparin bolus, and during the process to maintain the consistent application of about 200 to 300 seconds of ACT. 以30分钟的间隔进行ACT测量,直到达到治疗水平为止,然后对过程的持续期每60分钟一次。 At 30 minute intervals ACT measurements until a treatment level is reached, then the duration of the process every 60 minutes. 根据ACT值调节肝素剂量。 Heparin dose adjustment based on the value of ACT.

使用REVELATION Tx(CARDIMA,Fremont,CA,USA)微导管进行RF消融过程。 Using the REVELATION Tx (CARDIMA, Fremont, CA, USA) microcatheter RF ablation procedure. 该微导管具有8个2mm间隔的6mm线圈电极,以及8个电极间热电耦。 The microcatheter has eight 2mm 6mm coil electrode spacing, as well as eight thermocouples between the electrodes. 连同所述微导管一起,使用一9 Fr的CARDIMA NAVIPORTTM可操纵的引导导管,来帮助放置。 Together with the microcatheter together, using a 9 Fr of CARDIMA NAVIPORTTM steerable guide catheter to help place. 如果没有达到目标温度,则使用达到最接近目标温度的最大记录温度的持续期。 If you do not reach the target temperature, the duration of use is closest to the target temperature reaches a maximum temperature records. RFG-3E RF发生器(Radionics,Burlington,MA,USA)是用于所有过程的RF源。 RFG-3E RF generator (Radionics, Burlington, MA, USA) was used for all processes of the RF source.

运行于连接至该发生器的计算机上的软件用于对每个RF能量应用,记录获得预定目标温度的时间,以及该时刻的RF功率和电流。 Software running on the computer connected to the generator for each RF energy application, the recording time to obtain a predetermined target temperature, and the RF power and current time. 采用的测量包括用于获得预定温度设定值(即50℃或55℃)的持续时间(秒)以及该时刻的功率(瓦特)。 Measurements used include for obtaining a predetermined temperature set point (i.e., 50 ℃ or 55 ℃) duration (sec) and the time of power (watts). 对对应于各电极的各RF能量输送时间实施该操作。 Corresponding to the respective electrodes for each RF energy delivery time to implement the operation. 如果没有达到设定温度,则使用使最大记录的温度最接近设定温度的持续期。 If you do not reach the set temperature, the temperature is used to set the maximum duration of the closest recorded temperatures. 在各线性消融轨迹之后,从可操纵的引导护层中收回导管,并且视查各电极。 After each linear ablation trajectory, to recover from a steerable guide catheter sheath, and the visual check of each electrode. 在临床数据单上记录凝结块的存在或不存在,从而以由软件自动记录的RF输送参数(即功率、电流以及达到目标温度的持续期)提供分析记录。 Clinical data recorded in a single block on coagulation presence or absence, thereby automatically by the software recorded RF delivery parameters (i.e., power, current, and duration to reach target temperature) to provide analytical record.

根据上述研究,使用数学模型来计算值,凝结块指数,它提供了对在消融期间凝结块形成的可能性的洞察,并可用于对消融过程设置参数,以使凝结块形成的潜在可能性降至最低。 Based on these studies, using a mathematical model to calculate the value, agglomerates index, which provides the possibility of formation of agglomerates during the ablation of the insight, can be used to set the parameters of the ablation process, so that the potential for the formation of agglomerates drop to a minimum. 通过该模型,定义凝结块指数:凝结块指数=(W/t)/I2功率=W(瓦特)电流=I(安培)达到设定温度的持续时间=t(秒)等式右端的项(W/t)是从消融时间的开始(基准)至在消融时间中首次达到目标温度(即设定值温度)或最大温度的时间测量的功率曲线的斜率。 With this model, the definition of agglomerates index: agglomerate index = (W / t) / I2 Power = W (watts) Current = I (amperes) Duration to reach the set temperature = t (sec) of the right side of the equation ( W / t) is the time from the start of the ablation (reference) to the first ablation time reaches the target temperature (i.e., temperature set value) or the maximum temperature of the power curve slope of the time measurement. 附录A中包括了凝结块指数的导出,它无物理单位。 Appendix A includes a clot index of export, which no physical units.

已发现许多剂量反映关系遵循数理逻辑S形曲线。 Many have been found to reflect the relationship between the dose of mathematical logic to follow an S-shaped curve. 因此,凝结块发生的估计概率P(凝结)由下面的方程式1描述的数理逻辑模型在统计上建模,其中凝结块的分对数风险是因变量,以及凝结块指数(CI)是自变量或预测变量。 Thus, the occurrence of agglomerates estimated probability P (condensation) mathematical logic model described by the following equation 1 statistically modeling, which agglomerates the logit risk is the dependent variable, and agglomerates index (CI) is the independent variable or predictors. α=-5.2932β=0.3803方程式1图9示出了该数理逻辑模型的曲线图。 α = -5.2932β = 0.3803 Equation 1. Figure 9 shows a graph of the mathematical logic model. 使用该模型,可发现凝结块指数(CI)的阈值,以指示出凝结块发生的高概率。 Using this model, can be found agglomerate index (CI) of the threshold value, to indicate a high probability of the occurrence of agglomerates.

在该例子中描述的来自临床研究中的全部15个患者研究的一系列398个消融事件中,发现了凝结块的风险的数理逻辑模型显示出凝结块指数和凝结块发生的估计的概率百分比(p<0.001)之间的显著拟合。 A series of 398 ablation events described in this example, all 15 patients in the study came from clinical studies found the risk of clot of mathematical logic model shows the percentage of the estimated probability of coagulation and clot mass index occurred ( Fitting significant p <0.001) between. 表I归纳了这样的发现,即当凝结块指数增加时,凝结块形成的估计概率显著增加。 Table I summarizes the discovery that when agglomerates index increases, a significant increase in the probability estimation agglomerates formed. 该分析揭示出凝结块指数和凝结块形成之间的清晰对应。 This analysis revealed a clear correspondence index clot formation and clot between. 此外,建立了大于或等于12的凝结块指数明显阈值,在该阈值之外预计凝结块形成。 In addition, the establishment of a block index greater than or equal to condensation apparent threshold 12, in addition to the threshold expected agglomerates formed. 该研究的结果示出如果斜率(W/t)平缓,则可减少凝结块。 The results of this study are shown if the slope (W / t) gentle, agglomerates can be reduced. 与在消融事件一开始就“起动瓦特”相反,这可以通过逐渐地增加从RF发生器输送的功率来实现。 And in the beginning the ablation event contrary, this can be increased gradually by "Start w" power delivered from the RF generator to achieve. 表I Table I

图10A和10B示出了来自两个RF消融病例的凝结块指数的散布表示。 10A and 10B illustrate a spreading from two RF ablation cases agglomerates index representation. 该数据支持这样的结论,即所得出的凝结块指数值在建议凝结块形成中具有相关性和值。 The data support the conclusion that the condensation mass index value that is derived clot formation in the proposed relevance and value. 图10B中描述的例子示出了无凝结块形成,其中凝结块指数小于12。 Described in the example of Figure 10B shows the formation of non-agglomerates, wherein agglomerates index of less than 12. 另一方面,在图10A的许多能量应用中观查到凝结块,尤其是对于具有大于12的凝结块指数的那些。 On the other hand, a lot of energy use in Figure 10A clot found in the concept, especially those mass index greater than 12, the condensation for having. 对于图10B中的能量应用,与用于图10A中所示的能量应用的立即增加功率电平相反,通过逐渐地增加功率而获得较低的凝结块指数。 For the energy applications in FIG. 10B, and the coagulated mass index lower energy applications shown in an immediate increase in power levels contrary, by gradually increasing the power for the FIG. 10A is obtained. 此外,在图10B中把最大功率设置从50减少至30瓦特。 Further, in FIG. 10B is reduced from the maximum power setting of 50 to 30 watts.

对不存在凝结块形成的线性消融过程分析临床有效性。 For there is no clot formation ablation process analysis of clinical effectiveness. 在阶段I期间,对每个消融事件不以渐进的方式控制功率输送,并且把最大功率设置为50W。 During Phase I, each ablation event is not in a progressive way to control power delivery, and the maximum power is set to 50W. 在阶段II期间,使用渐进的功率输送(如下所述)进行消融,并把最大功率保持在35W之下。 During Phase II, using gradual power delivery (as described below) ablation, and the maximum power is kept below 35W. 如表II中归纳的那样,在6个月之后,在阶段II患者总数中减少了AF事件。 As is summarized in Table II, after 6 months, the total number of patients with stage II to reduce the AF event. 实际上,当对各消融事件使用渐进的功率输送和较低的最大功率时,几乎使经受大于50%的AF中的减少的患者数加倍。 Indeed, when using the gradual power delivery and lower maximum power for each ablation event, almost make the number of patients subjected to greater than 50% reduction in AF doubles. 也观察到不再有任何AF事件(减少100%)的患者数量中的显著增加,即从阶段I的30%增加到阶段II的53%。 Was also observed in the number of patients no longer have any AF event (100% reduction) of a significant increase, i.e. 53% increase from the Phase I Phase II of 30%. 表II Table II

从而,显示出缓和凝结块形成的一种机制是以这样的方式输送RF功率,即功率的上升时间以及因此的温度曲线更平缓和恒定。 Thus, showing a mechanism relaxation agglomerates formed in such a manner conveying RF power, i.e. the power of the rise time and thus the temperature profile is more gentle and constant. 例如,当使用RadionicsRFG-3E发生器时,以30瓦特的最大设置,应以10瓦特的较低功率设定开始达大约最初的10秒钟,然后逐渐调节RF发生器上的旋钮,以设置30瓦特的最大功率,而仍然保持60秒的总RF输送时间。 For example, when using RadionicsRFG-3E generator, with 30 watts maximum setting, should be 10 watts lower power setting the initial start up of about 10 seconds, and then gradually adjust the knob on the RF generator to set 30 watts maximum power, for 60 seconds while still maintaining total RF delivery time. 当应用该技术时,如图10中的数据所明显看出的那样,它减少了凝结块形成。 When applying this technique, as shown in the data 10 is apparent, as it reduces the formation of agglomerates.

必须考虑RF发生器的具体特性,以获得上述的渐进的功率上升。 Must take into account the specific characteristics of the RF generator, to obtain said progressive power rise. IBI-1500T具有4个用户可选择的选择,用于控制功率输送斜线上升曲线。 IBI-1500T has 4 user-selectable choices for controlling the power delivery ramp curve. Osypka 300 Smartand Cordis Webster Stocker具有内嵌算法,该算法看来能自动地以渐进的方式调节功率输送上升时间,后者允许终端用户指定温度斜线上升时间。 Osypka 300 Smartand Cordis Webster Stocker has a built-in algorithm, which seems to be able to automatically adjust power delivery gradual manner rise time, which allows end users to specify a temperature ramp time. 最后,Medtronic Atakr对功率输送应用不具有用户过调节控制。 Finally, Medtronic Atakr for power delivery through the application does not have a user-adjustable controls. 相比之下,RadionicsRFG-3E允许用户能够在RF能量的输送期间手动地增加功率输出。 In contrast, RadionicsRFG-3E allows the user to manually increase power output during RF energy delivery. 在本发明的该实施例中,对要在电极处输送的RF能量的输出功率设置是可由用户通过前面板旋钮调节的(1-30瓦特)。 In this embodiment of the invention, the RF energy to be delivered at the electrodes of the output power is set by the user via the front panel knob to adjust the (1-30 watts). 较低的功率设置将增加上升时间,因为它花费较长的时间来达到设定温度。 Lower power setting will increase the rise time, because it takes a long time to reach the set temperature. 可把实时计算凝结块指数(CI)的自动算法结合于信息处理器和RF输出控制器功能中,使得只要凝结块形成的风险高时,即CI大于或等于12时,视觉或声音警报能警告终端用户。 The agglomerates can be calculated in real time index (CI) of the automatic algorithm combines the information processor and RF output controller functions such that when the high-risk, i.e. CI greater than or equal to 12, the warning can be a visual or audible alarm so long as the formation of agglomerates end users. 作为替代,信息处理器能实时计算CI,并使用计算出的值作为反馈给RF输出控制器功能的信息,使得以最小的凝结块形成概率来实施消融事件。 Alternatively, the processor can calculate the real-time information CI, and use the values computed as a feedback to the RF output controller function information, so that the formation of agglomerates with minimal probability implemented ablation event.

在过程期间,由放射检查、低初始阻抗以及电图质量的组合来确定极好的电极-组织接触。 During the process, the radiological examination, the combination of low initial resistance and electrical diagram to determine the quality of an excellent electrode - tissue contact. 研究的结果揭示出极好的电极-组织接触,协同渐进的RF功率输送达30至35瓦特的最高电平一起,以电极点处凝结块形成的最低可能性为最佳地实施RF消融构成了合理可靠的处方。 Results of the study revealed an excellent electrode - tissue contact, synergy gradual RF power delivery of 30 to 35 watts maximum level together, the lowest point of the possibility of the electrode agglomerates formed is best to implement the RF ablation constitute reasonably reliable prescription. 组织消融的台上实验也以显示出与组织的良好电极接触会导致到达设定温度所要求的RF功率消耗较少。 Tissue ablation stage experiments also showed good electrode contact with the tissue will cause the set temperature reaches the desired RF power consumption less. 较低的RF能量要求又减少了凝结块形成的概率。 Lower RF energy requirements in turn reduce the probability of clot formation.

该例子中揭示出的见解也可推广到使用其它导管进行其它RF消融过程的过程,并因此在此给出。 The example reveals insights can also be extended to other RF catheter ablation procedure other processes, and thus are given here. 导管MAZE过程要求在右心房中沿解剖学轨迹建立线性“隔板”,使用RF消融来隔开心室以及'包含'在心率失常之前的电传播。 MAZE procedure requires a catheter in the right atrium to establish linear "bulkhead" anatomy along the trajectory, using RF ablation to separate the ventricles and 'contains' power spread before the arrhythmia.

该研究的结果揭示出下面的考虑与在心脏组织消融期间将凝结块形成降至最低有关。 The results of this study reveal the following considerations during cardiac tissue ablation with the agglomerates formed to a minimum relevant. 在理想情况下,可能对所有8个线性消融导管电极实现令人满意的组织接触。 Ideally, all eight possible ablation catheter electrode to achieve satisfactory tissue contact. 然而,即使当解剖或流动条件阻止8个导管电极的最优的同时接触,下面讨论的技术也在右心房MAZE线性消融过程中产生可接受的结果。 However, even when the anatomical or flow conditions prevent optimal eight catheter electrodes while the contact, the techniques discussed below yield acceptable results are right atrial MAZE linear ablation procedures.

a)应在尽可能多的线性阵列电极中建立极好的接触。 a) should be established excellent contacts in as many linear array of electrodes.

b)在'基准'上的低组织阻抗表示有效接触;某些RF发生器通过发出小的RF电流以询问消融点上的组织阻抗,来在实际消融之前感测和显示。 b) In the 'base' of low tissue impedance indicates the effective contact; certain RF generator by issuing a small RF current to interrogate tissue impedance on the ablation points, to sense and display before the actual ablation.

c)调步阈值,如果用作接触的指示器,则应是合理的(1-2mA);在4-5mA之上的阈值最可能指示出差的接触,而应重新放置导管。 c) pacing thresholds, if used as an indicator of contact should be reasonable (1-2mA); 4-5mA above threshold indicating the most likely to travel in contact, but should reposition the catheter.

d)应周期性地以标准的肝素化的盐溶液大丸剂清洗护层(如每15分钟)。 d) shall periodically to a standard heparinized saline solution bolus cleaning sheath (e.g. every 15 minutes). 这通过移除在电极和导管轴上建立的凝结块来提高接触。 This is accomplished by removing the electrode and catheter shaft agglomerates established to improve the contact. 如果可能,在各轨迹之后,应从Naviport可偏转的引导护层中抽出导管;如果需要,则应该在把导管重新引入Naviport之前把电极擦拭干净。 If possible, after each track should Naviport deflectable guide catheter sheath is withdrawn; if necessary, should be re-introduced until the catheter electrode Naviport wipe clean.

除了实现极好的电极-组织接触之外,可通过调节RF功率设置使得渐进地增加功率,以及通过以连续监控的功率把发生器最大功率设置设定到30W至35W,来获得减少的凝结块形成。 In addition to achieving excellent electrode - tissue contacting outside, can be made by adjusting the RF power is set to progressively increase the power, and by continuous monitoring of the power of the generator maximum power settings are set to 30W to 35W, to obtain a reduced agglomerates formation. 应按需重新放置导管,以较低的功率电平保持设定温度。 Should be re-placed catheter, at a lower power level to maintain the set temperature. 已观查到当要求保持设定温度的功率接近50W时,凝结块形成更明显。 Concept has been found when the power required to maintain the set temperature close to 50W, clot formation is more obvious. 相反,当要求的功率少于35W时,可大大地将凝结块形成降至最低限度。 In contrast, when the required power is less than 35W, can be greatly minimized clot formation. 当试图达到设定温度时,这可看作是要解决的问题。 When you try to reach the set temperature, which can be seen as a problem to be solved. 然而,利用极好的电极-组织接触,可以如7W至15W低的功率输送实现所希望的设定温度。 However, with excellent electrode - tissue contact, may be as low 7W to 15W of power delivery to achieve the desired set temperature. 在活体内,当有足够的电极-组织接触时,以这些低的功率设置,动物研究已证实深的透壁损伤。 In vivo, when there is sufficient electrode - tissue when in contact with these low power settings, animal studies have demonstrated that deep transmural injury.

虽然已说明和描述了本发明的较佳实施例,但是将理解对本领域的技术人员来说可进行修改,并且在附属的权利要求中覆盖了所有这些改变和修改,它们都落于本发明的真实要旨和范围之内。 Although illustrated and described preferred embodiments of the present invention, it will be understood to the skilled artisan can be modified, and to cover all such changes and modifications in the appended claims, they both fall within the present invention within the true spirit and scope.

附录A使用对与RF消融有关的物理参数的量纲分析,对凝结块指数的数学推导发展了用于在Cardima REVELATION Tx导管的RF消融电极上的凝结块和凝结块形成之间进行区分的数学模型。 Appendix A of the RF ablation using physical parameters related to dimensional analysis of the condensation mass index developed mathematical derivation to distinguish between clot and the clot electrodes in Cardima REVELATION Tx RF ablation catheter to form a mathematical model. 该模型是基于与在RF消融事件期间记录的各种参数的单位有关的物理常数的量纲分析,并且使用如实例部分中所述的获得的临床数据进行了验证。 The model is based on dimensional analysis and unit during RF ablation event record various parameters related to physical constants, and the use of clinical data obtained as described in the Examples section validated.

SI(国际单位值)单位中的定义:质量=Kg[千克]长度=m[米]时间=s[秒]功率=W[瓦特]=kg*m2*s-3各单电极导管消融事件有其自己的斜率,从功率(Y轴)对时间(X轴)的曲线,从基准温度(即心脏中的自由流动的血液的温度=大约37℃)至50℃计算出该斜率。 Definition of SI (International System of Units value) units: Quality = Kg [kg] Length = m [m] Time = s [s] power = W [w] = kg * m2 * s-3 each single electrode catheter ablation events its own slope, from the power (Y-axis) versus time (X-axis), from the reference temperature (i.e. the temperature of blood in the heart of a free-flowing = about 37 ℃) to 50 ℃ calculate the slope. 如果不能达到设置温度,那么对于该消融时间来说它是感测的温度达到最大温度的持续时间。 If you can not reach the set temperature, then for the ablation time for it is sensed by the temperature reaches a maximum temperature of duration.

斜率=功率/时间=(所作功/时间)/时间=(力*位移)/时间2=(质量*加速度*位移)/时间2方程[1]单位的量纲分析示出:斜率=Kg*m*s-2*m/s2 Dimensionless slope = power / time = (by power / time) / time = (force * displacement) / 2 = time (mass * acceleration * displacement) / Time 2 equation [1] unit of analysis shows: slope = Kg * m * s-2 * m / s2

=Kg*m2*s-4方程[2]它遵循1/斜率是方程[2]的倒数:1/斜率=Kg-1*m-2*s4方程[3]现在我们以基本单位定义电容C:C=m-2*Kg-1*s4*I2[NIST]重新组织各项,C=Kg-1*m-2*s4*I2方程[4]两边同除以I2:C/I2=Kg-1*m-2*s4=t/W 方程[5]注意到方程[3]=方程[5]因此,我们可把电容定义为我们对各消融时间获得的斜率的函数:C=I2*(t/W)=I2/(W/t)=I2/斜率 方程[6]在交流电的存在情况中,把阻抗Z定义为:Z=1/(2πfC) 方程[7]其中f=工作的RF频率把方程[6]代入方程[6],我们能够如下定义凝结块指数:相对阻抗=k*(W/t)/I2方程[8]其中k=1/(2πf),并且对某一RF发生器来说是恒定的,假设RF振荡器频率f是稳定和恒定的。 = Kg * m2 * s-4 Equation [2] it follows 1 / Slope is the equation [2] of the reciprocal of: 1 / Slope = Kg-1 * m-2 * s4 equation [3] Now we define the basic unit of the capacitor C : C = m-2 * Kg-1 * s4 * I2 [NIST] reorganize various, C = Kg-1 * m-2 * s4 * I2 equation [4] is divided on both sides of the same I2: C / I2 = Kg -1 * m-2 * s4 = t / W Equation [5] noted that Equation [3] = Equation [5] Thus, we can put us capacitance defined as the slope obtained for each ablation time function: C = I2 * (t / W) = I2 / (W / t) = I2 / slope of the equation [6] in the presence of an alternating current, the impedance Z is defined as: Z = 1 / (2πfC) Equation [7], where f = Work RF frequency into equation [6] into equation [6], we can define the following agglomerate index: Relative Impedance = k * (W / t) / I2 Equation [8] where k = 1 / (2πf), and of a The RF generator is constant, assuming the RF oscillator frequency f is stable and constant. 因此,出于某些目的,比例常数k在计算中被忽略,因为在实例部分中描述的研究中使用相同类型的RF发生器Radionics RFG-3E。 Thus, for some purposes, the proportionality constant k is ignored in the calculation, since the studies described in the Examples section using the same type of RF generator Radionics RFG-3E. 在实例部分中所讨论的结果示出了计算值和消融电极点处的凝结块形成的概率之间的紧密对应。 Correspond closely probability results discussed in the Examples section illustrates the calculated values and the ablation electrode at the point of clot formation between. 因此,给出凝结块指数项的该量值。 Therefore, given the magnitude of the condensation mass index entries. 因此,我们得到:凝结块指数=(W/t)/I2。 So, we get: clot index = (W / t) / I2.

Referenced by
Citing PatentFiling datePublication dateApplicantTitle
CN100448407C17 May 20067 Jan 2009马长生;孟 坚Ablation device and probe for treating atrioventricular twitch
CN100548230C15 Sep 200514 Oct 2009Led股份公司;康索齐奥I.P.O.Te.S.I.Electrosurgical apparatus and method for coagulative treatments through radiofrequency
CN100566673C21 Dec 20059 Dec 2009伊西康内外科公司Medical-treatment electrode assembly having treatment-monitoring application
CN101316560B15 Nov 200626 Jan 2011皇家飞利浦电子股份有限公司Automating the ablation procedure to minimize the need for manual intervention
CN102151173A *29 Dec 201017 Aug 2011韦伯斯特生物官能(以色列)有限公司Measuring weak signals over ablation lines
CN102151173B *29 Dec 201028 Sep 2016韦伯斯特生物官能(以色列)有限公司测量消融线上的弱信号
CN102525640A *13 Oct 20114 Jul 2012韦伯斯特生物官能公司Catheter with digitized temperature measurement in control handle
CN104083208A *21 Jul 20148 Oct 2014西安唐城电子医疗设备研究所Multi-channel radio frequency temperature-controlled thermal condenser
CN104473691A *30 Dec 20141 Apr 2015北京天助畅运医疗技术股份有限公司Power control system and power control method for radio frequency treatment equipment
Classifications
International ClassificationA61B18/14, A61B18/12
Cooperative ClassificationA61B2018/1467, A61B2018/00791, A61B18/1206, A61B2018/00357, A61B2018/1253, A61B2018/00648, A61B18/1492, A61B2018/00827, A61B2018/00892, A61B2018/0016, A61B2018/00797, A61B2018/00875, A61B2018/00678, A61B2018/00702
European ClassificationA61B18/14V, A61B18/12G
Legal Events
DateCodeEventDescription
3 Sep 2003C06Publication
19 Nov 2003C10Request of examination as to substance
1 Jul 2009C14Granted
10 Jul 2013C17Cessation of patent right