CN1430833A - 在基于否定确认的协议中有效重发超时估计的方法 - Google Patents

在基于否定确认的协议中有效重发超时估计的方法 Download PDF

Info

Publication number
CN1430833A
CN1430833A CN01806722A CN01806722A CN1430833A CN 1430833 A CN1430833 A CN 1430833A CN 01806722 A CN01806722 A CN 01806722A CN 01806722 A CN01806722 A CN 01806722A CN 1430833 A CN1430833 A CN 1430833A
Authority
CN
China
Prior art keywords
rto
svar
grouping
server
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01806722A
Other languages
English (en)
Inventor
D·洛圭诺夫
H·拉哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1430833A publication Critical patent/CN1430833A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/0021Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach in which the algorithm uses adaptive thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols

Abstract

公开的是一种用于在服务器和客户机之间的互联网上估计实时流应用中的重发超时(RTO)的系统和方法。因此,本发明利用基于NACK应用中的重发超时(RTO)来支持每个丢失分组的多个重发努力,其中由实际往返延迟(RTT)和平滑分组间延迟方差来估计RTO。

Description

在基于否定确认的协议中有效重发超时估计的方法
对照相关申请
本申请要求2001年1月18日提交的美国临时申请序号60/262,591的优先权,其教导合并在这里供参考。
技术领域
本发明涉及重发超时(RTO)估算量,并且特别涉及用于估计支持相同分组的多个重发的基于否定确认(NACK)的实时流应用中的RTO的系统和方法。
背景技术
通常,在数据通信网中有两种类型的支持丢失分组恢复的互联网传输协议。第一种方法是基于ACK的在传输控制协议(TCP)下提出的,其涉及响应每个接收分组发送肯定确认(ACK)的接收机。第二种方法是基于NACK在用户数据报协议(UDP)下的,其涉及响应每个丢失分组发送一个NACK的接收机。
参见图1(a),TCP对于到达接收端点的数据利用肯定确认(ACK)系统作为错误恢复机制。这个系统在仅有未确认帧应该重发的原则下运行。为确保分组被发送源安全地接收,TCP通过为每个连接管理重发定时器来使用重发超时(RTO)机制。也就是,TCP为连接设置重发定时器并且增加一个RTO值以及一个往返时间(RTT)。RTT是在TCP类型的数据段的传输开始和该段的确认的接收之间流逝的时间。如果到RTO1期满为止没有接收到确认,则TCP在下个RTO2中再次重发数据。
相反,UDP通过向发送源转发NACK分组响应丢失帧以便重发来利用否定确认(NACK)系统,如图1(b)所示。除此之外,NACK分组可以沿从接收机到发送器的路径丢失。为此,UDP利用与TCP用于重发连接类似的重发超时机制。
准确地执行RTO值估计很重要。通常的,通过基于RTT的前面的采样值预测RTT的下一个值来执行RTO估计。如果RTO估计过高,则将导致TCP中较低的吞吐量性能并且导致增加数量的实时应用中下溢出的事件。但是,如果RTO估计不足,则协议生成大量的重复分组,因更多的不必要的分组重发导致严重的网络拥塞。
下面描述基于TCP的重发超时估算量的当前标准的背景。标准由下述的两个算法组成。第一个算法,平滑RTT估算量(SRTT),是基于以前RTT采样的指数加权的移动平均数(EWMA):
Figure A0180672200051
 (1)其中RTTi表示在时间ti生成的往返延迟的第i个采样值并且α(缺省设置为1/8)表示平滑因数,可以变化以便对RTT采样的历史给出或多或少的权重。
第二种算法,平滑RTT方差估算量(SVAR),利用上述类似EWMA的公式计算RTT方差的近似值:  (2)其中β(缺省设置为1/4)表示EWMA平滑因数并且VARi表示第i个RTT采样与平滑平均值的绝对偏差:VARi=|SRTTi-1-RTTi|。
最后,通过将平滑方差乘以四并且将其加到平滑往返延迟中得到RTO:RTO(t)=SRTTi+4·SVARi,                       (3)其中t表示RTO计算的时间,并且i=max:ti≤t。
在实时流应用,例如多媒体应用中,因为沿从接收机到发送器的路径的较低系统开销以及潜在的更快的丢失分组恢复,优选基于NACK的操作。但是,RTO估算量,如前面章节所述,典型地设计为仅适合于基于ACK的应用并且不适合于基于NACK的协议。其生成扩展数量的重复分组并且因下一个RTT值的拙劣预测导致实时流应用中后续NACK请求的生成中不必要的延迟。除此之外,基于NACK的协议没有在异构互联网情况下运行很好的通用RTO估计方案。尽管有这些缺点,许多基于NACK的协议仍应用已有的从TCP借来的RTO估计协议。
如上所述,由两个参数描述RTO估算量-重复分组数以及不必要的超时等待量。但是,这两个参数因为表示估算量的基本折衷(也就是减少一个参数将增加另一个)而不能同时最小化。因为TCP的RTO估算量被证明不适合于基于NACK的协议,所以这些协议需要采用在本发明的公开内容中描述的最佳类型的RTO估算量。
发明内容
在优选实施方案中,本发明针对用于估计互联网上服务器和客户机之间的实时流应用中重发超时(RTO)的方法和系统。
根据优选实施方案,本发明提供在通信系统中用于估计重发超时(RTOj)的方法以便支持多个重发并且该方法包括步骤:从服务器向客户机发送多个数据分组;如果一个数据分组丢失,则由客户机发送一个否定确认(NACK)分组以便重发;计算对应于向服务器发送NACK分组以及从服务器接收丢失分组的对应重发之间的等待时间的往返延迟(RTTi);计算客户机的多个数据分组的临近分组接收之间的延迟(Δj)的多个采样;基于计算的延迟采样来确定平滑的分组间延迟方差(SVARΔj);以及,基于确定的RTTi以及确定的平滑分组间延迟方差来计算RTOj
根据优选实施方案,本发明提供管理在服务器系统和客户机系统之间的通信链路上多个数据分组的传输的系统并且包括:用于接收以由分组构成的帧形式的数据分组的装置;确定在传输期间是否有任何帧分组丢失的装置;用于请求任何丢失的帧分组重发的装置;用于确定对应于请求丢失帧重发到服务器和从服务器接收到对应重发的丢失帧之间等待时间的往返延迟(RTTi)的装置;用于确定突发分组间延迟变化的装置;以及,用于基于确定的RTT以及确定的突发延迟间变化来确定重发超时(RTOj)的装置。
通过结合附图来阅读下列详细描述,这些以及其他优点对于本领域的技术人员是显而易见的。
附图说明
图1(a)说明TCP通信环境中的典型的数据流;
图1(b)说明UDP通信环境中的典型的数据流;
图2说明根据本发明的系统的框图;
图3说明组成传输控制协议/互联网协议(TCP/IP)的各层;
图4(a)说明根据本发明在服务器端的用户数据报协议(UDP)的格式;
图4(b)说明根据本发明在客户机端的用户数据报协议(UDP)的格式;
图5是描述根据本发明的基于抖动的重发超时(RTO)估计的时间图;以及
图6是说明根据本发明的重发超时(RTO)估算量的操作的流程图。
具体实施方式
在下面的描述中,为解释而不是限制的目的,为了提供对本发明的彻底理解提出了特定的细节,如特殊结构、接口、技术等。但是,对本领域的技术人员很显然可以在背离这些特定细节的其他实施方案中实现本发明。而且,为清楚起见,忽略了众所周知的设备、电路以及方法的详细描述以免不必要的细节影响本发明的描述。
根据本发明的实施方案,提供了用于控制在数字通信环境中数据分组的重发的机制。参见图2,使用本发明的系统10包括第一个系统12,如服务器设备,第二个系统14,如客户机设备,通过网络16的接入链路彼此通信。优选地,发明的重发机制放置在客户机系统。如图2所示,本发明可以在客户机-服务器环境中实现,但是客户机-服务器环境不是必需的。
在这个发明中,服务器系统12通过网络向客户机系统14发送至少一个源分组或突发分组。但是,在从服务器系统12到客户机系统14的源分组或突发分组传输错误或丢失的情况下,客户机系统14向服务器系统12发送一个否定确认(NACK)分组用于重发。然后,客户机系统14在定时器周期上建立限制并且如果在规定的时间周期内没有接收到请求的分组或突发分组,则向服务器系统12重发NACK分组。
应该指出,许多实时流服务器实现为在突发分组中发送其数据代替在每个规定周期内发送一个分组。这类突发传输典型地减少了与处理器之间频繁转换相关的系统开销。除此之外,突发的分组传输更适合于处理变化的分组大小并且允许每个服务器更多的同时流。但是,不需要这样。
根据本发明的实施方案,由客户机系统14通过NACK分组将接收错误或丢失的分组通知回服务器系统12。这里,利用用户数据报(UDP)。图3描述了组成传输控制协议/互联网协议(TCP/IP)组的各层。基本上,TCP提供多个异构网络上端到端的传输服务以及互联网上信息的后续分组的发送。UDP是非连接的传输协议设计利用IP服务运行并且提供信息流的最少的错误检测。在网络层,IP提供“数据报”发送服务。
图4(a)和图4(b)显示了根据本发明的UDP分组的格式。实时应用中的每个分组携带一个突发标识符,其使接收端能够从不同突发中区别出分组。参见图1(b),如果从中的源分组沿传输路径丢失,则NACK分组发送到服务器系统。系统14通过序号的间隔检测出分组的丢失。对于发送的每个NACK分组,发明的协议保持一个定时器。如果定时器期满,则重发NACK分组。为避免混淆哪个重发的相同分组实际返回客户机系统,每个NACK分组的头包含一个额外的域,它规定除了丢失分组的序号之外的重发序号计数,如图4(b)所示。因此,当对应NACK分组发送出并且正确地测量RTT时,客户机系统可以将每个重发分组与确切时间配对。
因为源分组在具有不可预测延迟的路径上发送,所以本发明不断地调整重发定时器期满的阈值。也就是,传输路径在连接存在期间改变,并且路由器(或交换机)的状态也随着网络传送的或多或少的业务量而改变。因此,本发明合并一种新的往返估计机制可用于在重发NACK分组中确定更准确的定时。与现有技术不同,到达分组之间延迟抖动的估计在本发明中用作设置重发定时器阈值的基础。
下面的描述是根据本发明的重发机制的特定算法的详细描述。在实时多媒体应用中,服务器系统12在Db期间典型地发送突发分组。这里Db基于流速率和平均分组大小。参见图5,对于每个突发j,突发的最后一个分组在时间tj last到达客户机,并且突发的第一个分组在时间tj first到达。因此,对突发j的突发间延迟可以用下列等式4定义:Δf=tf first-tk last,                   (4)其中突发k表示在突发j之前接收的最后一个突发(除非有分组丢失,k=j-1)。对于每个突发j,使用类似TCP中的EWMA公式,如下列等式(5)和(6)定义的计算平滑突发间延迟SΔj以及平滑突发间延迟方差SVARΔj
Figure A0180672200091
  (5)以及  (6)其中α1和β1表示指数权重并且VARΔj表示对其平滑形式SΔj-1的绝对偏差Δj。这里,SΔj典型地正比于突发期间Db,并且因此其在具有不同突发期间的实时应用中不能以同样的方式使用。但是,平滑方差SVARΔj相当独立于突发期间并且反映沿从服务器到客户机的路径的路由器队列中交叉业务量的数量的变化。
通过传输延迟以及其来自等式(6)的延迟变化,如果Tj是当客户机生成突发间延迟Δj的第j个采样时的时间(理想地,Tj等于tj first),并且ti是当客户机计算第i个RTT采样RTTi的时间(后面解释),则根据本发明在时间t的有效的基于抖动的RTO是:RTOJ(t)=n*RTTi+m*SVARΔj,     (7)其中i=max:ti≤t并且j=max:Tj≤t。
而且,在RTT测量值之间有更长延迟的情况下,可以提供等式(7)的稍微改变以便更好地估计RTO。这个更好的估算量,称为RTOJD,可以通过将最后的RTT采样(也就是ti)的时间与估计RTO的时间(也就是t)之间的持续时间合并到RTOJ估算量中来创建:RTOJD(t)=(n+k(t-ti)*RTTi+m*SVARΔj,    (8)其中i=max:ti≤t,j=max:Tj≤t,并且t和ti的时间单位是秒。
应该指出,在前面章节描述的两个基于抖动的RTO估算量,当α1=0.5,β1=0.25,k=0.5,并且m=4.2792*n-2.6646时获得最优性。剩余的空闲参数n可用于在每个应用的基础上改变想要的重复分组数:较高值的n对应较少的重复分组。n的建议值在1和4之间。应该指出,频繁的延迟抖动采样被证明在基于NACK的RTO估计的微调中非常有用并且可用做未来RTT中变化的很好的预测器。
应该指出,用于确定重发超时(RTO)的本发明的估算量可利用处理器、微机、特定用途集成电路(ASIC)、可编程设备、或设计和运行以便提供这里所述功能的其他设备来实现。图6中显示了估算量的主要操作流程图,如下面解释的。
参见图6,每个分组插入估算量算法,跟踪两个量:往返延迟估计(RTT)以及突发间延迟抖动的方差(SVARΔ)。在步骤600,每个分组在客户机系统接收。如果有丢失的分组,则在步骤610每个分组的NACK分组就发送到服务器系统。在这种情况下,记录请求分组(i)重发的每个NACK分组的传输时间nacki,然后在步骤610设置发送后续NACK分组的定时器。同时,如果数据分组的重发从服务器到客户机系统可靠地完成了,则在步骤620计算往返延迟(RTT)。
根据本发明的实施方案,在实时会话中的接收机必须周期性地测量往返延迟。客户机系统通过利用分组丢失来测量往返延迟来获得RTT测量值-每个成功恢复的分组提供一个RTT采样。也就是,RTT是发送NACK和接收相应重发之间的持续时间。替代地,在网络分组丢失太慢的情况下由客户机通过获得往返延迟的额外采样测量RTT。为这个目的,如果分组丢失落到低于某个阈值,则客户机周期性地向服务器发送模拟重发请求。响应这些模拟NACK,服务器向客户机发送需要的分组。
在步骤630,确定接收的分组是否与前面接收的分组一样属于相同的突发。如果不同,则在步骤640,如等式4所述计算突发间延迟。在客户机端在突发的第一个分组和前一个突发的最后一个分组的接收之间测量突发间延迟。为了在不同突发之间区分并且利用等式(4),在步骤650,系统记录最后接收的分组的参数。
接着,突发间延迟采样被平均进平滑突发间延迟(SΔ)估计值,然后其用于控制重发超时参数(RTO)。利用步骤660,对于每个突发,在步骤670和680分别计算平滑的突发间延迟以及平滑的突发间延迟方差。执行步骤670来更新平滑的突发间延迟值,其用于在后续计算过程中确定方差。这些步骤根据等式5和6执行。因此,随着加入每个新的分组,平均值和方差改变。
最后,在步骤690计算重发超时机制(RTO),其是一个提示未恢复的数据重发的超时。因在基于NACK的应用中RTT采样之间的大间隔,最后的RTT采样与未来的往返延迟的值有最大的相关性。一旦分组(i)的定时器期满,客户机系统14就重发NACK分组,nacki,并且为分组(i)的另一个RTO时间单元设置定时器。n的建议值是在0和4之间,并且m的值设置为m=4.2792*n-2.6646。
总而言之,本发明提供了一种新的RTO估计机制,当在基于NACK的协议中使用时,其在已有的RTO估计算法上获得了显著的性能提高(也就是,更少的重复分组以及更少的不必要的等待时间)。如所描述的用于管理数字通信链路上重发的优选实施方案,对于本领域的技术人员显然系统的某些优点已经获得。前面的描述仅是要构建作为本发明的一个说明性实施方案。因此,本领域的技术人员可以很容易地想象在不违背本发明的基本原则和范围的情况下替代的方案可提供与本实施方案类似的功能。

Claims (11)

1.一种用于在通信系统中估计重发超时(RTOj)以便支持在服务器(12)和客户机(14)之间相同分组的多个重发的方法,所述方法包括步骤:
(a)从所述服务器(12)向所述客户机(14)发送多个数据分组;
(b)如果所述数据分组的一个丢失,则由所述客户机(14)发送否定确认(NACK)分组用于重发;
(c)计算对应于向所述服务器发送所述NACK分组和从所述服务器(12)接收所述丢失分组的相应重发之间的等待时间的往返延迟(RTTi);
(d)计算由所述客户机(14)接收所述多个数据分组的相邻分组之间延迟(Δj)的多个采样;
(e)基于所述计算的延迟采样确定平滑分组间延迟方差(SVARΔj);以及
(f)基于所述确定的RTTi以及所述确定的平滑分组间延迟方差计算所述RTOj
2.如权利要求1的方法,还包括基于所述计算的RTOj来控制所述NACK重发的步骤,所述计算的RTOj是所述NACK分组从所述客户机(14)到所述服务器(12)的后续传输之间的延迟。
3.如权利要求1的方法,其中根据SVARΔj=(1-β1)*SVARΔj-11*D来确定所述SVARΔj,其中β1设置为0.25并且D是Δj-SVARΔj-1的绝对差值。
4.如权利要求1的方法,其中根据RTOJ=n*RTTi+m*SVARΔj来确定RTOj,其中n设置为0和4之间并且m设置为m=4.2792*n-2.6646。
5.如权利要求1的方法,其中数据分组是突发分组并且延迟是突发间延迟。
6.一种用于在通信系统中估计重发超时(RTO)以便支持在服务器(12)和客户机(14)之间相同分组的多个重发的系统,包括:
用于基于实际往返延迟(RTT)以及与所述客户机(14)系统相关的平滑分组间延迟变化(SVARΔj)来控制在所述通信链路上所述服务器(12)系统和所述客户机(14)系统之间数据分组的所述多个重发的装置,所述RTT是响应丢失分组向所述服务器(12)发送否定确认(NACK)分组和从所述服务器(12)接收所述丢失分组的相应重发之间的等待时间,所述平滑分组间延迟方差(SVARΔj)是在每个接收的分组或分组突发之前和之后的延迟变化,由此所述RTO的估计过高和估计不足相对最小化。
7.一种用于管理多个数据分组在服务器系统(12)和客户机系统(14)之间的通信链路上传输的系统,包括:
用于以由分组构成的帧的形式接收所述数据分组的装置;
用于确定在传输期间是否有任何帧分组丢失的装置;
用于请求任何丢失的帧分组重发的装置;
用于确定对应于向所述服务器(12)请求所述丢失帧重发和从所述服务器(12)接收所述丢失帧的相应重发之间的等待时间的往返延迟(RTTi)的装置;
用于确定突发间分组延迟变化的装置;以及
用于基于所述确定的RTT以及所述确定的突发间延迟变化来确定重发超时(RTOj)的装置。
8.如权利要求7的系统,其中所述用于确定所述RTOj的装置还包括用于确定所述丢失突发分组的第一个分组和前面突发分组的最后一个分组的接收之间的突发间延迟(Δj)的装置;以及用于确定平滑突发间延迟方差(SVARΔj)的装置。
9.如权利要求7的系统,还包括用于基于所述计算的RTOj来控制所述NACK的多个重发的装置,所述计算的RTOj是从所述客户机(14)到所述服务器(12)的所述NACK分组的延迟传输。
10.如权利要求7的系统,其中根据SVARΔj=(1-β1)*SVARΔj-11*D来确定所述SVARΔj,其中β1设置为0.25并且D是Δj-SVARΔj-1的绝对差值。
11.如权利要求7的系统,其中根据RTOj=n*RTTi+m*SVARΔj来确定RTOj,其中n设置为1和4之间并且m设置为m=4.2792*n-2.6646。
CN01806722A 2001-01-18 2001-12-18 在基于否定确认的协议中有效重发超时估计的方法 Pending CN1430833A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US26259101P 2001-01-18 2001-01-18
US60/262,591 2001-01-18
US09/822,441 US6907460B2 (en) 2001-01-18 2001-03-30 Method for efficient retransmission timeout estimation in NACK-based protocols
US09/822,441 2001-03-30

Publications (1)

Publication Number Publication Date
CN1430833A true CN1430833A (zh) 2003-07-16

Family

ID=26949332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01806722A Pending CN1430833A (zh) 2001-01-18 2001-12-18 在基于否定确认的协议中有效重发超时估计的方法

Country Status (6)

Country Link
US (1) US6907460B2 (zh)
EP (1) EP1358730A2 (zh)
JP (1) JP2004518352A (zh)
KR (1) KR20020087940A (zh)
CN (1) CN1430833A (zh)
WO (1) WO2002058309A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343067C (zh) * 2003-08-22 2007-10-17 佳能株式会社 图像供给装置、记录系统及其控制方法
WO2007121635A1 (fr) * 2006-04-24 2007-11-01 Zte Corporation Procédé de retransmission d'une unité de données de commande d'un protocole de commande à liaison sans fil en mode de reconnaissance
US7715314B2 (en) 2006-03-30 2010-05-11 Ntt Docomo, Inc. Communication terminal and retransmission control method
CN101777972A (zh) * 2009-01-09 2010-07-14 大唐移动通信设备有限公司 重复ack/nack机制下数据接收方法、装置及系统
CN101138221B (zh) * 2005-04-04 2010-12-29 松下电器产业株式会社 通信控制装置、通信终端
CN1922813B (zh) * 2004-02-18 2012-04-04 诺基亚公司 用于数据修复的方法和装置
CN106888277A (zh) * 2017-03-07 2017-06-23 腾讯科技(深圳)有限公司 一种域名查询方法及装置
CN110677221A (zh) * 2018-07-02 2020-01-10 华为技术有限公司 重传控制方法、通信接口和电子设备

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499060B1 (en) 1999-03-12 2002-12-24 Microsoft Corporation Media coding for loss recovery with remotely predicted data units
US6530056B1 (en) * 2000-08-25 2003-03-04 Motorola, Inc. Method for setting a timer based on previous channel request statistics
US9130954B2 (en) 2000-09-26 2015-09-08 Brocade Communications Systems, Inc. Distributed health check for global server load balancing
US7657629B1 (en) 2000-09-26 2010-02-02 Foundry Networks, Inc. Global server load balancing
US7454500B1 (en) 2000-09-26 2008-11-18 Foundry Networks, Inc. Global server load balancing
CN1193553C (zh) * 2000-09-28 2005-03-16 皇家菲利浦电子有限公司 网络接口驱动器和方法
US20020169880A1 (en) * 2001-04-19 2002-11-14 Koninklijke Philips Electronics N.V. Method and device for robust real-time estimation of the bottleneck bandwidth in the internet
US20020167948A1 (en) * 2001-05-09 2002-11-14 Dayong Chen Communications methods, apparatus, computer program products and data structures using segment sequence numbers
FR2825865A1 (fr) * 2001-06-06 2002-12-13 Koninkl Philips Electronics Nv Retransmission selective de paquets avec controle temporel a l'emission
US7054939B2 (en) * 2001-06-28 2006-05-30 Bellsouth Intellectual Property Corportion Simultaneous visual and telephonic access to interactive information delivery
US7020716B2 (en) * 2001-08-31 2006-03-28 Adaptec, Inc. Method and system for verifying the hardware implementation of TCP/IP
JP3912091B2 (ja) * 2001-12-04 2007-05-09 ソニー株式会社 データ通信システム、データ送信装置、データ受信装置、および方法、並びにコンピュータ・プログラム
US7159036B2 (en) * 2001-12-10 2007-01-02 Mcafee, Inc. Updating data from a source computer to groups of destination computers
US20030125035A1 (en) * 2001-12-19 2003-07-03 Khafizov Farid T. Burst scheduling in a wireless communication system
AU2003245047A1 (en) * 2002-02-15 2003-09-04 Koninklijke Philips Electronics N.V. Modifications to TCP/IP for broadcast or wireless networks
US7283469B2 (en) * 2002-04-30 2007-10-16 Nokia Corporation Method and system for throughput and efficiency enhancement of a packet based protocol in a wireless network
US7170870B2 (en) * 2002-05-07 2007-01-30 Microsoft Corporation Data packet transmission for channel-sharing collocated wireless devices
US7676576B1 (en) 2002-08-01 2010-03-09 Foundry Networks, Inc. Method and system to clear counters used for statistical tracking for global server load balancing
US7086061B1 (en) 2002-08-01 2006-08-01 Foundry Networks, Inc. Statistical tracking of global server load balancing for selecting the best network address from ordered list of network addresses based on a set of performance metrics
US7574508B1 (en) 2002-08-07 2009-08-11 Foundry Networks, Inc. Canonical name (CNAME) handling for global server load balancing
US7436876B2 (en) * 2002-11-15 2008-10-14 Time Domain Corporation System and method for fast acquisition of ultra wideband signals
ATE392070T1 (de) * 2003-04-16 2008-04-15 Koninkl Kpn Nv System und verfahren zur messung der qualität in einem datennetz
CN100469045C (zh) * 2003-07-01 2009-03-11 艾利森电话股份有限公司 用于设置分组交换通信网络中重传超时周期的方法
JP4143501B2 (ja) * 2003-08-22 2008-09-03 キヤノン株式会社 画像供給装置と、当該画像供給装置と記録装置とを含む記録システムとその通信制御方法
KR100608715B1 (ko) * 2003-09-27 2006-08-04 엘지전자 주식회사 QoS보장형 멀티미디어 스트리밍 서비스 시스템 및 방법
US9584360B2 (en) 2003-09-29 2017-02-28 Foundry Networks, Llc Global server load balancing support for private VIP addresses
KR100592072B1 (ko) * 2003-10-02 2006-06-21 (주)디디오넷 전송 제어 프로토콜 기반의 다중경로 방식을 이용한스트림 데이터 전파 방법
TWI264898B (en) * 2004-02-12 2006-10-21 Powerchip Semiconductor Corp MSEC/SECS protocol converter and conversion method
US7584301B1 (en) 2004-05-06 2009-09-01 Foundry Networks, Inc. Host-level policies for global server load balancing
US7496651B1 (en) 2004-05-06 2009-02-24 Foundry Networks, Inc. Configurable geographic prefixes for global server load balancing
US8050272B2 (en) 2004-06-29 2011-11-01 Damaka, Inc. System and method for concurrent sessions in a peer-to-peer hybrid communications network
US7933260B2 (en) 2004-06-29 2011-04-26 Damaka, Inc. System and method for routing and communicating in a heterogeneous network environment
US8437307B2 (en) 2007-09-03 2013-05-07 Damaka, Inc. Device and method for maintaining a communication session during a network transition
US8009586B2 (en) 2004-06-29 2011-08-30 Damaka, Inc. System and method for data transfer in a peer-to peer hybrid communication network
US7570636B2 (en) 2004-06-29 2009-08-04 Damaka, Inc. System and method for traversing a NAT device for peer-to-peer hybrid communications
GB2417400B (en) * 2004-08-18 2008-12-03 Wecomm Ltd Network data transmission
US7423977B1 (en) * 2004-08-23 2008-09-09 Foundry Networks Inc. Smoothing algorithm for round trip time (RTT) measurements
KR100640492B1 (ko) * 2004-08-31 2006-10-30 삼성전자주식회사 네트워크의 가용 대역폭 측정 방법
US8634413B2 (en) 2004-12-30 2014-01-21 Microsoft Corporation Use of frame caching to improve packet loss recovery
US7751449B2 (en) * 2005-03-30 2010-07-06 Arris Group, Inc. Method and system for simulation multimedia packet loss and jitter
US20060236017A1 (en) * 2005-04-18 2006-10-19 Mo Rooholamini Synchronizing primary and secondary fabric managers in a switch fabric
US20070147371A1 (en) * 2005-09-26 2007-06-28 The Board Of Trustees Of Michigan State University Multicast packet video system and hardware
US8839065B2 (en) * 2011-07-29 2014-09-16 Blackfire Research Corporation Packet loss anticipation and pre emptive retransmission for low latency media applications
US7792026B2 (en) * 2006-02-17 2010-09-07 Alcatel-Lucent Usa Inc. Method of calculating a time period to wait for missing data packets
US20070296822A1 (en) * 2006-06-09 2007-12-27 Yin-Chun Blue Lan Method and device for wireless video communication
KR100846344B1 (ko) * 2007-01-05 2008-07-15 삼성전자주식회사 이동통신 시스템에서 전송 제어 프로토콜의 전송 지연을줄이기 위한 장치 및 방법
US8615008B2 (en) 2007-07-11 2013-12-24 Foundry Networks Llc Duplicating network traffic through transparent VLAN flooding
WO2009043016A2 (en) 2007-09-28 2009-04-02 Damaka, Inc. System and method for transitioning a communication session between networks that are not commonly controlled
US8248928B1 (en) 2007-10-09 2012-08-21 Foundry Networks, Llc Monitoring server load balancing
WO2009070718A1 (en) 2007-11-28 2009-06-04 Damaka, Inc. System and method for endpoint handoff in a hybrid peer-to-peer networking environment
TWI353762B (en) * 2008-04-01 2011-12-01 Arcadyan Technology Corp Method for network transmission
US8300662B2 (en) * 2008-08-11 2012-10-30 Research In Motion Limited System and method for communicating using an in-vehicle system
US8116225B2 (en) * 2008-10-31 2012-02-14 Venturi Wireless Method and apparatus for estimating channel bandwidth
US8437267B2 (en) * 2008-12-22 2013-05-07 Ltn Global Communications, Inc. System and method for recovery of packets in overlay networks
US8289895B2 (en) * 2009-04-24 2012-10-16 Research In Motion Limited Relay link HARQ operation
US8725895B2 (en) 2010-02-15 2014-05-13 Damaka, Inc. NAT traversal by concurrently probing multiple candidates
US8874785B2 (en) 2010-02-15 2014-10-28 Damaka, Inc. System and method for signaling and data tunneling in a peer-to-peer environment
US8892646B2 (en) 2010-08-25 2014-11-18 Damaka, Inc. System and method for shared session appearance in a hybrid peer-to-peer environment
US9043488B2 (en) 2010-03-29 2015-05-26 Damaka, Inc. System and method for session sweeping between devices
US9191416B2 (en) 2010-04-16 2015-11-17 Damaka, Inc. System and method for providing enterprise voice call continuity
US8352563B2 (en) 2010-04-29 2013-01-08 Damaka, Inc. System and method for peer-to-peer media routing using a third party instant messaging system for signaling
US8427958B2 (en) 2010-04-30 2013-04-23 Brocade Communications Systems, Inc. Dynamic latency-based rerouting
US8611540B2 (en) 2010-06-23 2013-12-17 Damaka, Inc. System and method for secure messaging in a hybrid peer-to-peer network
US8468010B2 (en) 2010-09-24 2013-06-18 Damaka, Inc. System and method for language translation in a hybrid peer-to-peer environment
US9154394B2 (en) 2010-09-28 2015-10-06 Brocade Communications Systems, Inc. Dynamic latency-based rerouting
US8743781B2 (en) 2010-10-11 2014-06-03 Damaka, Inc. System and method for a reverse invitation in a hybrid peer-to-peer environment
US8549148B2 (en) 2010-10-15 2013-10-01 Brocade Communications Systems, Inc. Domain name system security extensions (DNSSEC) for global server load balancing
US20120099717A1 (en) * 2010-10-26 2012-04-26 Geoffrey Langos Systems and methods for integrating information from voice over internet protocol systems and social networking systems
US8407314B2 (en) 2011-04-04 2013-03-26 Damaka, Inc. System and method for sharing unsupported document types between communication devices
US8694587B2 (en) 2011-05-17 2014-04-08 Damaka, Inc. System and method for transferring a call bridge between communication devices
US8478890B2 (en) * 2011-07-15 2013-07-02 Damaka, Inc. System and method for reliable virtual bi-directional data stream communications with single socket point-to-multipoint capability
JP6241622B2 (ja) * 2012-11-28 2017-12-06 パナソニックIpマネジメント株式会社 受信端末および受信方法
US9432458B2 (en) * 2013-01-09 2016-08-30 Dell Products, Lp System and method for enhancing server media throughput in mismatched networks
FR3007230B1 (fr) * 2013-06-17 2015-07-31 Sdmo Ind Procede de communication dans un reseau interconnectant au moins deux groupes electrogenes, et dispositif d’interfacage correspondant.
US9027032B2 (en) 2013-07-16 2015-05-05 Damaka, Inc. System and method for providing additional functionality to existing software in an integrated manner
US9357016B2 (en) 2013-10-18 2016-05-31 Damaka, Inc. System and method for virtual parallel resource management
US9565138B2 (en) 2013-12-20 2017-02-07 Brocade Communications Systems, Inc. Rule-based network traffic interception and distribution scheme
US9648542B2 (en) 2014-01-28 2017-05-09 Brocade Communications Systems, Inc. Session-based packet routing for facilitating analytics
KR20150130628A (ko) * 2014-05-13 2015-11-24 한국전자통신연구원 저전력 무선 네트워크에서 패킷 전송 방법
CA2956617A1 (en) 2014-08-05 2016-02-11 Damaka, Inc. System and method for providing unified communications and collaboration (ucc) connectivity between incompatible systems
JP2016063422A (ja) * 2014-09-18 2016-04-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America デバイス、デバイス管理装置、中継装置、端末装置、および通信方法
US9496987B2 (en) 2014-12-11 2016-11-15 International Business Machines Corporation Method for redelivering a subset of messages in a packet to a receiver application
US10129088B2 (en) 2015-06-17 2018-11-13 Extreme Networks, Inc. Configuration of rules in a network visibility system
US10771475B2 (en) 2015-03-23 2020-09-08 Extreme Networks, Inc. Techniques for exchanging control and configuration information in a network visibility system
US9866478B2 (en) 2015-03-23 2018-01-09 Extreme Networks, Inc. Techniques for user-defined tagging of traffic in a network visibility system
US10911353B2 (en) 2015-06-17 2021-02-02 Extreme Networks, Inc. Architecture for a network visibility system
KR101632835B1 (ko) 2015-04-14 2016-06-23 엘에스산전 주식회사 Plc 시스템의 프로토콜 자동 설정 방법
US10530688B2 (en) 2015-06-17 2020-01-07 Extreme Networks, Inc. Configuration of load-sharing components of a network visibility router in a network visibility system
US10057126B2 (en) 2015-06-17 2018-08-21 Extreme Networks, Inc. Configuration of a network visibility system
US9742587B2 (en) 2015-07-29 2017-08-22 Oracle International Corporation Negative acknowledgment of tunneled encapsulated media
KR102027558B1 (ko) 2015-07-30 2019-10-01 엘에스산전 주식회사 고압 직류 송전 시스템에 포함되는 고조파 필터의 손실을 측정하는 손실 전력 측정 시스템 및 그의 손실 전력 측정 방법
US10608985B2 (en) 2015-08-14 2020-03-31 Oracle International Corporation Multihoming for tunneled encapsulated media
US9979653B2 (en) 2015-10-21 2018-05-22 Citrix Systems, Inc. System and method of providing improved throughput control under delay-based congestion situation in a network
US10243813B2 (en) 2016-02-12 2019-03-26 Extreme Networks, Inc. Software-based packet broker
US10999200B2 (en) 2016-03-24 2021-05-04 Extreme Networks, Inc. Offline, intelligent load balancing of SCTP traffic
US10091025B2 (en) 2016-03-31 2018-10-02 Damaka, Inc. System and method for enabling use of a single user identifier across incompatible networks for UCC functionality
DE102016004340A1 (de) * 2016-04-13 2017-11-09 Abb Ag Verfahren und Vorrichtung für die Kommunikation in einem Haus- oder Gebäudeinstallationssystem
US10567259B2 (en) 2016-10-19 2020-02-18 Extreme Networks, Inc. Smart filter generator
US10547516B2 (en) * 2017-06-30 2020-01-28 Microsoft Technology Licensing, Llc Determining for an optimal timeout value to minimize downtime for nodes in a network-accessible server set
CN108880763B (zh) * 2018-06-27 2022-02-22 努比亚技术有限公司 重传超时时间优化方法、设备及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768527A (en) * 1996-04-23 1998-06-16 Motorola, Inc. Device, system and method of real-time multimedia streaming
US5901138A (en) * 1996-11-08 1999-05-04 International Business Machines Corporation Process for improving the efficiency of high performance routing
US6031818A (en) * 1997-03-19 2000-02-29 Lucent Technologies Inc. Error correction system for packet switching networks
US6421387B1 (en) * 1998-05-15 2002-07-16 North Carolina State University Methods and systems for forward error correction based loss recovery for interactive video transmission
US6208620B1 (en) * 1999-08-02 2001-03-27 Nortel Networks Corporation TCP-aware agent sublayer (TAS) for robust TCP over wireless
US6721316B1 (en) * 2000-02-14 2004-04-13 Cisco Technology, Inc. Flexible engine and data structure for packet header processing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343067C (zh) * 2003-08-22 2007-10-17 佳能株式会社 图像供给装置、记录系统及其控制方法
US7800649B2 (en) 2003-08-22 2010-09-21 Canon Kabushiki Kaisha Image supply apparatus, recording apparatus, and recording system, and control method and program thereof
CN1922813B (zh) * 2004-02-18 2012-04-04 诺基亚公司 用于数据修复的方法和装置
CN101138221B (zh) * 2005-04-04 2010-12-29 松下电器产业株式会社 通信控制装置、通信终端
US7715314B2 (en) 2006-03-30 2010-05-11 Ntt Docomo, Inc. Communication terminal and retransmission control method
CN101047485B (zh) * 2006-03-30 2010-11-10 株式会社Ntt都科摩 通信终端以及重发控制方法
WO2007121635A1 (fr) * 2006-04-24 2007-11-01 Zte Corporation Procédé de retransmission d'une unité de données de commande d'un protocole de commande à liaison sans fil en mode de reconnaissance
CN101777972A (zh) * 2009-01-09 2010-07-14 大唐移动通信设备有限公司 重复ack/nack机制下数据接收方法、装置及系统
CN101777972B (zh) * 2009-01-09 2013-10-23 电信科学技术研究院 重复ack/nack机制下数据接收方法、装置及系统
CN106888277A (zh) * 2017-03-07 2017-06-23 腾讯科技(深圳)有限公司 一种域名查询方法及装置
CN110677221A (zh) * 2018-07-02 2020-01-10 华为技术有限公司 重传控制方法、通信接口和电子设备
US11671210B2 (en) 2018-07-02 2023-06-06 Huawei Technologies Co., Ltd. Retransmission control method, communications interface, and electronic device

Also Published As

Publication number Publication date
US6907460B2 (en) 2005-06-14
WO2002058309A2 (en) 2002-07-25
US20020124096A1 (en) 2002-09-05
EP1358730A2 (en) 2003-11-05
WO2002058309A3 (en) 2002-10-24
KR20020087940A (ko) 2002-11-23
JP2004518352A (ja) 2004-06-17

Similar Documents

Publication Publication Date Title
CN1430833A (zh) 在基于否定确认的协议中有效重发超时估计的方法
Parsa et al. Improving TCP congestion control over internets with heterogeneous transmission media
Karn et al. Improving round-trip time estimates in reliable transport protocols
EP2030356B1 (en) Dynamically adjusting the amount of packets to be acknowledged in an asymmetric communication system
US20030023746A1 (en) Method for reliable and efficient support of congestion control in nack-based protocols
US7200111B2 (en) Method for improving TCP performance over wireless links
Sinha et al. WTCP: A reliable transport protocol for wireless wide-area networks
Bohacek et al. A new TCP for persistent packet reordering
US6115357A (en) Method for pacing data flow in a packet-based network
AU752032B2 (en) Method and device for data flow control
Ratnam et al. WTCP: An efficient mechanism for improving TCP performance over wireless links
JP4016387B2 (ja) データフロー制御方法
Karn et al. Improving round-trip time estimates in reliable transport protocols
KR20030058946A (ko) 인터넷에서 보틀넥 대역폭의 강한 실시간 추정을 위한장치 및 방법
Aron et al. TCP: Improving startup dynamics by adaptive timers and congestion control
Loguinov et al. On retransmission schemes for real-time streaming in the Internet
EP1435704B1 (en) Transmission control method and system
Cavendish et al. CapStart: An adaptive TCP slow start for high speed networks
Gupta et al. WebTP: A receiver-driven web transport protocol
Lai et al. Design and analysis of TCP AIMD in wireless networks
Ratnam et al. WTCP: an efficient mechanism for improving wireless access to TCP services
Jagmagji et al. Exploration and Evaluation of Self-Clocked Rate Adaptation for Multimedia (SCReAM) Congestion Control Algorithm in 5G Networks
Loguinov et al. Retransmission schemes for streaming internet multimedia: evaluation model and performance analysis
JP2004140596A (ja) Tcp上のデータ転送における品質を推定する方法およびシステム
Chengpeng TCP Veno: End-to-end congestion control over heterogeneous networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned