CN1342256A - 天然气的深冷分离精制 - Google Patents

天然气的深冷分离精制 Download PDF

Info

Publication number
CN1342256A
CN1342256A CN00804607A CN00804607A CN1342256A CN 1342256 A CN1342256 A CN 1342256A CN 00804607 A CN00804607 A CN 00804607A CN 00804607 A CN00804607 A CN 00804607A CN 1342256 A CN1342256 A CN 1342256A
Authority
CN
China
Prior art keywords
refrigerant
heat exchanger
gas
heat exchange
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00804607A
Other languages
English (en)
Inventor
M·A·巴克莱
T·C·布洛克
J·A·巴克莱
R·R·蒂森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cryofuel Systems Inc
Original Assignee
Cryofuel Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryofuel Systems Inc filed Critical Cryofuel Systems Inc
Publication of CN1342256A publication Critical patent/CN1342256A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/66Landfill or fermentation off-gas, e.g. "Bio-gas"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/30Control of a discontinuous or intermittent ("batch") process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/909Regeneration

Abstract

分离包括CO2及第二气体的气体混合物中CO2的一种设备(2、20、200),该设备(2、20、200)包括一活性换热器(216)及一再生换热器(221)。该活性换热器(216)包括与该气体混合物接触的换热表面。该气体混合物以预定压力存在于该活性换热器(216)中,选择预定压力,要做到在用温度低于预定压力下CO2凝固温度的致冷剂冷却其表面时能使CO2凝固在换热表面上。再生换热器(221)包括与该致冷剂接触并也与凝固CO2层接触的换热表面。该致冷剂进入再生换热器,其温度在CO2凝固层中CO2的升华温度以上。固体CO2的升华使通过膨胀阀(215)进行膨胀之前的致冷剂冷却,使致冷剂温度降低到预定压力下CO2的冰点以下的温度。该致冷剂在离开活性换热器(216)之后,受到压缩机(60、160、218)的再压缩。在本发明优选实施方案中,由再生换热器(221)释放的气态CO2用于预冷却进入的气体混合物。第二预冷却换热器(167)通过构成与离开活性换热器(216)的致冷剂的热接触,预冷却此压缩后的致冷剂。

Description

天然气的深冷分离精制
发明领域
本发明涉及对甲烷气源精制的方法,更具体地说,涉及对含高浓度二氧化碳的甲烷气源的深冷精制。
发明背景
低品位的甲烷气源,诸如由于有机物料腐烂的甲烷气源,已被公认为可用至少50年的潜在能源。这种气源包括由拉圾填埋场及厌氧煮解池产生的主要包括甲烷及二氧化碳的“沼气”的气体。沼气中也存在数量不同的许多其它痕量杂质、氧气及氮气。从拉圾填埋场逸散出来的沼气既危害环境也影响安全。而且,沼气中甲烷及二氧化碳这两种组分,只要适当地加以精制,都是具有潜在价值的产物。因此,摄取沼气的能量,又消除对环境及安全的危害,应是有益的。尽管客观需要利用来自填埋场及煮解器的沼气,但这种甲烷气源仍然利用不足,因为还存在涉及对这种气体进行有效精制,即脱除痕量的有毒物质,及接着有效分离甲烷与二氧化碳组分的一些问题。采用厌氧腐烂有机物料方法产生的沼气流约三分之一至一半都是二氧化碳。因此,未精制的沼气流的容积能量含量实质上比管道天然气的更低。因此,对于未精制的沼气,不加处理,脱出这种气体混合物中的二氧化碳及其他杂质,是不能输入气体管线或用于常规设备中的。
已经提出有许多精制沼气源的体系。基于薄膜、变压吸附、变温吸附、化学吸收及深冷处理的分离体系均有报导。对于有大量沼气可供处理或其最终纯度在95%以下就合格的场合,这些体系都有可能在现场对沼气进行成功的精制。但是,它们之中没有哪个体系能经济有效地处理一至二百万标准立方英尺/日以下的沼气源。对于每日生产低于此容积量的沼气源或需要高纯度的场合,资本投资、生产费用及/或体系的复杂性都限制了现有体系的实际或经济运用。
拉圾填埋场的恶劣、腐蚀性及连续操作的环境限制了体系要求维护、管理或化学添加剂的有效性。复杂体系一般投资及保养费用都较高。
原则上,对沼气都可利用蒸馏技术使之深冷分离为其组分。但不幸的是,蒸馏技术对于二氧化碳及甲烷沼气混合物的分离更为困难,因为平衡混合物相中有若干独特的特点。深冷分离可大致分为连续法及间断(间歇)法。连续深冷体系利用了通过组分间相的差异使二氧化碳及甲烷彼此连续分离的区或区域。例如,在低于700磅/平方英寸绝压(psia)的恒压下,要获得纯度>98%的甲烷,必须从这种混合物进料流中分离出易形成固体的CO2。为保持清晰的相和允许相分离,要求在该混合物的临界点以下进行操作。对于这种常规低温蒸馏可提供的温度及压力范围是十分有限的。
在已有技术中,对二氧化碳及甲烷的分离提出有许多深冷方法。例如,霍姆斯(A.S.Holmes)等人(US 4,462,814)提出了避免蒸馏中二氧化碳固相的一种方法及设备。通常被称为瑞安-霍尔姆斯法(Ryan-Holmesprocess),将链烷添加剂,诸如丙烷或丁烷,用于基于液体蒸馏的分离过程中,避免固体CO2的形成。在与CH4蒸馏后,分离出CO2中的丁烷或丙烷,并再循环至蒸馏塔中。将重质烃类(C3+)加入进料流中,使操作压力降低和温度升高,不致形成固体CO2。在进料流中添加正丁烷,可使混合物的蒸馏在液-汽相内充分进行,避免了在蒸馏塔内形成固体CO2。另外,提高混合物的临界压力,以产生更大范围的容许操作压力。
但是,瑞安-霍尔姆斯法用于沼气精制有二个明显限制。首先,该体系复杂,以致投资费用高,不能适应较小的进料流。如上所指,对于填埋场回收体系,这样的投资也是有问题的。第二,这种方法需要供给一般在拉圾填埋场所不具备的丙烷或更重的烷烃。
近年来,珀特兹(Potts,Jr.)等人(US 5,120,338)提出利用蒸馏及控制凝固区来分离多组分进料流的方法。这种方法不同于瑞安-霍尔姆斯法,因为它可按所控制的方式形成固体二氧化碳。将这种固体融化并掺混至液相的液体部分中。使第三气相富集最易挥发的组分,甲烷,使其分离。通过小心控制固体形成的条件以及气-液蒸馏的条件,可使这些组分分离成三股物流。实质上,这种体系可使产品达到要求的纯度,而勿须去避免形成固体二氧化碳或使用添加剂。这种方法的主要限制与其可缩放性有关。这种体系的复杂性及投资费用也要求沼气源大于二百万立英尺/日,才能成为经济可行的。这种方法也太复杂,投资费用过高,对较小气源仍不可行。
还提出过几种采用部分冷却与第二类型分离机理相结合的方法。例如,斯威尼(Sweeney)等人(US 5,570,582),索飞尔(Soffer)等人(US5,649,996)及欧桕(Ojo)等人(US 5,531,808)提出了通过在低温或深冷温度下操作强化吸附体系操作的一些方法。洛克汉德瓦拉(Lokhandwala)(US 5,647,227)指出了分离甲烷、氮气及至少一种其它组分(二氧化碳)的混合物的一种方法及设备。这种方法采用通过薄膜强化的深冷分离。这些体系并不依赖固相形成或蒸馏来实现分离。这些混杂体系的成本及复杂性也限制其用于流量大于约二百万立方英尺/日的沼气流。
在US 5,642,630中,阿卜杜玛勒克(Abdelmalek)等人公开了对固体废物填埋场气体的一种处理及分离方法,其申请专利保护的是其对高品质液化天然气流、液化二氧化碳流及压缩天然气流的生产方法。该专利提出,采用能产生高达1800psia压力的四级压缩机和三个闪蒸罐,采用化学添加剂及多再循环回路,来获得目的产品。这种体系的复杂性及相关投资费用限定在小规模拉圾填埋场上实用。
在US 4,681,612中,欧’布赖恩(O’Brien)等人公开一种深冷分离体系,这种体系产生一种燃料级的甲烷产品流和构成对二氧化碳产品流的选择。这种方法依赖于低温蒸馏塔,其中甲烷更易挥发,因此塔顶产物富集甲烷。此外,使用选择性薄膜,可进一步分离塔顶产物中的甲烷。塔底产物主要含二氧化碳及杂质,可进一步在单独的提纯蒸馏塔中加以精制,如果需要,塔底产物也可作为一种产品流。这种方法有二个问题。首先,因为该体系是一种混杂体系,既采用了蒸馏塔,又用了薄膜,增大了其复杂性及投资费用。第二,不采用后续加工步骤及追加投资费,不易生产出高纯度的二氧化碳及甲烷。不能生产高纯度的产品,这种方法的实用性有限。
对采用化学添加剂分离填埋场气体及其他气物流中的二氧化碳及甲烷的几种方法,也有报导。甲醇通常被用作为一种化学添加剂(见阿普菲尔(Apffel)(US 4,675,035))。在蒸馏过程中往气体混合物中添加甲醇,会降低形成固体二氧化碳的温度和压力范围。这样就可使甲烷蒸馏进行得更完全,从而获得更高纯度的产品。只要蒸馏完成,就可分离甲醇与二氧化碳,并循环甲醇。通常被称为“冷甲醇”的分离,提供了迄今为止分离沼气的最好方法。但是,由于体系复杂、投资费用及与组合吸收及蒸馏操作装置相关联的生产费用,这些体系不适应较小的沼气源。
采用化学添加剂的第二种体系,由阿卜杜玛勒克(Abdelmalek)(US5,642,630)提出。这种方法是一种采用化学吸收促进分离的方法。正如前面提到的那样,需要化学添加剂及吸收的体系,由于添加剂费用、投资费用以及添加剂分离和再循环的复杂性,增加了生产费用。对于二百万标准立方英尺/日以下的沼气生产源,这些体系不经济可行。
概括地说,本发明目的在于提供一种改良分离体系的方法及设备,用于分离含至少二氧化碳及甲烷两种的气流,使之成为高纯度甲烷及高纯度二氧化碳的产品流。
本发明还有进一步的目的在于,提供利用形成固体二氧化碳实现高效分离的一种分离体系。
本发明进一步目的在于,提供比已有技术体系投资费用更低的一种分离体系。
本发明还有另一目的在于,提供比已有技术体系复杂程度更低的一种分离体系。本发明还有更进一步目的在于,提供比已有技术体系生产费用更低的一种分离体系。
对本领域技术人员,阅读以下本发明的详细说明及附图,本发明的这些及其它目的都是会显得很清楚的。
发明综述
本发明涉及从包括CO2与第二气体的气体混合物中分离CO2的一种设备,该设备包括活性换热器及再生换热器。该活性换热器包括与该气体混合物接触的换热表面。该气体混合物以预定压力存在于活性换热器中,该预定压力要选择在用其温度低于在此预定压力下CO2凝固温度的致冷剂冷却换热表面时CO2能凝固在此换热表面上的压力。再生换热器包括与该致冷剂接触并也与凝固的CO2层接触的换热表面。该致冷剂是在其温度高于CO2凝固层中CO2升华温度下进入该再生换热器的。在致冷剂通过膨胀阀膨胀之前,固体CO2的升华冷却了该致冷剂,使致冷剂的温度降低至预定压力下CO2的冰点以下。该致冷剂在离开活性换热器之后受到压缩机的再压缩。在本发明优选实施方案中,由再生换热器释放出来的气态CO2用于预冷却进入的气体混合物。第二预冷却换热器通过提供与离开活性换热器的致冷剂的热接触,预冷却该压缩后的致冷剂。在本发明优选实施方案中,是用第一和第二换热器来构成该活性和再生换热器的。任何时候对换热器是活性换热器的选择,都通过一个活门体系控制气体混合物及致冷剂流往返于活性换热器与再生换热器之间来完成。
附图简述
图1是按照本发明沼气精制体系部分的简图。
图2是按照本发明生产LNG的沼气精制体系优选实施方案的简图。
图3是本发明在略低温下生产高纯度增压甲烷气的简图。
发明详述
本发明提供对利用单段方法分离CO2及CH4为高纯度产品流而无须进一步精制提高产品纯度的技术改进。此外,在分离二氧化碳与甲烷的同一阶段中,可液化甲烷产品流,形成高价值的产品。将这种处理结合至一步深冷中,会使体系投资费用较低、生产费用较低及复杂性降低。这种新而便宜的方法可开发利用许多用已有技术已不经济的较小填埋场,并可使那些能够或目前正在用现行技术进行开发的较大填埋场达到更高的气体处理能力。
图1是按照本发明的CO2精制体系200的简化方案简图,用于分离沼气进料流中CO2与甲烷,参看图1会更易理解本发明获得效益的方法。为简化以下的讨论,只示出了其半个周期的体系结构。
按照本发明的沼气精制体系利用了二个换热器,以216及221表示,和一台压缩机,压缩用于冷却沼气至固体CO2析出程度的致冷剂。在以下讨论中,分离CO2与甲烷的换热器被称为“活性换热器”。另一换热器称为“再生换热器”,其理由通过以下讨论会更为清楚。在图1所示结构中,换热器221是再生换热器,换热器216是活性换热器。
在图1所示体系的简化方案中,沼气在换热器216中被通过膨胀阀215膨胀的致冷剂冷却。CO2从沼气中沉淀析出,在换热表面上构成一层覆盖层,如214所示。
离开换热器216的致冷剂,经压缩机218压缩,在通过阀门215膨胀之前在换热器221中被预冷却。换热器221以前是活性换热器,现在却成为了再生换热器。换热器221的换热表面上有一层CO2固体覆盖层,如222所示。此覆盖层的升华对穿过换热器221的致冷剂提供冷却源。因此,在换热器221为活性换热器期间固化CO2使之从沼气中沉析时所做的功,在换热器221进行再生期间作为有用功而被再吸收。
如果沼气含有明显量的水、非甲烷及CO2的气体、或其它在最终甲烷流中不允许的有机化合物,则可使进料沼气通过一种碳及/或沸石的分离器或其它装置加以处理,以脱除这些组分。这种分离体系在本领域是已知的,因此,此处不再对其详加论述。
如上所述,图1所示体系只说明半个分离循环。在后半个循环中,换热器216和221的作用是相反的。这就是说,换热器221成为再生换热器,换热器216成为活性换热器。一旦再生换热器中的固体CO2耗尽,就必须使这种作用反向。然而,只要再生换热器回收了其传热量,即可切换换热器。
现在参考图2,图2是按照本发明的CO2精制体系实施方案的简图,用于分离混合进料流为纯CO2和CH4产品流。含至少CO2和CH4的进料流5进入分离体系冷箱7,冷箱7中包括一个预冷却/回热(recuperative)换热器10。该进料流被看成为无任何明显有机或无机痕量杂质。该进料流在压力约200磅/平方英寸表压(psig)下进入。脱除通常填埋场气中存在的杂质的预处理体系,对本领域技术人员都是已知的,在此不予详述。对于更完全的讨论,读者可参阅  “填埋场气体:资源评估与进展”(Landfill Gas:Resource Evaluation andDevelopment),(天然气研究所报告(GRI Report 85/0259)85/0259,芝加哥,IL,1985,8月)。本发明所用进料流一般含约45-60%甲烷,35-50%二氧化碳,和1-5%氮及氧。冷箱7用于使分离设备与环境隔热。预冷却回热式换热器10起冷却入口物流5的作用,以便按以下论述通过升华CO2回收最大量的热能。保持换热器10的温度使换热器10中不形成固体CO2
冷却后的进料流出换热器10后,流入转换阀15,转换阀15引导进料流至当前活性换热器表面。在当前的实施例中,转换阀15引导预冷后的进料流进入左换热表面组件20,左换热表面组件中包含外冷换热表面25,当前它正起着固化析出工艺流中CO2的作用。
由输送流过的冷致冷液建立组件20中的温度梯度,此组件的进料流入口端比出口端更热。例如,此组件冷端可接近150K°,热端接近195K°。随着固体CO2沉积在换热表面25上,进料流不断冷却,变为富CH4的。在图2所示实施方案中,组件20出口端的温度是冷的,足以在约200磅/平方英寸表压下液化进料流中的纯甲烷组分。液化天然气(LNG)产品流30流出组件20,并流向阀门35,阀门35引导LGN经导管40离开冷箱。
如果最终产品是压缩天然气(CNG),则LGN在深冷泵中可受到压缩,并通过进入的工艺流的回热进行汽化,形成高纯度的压缩天然气(CNG)。LGN的汽化可用于预冷却进入的进料流或致冷剂,从而基本回收用于液化天然气的能量。在换热器10中,进料流5被高纯度是CO2气流12预冷却,CO2气流压力处于或接近15磅/平方英寸表压。此物流在第二换热组件45中产生,也就是说与组件20相同的,也另外用其循环。如图2所示,组件45以前已用作活性换热器,CO2层51已聚集在其换热表面50上。组件45上CO2固体侧的压力被降低至近似于大气压。在这样的压力下CO2在约195K°温度下升华。因此,组件45可用于冷却致冷剂流至近似这个温度。在此致冷器回路中致冷液提供热源加温再生组件的换热表面,促成升华迅速进行。组件45换热器表面的温度梯度从在冷端195K°至在热端近220K°之间变化。升华能是通过将能量传递给在进入膨胀阀75前流过组件45的致冷液的方式加以回收的。关闭在组件45下端的阀35,迫使升华产生的CO2气体离开组件45,并流动穿过转换阀15。纯CO2的冷气体在换热器10中起预冷却入口进料流的作用,回收CO2气体中的显热。这种附加回收体系大大提高了该体系的效率。精制后的CO2流在略低温度及大气压下流出换热器10及冷箱7。
该深冷分离单元中的冷却是由一种制冷剂回路提供的。在此实施方案中,致冷剂55进入压缩机60,其入口压力为约50磅/平方英寸表压,并在出口压力300磅/平方英寸表压下流出。该致冷剂流出压缩机60,其温度高于环境温度,并通过后冷却器65被冷却至近似同于环境的温度。然后,该致冷剂进入冷箱7和回热式换热器67。换热器67使该致冷剂在进入转换阀70之前冷却。在该优选实施方案中,换热器67是一种焊接板翅式换热器或一种盘管式换热器。转换阀70将致冷剂引导至适宜组件中,以进行通过阀门75膨胀之前的预冷却,使致冷剂冷却至活性换热表面的操作温度。在图2所示结构中,将高压致冷剂引导至组件45,使之在流经传热面50的无沼气侧时进一步受到固体CO2升华热的预冷却。因为在给定压力下CO2平衡升华温度是已知及恒定的,不论再生每个阶段的固体CO2存在量多少,只要有一些固体残留,进行准确而又一致预测的预冷却是有可能的。在再生组件中预冷后,该致冷剂通过膨胀阀75进行等焓膨胀,从约300磅/平方英寸表压膨胀至约50磅/平方英寸表压,使该致冷剂进一步冷却至略低于有效凝固组件20冷端所需的低温。然后,此近150K°的冷致冷剂进入组件20内换热表面25的无沼气侧,在它对表面25冷却及对CO2进行凝固时受到加热。然后,较热致冷剂进入换热器67,在它对高压致冷剂流预冷却时,进一步受到加热。此致冷剂在流出冷箱7并进入压缩机60以完成致冷剂循环之前,被加热至略低温的温度。
尽管此优选实施方案利用一种膨胀阀来冷却进入CO2固化换热器之前的致冷剂,但也可采用其它气体膨胀机装置或其它制冷方法而不会偏离本发明内容。例如,可采用一种透平膨胀机代替阀门,膨胀及冷却该致冷剂。
应该承认,控制机构、补充气体组成、相分离器、致冷剂过滤器、驱动马达、及气体-循环致冷器的其他常见部件都已从图2中删除,以简化描绘。致冷器的这些部件及元件都属于本领域常规的。
也应注意,本发明所用的具体冷却体系对于分离体系的有效运行并非关键性的。尽管在该优选实施方案中采用了一种低压混合致冷剂体系,但其它回热式致冷器也可运行。例如,该回热式制冷体系可基于等熵透平膨胀机循环,诸如克劳德(Claude)或布瑞顿(Brayton)循环,采用氮气、氩气、或纯甲烷气作为其致冷剂。其它膨胀循环,比如林德(Linde)、高气压混合致冷剂,或串级循环也都可采用。优选制冷体系可利用产生高约300磅/平方英寸表压压力的一种压缩机和使致冷剂由此压力膨胀至约50磅/平方英寸表压压力的一种膨胀阀布局。这些压缩机均可由Carrier or Copeland公司提供。这种致冷器是优选的,因为它合理有效、制造便宜和使用非常可靠。如上所述,在所有商业体系运作领域中,其资本投资和可靠性两方面都属重要的方面。在本发明优选实施方案中,所用的致冷剂是按其摩尔百分率计分别为23、8、23、34、和12的丁烷、丙烷、乙烷、甲烷和氩气的一种混合物。但是,其它那些避免使用丁烷和丙烷的致冷剂混合物也可使用。
在换热表面25上积累足量CO2固体,造成传热不足或者因CO2固体堵塞换热表面20导管,导致压力降增大,而受到限制时,另一组件45则应是无固体CO2的。此刻转换阀15就起到切换物流的作用,阀35则起到令物流40从组件45流出的作用。同样,转换阀60改变制冷剂回路,使组件20起预冷致冷剂流的作用。应当注意,为简化描绘,膨胀阀75表示为一种可逆阀。实际上,这种阀门是由使通过单膨胀阀的物流重新定向的阀门体系构成的。这些阀门的调节变化可直接使组件20从有效凝固设备切换为CO2升华的再生设备。这种转换对组件45也是如此。致冷剂流反向使预膨胀冷却单元变为组件20,CO2凝固单元变为组件45。
在本发明优选实施方案中,阀门顺序允许短期不使进料流进入活性换热器组件,直至由流动的致冷剂流在组件20和45中重新建立起所要求的温度梯度。物流短暂中断大致为一个操作循环总时间的5%,可能持续时间几分钟。在这个时候,入口阀98关闭,以防止进料流进入该体系。
本发明可做到在略低温下生产纯甲烷气流,而非液体甲烷。参考图3,可更易理解本发明的这种变异,图3为按照本发明的气体处理体系的简化方案示意图,用于分离沼气进料流为纯CO2和CH4产品流。进料流105基本上为如上参照图2所述。
冷箱107是用于使分离设备与环境隔热。预冷却回热式换热器110是利用回收由CO2流112升华的能量和精制后甲烷物流195来冷却入口流105的,如以下论述。在该优选实施方案中,换热器110为一有三路物流通过的换热器。保持换热器110中的温度,以使换热器110中没有固体CO2形成。
冷却后的进料流在流出换热器110后,进入转换阀115,阀115起引导进料流至用于精制的活性换热器的作用并选择当前再生换热器作为一种冷却源产出。转换阀115引导预冷却后物流105进入换热表面组件120,换热表面组件120包含从其上脱出进料流中CO2的换热表面125。换热器120和145基本按对图2所示换热器20和45所述的操作。
在当前的实施方案中,物流中的甲烷组分以液态离开活性换热器,其压力约200磅/平方英寸表压(psig)。甲烷产品流130流出组件120和流向阀门135,阀门135引导甲烷流至换热器137。在换热器137中LGN通过由高压致冷剂传递的热能进行汽化。物流140离开换热器137,进入回热/预冷换热器110,在110它用于预冷却进入的沼气进料流,随着在流出冷箱作为物流195之前它升温到接近环境的温度。必须小心操作,保证物流140在换热器137中升温到足以使换热器110中没有固粒形成。
在换热器110中,沼气进料液流105被物流112预冷却,物流112是一种高纯度的CO2气流,其压力接近15磅/平方英寸表压。此物流在第二换热表面组件145中形成,在某种意义上类似于参考上述图2所示的本发明实施方案。
采用类似于上述参照图2的一种气体-循环致冷剂回路构成深冷分离单元进行的冷却。在此实施方案中,致冷剂155进入压缩机160,其入口压力约50磅/平方时表压,出口压力为300磅/平方时表压。该致冷剂流出压缩机160在环境温度以上,并通过后冷却器165被冷却至近似等于环境的温度。然后,该致冷剂进入冷箱107和回热式换热器167。在该致冷剂进入转换阀170之前受换热器167冷却。转换阀170引导该致冷剂至再生组件进行预冷却。致冷剂在再生组件中经预冷却后,通过转换阀180被引导至预冷却换热器137,在137通过冷甲烷流130使之进一步冷却。随后在换热器137中进行第三预冷却阶段,该致冷剂通过膨胀阀175进行等焓膨胀,从约300磅/平方英寸表压膨胀到约50磅/平方英寸表压。这种膨胀使致冷剂冷却至略低于有效凝固组件120冷端所需的低温。然后,该致冷剂被送往活性换热器转换阀180。然后此约150K°的冷致冷剂进入组件120中换热表面125的无沼气侧,并在它通过使CO2凝固来冷却表面125时受到加热。然后,该温热的致冷剂,进入换热器167,在它预冷却高压致冷剂流时进一步受到加热。该致冷剂在流出冷箱107并进入压缩机160至完成致冷剂循环之前,被加热至略低温度。换热器137对气体分离体系的操作是重要的,因为它降低了跨越膨胀阀的温度,并能使甲烷流140升温至不致引起换热器110中形成固体的温度。
在本发明该实施方案中,所用致冷体系基本上与上述参照图2所示的实施方案相同。因此,在此不再对其论述。
在本发明的此实施方案中,对活性与再生换热器的转换基本如上所述参照图2所示的实施方案相同。当活性换热器积累足够固体CO2至明显降低其性能时,就用再生后的换热器切换它。
重要的是要注意,通过CO2升华提供的冷却是在低于开始高压液化及凝固沼气流中CO2所要求的压力下进行的。这样可使致冷剂膨胀所跨越的温度大大降低,又使组件20/120及45/145中循环蓄热物质的温度大大降低。因此,升华组件的操作压力对有效设计至关重要。这个温度可随升华组件中所保持的压力多少降低或升高一些。LGN的出口压力应接近于LNG储罐的压力。较冷的LGN被认为更有价值。此外,LGN中残留的CO2是压力和温度的函数。必须小心操作,保证CO2不在换热组件下游能固化。应该保持换热器10/110及67/167中一致的温度梯度、入口端温度及出口端温度。此外,应该小心操作,保证在循环过程中通过换热器的流动不反向。同样,在循环过程中通过膨胀阀75/175的流动不应明显变向或波动。对离开再生换热表面组件的致冷剂出口气温,只要有CO2固体存在,就应该保持其恒定。因此,这个温度的升高是再生完成和循环应反向的标志。因此,在本发明优选实施方案中这个温度受到监控,并用于起始对活性及再生换热器的互换。
为了达到对CO2的适宜分离,图2及3中的换热器20/120必须运行在压力接近200磅/平方英寸表压及最冷温度低于约150K°之下。这些条件可保证流出换热器20/120的气体含有不超过约0.02%的CO2。另外,也可希望生产一种较高CO2含量的甲烷气产品。如果活性换热器中的最冷温度提高到约150K°以上,精制产出的甲烷流会保持为气体,且会使之在离开活性换热器后的CO2浓度相应较高。调节活性换热器中的最冷温度,CO2的浓度是可直接控制的。调节这个温度可成为一种控制产出气体品质的手段,也可使本发明能够由沼气来生产管输品级的天然气,使CO2的容许浓度通常在2体积%以下。
虽然此优选实施方案预定使用沼气,但对于含二氧化碳及甲烷的其它气流也同样可用本发明来精制。例如,本发明可用于精炼含大量二氧化碳的井口气。
根据上述说明及附图对本发明的各种改进,对于本领域技术人员都会是明显的。因此,本发明完全受以下申请专利的范围限制的。

Claims (5)

1、一种用于从包括CO2及第二气体的气体混合物中分离CO2的设备[2、20、200],所述设备[2、20、200]包括:
用于凝固所述混合物中CO2的一种活性换热器[216],所述活性换热器[216]包括与该气体混合物接触的换热表面,该气体混合物以预定压力存在,该换热表面通过一种致冷剂进行冷却,所述致冷剂温度低于所述预定压力下的CO2凝固温度;
用于预冷却该致冷剂的一种再生换热器[221],所述再生换热器[221]包括与该致冷剂接触也与所述CO2凝固层接触的换热表面,该致冷剂进入再生换热器,其温度高于所述CO2凝固层中CO2升华的温度;
用于使在再生换热器[221]中预冷后进入活性换热器[216]之前的致冷剂进行膨胀的膨胀阀[215];及
用于压缩已离开活性换热器[216]的致冷剂的压缩机[60、160、218],所述压缩机[60、160、218]设有接受已离开活性换热器[216]的致冷剂的入口,和排放压缩后致冷剂的出口。
2、按照权利要求1的设备[2、20、200],其中所述设备[2、20、200]包括第一和第二换热器[2、25、120、145],在任何给定时间下,所述换热器[2、25、120、145]中之一就是所述活性换热器[216],另一个换热器就是所述再生换热器[221],所述设备[2、20、200]还包括用于选择第一和第二换热器为活性换热器[216]的一个阀门体系[15、75、115、170、180]。
3、按照权利要求2的设备[2、20、200],其中各所述换热器包括:
具有接受致冷剂的入口端和排放致冷剂的出口端的换热盘管[50],所述换热盘管[50]具有与流过该换热盘管的致冷剂进行热接触的外表面;及
用于使气体与该换热盘管外表面接触的舱室,该舱室具有接受与排放经与换热盘管[50]外表面接触而被冷却的气体的入口和出口,
其中所述阀门体系[15、75、115、170、180]包括第一阀门体系[70、170],此阀门体系用于连接压缩机[60、160、218]出口与再生换热器[221]中的换热盘管的入口端和用于连接在活性换热器[216]中换热盘管的出口端与压缩机[60、160、218]的入口端;和
用于输送所述气体混合物至活性换热器[216]的入口的第二阀门体系[15、115]。
4、按照权利要求1的设备[2、20、200],还包括一种进入气体的预冷却换热器[110],用于通过使该气体混合物与离开再生换热器[221]的CO2进行热接触,来预冷却所述气体混合物。
5、按照权利要求1的设备[2、20、200],还包括致冷剂预冷却换热器[167],用于在压缩后的致冷剂进入再生换热器[221]之前,通过使该压缩后的致冷剂与离开活性换热器[216]的致冷剂进行热接触,来冷却该压缩后的致冷剂。
CN00804607A 1999-02-05 2000-01-26 天然气的深冷分离精制 Pending CN1342256A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/245,570 US6082133A (en) 1999-02-05 1999-02-05 Apparatus and method for purifying natural gas via cryogenic separation
US09/245,570 1999-02-05

Publications (1)

Publication Number Publication Date
CN1342256A true CN1342256A (zh) 2002-03-27

Family

ID=22927202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00804607A Pending CN1342256A (zh) 1999-02-05 2000-01-26 天然气的深冷分离精制

Country Status (8)

Country Link
US (1) US6082133A (zh)
EP (1) EP1153252A4 (zh)
KR (1) KR20010101983A (zh)
CN (1) CN1342256A (zh)
AU (1) AU2629900A (zh)
CA (1) CA2361809A1 (zh)
MX (1) MXPA01007954A (zh)
WO (1) WO2000046559A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636002A (zh) * 2012-03-31 2012-08-15 贾林祥 天然气中co2低温脱除方法及应用该方法的天然气液化装置
CN102648385A (zh) * 2009-12-05 2012-08-22 伊诺维尔2000股份有限公司 用于净化第一液体内容物且同时加热第二液体内容物的系统和方法
CN102326044B (zh) * 2008-12-19 2015-08-19 乔治洛德方法研究和开发液化空气有限公司 使用低温冷凝的co2回收方法
CN109178286A (zh) * 2018-08-24 2019-01-11 广东珠海金湾液化天然气有限公司 液化天然气运输船船舱的预冷工艺

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940371A1 (de) * 1999-08-25 2001-03-01 Messer Griesheim Gmbh Verfahren und Vorrichtung zur Gewinnung von Kohlendioxid aus Abgasen
FR2820052B1 (fr) * 2001-01-30 2003-11-28 Armines Ass Pour La Rech Et Le Procede d'extraction du dioxyde de carbone par anti-sublimation en vue de son stockage
US20060127264A1 (en) * 2001-02-01 2006-06-15 Giovanni Aquino Multi-vane device
CA2353307A1 (fr) 2001-07-13 2003-01-13 Carmen Parent Appareil et procede pour le traitement des effluents gazeux
US20040029257A1 (en) * 2002-01-28 2004-02-12 Co2 Solution Process for purifying energetic gases such as biogas and natural gas
CA2369331A1 (fr) * 2002-01-28 2003-07-28 Frederic Dutil Systeme enzymatique de purification des gaz energetiques
CA2405635A1 (en) 2002-09-27 2004-03-27 C02 Solution Inc. A process and a plant for the production of useful carbonated species and for the recycling of carbon dioxide emissions from power plants
FR2851936B1 (fr) * 2003-03-04 2006-12-08 Procede d'extraction du dioxyde de carbone et du dioxyde de soufre par anti-sublimation en vue de leur stockage
US7669438B2 (en) * 2005-05-13 2010-03-02 Anesthetic Gas Reclamation, Llc Method and apparatus for anesthetic gas reclamation with compression stage
RU2415681C2 (ru) * 2005-05-13 2011-04-10 Энестетик Гэз Рекламейшн, Ллк Аппарат и способ для переработки анестезирующего газа
US7628034B2 (en) * 2005-05-13 2009-12-08 Anesthetic Gas Reclamation, Llc Method of low flow anesthetic gas scavenging and dynamic collection apparatus therefor
KR101290032B1 (ko) * 2006-04-07 2013-07-30 배르질래 오일 & 가스 시스템즈 아에스 재액화 시스템에서 보일 오프 lng 가스를 압축전 대기온도로 예열시키는 방법 및 장치
US20100018248A1 (en) * 2007-01-19 2010-01-28 Eleanor R Fieler Controlled Freeze Zone Tower
GB2458434B (en) * 2007-01-19 2012-01-11 Exxonmobil Upstream Res Co Integrated controlled freeze zone (CFZ) tower and dividing wall (DWC) for enhanced hydrocarbon recovery
US7744677B2 (en) * 2007-05-25 2010-06-29 Prometheus Technologies, Llc Systems and methods for processing methane and other gases
US20090288447A1 (en) * 2008-05-22 2009-11-26 Alstom Technology Ltd Operation of a frosting vessel of an anti-sublimation system
US20090301108A1 (en) * 2008-06-05 2009-12-10 Alstom Technology Ltd Multi-refrigerant cooling system with provisions for adjustment of refrigerant composition
US20150316312A1 (en) * 2008-07-14 2015-11-05 Ecotech Recycling Ltd. Device and method for cooling solid particles
US8163070B2 (en) * 2008-08-01 2012-04-24 Wolfgang Georg Hees Method and system for extracting carbon dioxide by anti-sublimation at raised pressure
US20100050687A1 (en) * 2008-09-04 2010-03-04 Alstom Technology Ltd Liquefaction of gaseous carbon-dioxide remainders during anti-sublimation process
FR2944096B1 (fr) 2009-04-07 2012-04-27 Ass Pour La Rech Et Le Dev De Methodes Et Processus Indutriels Armines Procede et systeme frigorifique pour la recuperation de la froideur du methane par des fluides frigorigenes.
US9423174B2 (en) 2009-04-20 2016-08-23 Exxonmobil Upstream Research Company Cryogenic system for removing acid gases from a hydrocarbon gas stream, and method of removing acid gases
WO2010141634A1 (en) * 2009-06-02 2010-12-09 Prometheus Technologies, Llc Conversion of algae to liquid methane, and associated systems and methods
US20120308989A1 (en) * 2009-06-02 2012-12-06 Prometheus Technologies, Llc Conversion of aquatic plants to liquid methane, and associated systems and methods
CA2771566C (en) 2009-09-09 2017-07-18 Exxonmobil Upstream Research Company Cryogenic system for removing acid gases from a hydrocarbon gas stream
EP2501460B1 (en) 2009-11-16 2023-06-07 Kent Knaebel & Associates, Inc. Multi-stage adsorption system for gas mixture separation
WO2011090553A1 (en) 2010-01-22 2011-07-28 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with co2 capture and sequestration
SG182399A1 (en) 2010-02-03 2012-08-30 Exxonmobil Upstream Res Co Systems and methods for using cold liquid to remove solidifiable gas components from process gas streams
US20120000242A1 (en) * 2010-04-22 2012-01-05 Baudat Ned P Method and apparatus for storing liquefied natural gas
US20110259044A1 (en) * 2010-04-22 2011-10-27 Baudat Ned P Method and apparatus for producing liquefied natural gas
MX362706B (es) 2010-07-30 2019-02-01 Exxonmobil Upstream Res Company Star Sistemas criogenicos para remover gases acidos de una corriente de gas de hidrocarburo que usan dispositivos de separacion de co-corriente.
EP2442056A3 (en) * 2010-10-15 2018-03-07 Daewoo Shipbuilding&Marine Engineering Co., Ltd. Method for producing pressurized liquefied natural gas and production system therefor
CN103237585A (zh) * 2010-10-26 2013-08-07 国际壳牌研究有限公司 从含ch4的气态进料物流中分离污染物或污染物混合物的方法
US20120152116A1 (en) 2010-12-16 2012-06-21 Prometheus Technologies, Llc Rotary fluid processing systems and associated methods
WO2012174418A1 (en) 2011-06-15 2012-12-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for removing carbon dioxide from a gas stream using desublimation
US9068463B2 (en) 2011-11-23 2015-06-30 General Electric Company System and method of monitoring turbine engines
WO2013142100A1 (en) 2012-03-21 2013-09-26 Exxonmobil Upstream Research Company Separating carbon dioxide and ethane from a mixed stream
CN102628635B (zh) * 2012-04-16 2014-10-15 上海交通大学 带凝华脱除co2的气体膨胀天然气带压液化工艺
CN102620524B (zh) * 2012-04-16 2014-10-15 上海交通大学 带凝华脱除co2的级联式天然气带压液化工艺
CN102620523B (zh) * 2012-04-16 2014-10-15 上海交通大学 带凝华脱除co2的混合制冷剂循环天然气带压液化工艺
US20130305744A1 (en) * 2012-05-21 2013-11-21 General Electric Company Cng delivery system with cryocooler and method of supplying purified cng
CN102679688B (zh) * 2012-05-25 2014-12-17 贵州开磷(集团)有限责任公司 一种从合成氨尾气中回收氨的工艺
WO2014011903A1 (en) * 2012-07-11 2014-01-16 Fluor Technologies Corporation Configurations and methods of co2 capture from flue gas by cryogenic desublimation
KR102044263B1 (ko) * 2012-10-19 2019-11-13 대우조선해양 주식회사 이산화탄소 응결점 분석 장치
EA201592161A1 (ru) * 2013-05-13 2016-06-30 Рефриджерэйшн Инджиниринг Интернэшнл Пти Лимитед Устройство и способ кондиционирования природного газа для транспортировки
DE102013008535A1 (de) * 2013-05-16 2014-11-20 Linde Aktiengesellschaft Anlage zur Verringerung eines Kohlendioxidgehalts eines kohlendioxidhaltigen und kohlenwasserstoffreichen Gasstroms und entsprechendes Verfahren
DE102013008536A1 (de) * 2013-05-16 2014-11-20 Linde Aktiengesellschaft Anlage zur Tieftemperatur-Kältetrocknung und Tieftemperatur-Kältetrocknungsverfahren
WO2015084495A2 (en) 2013-12-06 2015-06-11 Exxonmobil Upstream Research Company Method and system of maintaining a liquid level in a distillation tower
US9874396B2 (en) 2013-12-06 2018-01-23 Exxonmobil Upstream Research Company Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids
CA2925404C (en) 2013-12-06 2018-02-06 Exxonmobil Upstream Research Company Method and system of dehydrating a feed stream processed in a distillation tower
CA2924402C (en) 2013-12-06 2017-11-21 Exxonmobil Upstream Research Company Method and device for separating a feed stream using radiation detectors
US9562719B2 (en) 2013-12-06 2017-02-07 Exxonmobil Upstream Research Company Method of removing solids by modifying a liquid level in a distillation tower
US9874395B2 (en) 2013-12-06 2018-01-23 Exxonmobil Upstream Research Company Method and system for preventing accumulation of solids in a distillation tower
AU2014357667B2 (en) 2013-12-06 2017-10-05 Exxonmobil Upstream Research Company Method and system for separating a feed stream with a feed stream distribution mechanism
CA2931409C (en) 2013-12-06 2017-08-01 Exxonmobil Upstream Research Company Method and device for separating hydrocarbons and contaminants with a spray assembly
MY176633A (en) 2013-12-06 2020-08-19 Exxonmobil Upstream Res Co Method and system of modifiying a liquid level during start-up operations
AU2015250244B2 (en) 2014-04-22 2018-04-26 Exxonmobil Upstream Research Company Method and system for starting up a distillation tower
FR3020669B1 (fr) * 2014-04-30 2018-10-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil d’epuration et de refroidissement d’un melange gazeux
CA2951637C (en) 2014-06-11 2019-01-08 Russell H. Oelfke Method for separating a feed gas in a column
US10352617B2 (en) * 2014-09-25 2019-07-16 University Of Zaragoza Apparatus and method for purifying gases and method of regenerating the same
SG11201705162SA (en) 2015-02-27 2017-09-28 Exxonmobil Upstream Res Co Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process
US10413642B2 (en) 2015-04-28 2019-09-17 James Michael Berry System for dynamic control of medical vacuum
US10365037B2 (en) 2015-09-18 2019-07-30 Exxonmobil Upstream Research Company Heating component to reduce solidification in a cryogenic distillation system
CA2998466C (en) 2015-09-24 2021-06-29 Exxonmobil Upstream Research Company Treatment plant for hydrocarbon gas having variable contaminant levels
US10463990B2 (en) 2015-12-14 2019-11-05 General Electric Company Multiphase pumping system with recuperative cooling
EA201892054A1 (ru) 2016-03-30 2019-02-28 Эксонмобил Апстрим Рисерч Компани Поступающая из собственных источников пластовая текучая среда для повышения нефтеотдачи
FR3050655B1 (fr) * 2016-04-27 2020-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production de biomethane mettant en œuvre un flux d'azote
FR3050656B1 (fr) * 2016-04-27 2019-11-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production de biomethane liquide par separation cryogenique
WO2018222230A1 (en) 2017-02-24 2018-12-06 Exxonmobil Upstream Research Company Method of purging a dual purpose lng/lin storage tank
WO2019088833A1 (en) 2017-11-01 2019-05-09 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Probe, method of manufacturing a probe and scanning probe microscopy system
WO2019236246A1 (en) 2018-06-07 2019-12-12 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2020005553A1 (en) 2018-06-29 2020-01-02 Exxonmobil Upstream Research Company (Emhc-N1.4A.607) Mixing and heat integration of melt tray liquids in a cryogenic distillation tower
WO2020005552A1 (en) 2018-06-29 2020-01-02 Exxonmobil Upstream Research Company Hybrid tray for introducing a low co2 feed stream into a distillation tower
WO2020106395A1 (en) * 2018-11-20 2020-05-28 Exxonmobil Upstream Researchcompany Method for using a solid-tolerant heat exchanger in cryogenic gas treatment processes
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
WO2020106394A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
EP3948125A4 (en) 2019-03-29 2023-04-12 Carbon Capture America, Inc. CO2 SEPARATION AND LIQUEFACTION SYSTEM AND METHOD
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
WO2021055021A1 (en) 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055020A1 (en) 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055074A1 (en) 2019-09-20 2021-03-25 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration
JP2022548529A (ja) 2019-09-24 2022-11-21 エクソンモービル アップストリーム リサーチ カンパニー Lng及び液体窒素のための船舶又は浮遊貯蔵ユニット上の両用極低温タンクのための貨物ストリッピング機能
CA3156148A1 (en) * 2019-09-27 2021-04-01 Wm Intellectual Property Holdings, L.L.C. SYSTEM AND METHOD FOR RECOVERING METHANE AND CARBON DIOXIDE FROM BIOGAS AND REDUCING GREENHOUSE GAS EMISSIONS
EP4127109A4 (en) * 2020-04-03 2024-01-24 Biofrigas Sweden Ab Publ METHOD AND PLANT FOR PRODUCING LIQUID BIOGAS
FR3112597A1 (fr) * 2020-07-17 2022-01-21 Pyraine Procédé de séparation d’un mélange gazeux initial
CN111912168A (zh) * 2020-07-31 2020-11-10 山东交通学院 一种沼气净化及液化系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2738658A (en) * 1952-12-24 1956-03-20 Air Reduction Separation of gas by solidification
US3093470A (en) * 1960-06-28 1963-06-11 United Aircraft Corp Co2 freezeout system
DE1467073A1 (de) * 1963-09-17 1968-12-19 Hitachi Ltd Verfahren zur Abtrennung von Kohlenmonoxyd aus oxydiertem Konvertergas
US4283212A (en) * 1978-04-07 1981-08-11 Boc Limited Treatment of gas streams
US4681612A (en) * 1984-05-31 1987-07-21 Koch Process Systems, Inc. Process for the separation of landfill gas
IL108626A (en) * 1994-02-13 1997-04-15 Ram Lavie And Technion Researc Method for the recovery of fugitive organic vapors
US5737941A (en) * 1997-01-21 1998-04-14 Air Products And Chemicals, Inc. Method and apparatus for removing trace quantities of impurities from liquified bulk gases

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326044B (zh) * 2008-12-19 2015-08-19 乔治洛德方法研究和开发液化空气有限公司 使用低温冷凝的co2回收方法
CN102648385A (zh) * 2009-12-05 2012-08-22 伊诺维尔2000股份有限公司 用于净化第一液体内容物且同时加热第二液体内容物的系统和方法
CN102636002A (zh) * 2012-03-31 2012-08-15 贾林祥 天然气中co2低温脱除方法及应用该方法的天然气液化装置
CN109178286A (zh) * 2018-08-24 2019-01-11 广东珠海金湾液化天然气有限公司 液化天然气运输船船舱的预冷工艺

Also Published As

Publication number Publication date
EP1153252A1 (en) 2001-11-14
MXPA01007954A (es) 2003-07-14
AU2629900A (en) 2000-08-25
CA2361809A1 (en) 2000-08-10
WO2000046559A1 (en) 2000-08-10
KR20010101983A (ko) 2001-11-15
EP1153252A4 (en) 2003-05-21
US6082133A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
CN1342256A (zh) 天然气的深冷分离精制
CN1123751C (zh) 提高二氧化碳回收率的方法和设备
CN100445673C (zh) 用于液化高压天然气的系统和方法
CN104807286B (zh) 回收利用lng冷能的氮气液化系统
CN1238232A (zh) 从进料气流中回收二氧化碳的方法
CA2775449A1 (en) Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
CN102538398A (zh) 一种含氮氧煤矿瓦斯提纯分离液化工艺及提纯分离液化系统
US20120067079A1 (en) Nitrogen rejection and liquifier system for liquified natural gas production
CN112361712A (zh) 一种采用氦气制冷循环系统的氢气液化设备
CN101270952A (zh) 一种空气回热式的矿井瓦斯气的分离液化方法及设备
CN109631494B (zh) 一种氦气生产系统和生产方法
CN111578620B (zh) 车载移动式回收油田放空气中的混烃和液化天然气的系统及工艺方法
CN202522015U (zh) 带有制冷设备的分离提纯氖和氦的装置
CN214095167U (zh) 一种采用氦气制冷循环系统的氢气液化设备
CN114777418B (zh) 一种冷凝法天然气bog提氦的系统
CN2898737Y (zh) 含空气煤层气的液化设备
CN216864098U (zh) 一种车载天然气液化装置
CN115342597A (zh) 一种lng冷能用于空气分离与海水淡化系统及其综合利用方法
CN1046694C (zh) 一种采用开环混合冷冻剂循环的回收乙烯的方法
CN114165987A (zh) 一种液体二氧化碳生产装置及其生产方法
CN114377513A (zh) 一种用于油田伴生气回收处理的移动车组系统及方法
CN105444527A (zh) 一种天然气处理装置及方法
CN116592574B (zh) 一种回收膨胀功的液氢运输船再液化系统
CN205316816U (zh) 一种天然气处理装置
CN107940897A (zh) 采用冷能液化分离空气的lng冷能梯级利用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication