CN1340215A - 氮化半导体器件及其制造方法 - Google Patents

氮化半导体器件及其制造方法 Download PDF

Info

Publication number
CN1340215A
CN1340215A CN00803557A CN00803557A CN1340215A CN 1340215 A CN1340215 A CN 1340215A CN 00803557 A CN00803557 A CN 00803557A CN 00803557 A CN00803557 A CN 00803557A CN 1340215 A CN1340215 A CN 1340215A
Authority
CN
China
Prior art keywords
layer
gan
nitride semiconductor
substrate
gan substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00803557A
Other languages
English (en)
Other versions
CN1157804C (zh
Inventor
长滨慎一
中村修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of CN1340215A publication Critical patent/CN1340215A/zh
Application granted granted Critical
Publication of CN1157804C publication Critical patent/CN1157804C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3201Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures incorporating bulkstrain effects, e.g. strain compensation, strain related to polarisation

Abstract

一种包括GaN基底的氮化半导体器件,在所述GaN基底的表面至少有一个单晶GaN层,在所述GaN基底上有多个氮化半导体器件形成层。与所述GaN基底接触的器件形成层的热胀系数小于GaN的热胀系数,从而使器件形成层受到压应力的作用。结果可防止器件形成层产生裂纹,从而可改善氮化半导体器件的工作寿命。

Description

氮化半导体器件及其制造方法
技术领域
本发明涉及氮化半导体(InxALyGa1-x-yN,0≤x 0≤y,x+y≤1)器件,包括发光二极管(LED)、激光二极管(LD)或其它电子器件和功率器件。更具体地说,本发明提供了一种防止采用GaN基底的氮化半导体器件的氮化半导体层出现裂纹的方法。
背景技术
应用氮化半导体的兰色LED已被提供实际应用。近来,还可提供采用GaN基底的氮化半导体制作的兰色激光二极管。
本发明人在一些场合已介绍过采用GaN基底的氮化半导体激光二极管,例如,在《日本应用物理杂志》37卷(1998)L309-L312页。GaN基底可通过下述方法形成:在蓝宝石基底上形成一层GaN,然后在这层GaN的部分表面覆盖一层二氧化硅保护膜。GaN在GaN膜上可再次生长,蓝宝石基底可以拿开。二次生成的GaN层主要在侧向生长,因此可防止位错出现。采用这种方法可得到低位错率的GaN基底。采用这种低位错GaN基底的氮化半导体激光二极管器件具有连续波振荡功效,其连续工作时间可超过1万小时。
寿命超过1万小时的氮化半导体激光二极管已投入实际应用。但在某些应用场合希望器件有更长的工作寿命。本发明人对采用上述方法制造的氮化半导体激光器件进行了研究,发现在GaN基底生长的氮化半导体层中易产生微细裂纹,特别是在直接由GaN基底生长出的N型GaN接触层中。裂纹相当微细,用通常的光学显微镜难于发现,但可用荧光显微镜对其进行观察。在由相同结构的GaN基底上直接生长出来的GaN层中竟会产生小裂纹,这一事实是出乎人们意料的。这种微细裂纹的出现,被认为是侧生方法制造GaN基底中产生的一种特殊现象。但是,在较厚GaN基底生长出的GaN薄膜中也会产生原因不明的微细裂纹。不论如何,出现微细裂纹总会增加阈值,损害激光器件的寿命。除了激光器件之外,这种裂纹同样会减低其它氮化半导体器件的可靠性。
发明内容
因此,本发明的一个目的是降低在氮化半导体层出现上述裂纹的可能性,延长采用GaN基底的氮化半导体器件的工作寿命,从而提高氮化半导体器件的可靠性。为实现这一目的,本发明氮化半导体器件具有下述特点:在GaN基底上形成的器件形成层(氮化半导体层)之间,为由GaN基底上直接生成的器件形成层提供可减少裂纹出现的压应力。
使器件形成层的热胀系数小于GaN基底的GaN热胀系数即可获得所述压应力。在GaN基底上生长的器件形成层最好为GIaGa1-aN(0<a≤1)。因为GIaGa1-aN(0<a≤1)的热胀系数小于GaN,且可在GaN基底上生长为良好晶体。
由器件形成层构成的器件结构最好包括一个包含AL的N型覆盖层、一个包含InGaN的活化层和一个包含AL的P型覆盖层。采用这种结构及降低裂纹产生结构,可获得具有良好特性的器件。
根据器件的具体结构,在GaN基底生长的器件形成层—例如GIaGa1-aN层—可具有多种功能。例如,该层可作为防止细小裂纹的缓冲层或作为N型接触层。当整个GaN基底导电时,该层可为N型覆盖层。
GaN基底最好采用侧生法制造。采用侧生GaN基底不但可防止裂纹出现,而且可防止位错的蔓延。
本发明氮化半导体器件的制作方法包括以下步骤:
(A)在与氮化半导体不同的辅助材料基底—如蓝宝石或SiC-上生
成第一氮化半导体层;
(B)在所述第一氮化半导体层上形成条形或岛形的间隙凹凸结
构;
(C)在所述第一氮化半导体层上生成单晶GaN层,制作GaN基
底;
(D)在所述GaN基底上形成第二氮化半导体层,所述第二氮化半
导体层的热胀系数小于GaN的热胀系数。
在形成单晶GaN层后,从GaN基底取走辅助基底。
按本发明,与GaN基底接触的氮化半导体层的热胀系数小于GaN的热胀系数,从而可在氮化半导体层产生压应力。这个压应力可防止在氮化半导体层产生微细裂纹,其理由如下:若SiC,GaN和蓝宝石的热胀系数分别为ε1,ε2和ε3,且ε1<ε2<ε3,当GaN在SiC基底上生长时,在GaN层中易产生裂纹,因为此时的热胀系数关系为ε1<ε2,在SiC基底上生长的GaN层晶面存在张应力;另一方面,如果GaN层是生长在蓝宝石基底上,则GaN层不易产生裂纹,因为此时的热胀系数关系为ε2<ε3,在蓝宝石基底上生长的GaN层晶面上存在压应力。简言之,是否容易出现裂纹取决于存在的应力是张应力还是压应力。当在基底上生长的生长层热胀系数小于基底的热胀系数时存在压应力,此时可防止裂纹的产生。
当GaN生长在GaN基底上时,对生长的GaN层而言既不存在张应力又不存在压应力,在生长的GaN层中易产生裂纹。总而言之,当氮化半导体层在GaN基底上形成时,如果生成层的热胀系数等于或大于GaN的热胀系数,则氮化半导体层易出现裂纹;如果生成层的热胀系数小于GaN的热胀系数,则因存在压应力而是裂纹的出现受到抑制。
在本说明中,“GaN基底”是指表面具有低位错单晶GaN层的基底。GaN基底可以仅由单晶GaN层构成,也可包括一个由蓝宝石或碳化硅等不同氮化半导体材料制成的辅助基底,在该基底上形成低位错单晶GaN层。
GaN基底可采用任何适当的方法进行制造,只要其形成的单晶GaN具有足够小的位错,适合用于制造所需的电器件。但最好采用侧生法来制造单晶GaN层,因为这种方法可抑制位错在单晶GaN层的蔓延,从而可得到低位错GaN基底。“侧生法”包括可使单晶GaN层不但在垂直方向而且可沿基底表面平行方向生长以抑制垂直向位错的任何制造方法。
采用侧生法制造GaN基底,可选用ELOG生长法。这种方法在美国专利USP09/202,141,日本专利H11-312825,H11340508,H11-37827,H11-37826,H11-168079,H11-218122以及日本应用物理杂志(J.JAP)中均有介绍,在J.J.A.P中介绍的是用二氧化硅侧生GaN。
按上述各种ELOG生长法获得的GaN可作为低位错基底,采用这种基底对使用寿命等器件性能来说是很好的。在本发明中即采用了这种方法获得的基底,结果可具有更长的寿命。
在上述各种方法中,日本专利N0.H11-37827中所述的方法更为适用。GaN或ALGaN等氮化半导体层在蓝宝石等异种基底上生长,条形或岛形的间隙凹凸结构的形成可使单晶GaN层侧向生长。之后,生长的单晶GaN覆盖所述凹凸结构。通过采用这种方法,单晶GaN层可侧向生长,使得位错的蔓延受到抑制,从而得到低位错GaN基底。如果要求GaN基底仅由氮化半导体组成,单晶GaN层就要生长得厚些,然后可去掉辅助基底。
在侧生单晶GaN层上生长热胀系数小于GaN热胀系数的氮化半导体层,可防止在氮化半导体层中产生位错和裂纹,从而可改善氮化半导体器件的可靠性。本发明采用侧生GaN基底的具体实例将在以下的实施例中进行详细说明。
在上述制造方法中,在ELOG生长后去掉辅助基底以获得仅由氮化半导体组成的GaN基底。然而,在ELOG生长后也可留下辅助基底,在这种情况下,用做GaN基底的基底由辅助基底和氮化半导体层构成。
当采用仅由氮化半导体构成的GaN基底时,在与器件结构形成面对立的后表面上形成N电极。这样可减小芯片尺寸。而且,当GaN基底仅由氮化半导体构成时,还可获得良好的热辐射特性。此外,通过劈理也可易于形成共振面。从提高器件的性能来说,器件结构最好形成在与取走辅助基底对置的表面上。
另一方面,当采用由异质基底和氮化半导体组成的GaN基底时,可防止晶片的断裂和出现碎屑,从而易于处理。此外还可避免去掉辅助基底的步骤,从而可减少制造时间。即使在采用包含异质基底的GaN基底的情况下,如果所述基底导电,即可在基底的背面形成N电极。
在GaN基底上形成具有较小热胀系数的氮化半导体前,对GaN基底表面可进行刻蚀。由于在制造过程中GaN基底表面可能不平,因此最好通过刻蚀使GaN基底表面平滑后再形成氮化半导体。此处理可进一步抑制裂纹的出现。
附图描述
图1为说明GaN基底制造过程的剖视图。
图2为说明图1之后GaN基底制造过程的剖视图。
图3为说明图2之后GaN基底制造过程的剖视图。
图4为说明图3之后GaN基底制造过程的剖视图。
图5为按本发明实施例的氮化半导体激光器件的剖视图。
图6A-6F为说明陇条形成过程的部分剖视图。
具体实施方式
图5为本发明实施例中氮化半导体器件的剖视图。在GaN基底30上的器件成型层1-10构成一个半导体激光器件。与GaN基底30接触的器件成型层1具有小于GaN的热胀系数,从而使其受到压应力,抑制在器件形成层1中产生裂纹。
按本发明,热胀系数小于GaN热胀系数的任何氮化半导体均可用于作为在GaN基底上生长的氮化半导体层材料。然而,所采用的氮化半导体材料最好不包含有损晶体化的成分。例如,ALaGa1-aN(0<a≤1)即是适用材料。若其参数值为0<a<0.3则更好,若其值为0<a<0.1则最好。采用这种组成的氮化半导体可防止裂纹的出现,可获得良好晶体。
在具有较小热胀系数的氮化半导体在GaN基底上形成之前,对GaN基底表面可进行刻蚀,因为根据GaN基底的制造过程,GaN的表面有可能不平,因此从防止微细裂纹的出现起见,最好通过刻蚀使GaN基底表面平滑后再生成具有较小热胀系数的氮化半导体层。
直接在GaN基底生长的氮化半导体层的厚度不一定局限于某个特定值。但其厚度最好不小于1微米,若厚度在3-10微米则更好,这样的厚度有助于防止出现裂纹。
直接在GaN基底上生长的器件形成层可以在器件中起到各种功能,其具体功能取决于器件结构。按其功能,器件形成层1的厚度被适当控制在上述范围。在图5所示氮化半导体器件中,器件形成层1与器件形成层2一起起着N型接触层的作用,其上形成有N型电极21。在它们上边形成的包含AL的N型覆盖层4、包含InGaN的激化层6和P型覆盖层9构成了一个半导体激光器件。
如果GaN基底30为导电基底,例如是一个仅由单晶GaN层或在碳化硅上形成的单晶GaN层构成的基底,N电极可在GaN基底的后表面上形成。在这种情况下,与GaN基底接触的器件形成层1作为封闭光线的覆盖层。
当在GaN基底生成器件形成层1时,器件形成层1掺入杂质。掺入的杂质可以是N型或P型。掺杂量根据氮化半导体层的功能为接触层或覆盖层进行控制。
在图5所示氮化半导体器件中,未掺入N型ALaGa1-aN的器件形成层1作为接触层1,其上形成N型ALaGa1-aN接触层2。在未掺杂N型ALaGa1-aN上生成N型ALaGa1-aN基础层2,有助于防止裂纹出现和提高晶体质量。在这种情况下,未掺杂ALaGa1-aN层1还起到缓冲等作用。未掺杂N型ALaGa1-aN层的最佳厚度约为几个微米。
在N电极21直接形成在器件形成层1上的情况下,掺入N型杂质(一般为Si)的氮化半导体层在GaN基底30上生长,作为器件形成层1。掺入杂质的数量最好控制在1*1018/cm3到5*1018/cm3。仅作为N型接触层的器件形成层1的厚度最好为1-10微米。厚度控制在上述范围有助于防止微细裂纹,可使氮化半导体层起到N型接触层的作用。
所述GaN基底可以是仅由氮化半导体组成的基底,也可以是包含辅助基底和氮化半导体层的基底。GaN基底最好采用侧生法制造。采用侧生法制造的GaN基底可抑制器件形成层1-10产生位错,可改善期间特性。
例如,GaN基底30可按下述方法进行制造。首先,在用与氮化半导体不同的材料制成的辅助基底上形成GaN或ALGaN等氮化半导体层。所述辅助基底可用蓝宝石、碳化硅或尖晶石等材料制作。如图2所示,间隙条形或岛形凹凸结构形成在氮化半导体层12的表面,其后生成的单晶GaN层在水平方向生长。所形成的条形或岛形凹凸结构使半导体层12如图2所示。或者,形成的条形过岛形凹凸结构贯穿氮化半导体层12并可去掉辅助基底11。形成可去掉辅助基底11的较深凹凸结构,可在由凸出部分侧生的单晶GaN相会之处抑制晶体产生畸变。再一个选择,是使氮化半导体层12具有GaN和ALGaN双层结构,使形成凹凸结构的深度达到可去掉部分ALGaN。其次,如图3和图4所示,单晶GaN13的生长超过氮化半导体层12的凹凸结构。在这种情况下,可获得包含辅助基底和氮化半导体层的GaN基底。如果要求获得仅由氮化半导体构成的GaN基底,可通过HVPE等方法使单晶GaN层生长到一定厚度,使得可去掉蓝宝石等材料制成的辅助基底11。
当辅助基底11留在GaN基底30之中时,GaN基底的氮化半导体部分的厚度适宜控制到不大于100微米,其厚度小于50微米更好,小于20微米最好。厚度的低限可以更小,只要按ELOG法生长的GaN可使保护膜或不平整度达到降低位错的要求。例如,低限厚度不能小于几个微米。当厚度处在上述范围之内时,不但位错可得到降低,而且因氮化半导体与辅助基底热胀系数不同而可能产生的晶片翘曲也可得到抑制,从而使器件结构在GaN基底上生长良好。
当辅助基底11由GaN基底30中去掉时,本发明仅由氮化半导体组成的GaN基底厚度不局限于某个特定值,但适宜的厚度范围为50-500微米,厚度在100-300微米为最佳。当GaN基底厚度处于上述范围之内时,位错减少,并可保持适当的机械强度。
为提高基底中单晶GaN的晶体性能,可采用下述的另外一种制造方法。首先,与上述方法相同,在辅助基底11生长的氮化半导体层12中形成凹凸结构,在其上边通过HVPE法形成较厚的单晶GaN层13(单晶GaN的第一次生长)。然后,在单晶GaN层13上形成用二氧化硅等材料制造的间隙条形或岛形掩膜,应用CVD法使单晶GaN层通过掩膜侧生(单晶GaN的二次生长)。如果必须去掉辅助基底11,去掉过程最好在单晶GaN13的第一次生长后进行。在单晶GaN二次生长前,最好通过刻蚀使一次生长的单晶GaN表面平滑。
通过形成凹凸结构的单晶GaN一次生长和按HVPE法的GaN生长,可很容易地得到较厚的单晶GaN层。然而,这种单晶GaN层在凹陷结构附近易出现孔隙,晶体特性较差。采用二氧化硅掩膜和应用MOCVD法,可使二次生长的单晶GaN层具有较好的晶体特性。
当由GaN基底30去掉辅助基底11时,GaN基底表面可能产生轻微翘曲。这表明去掉辅助基底的GaN层表面在物理性质上与GaN层生长面有所不同。表面物理性质不同有可能引起裂纹的产生。在任何情况下,在GaN基底上生长具有较小热胀系数的半导体层—例如ALaGa1-aN时,可防止裂纹的出现和得到具有良好晶体特性的半导体器件。
按本发明,使与GaN基底接触的器件形成层受到压应力可抑制微细裂纹的出现。对任何种类的器件来说,都可具有这一优点。特别对于包括包含AL的N型覆盖层、包含IN GaN的活化层和包含AL的N性覆盖层的发光器件而言,上述结构安排和防止裂纹出现的特点可得到具有良好特性的器件。对于制造器件形成层而言,可采用已知的各种生长氮化半导体方法,如MOVPE(有机金属-蒸汽-相外延)、MOCVD(有机金属-化学蒸汽沉积)、HVPE(卤素蒸汽-相外延)、MBE(分子束外延)等。
以下将叙述本发明的实施例,但本发明并不仅仅局限于这些实施例。
实施例1:
在实施例1中,将叙述图5所示氮化半导体激光器件的制造过程。(GaN基底制造方法)
GaN基底按图1-4所示步骤制造。
直径为2英寸的蓝宝石基底11具有用C表示的主面和用A表示的定向平面,将其置入反应器中,并将温度调节到510℃。采用阿摩尼亚和TMG(trimethylgallium)作为GaN的源并用氢为载气,使GaN组成的厚度为200埃的缓冲层(未画出)在蓝宝石基底上生长。
在缓冲层生长之后,仅停止供给TMG并将温度增加到1050℃。在温度为1050℃的条件下,采用阿摩尼亚和TMG作为GaN的源,使由未掺杂GaN组成的第一氮化半导体层12生长到厚度为2微米(图1)。
在第一氮化半导体层12生长之后,形成具有条纹的光掩膜。采用溅射装置形成具有一定模式的二氧化硅膜,使其凸起部分上部条宽为5微米、凹入部分底部条距为15微米。再用RIE装置对第一氮化半导体层12未用二氧化硅膜掩盖的部分进行刻蚀,刻蚀深度适当控制,勿使半导体层被刻透,从而使其形成凹凸结构,如图2所示。在图2所示凹凸结构形成之后,去掉凸起部分上部的二氧化硅。这样,便形成了与定向面垂直的条陇结构。
其次,将晶片放入反应器中,温度为1050℃,采用阿摩尼亚和TMG为GaN的源,使由未掺杂GaN组成的第二氮化半导体层13生长到厚度约为320微米(图3和图4)。
在第二氮化半导体层生长之后,晶片移出反应器,得到由未掺杂GaN组成的GaN基底30。由得到的GaN基底30去掉蓝宝石基底,以下说明的器件结构将在与去掉面对置的生长面生长,如图5所示。由GaN构成的基底厚度约为300微米。(本发明未掺杂N型接触层1:ALaGa1-aN)
采用TMA(trimethylalminium)、TMG和阿摩尼亚作为源气,在1050℃条件下,使由未掺杂AL0.05Ga0.95N构成的未掺杂N型接触层1在GaN基底30上生长到厚度1微米。(本发明N型接触层2:ALaGa1-aN)
其次,在相同温度下,采用TMA、TMG和阿摩尼亚为源气,用硅烷(SIH4)为掺杂气,使由AL0.05Ga0.95N构成并掺杂Si到3*1018/cm3的N型接触层2生长到厚度3微米。
现在,在上述N性接触层(包括N型接触层1)中没有小裂纹,从而有效防止了微细裂纹的出现。如果在GaN基底中存在小裂纹,通过N型氮化半导体层2的生长也可防止这种裂纹的蔓延,从而可得到具有良好晶体特性的器件结构。与仅形成N型接触层2的情况比较起来,如上所述既形成N型接触层2又形成未掺杂N型接触层1,可使晶体特性得到很好的改善。(裂纹防止层3)
其次,将温度降至800℃。采用TMG、TMI(trimethylidium)和阿摩尼亚作为源气,用硅烷作为掺杂气,使由In0.08Ga0.92N构成并掺杂Si到5*1018/cm3的裂纹防止层3生长到0.15微米。(N型覆盖层4)
其次,在1050℃温度下,采用TMA、TMG和阿摩尼亚作为源气,使由未掺杂AL0.14Ga0.86N构成的覆盖层4生长到25埃。然后停止供给TMA,使用硅烷作为掺杂气,使由GaN构成并掺杂Si到5*1018/cm3的B层生长到厚度25埃。这些操作重复160次,使A层和B层互相重叠以形成多重膜叠压的N型覆盖层4(超点阵结构),总厚度为8000埃。(N型波导层5)
其次,在相同温度下,采用TMG和阿摩尼亚作为源气,使由未掺杂GaN构成的N型波导层5生长到0.075微米。(活化层6)
其次,在800℃温度下,采用TMI、TMG和阿摩尼亚作为源气,用硅烷作为掺杂气,使由In0.01Ga0.99N构成并掺杂Si到5*1018/cm3的势垒层生长到厚度为100埃。然后停止供给硅烷气,使由未掺杂In0.01Ga0.99N构成的势阱层生长到厚度50埃。这些操作重复3次使势垒层互相重叠,最后形成多量子阱(MQW)结构的活化层6,总厚度为550埃。(P型电子约束层7)
其次,在相同温度下,采用TMA、TMG和阿摩尼亚作为源气,用Cp2Mg(cyclopentadienylmagnesium)作为掺杂气,使AL0.4Ga0.6N构成并掺杂Mg到1*1019/cm3的P型电子约束层7生长到厚度100埃。(P型波导层8)
其次,在1050℃温度下,采用TMG和阿摩尼亚作为源气,使由未掺杂GaN构成的P型波导层8生长到厚度0.075微米。
这一P型波导层8是未掺杂的,但由于Mg由P型电子约束层7的扩散可使Mg的浓度达到5*1016/cm3,结果使其表现出P型导电性。(P型覆盖层9)
 其次,在相同温度下,采用TMA、TMG和阿摩尼亚作为源气,使由未掺杂AL0.1Ga0.9N构成的一层生长到25埃。然后停止供给TMA,使用Cp2Mg作为掺杂气,使由GaN构成并掺杂Mg到5*1018/cm3的B层生长到厚度25埃。这些操作重复100次,使A层和B层互相重叠以形成多重膜叠压的P型覆盖层9(超点阵结构),总厚度为5000埃。(P型接触层10)
其次,在相同温度下,采用TMG和阿摩尼亚作为源气,用CP2Mg作为掺杂气,使由GaN构成并掺杂Mg到1*1020/cm3的P型接触层10生长到厚度150埃。
在反应完成后,晶片在反应器700℃氮气气氛中退火,以减少P型层的电阻性。
退火后,将晶片移出反应器。在最上层的P侧接触层顶面形成一个二氧化硅保护膜,采用RIE(活性离子刻蚀)装置和SiCI4进行刻蚀,以曝露出N电极在其上面形成的N侧接触层2的表面,如图5所示。
其次,如图6A所示,在最上面的P侧接触层10的几乎全部表面上,采用PVD设备形成由硅的氧化物(主要为二氧化硅)构成的第一保护膜61,其厚度为0.5微米。然后,将有预定形状的掩膜放置在第一保护膜61上,形成由抗光材料制成的第三保护膜63,其条宽为1.8微米,厚度为1微米。
其次,如图6B所示,在第三保护膜63形成之后,用第三保护膜作为掩膜,采用CF4气体对所述第一保护膜进行刻蚀使其形成条形结构。在用刻蚀剂进行处理时,只有抗光部分被腐蚀,使第一保护膜61在P型接触层10形成条宽为1.8微米,如图6C所示。
在第一保护膜61形成条形结构之后,如图6D所示,使用RIE设备和SiCI4气体对P侧接触层10和P侧覆盖层9进行刻蚀,使其形成条宽为1.8微米的条形结构。
在条形结构形成之后,将晶片置入PVD设备中,如图6E所示,在因刻蚀而曝露的P侧覆盖层9上的第一保护膜61上形成由Zr的氧化物(主要为ZrO2)构成的第二保护膜62,其厚度为0.5微米。当如此形成Zr的氧化物膜时,可建立P-N面之间的绝缘和形成横模。
其次,将晶片浸在氢氟酸中,如图6F所示,用去除法去掉第一保护膜61。
其次,如图5所示,在由所述P侧接触层去掉第一保护膜61后而曝露的P侧接触层10的表面形成由Ni/Au构成的P电极20。P电极条宽为100微米,且如图所示凸出超过第二保护膜。
在形成第二保护膜62之后,如图5所示,形成由Ti/AL构成的与N侧接触层上条形结构平行的N电极21。
在其上按上述方式形成N电极和P电极的晶片GaN基底被抛光到厚度约为100微米。此后,晶片沿与基底条形电极垂直的方向被切割成一些小的条形结构并在切割面(11-00面,相当于具有六晶面结构晶体的侧面=M面)形成谐振器。由SiO2和TiO2构成的多层介电膜形成在谐振器的刻面上,对小的条形结构按与P电极平行的方向进行切割,最后形成如图5所示的激光器件。谐振器的长度最好控制在300-500微米的范围之内。
将得到的激光器件置入热潭并将各电极用导线连接起来。激光振荡试验在室温下进行。
波长500nm的连续振荡试验在室温下采用2.5kA/cm2阈电流强度和5V阈电压进行。在室温下,工作寿命为1万小时或更长。
实施例2
采用与实施例1相同的方式制造激光器件,只是不再使未掺杂N型接触层1生长,只生长N型接触层2。
所获得的器件在晶体特性上要比实施例1中的器件稍差,但基本可像实施例1那样防止裂纹的产生,得到性能良好的器件。
实施例3
采用与实施例1相同的方式制造激光器件,只是未掺杂N型接触层1和掺Si的N型接触层2中的AL的含量比率由0.05变为0.02。
所得到的器件表现出基本与实施例1相同的良好性能。
实施例4
采用与实施例1相同的方式制造激光器件,只是未掺杂N型接触层1和掺Si的N型接触层2中的AL的含量比率由0.05变为0.5。
所获得的器件在晶体特性上要比实施例1中的器件稍差,因为AL的含量大于实施例1。但基本可像实施例1那样防止裂纹的产生,得到性能良好的器件。
实施例5
采用与实施例1相同的方式制造激光器件,只是未掺杂N型接触层1和掺Si的N型接触层2由ALN构成。
所获得的器件在晶体特性上要比实施例1中的器件稍差,因为N型接触层1和N型接触层2中的AL含量大于实施例1,但基本可像实施例1那样防止裂纹的产生,得到像实施例1那样长寿命的器件。
实施例6
采用与实施例1相同的方式制造激光器件,只是第二氮化半导体层13的厚度为15微米,并且不去掉蓝宝石基底。所获得的GaN基底包括辅助基底和氮化半导体。
与实施例1比较起来,所获得的激光器件晶片稍大,但基本可像实施例1那样防止裂纹的产生。由于实施例6中的激光器件具有绝缘性蓝宝石基底,器件的热辐射性能较实施例1稍差。但也可得到如实施例1那样长的器件寿命。
以上,参阅附图描述了本发明的最佳实施例,但熟悉本门技术的人们都很清楚,对其进行增减和修改是可能的。应当了解,本发明的权利要求将所有这些增减和修改包括在本发明的要义和范围内。

Claims (8)

1.一种包括GaN基底的氮化半导体器件:
在所述GaN基底的表面至少有一个单晶GaN层,在所述GaN基底上形成多个氮化半导体器件形成层;
与所述GaN基底接触的所述器件形成层受到压应力的作用。
2.如权利要求1所述氮化半导体器件,其中所述与GaN基底接触的器件形成层的热胀系数小于GaN的热胀系数。
3.如权利要求1所述氮化半导体器件,其中所述与GaN基底接触的器件形成层由
ALaGa1-aN(0<a≤1)构成。
4.如权利要求3所述氮化半导体器件,其中所述器件形成层包括包含AL的N型覆盖层、包含InGaN的活化层和包含AL的P型覆盖层。
5.如权利要求4所述氮化半导体器件,其中所述由ALaGa1-aN构成的器件形成层起N型接触层的作用。
6.如权利要求1所述氮化半导体器件,其中所述单晶GaN层通过侧生法形成。
7.一种具有GaN基底的氮化半导体器件的制造方法,其中在所述GaN基底的表面至少有一个单晶GaN层,在所述GaN基底上形成多个氮化半导体器件形成层,所述制造方法包括以下步骤:
在由与氮化半导体不同的材料制成的辅助基底上形成第一氮化半导体层;
在所述第一氮化半导体层上形成条形或岛形间隙凹凸结构;
形成一个单晶GaN层以制作GaN基底;
在所述GaN基底上形成热胀系数小于GaN热胀系数的第二氮化半导体层。
8.如权利要求7所述氮化半导体器件制造方法,其中所述辅助基底在形成为制造GaN基底所需的所述单晶GaN层后被去掉。
CNB008035571A 1999-02-09 2000-02-08 氮化半导体器件及其制造方法 Expired - Fee Related CN1157804C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP3099099 1999-02-09
JP30990/99 1999-02-09
JP30990/1999 1999-02-09
JP331797/99 1999-11-22
JP33179799A JP3770014B2 (ja) 1999-02-09 1999-11-22 窒化物半導体素子
JP331797/1999 1999-11-22

Publications (2)

Publication Number Publication Date
CN1340215A true CN1340215A (zh) 2002-03-13
CN1157804C CN1157804C (zh) 2004-07-14

Family

ID=26369449

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB008035571A Expired - Fee Related CN1157804C (zh) 1999-02-09 2000-02-08 氮化半导体器件及其制造方法

Country Status (8)

Country Link
US (2) US6835956B1 (zh)
EP (1) EP1184913B1 (zh)
JP (1) JP3770014B2 (zh)
KR (1) KR100634340B1 (zh)
CN (1) CN1157804C (zh)
AU (1) AU771942B2 (zh)
TW (1) TW443018B (zh)
WO (1) WO2000048254A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440542C (zh) * 2003-05-15 2008-12-03 松下电器产业株式会社 半导体装置
US7485902B2 (en) 2002-09-18 2009-02-03 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
CN100461468C (zh) * 2003-08-08 2009-02-11 住友电气工业株式会社 发光半导体器件及其制造方法
TWI586060B (zh) * 2011-06-15 2017-06-01 歐斯朗奧托半導體股份有限公司 光電半導體本體及光電元件
CN110783176A (zh) * 2019-10-30 2020-02-11 广西大学 一种低应力半导体材料制备方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587081B2 (ja) 1999-05-10 2004-11-10 豊田合成株式会社 Iii族窒化物半導体の製造方法及びiii族窒化物半導体発光素子
JP3555500B2 (ja) 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP3427047B2 (ja) * 1999-09-24 2003-07-14 三洋電機株式会社 窒化物系半導体素子、窒化物系半導体の形成方法および窒化物系半導体素子の製造方法
JP2001185493A (ja) * 1999-12-24 2001-07-06 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法及びiii族窒化物系化合物半導体素子
JP4432180B2 (ja) 1999-12-24 2010-03-17 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法、iii族窒化物系化合物半導体素子及びiii族窒化物系化合物半導体
AU2001241108A1 (en) 2000-03-14 2001-09-24 Toyoda Gosei Co. Ltd. Production method of iii nitride compound semiconductor and iii nitride compoundsemiconductor element
JP2001267242A (ja) 2000-03-14 2001-09-28 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体及びその製造方法
TW518767B (en) 2000-03-31 2003-01-21 Toyoda Gosei Kk Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2001313259A (ja) 2000-04-28 2001-11-09 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体基板の製造方法及び半導体素子
EP2276059A1 (en) * 2000-08-04 2011-01-19 The Regents of the University of California Method of controlling stress in gallium nitride films deposited on substrates
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
JP2002222746A (ja) * 2001-01-23 2002-08-09 Matsushita Electric Ind Co Ltd 窒化物半導体ウェーハ及びその製造方法
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
JP3679720B2 (ja) 2001-02-27 2005-08-03 三洋電機株式会社 窒化物系半導体素子および窒化物系半導体の形成方法
JP2002280314A (ja) 2001-03-22 2002-09-27 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体の製造方法、及びそれに基づくiii族窒化物系化合物半導体素子
JP3690326B2 (ja) 2001-10-12 2005-08-31 豊田合成株式会社 Iii族窒化物系化合物半導体の製造方法
KR100427689B1 (ko) * 2002-02-21 2004-04-28 엘지전자 주식회사 질화물 반도체 기판의 제조방법
AU2003227230A1 (en) 2002-04-04 2003-10-20 Sharp Kabushiki Kaisha Semiconductor laser device
JP4011569B2 (ja) 2003-08-20 2007-11-21 株式会社東芝 半導体発光素子
JP4540347B2 (ja) 2004-01-05 2010-09-08 シャープ株式会社 窒化物半導体レーザ素子及び、その製造方法
JP4201725B2 (ja) 2004-02-20 2008-12-24 シャープ株式会社 窒化物半導体発光素子の製造方法
JP2005294753A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 半導体発光素子
US7157297B2 (en) 2004-05-10 2007-01-02 Sharp Kabushiki Kaisha Method for fabrication of semiconductor device
JP4651312B2 (ja) 2004-06-10 2011-03-16 シャープ株式会社 半導体素子の製造方法
JP4371029B2 (ja) * 2004-09-29 2009-11-25 サンケン電気株式会社 半導体発光素子およびその製造方法
JP5155536B2 (ja) * 2006-07-28 2013-03-06 一般財団法人電力中央研究所 SiC結晶の質を向上させる方法およびSiC半導体素子の製造方法
TWI341600B (en) * 2007-08-31 2011-05-01 Huga Optotech Inc Light optoelectronic device and forming method thereof
JP2009190936A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法
US8395168B2 (en) * 2008-06-06 2013-03-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices with polishing stops and method of making the same
US20100200880A1 (en) * 2008-06-06 2010-08-12 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Semiconductor wafers and semiconductor devices and methods of making semiconductor wafers and devices
KR101913462B1 (ko) 2008-06-30 2018-10-30 유니버셜 디스플레이 코포레이션 황 함유 그룹을 포함하는 정공 수송 물질
JP5591800B2 (ja) 2008-06-30 2014-09-17 ユニバーサル・ディスプレイ・コーポレーション トリフェニレンを含有するホール輸送材料
KR102369933B1 (ko) * 2015-08-03 2022-03-04 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
DE102016125430A1 (de) * 2016-12-22 2018-06-28 Osram Opto Semiconductors Gmbh Oberflächenmontierbarer Halbleiterlaser, Anordnung mit einem solchen Halbleiterlaser und Betriebsverfahren hierfür
EP3767762B1 (en) 2019-07-14 2022-03-30 Instytut Wysokich Cisnien Polskiej Akademii Nauk Distributed feedback laser diode and method of making the same

Family Cites Families (335)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6405927A (zh) 1963-06-07 1964-12-08
DE1614574A1 (de) 1967-08-04 1970-10-29 Siemens Ag Halbleiterbauelement,insbesondere Halbleiterbauelement mit pn-UEbergang
FR1597033A (zh) 1968-06-19 1970-06-22
DE1789061A1 (de) 1968-09-30 1971-12-23 Siemens Ag Laserdiode
DE1913676A1 (de) 1969-03-18 1970-09-24 Siemens Ag Verfahren zum Abscheiden von Schichten aus halbleitendem bzw. isolierendem Material aus einem stroemenden Reaktionsgas auf erhitzte Halbleiterkristalle bzw. zum Dotieren solcher Kristalle aus einem stroemenden dotierenden Gas
US4020791A (en) 1969-06-30 1977-05-03 Siemens Aktiengesellschaft Apparatus for indiffusing dopants into semiconductor material
US4404265A (en) 1969-10-01 1983-09-13 Rockwell International Corporation Epitaxial composite and method of making
US3853974A (en) 1970-04-06 1974-12-10 Siemens Ag Method of producing a hollow body of semiconductor material
DE2033444C3 (de) 1970-07-06 1979-02-15 Siemens Ag Vorrichtung zum Eindiffundieren von Dotierstoffen in Scheiben aus Halbleitermaterial
US3737737A (en) 1970-10-09 1973-06-05 Siemens Ag Semiconductor diode for an injection laser
DE2125085C3 (de) 1971-05-19 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Herstellen von einseitig geschlossenen Rohren aus Halbleitermaterial
DE2158257A1 (de) 1971-11-24 1973-05-30 Siemens Ag Anordnung zum herstellen von einseitig geschlossenen rohren aus halbleitermaterial
US3941647A (en) 1973-03-08 1976-03-02 Siemens Aktiengesellschaft Method of producing epitaxially semiconductor layers
US3819974A (en) 1973-03-12 1974-06-25 D Stevenson Gallium nitride metal-semiconductor junction light emitting diode
DE2346198A1 (de) 1973-07-27 1975-05-07 Siemens Ag Verfahren zur herstellung gelb leuchtender galliumphosphid-dioden
DE2340225A1 (de) 1973-08-08 1975-02-20 Siemens Ag Verfahren zum herstellen von aus halbleitermaterial bestehenden, direkt beheizbaren hohlkoerpern
IE39673B1 (en) 1973-10-02 1978-12-06 Siemens Ag Improvements in or relating to semiconductor luminescence diodes
FR2251104B1 (zh) 1973-11-14 1978-08-18 Siemens Ag
US4062035A (en) 1975-02-05 1977-12-06 Siemens Aktiengesellschaft Luminescent diode
DE2528192C3 (de) 1975-06-24 1979-02-01 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vorrichtung zum Abscheiden von elementarem Silicium auf einen aus elementarem Silicium bestehenden stabförmigen Trägerkörper
US4098223A (en) 1976-05-03 1978-07-04 Siemens Aktiengesellschaft Apparatus for heat treating semiconductor wafers
DE2644208C3 (de) 1976-09-30 1981-04-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung einer einkristallinen Schicht auf einer Unterlage
DE2643893C3 (de) 1976-09-29 1981-01-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren zur Herstellung einer mit einer Struktur versehenen Schicht auf einem Substrat
US4113381A (en) 1976-11-18 1978-09-12 Hewlett-Packard Company Surveying instrument and method
US4108539A (en) 1976-11-18 1978-08-22 Hewlett-Packard Company Reflecting lens system
DE2716143A1 (de) 1977-04-12 1978-10-19 Siemens Ag Lichtemittierendes halbleiterbauelement
US4154625A (en) 1977-11-16 1979-05-15 Bell Telephone Laboratories, Incorporated Annealing of uncapped compound semiconductor materials by pulsed energy deposition
DE2910723A1 (de) 1979-03-19 1980-09-25 Siemens Ag Verfahren zum herstellen von epitaktischen halbleitermaterialschichten auf einkristallinen substraten nach der fluessigphasen-schiebe-epitaxie
DE3003285A1 (de) 1980-01-30 1981-08-06 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen niederohmiger, einkristalliner metall- oder legierungsschichten auf substraten
DE3016778A1 (de) 1980-04-30 1981-11-05 Siemens AG, 1000 Berlin und 8000 München Laser-diode
US4423349A (en) 1980-07-16 1983-12-27 Nichia Denshi Kagaku Co., Ltd. Green fluorescence-emitting material and a fluorescent lamp provided therewith
DE3208638A1 (de) 1982-03-10 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Lumineszenzdiode aus siliziumkarbid
JPS58158972A (ja) 1982-03-16 1983-09-21 Toshiba Corp 半導体装置の製造方法
DE3210086A1 (de) 1982-03-19 1983-09-22 Siemens AG, 1000 Berlin und 8000 München Lumineszenzdiode, geeignet als drucksensor
DE3227263C2 (de) 1982-07-21 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung einer planaren Avalanche-Fotodiode mit langwelliger Empfindlichkeitsgrenze über 1,3 μ
US4568206A (en) 1983-04-25 1986-02-04 Nichia Seimitsu Kogyo Co., Ltd. Retainer for ball bearing
DE3328902A1 (de) 1983-08-10 1985-02-28 Siemens AG, 1000 Berlin und 8000 München Display mit einer anzahl lichtemittierender halbleiter-bauelemente
DE3338335A1 (de) 1983-10-21 1985-05-09 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von grossflaechigen siliziumkristallkoerpern fuer solarzellen
DE3413667A1 (de) 1984-04-11 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Verfahren zum einjustieren einer an einem ende eines optischen wellenleiters vorgesehenen koppeloptik auf einen halbleiterlaser und vorrichtung zur durchfuehrung des verfahrens
DE3421215A1 (de) 1984-06-07 1985-12-12 Aeg-Telefunken Ag, 1000 Berlin Und 6000 Frankfurt Verfahren zur erzeugung von ingaasp und ingaas - doppelheterostrukturlasern und -led's mittels fluessigphasenepitaxie fuer einen wellenlaengenbereich von (lambda) = 1,2 (my)m bis 1,7 (my)m
US4599244A (en) 1984-07-11 1986-07-08 Siemens Aktiengesellschaft Method large-area silicon bodies
US4722088A (en) 1984-09-14 1988-01-26 Siemens Aktiengesellschaft Semiconductor laser for high optical output power with reduced mirror heating
DE3434741A1 (de) 1984-09-21 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Verkoppelte laserdioden-anordnung
DE3435148A1 (de) 1984-09-25 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Laserdiode mit vergrabener aktiver schicht und mit seitlicher strombegrezung durch selbstjustierten pn-uebergang sowie verfahren zur herstellung einer solchen laserdiode
US4683574A (en) 1984-09-26 1987-07-28 Siemens Aktiengesellschaft Semiconductor laser diode with buried hetero-structure
EP0178497B1 (de) 1984-10-03 1990-11-28 Siemens Aktiengesellschaft Verfahren zur integrierten Herstellung eines DFB-Lasers mit angekoppeltem Streifenwellenleiter auf einem Substrat
US4615766A (en) 1985-02-27 1986-10-07 International Business Machines Corporation Silicon cap for annealing gallium arsenide
DE3610333A1 (de) 1985-04-19 1986-11-27 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung eines oberflaechengitters mit einer bestimmten gitterkonstanten auf einem tieferliegenden oberflaechenbereich einer mesastruktur
US4959174A (en) 1985-05-18 1990-09-25 Nichia Kagaku Kogyo K.K. Phosphor which emits light by the excitation of X-ray
US5250366A (en) 1985-05-18 1993-10-05 Nichia Kagaku Kogyo K.K. Phosphor which emits light by the excitation of X-ray, and a X-ray intensifying screen using the phosphor
JPS62246988A (ja) 1986-04-18 1987-10-28 Nichia Chem Ind Ltd X線螢光体及びこれを用いたx線増感紙
DE3531734A1 (de) 1985-09-05 1987-03-12 Siemens Ag Einrichtung zur positionierung eines halbleiterlasers mit selbstjustierender wirkung fuer eine anzukoppelnde glasfaser
DE3532821A1 (de) 1985-09-13 1987-03-26 Siemens Ag Leuchtdiode (led) mit sphaerischer linse
DE3534017A1 (de) 1985-09-24 1987-03-26 Siemens Ag Verfahren zum ankoppeln einer laserdiode an einen monomode-lichtwellenleiter und eine anordnung aus einer laserdiode und einem daran angekoppelten lichtwellenleiter
EP0236713A3 (de) 1986-02-10 1988-06-29 Siemens Aktiengesellschaft Laserdiode
EP0237812A3 (de) 1986-03-20 1988-06-29 Siemens Aktiengesellschaft Halbleiterlaser-Array mit gebündelter Abstrahlung
DE3611167A1 (de) 1986-04-03 1987-10-08 Siemens Ag Array mit verkoppelten optischen wellenleitern
US4818722A (en) 1986-09-29 1989-04-04 Siemens Aktiengesellschaft Method for generating a strip waveguide
JPH0662943B2 (ja) 1986-10-06 1994-08-17 日亜化学工業株式会社 放射線増感紙用螢光体
US4911102A (en) 1987-01-31 1990-03-27 Toyoda Gosei Co., Ltd. Process of vapor growth of gallium nitride and its apparatus
US5218216A (en) 1987-01-31 1993-06-08 Toyoda Gosei Co., Ltd. Gallium nitride group semiconductor and light emitting diode comprising it and the process of producing the same
JPS63224252A (ja) 1987-02-06 1988-09-19 シーメンス、アクチエンゲゼルシヤフト 導波路−ホトダイオードアレー
EP0279404B1 (de) 1987-02-20 1992-05-06 Siemens Aktiengesellschaft Lasersenderanordnung
JPH0630242B2 (ja) 1987-03-04 1994-04-20 陽一 峰松 高分子材料の人工促進暴露試験用の紫外線螢光ランプ
DE3810245A1 (de) 1987-03-27 1988-10-06 Japan Incubator Inc Lichtemittierendes element und verfahren zu seiner herstellung
DE3711617A1 (de) 1987-04-07 1988-10-27 Siemens Ag Monolithisch integrierte wellenleiter-fotodioden-fet-kombination
US4855118A (en) 1987-04-15 1989-08-08 Nichia Kagaku Kogyo K.K. Method of producing fluorapatite
US5011550A (en) * 1987-05-13 1991-04-30 Sharp Kabushiki Kaisha Laminated structure of compound semiconductors
JPH0774333B2 (ja) 1987-06-29 1995-08-09 日亜化学工業株式会社 発光組成物
DE3727546A1 (de) 1987-08-18 1989-03-02 Siemens Ag Lichtverstaerker mit ringfoermig gefuehrter strahlung, insbesondere ringlaser-diode
DE3731312C2 (de) 1987-09-17 1997-02-13 Siemens Ag Verfahren zum Vereinzeln von monolithisch hergestellten Laserdioden
EP0309744A3 (de) 1987-09-29 1989-06-28 Siemens Aktiengesellschaft Anordnung mit einem flächig sich erstreckenden Dünnfilmwellenleiter
US4960728A (en) 1987-10-05 1990-10-02 Texas Instruments Incorporated Homogenization anneal of II-VI compounds
DE8713875U1 (zh) 1987-10-15 1988-02-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4945394A (en) 1987-10-26 1990-07-31 North Carolina State University Bipolar junction transistor on silicon carbide
US4947218A (en) 1987-11-03 1990-08-07 North Carolina State University P-N junction diodes in silicon carbide
GB2212658B (en) 1987-11-13 1992-02-12 Plessey Co Plc Solid state light source
JP2663483B2 (ja) 1988-02-29 1997-10-15 勝 西川 レジストパターン形成方法
EP0331778B1 (en) 1988-03-09 1992-01-15 Hewlett-Packard GmbH Output amplifier
US4864369A (en) 1988-07-05 1989-09-05 Hewlett-Packard Company P-side up double heterojunction AlGaAs light-emitting diode
US4904618A (en) 1988-08-22 1990-02-27 Neumark Gertrude F Process for doping crystals of wide band gap semiconductors
US5252499A (en) 1988-08-15 1993-10-12 Rothschild G F Neumark Wide band-gap semiconductors having low bipolar resistivity and method of formation
EP0356059B1 (en) 1988-08-15 2000-01-26 Gertrude F. Neumark Process for doping crystals of wide band gap semiconductors
DE3836802A1 (de) 1988-10-28 1990-05-03 Siemens Ag Halbleiterlaseranordnung fuer hohe ausgangsleistungen im lateralen grundmodus
US4990466A (en) 1988-11-01 1991-02-05 Siemens Corporate Research, Inc. Method for fabricating index-guided semiconductor laser
DE3838016A1 (de) 1988-11-09 1990-05-10 Siemens Ag Halbleiterlaser im system gaa1inas
US4987576A (en) 1988-11-30 1991-01-22 Siemens Aktiengesellschaft Electrically tunable semiconductor laser with ridge waveguide
US4907534A (en) 1988-12-09 1990-03-13 Siemens Aktiengesellschaft Gas distributor for OMVPE Growth
US4982314A (en) 1988-12-09 1991-01-01 Nichia Kagaku Kogyo K.K. Power source circuit apparatus for electro-luminescence device
US5027168A (en) 1988-12-14 1991-06-25 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
US5061972A (en) 1988-12-14 1991-10-29 Cree Research, Inc. Fast recovery high temperature rectifying diode formed in silicon carbide
US4918497A (en) 1988-12-14 1990-04-17 Cree Research, Inc. Blue light emitting diode formed in silicon carbide
CA2008176A1 (en) 1989-01-25 1990-07-25 John W. Palmour Silicon carbide schottky diode and method of making same
JP2704181B2 (ja) 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
JPH0636349B2 (ja) 1989-02-22 1994-05-11 日亜化学工業株式会社 紫外線反射層を有する蛍光ランプ
JP3026087B2 (ja) 1989-03-01 2000-03-27 豊田合成株式会社 窒化ガリウム系化合物半導体の気相成長方法
EP0393600B1 (de) 1989-04-19 1995-11-29 Siemens Aktiengesellschaft Vorrichtung mit einem Tiegel in einer Effusionszelle einer Molekularstrahlepitaxieanlage
US5160492A (en) 1989-04-24 1992-11-03 Hewlett-Packard Company Buried isolation using ion implantation and subsequent epitaxial growth
JP2809692B2 (ja) 1989-04-28 1998-10-15 株式会社東芝 半導体発光素子およびその製造方法
JP2809691B2 (ja) 1989-04-28 1998-10-15 株式会社東芝 半導体レーザ
US5049779A (en) 1989-05-02 1991-09-17 Nichia Kagaku Kogyo K.K. Phosphor composition used for fluorescent lamp and fluorescent lamp using the same
EP0405214A3 (en) 1989-06-27 1991-06-05 Siemens Aktiengesellschaft Pin-fet combination with buried p-type layer
US4985742A (en) 1989-07-07 1991-01-15 University Of Colorado Foundation, Inc. High temperature semiconductor devices having at least one gallium nitride layer
JPH0357288A (ja) 1989-07-17 1991-03-12 Siemens Ag 半導体レーザーを有するデバイスおよびその使用方法
US5119540A (en) 1990-07-24 1992-06-09 Cree Research, Inc. Apparatus for eliminating residual nitrogen contamination in epitaxial layers of silicon carbide and resulting product
JPH07116429B2 (ja) 1989-08-25 1995-12-13 日亜化学工業株式会社 顔料付き蛍光体
US4966862A (en) 1989-08-28 1990-10-30 Cree Research, Inc. Method of production of light emitting diodes
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5366834A (en) 1989-11-15 1994-11-22 Nichia Kagaku Kogyo K.K. Method of manufacturing a cathode ray tube phosphor screen
US5019746A (en) 1989-12-04 1991-05-28 Hewlett-Packard Company Prefabricated wire leadframe for optoelectronic devices
US5008735A (en) 1989-12-07 1991-04-16 General Instrument Corporation Packaged diode for high temperature operation
US5077145A (en) 1989-12-26 1991-12-31 Nichia Kagaku Kogyo K.K. Phosphor for x-ray intensifying screen and x-ray intensifying screen
DE69126152T2 (de) 1990-02-28 1997-11-13 Toyoda Gosei Kk Lichtemittierende Halbleitervorrichtung mit Gallium-Nitrid-Verbindung
US5278433A (en) 1990-02-28 1994-01-11 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound with double layer structures for the n-layer and/or the i-layer
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
JPH075883B2 (ja) 1990-04-21 1995-01-25 日亜化学工業株式会社 蛍光体の再生方法
ATE119678T1 (de) 1990-05-28 1995-03-15 Siemens Ag Optoelektronischer schaltkreis.
JP3078821B2 (ja) 1990-05-30 2000-08-21 豊田合成株式会社 半導体のドライエッチング方法
US5185207A (en) 1990-08-12 1993-02-09 Nichia Kagaku Kogyo K.K. Phosphor for cathode ray tube and surface treatment method for the phosphor
DE69111733T2 (de) 1990-10-02 1996-04-18 Nichia Kagaku Kogyo Kk Phosphorzusammensetzung, Phosphor-Überzugszusammensetzung, Entladungslampe und Herstellungsverfahren derselben.
JP2784255B2 (ja) 1990-10-02 1998-08-06 日亜化学工業株式会社 蛍光体及びそれを用いた放電ランプ
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5334277A (en) 1990-10-25 1994-08-02 Nichia Kagaky Kogyo K.K. Method of vapor-growing semiconductor crystal and apparatus for vapor-growing the same
US5433169A (en) 1990-10-25 1995-07-18 Nichia Chemical Industries, Ltd. Method of depositing a gallium nitride-based III-V group compound semiconductor crystal layer
US5281830A (en) 1990-10-27 1994-01-25 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride group compound
US5208878A (en) 1990-11-28 1993-05-04 Siemens Aktiengesellschaft Monolithically integrated laser-diode-waveguide combination
US5155062A (en) 1990-12-20 1992-10-13 Cree Research, Inc. Method for silicon carbide chemical vapor deposition using levitated wafer system
JP3160914B2 (ja) 1990-12-26 2001-04-25 豊田合成株式会社 窒化ガリウム系化合物半導体レーザダイオード
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5146465A (en) 1991-02-01 1992-09-08 Apa Optics, Inc. Aluminum gallium nitride laser
JP2786952B2 (ja) 1991-02-27 1998-08-13 株式会社豊田中央研究所 窒化ガリウム系化合物半導体発光素子およびその製造方法
US5093576A (en) 1991-03-15 1992-03-03 Cree Research High sensitivity ultraviolet radiation detector
US5202777A (en) 1991-05-31 1993-04-13 Hughes Aircraft Company Liquid crystal light value in combination with cathode ray tube containing a far-red emitting phosphor
US5264713A (en) 1991-06-14 1993-11-23 Cree Research, Inc. Junction field-effect transistor formed in silicon carbide
US5270554A (en) 1991-06-14 1993-12-14 Cree Research, Inc. High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
US5164798A (en) 1991-07-05 1992-11-17 Hewlett-Packard Company Diffusion control of P-N junction location in multilayer heterostructure light emitting devices
US5260960A (en) 1991-07-26 1993-11-09 Siemens Aktiengesellschaft Tunable semiconductor laser on a semi-insulating substrate
US5182670A (en) 1991-08-30 1993-01-26 Apa Optics, Inc. Narrow band algan filter
US5467291A (en) 1991-09-09 1995-11-14 Hewlett-Packard Company Measurement-based system for modeling and simulation of active semiconductor devices over an extended operating frequency range
JP2666228B2 (ja) 1991-10-30 1997-10-22 豊田合成株式会社 窒化ガリウム系化合物半導体発光素子
US5306662A (en) 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
US5465249A (en) 1991-11-26 1995-11-07 Cree Research, Inc. Nonvolatile random access memory device having transistor and capacitor made in silicon carbide substrate
JP3352712B2 (ja) 1991-12-18 2002-12-03 浩 天野 窒化ガリウム系半導体素子及びその製造方法
JP2770629B2 (ja) 1991-12-26 1998-07-02 日亜化学工業株式会社 陰極線管用蛍光体及びその表面処理方法
US5233204A (en) 1992-01-10 1993-08-03 Hewlett-Packard Company Light-emitting diode with a thick transparent layer
JP3251046B2 (ja) * 1992-03-03 2002-01-28 シャープ株式会社 化合物半導体の成長方法、化合物半導体発光素子及びその製造方法
US5312560A (en) 1992-03-19 1994-05-17 Nichia Chemical Industries, Ltd. Rare earth phosphor
EP0562143B1 (en) 1992-03-27 1997-06-25 Nichia Kagaku Kogyo K.K. Solid-state image converting device
JP3244529B2 (ja) 1992-04-16 2002-01-07 アジレント・テクノロジーズ・インク 面発光型第2高調波生成素子
US5394005A (en) 1992-05-05 1995-02-28 General Electric Company Silicon carbide photodiode with improved short wavelength response and very low leakage current
US5459107A (en) 1992-06-05 1995-10-17 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US5629531A (en) 1992-06-05 1997-05-13 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US6344663B1 (en) 1992-06-05 2002-02-05 Cree, Inc. Silicon carbide CMOS devices
US5252839A (en) 1992-06-10 1993-10-12 Hewlett-Packard Company Superluminescent light-emitting diode with reverse biased absorber
US5343316A (en) 1992-06-30 1994-08-30 Nichia Chemical Industries, Ltd. Phosphor for use in a cathode-ray tube and display device using one
EP1313153A3 (en) 1992-07-23 2005-05-04 Toyoda Gosei Co., Ltd. Light-emitting device of gallium nitride compound semiconductor
US5359345A (en) 1992-08-05 1994-10-25 Cree Research, Inc. Shuttered and cycled light emitting diode display and method of producing the same
US5724062A (en) 1992-08-05 1998-03-03 Cree Research, Inc. High resolution, high brightness light emitting diode display and method and producing the same
US5265792A (en) 1992-08-20 1993-11-30 Hewlett-Packard Company Light source and technique for mounting light emitting diodes
EP0584599B1 (de) 1992-08-28 1998-06-03 Siemens Aktiengesellschaft Leuchtdiode
US5323022A (en) 1992-09-10 1994-06-21 North Carolina State University Platinum ohmic contact to p-type silicon carbide
DE4323814A1 (de) 1992-09-25 1994-03-31 Siemens Ag MIS-Feldeffekttransistor
US5381103A (en) 1992-10-13 1995-01-10 Cree Research, Inc. System and method for accelerated degradation testing of semiconductor devices
JP2657743B2 (ja) 1992-10-29 1997-09-24 豊田合成株式会社 窒素−3族元素化合物半導体発光素子
US5578839A (en) 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
US5506421A (en) 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
US5687391A (en) 1992-12-11 1997-11-11 Vibrametrics, Inc. Fault tolerant multipoint control and data collection system
US5858277A (en) 1992-12-23 1999-01-12 Osram Sylvania Inc. Aqueous phosphor coating suspension for lamps
KR100286699B1 (ko) 1993-01-28 2001-04-16 오가와 에이지 질화갈륨계 3-5족 화합물 반도체 발광디바이스 및 그 제조방법
JPH06264054A (ja) 1993-03-11 1994-09-20 Nichia Chem Ind Ltd 陰極線管用蛍光体の製造方法
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JPH06326350A (ja) 1993-05-12 1994-11-25 Nichia Chem Ind Ltd 赤外可視変換素子
US5416342A (en) 1993-06-23 1995-05-16 Cree Research, Inc. Blue light-emitting diode with high external quantum efficiency
US5539217A (en) 1993-08-09 1996-07-23 Cree Research, Inc. Silicon carbide thyristor
US5404282A (en) 1993-09-17 1995-04-04 Hewlett-Packard Company Multiple light emitting diode module
US5338944A (en) 1993-09-22 1994-08-16 Cree Research, Inc. Blue light-emitting diode with degenerate junction structure
US5363390A (en) 1993-11-22 1994-11-08 Hewlett-Packard Company Semiconductor laser that generates second harmonic light by means of a nonlinear crystal in the laser cavity
US5390210A (en) 1993-11-22 1995-02-14 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
US5846844A (en) 1993-11-29 1998-12-08 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor substrates using ZnO release layers
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5433533A (en) 1993-12-20 1995-07-18 Nichia Precision Industry Co., Ltd. Shield plate for bearing
JPH07202265A (ja) 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Iii族窒化物半導体の製造方法
TW289837B (zh) 1994-01-18 1996-11-01 Hwelett Packard Co
DE59500334D1 (de) 1994-01-19 1997-07-31 Siemens Ag Abstimmbare Laserdiode
US5514627A (en) 1994-01-24 1996-05-07 Hewlett-Packard Company Method and apparatus for improving the performance of light emitting diodes
JPH07240561A (ja) 1994-02-23 1995-09-12 Hewlett Packard Co <Hp> Ii−vi族系半導体レーザおよびその製造方法
US5656832A (en) 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US5923118A (en) 1997-03-07 1999-07-13 Osram Sylvania Inc. Neon gas discharge lamp providing white light with improved phospher
JPH07263748A (ja) 1994-03-22 1995-10-13 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子及びその製造方法
DE69503299T2 (de) 1994-04-20 1999-01-21 Toyoda Gosei Kk Galliumnitrid-Diodenlaser und Verfahren zu seiner Herstellung
US5604763A (en) 1994-04-20 1997-02-18 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor laser diode and method for producing same
JP2698796B2 (ja) 1994-04-20 1998-01-19 豊田合成株式会社 3族窒化物半導体発光素子
JP3426699B2 (ja) 1994-04-27 2003-07-14 住友化学工業株式会社 不飽和カルボン酸及びその誘導体からなる重合体の製造方法
US5808592A (en) 1994-04-28 1998-09-15 Toyoda Gosei Co., Ltd. Integrated light-emitting diode lamp and method of producing the same
US5376303A (en) 1994-06-10 1994-12-27 Nichia Chemical Industries, Ltd. Long Decay phoaphors
US5497012A (en) 1994-06-15 1996-03-05 Hewlett-Packard Company Unipolar band minima devices
JP3717196B2 (ja) 1994-07-19 2005-11-16 豊田合成株式会社 発光素子
JPH0832112A (ja) 1994-07-20 1996-02-02 Toyoda Gosei Co Ltd 3族窒化物半導体発光素子
US5604135A (en) 1994-08-12 1997-02-18 Cree Research, Inc. Method of forming green light emitting diode in silicon carbide
JPH0864791A (ja) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd エピタキシャル成長方法
US5650641A (en) 1994-09-01 1997-07-22 Toyoda Gosei Co., Ltd. Semiconductor device having group III nitride compound and enabling control of emission color, and flat display comprising such device
DE69529378T2 (de) 1994-09-14 2003-10-09 Matsushita Electric Ind Co Ltd Verfahren zur Stabilisierung der Ausgangsleistung von höheren harmonischen Wellen und Laserlichtquelle mit kurzer Wellenlänge die dasselbe benutzt
US5686737A (en) 1994-09-16 1997-11-11 Cree Research, Inc. Self-aligned field-effect transistor for high frequency applications
JP2666237B2 (ja) 1994-09-20 1997-10-22 豊田合成株式会社 3族窒化物半導体発光素子
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5592501A (en) 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
US5631190A (en) 1994-10-07 1997-05-20 Cree Research, Inc. Method for producing high efficiency light-emitting diodes and resulting diode structures
GB9421329D0 (en) 1994-10-22 1994-12-07 Bt & D Technologies Ltd Laser bias control system
FR2726126A1 (fr) 1994-10-24 1996-04-26 Mitsubishi Electric Corp Procede de fabrication de dispositifs a diodes electroluminescentes a lumiere visible
US5892784A (en) 1994-10-27 1999-04-06 Hewlett-Packard Company N-drive p-common surface emitting laser fabricated on n+ substrate
US5892787A (en) 1994-10-27 1999-04-06 Hewlett-Packard Company N-drive, p-common light-emitting devices fabricated on an n-type substrate and method of making same
US5491712A (en) 1994-10-31 1996-02-13 Lin; Hong Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
US5679153A (en) 1994-11-30 1997-10-21 Cree Research, Inc. Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
DE59503388D1 (de) 1994-12-27 1998-10-01 Siemens Ag Verfahren zum herstellen von mit bor dotiertem, einkristallinem siliciumcarbid
US5585648A (en) 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
US5661074A (en) 1995-02-03 1997-08-26 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
DE19508222C1 (de) 1995-03-08 1996-06-05 Siemens Ag Optoelektronischer Wandler und Herstellverfahren
JPH08264833A (ja) 1995-03-10 1996-10-11 Hewlett Packard Co <Hp> 発光ダイオード
US5850410A (en) 1995-03-16 1998-12-15 Fujitsu Limited Semiconductor laser and method for fabricating the same
DE69637304T2 (de) 1995-03-17 2008-08-07 Toyoda Gosei Co., Ltd. Lichtemittierende Halbleitervorrichtung bestehend aus einer III-V Nitridverbindung
JP3773282B2 (ja) 1995-03-27 2006-05-10 豊田合成株式会社 窒化ガリウム系化合物半導体の電極形成方法
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
DE19511593C2 (de) 1995-03-29 1997-02-13 Siemens Ag Mikrooptische Vorrichtung
JP3691544B2 (ja) 1995-04-28 2005-09-07 アジレント・テクノロジーズ・インク 面発光レーザの製造方法
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
US5659568A (en) 1995-05-23 1997-08-19 Hewlett-Packard Company Low noise surface emitting laser for multimode optical link applications
JP3405049B2 (ja) 1995-05-29 2003-05-12 日亜化学工業株式会社 残光性ランプ
TW304310B (zh) 1995-05-31 1997-05-01 Siemens Ag
US5596595A (en) 1995-06-08 1997-01-21 Hewlett-Packard Company Current and heat spreading transparent layers for surface-emitting lasers
US5625202A (en) 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
JP2839077B2 (ja) 1995-06-15 1998-12-16 日本電気株式会社 窒化ガリウム系化合物半導体発光素子
US5785404A (en) 1995-06-29 1998-07-28 Siemens Microelectronics, Inc. Localized illumination device
US5903016A (en) 1995-06-30 1999-05-11 Siemens Components, Inc. Monolithic linear optocoupler
DE19524655A1 (de) 1995-07-06 1997-01-09 Huang Kuo Hsin LED-Struktur
US5999552A (en) 1995-07-19 1999-12-07 Siemens Aktiengesellschaft Radiation emitter component
DE19527536A1 (de) 1995-07-27 1997-01-30 Siemens Ag Verfahren zum Herstellen von Siliciumcarbid-Einkristallen
US5919422A (en) 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
DE19629920B4 (de) 1995-08-10 2006-02-02 LumiLeds Lighting, U.S., LLC, San Jose Licht-emittierende Diode mit einem nicht-absorbierenden verteilten Braggreflektor
US5900650A (en) 1995-08-31 1999-05-04 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5621749A (en) 1995-09-06 1997-04-15 Hewlett-Packard Company Praseodymium-doped fluoride fiber upconversion laser for the generation of blue light
DE19533116A1 (de) 1995-09-07 1997-03-13 Siemens Ag Treiberschaltung für eine Leuchtdiode
JP3604205B2 (ja) * 1995-09-18 2004-12-22 日亜化学工業株式会社 窒化物半導体の成長方法
US5986317A (en) 1995-09-29 1999-11-16 Infineon Technologies Corporation Optical semiconductor device having plural encapsulating layers
DE19536438A1 (de) 1995-09-29 1997-04-03 Siemens Ag Halbleiterbauelement und Herstellverfahren
DE19536463C2 (de) 1995-09-29 2002-02-07 Infineon Technologies Ag Verfahren zum Herstellen einer Mehrzahl von Laserdiodenbauelementen
US5642375A (en) 1995-10-26 1997-06-24 Hewlett-Packard Company Passively-locked external optical cavity
US5727014A (en) 1995-10-31 1998-03-10 Hewlett-Packard Company Vertical-cavity surface-emitting laser generating light with a defined direction of polarization
US5592578A (en) 1995-11-01 1997-01-07 Hewlett-Packard Company Peripheral optical element for redirecting light from an LED
US5707139A (en) 1995-11-01 1998-01-13 Hewlett-Packard Company Vertical cavity surface emitting laser arrays for illumination
US5972801A (en) 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
TW425722B (en) 1995-11-27 2001-03-11 Sumitomo Chemical Co Group III-V compound semiconductor and light-emitting device
JP3752739B2 (ja) * 1996-03-22 2006-03-08 住友化学株式会社 発光素子
US5635146A (en) 1995-11-30 1997-06-03 Osram Sylvania Inc. Method for the dissolution and purification of tantalum pentoxide
US5724376A (en) 1995-11-30 1998-03-03 Hewlett-Packard Company Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
EP0781619A1 (en) 1995-12-15 1997-07-02 Cree Research, Inc. Method of making silicone carbide wafers from silicon carbide bulk crystals
US5917202A (en) 1995-12-21 1999-06-29 Hewlett-Packard Company Highly reflective contacts for light emitting semiconductor devices
FR2742926B1 (fr) 1995-12-22 1998-02-06 Alsthom Cge Alcatel Procede et dispositif de preparation de faces de laser
JP3757339B2 (ja) * 1995-12-26 2006-03-22 富士通株式会社 化合物半導体装置の製造方法
US5991160A (en) 1995-12-27 1999-11-23 Infineon Technologies Corporation Surface mount LED alphanumeric display
US5855924A (en) 1995-12-27 1999-01-05 Siemens Microelectronics, Inc. Closed-mold for LED alphanumeric displays
US5812105A (en) 1996-06-10 1998-09-22 Cree Research, Inc. Led dot matrix drive method and apparatus
US5828684A (en) 1995-12-29 1998-10-27 Xerox Corporation Dual polarization quantum well laser in the 200 to 600 nanometers range
DE19600306C1 (de) 1996-01-05 1997-04-10 Siemens Ag Halbleiter-Bauelement, insb. mit einer optoelektronischen Schaltung bzw. Anordnung
AU1531797A (en) 1996-01-24 1997-08-20 Cree Research, Inc. Mesa schottky diode with guard ring
US5809050A (en) 1996-01-25 1998-09-15 Hewlett-Packard Company Integrated controlled intensity laser-based light source using diffraction, scattering and transmission
US5761229A (en) 1996-01-25 1998-06-02 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5771254A (en) 1996-01-25 1998-06-23 Hewlett-Packard Company Integrated controlled intensity laser-based light source
US5835514A (en) 1996-01-25 1998-11-10 Hewlett-Packard Company Laser-based controlled-intensity light source using reflection from a convex surface and method of making same
US5923690A (en) 1996-01-25 1999-07-13 Matsushita Electric Industrial Co., Ltd. Semiconductor laser device
US5718760A (en) 1996-02-05 1998-02-17 Cree Research, Inc. Growth of colorless silicon carbide crystals
US5811931A (en) 1996-03-04 1998-09-22 Hewlett Packard Company Capped edge emitter
US5867516A (en) 1996-03-12 1999-02-02 Hewlett-Packard Company Vertical cavity surface emitting laser with reduced turn-on jitter and increased single-mode output
US5684623A (en) 1996-03-20 1997-11-04 Hewlett Packard Company Narrow-band tunable optical source
US5779924A (en) 1996-03-22 1998-07-14 Hewlett-Packard Company Ordered interface texturing for a light emitting device
US5861190A (en) 1996-03-25 1999-01-19 Hewlett-Packard Co. Arrangement for growing a thin dielectric layer on a semiconductor wafer at low temperatures
JP3727106B2 (ja) 1996-04-17 2005-12-14 豊田合成株式会社 3族窒化物半導体レーザダイオードの製造方法
JP3209096B2 (ja) 1996-05-21 2001-09-17 豊田合成株式会社 3族窒化物化合物半導体発光素子
DE19621124A1 (de) 1996-05-24 1997-11-27 Siemens Ag Optoelektronischer Wandler und dessen Herstellungsverfahren
US5719409A (en) 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
DE19638667C2 (de) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
KR100662955B1 (ko) 1996-06-26 2006-12-28 오스람 게젤샤프트 미트 베쉬랭크터 하프퉁 발광 변환 소자를 포함하는 발광 반도체 소자
JP2919362B2 (ja) 1996-06-26 1999-07-12 日本電気株式会社 低速電子線励起蛍光表示装置およびその製造方法
US5777433A (en) 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
US5925898A (en) 1996-07-18 1999-07-20 Siemens Aktiengesellschaft Optoelectronic transducer and production methods
US5818861A (en) 1996-07-19 1998-10-06 Hewlett-Packard Company Vertical cavity surface emitting laser with low band gap highly doped contact layer
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US5805624A (en) 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
JPH1056236A (ja) 1996-08-08 1998-02-24 Toyoda Gosei Co Ltd 3族窒化物半導体レーザ素子
US5729029A (en) 1996-09-06 1998-03-17 Hewlett-Packard Company Maximizing electrical doping while reducing material cracking in III-V nitride semiconductor devices
EP0831343B1 (de) 1996-09-19 2005-06-15 Infineon Technologies AG Optischer Wellenleiter und Verfahren zu seiner Herstellung
DE19645035C1 (de) 1996-10-31 1998-04-30 Siemens Ag Mehrfarbiges Licht abstrahlende Bildanzeigevorrichtung
US5724373A (en) 1996-11-15 1998-03-03 Hewlett-Packard Company Microphotonic acousto-optic tunable laser
US5835522A (en) 1996-11-19 1998-11-10 Hewlett-Packard Co. Robust passively-locked optical cavity system
DE19649650B4 (de) 1996-11-29 2005-02-24 Siemens Ag Oberflächenmontierbares strahlungsemittierendes Halbleiterbauelement
US6177292B1 (en) * 1996-12-05 2001-01-23 Lg Electronics Inc. Method for forming GaN semiconductor single crystal substrate and GaN diode with the substrate
US5966393A (en) 1996-12-13 1999-10-12 The Regents Of The University Of California Hybrid light-emitting sources for efficient and cost effective white lighting and for full-color applications
DE19652528A1 (de) 1996-12-17 1998-06-18 Siemens Ag LED mit allseitiger Lichtauskopplung
DE19652548C1 (de) 1996-12-17 1998-03-12 Siemens Ag Verfahren zur Herstellung stickstoffhaltiger III-V-Halbleiterschichten
US5838707A (en) 1996-12-27 1998-11-17 Motorola, Inc. Ultraviolet/visible light emitting vertical cavity surface emitting laser and method of fabrication
US5741724A (en) 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
US6677619B1 (en) * 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
JPH10215031A (ja) 1997-01-30 1998-08-11 Hewlett Packard Co <Hp> 半導体レーザ素子
JPH10242074A (ja) 1997-02-21 1998-09-11 Hewlett Packard Co <Hp> 窒化物半導体素子製造方法
TW353202B (en) 1997-02-28 1999-02-21 Hewlett Packard Co Scribe and break of hard-to-scribe materials
SG63757A1 (en) 1997-03-12 1999-03-30 Hewlett Packard Co Adding impurities to improve the efficiency of allngan quantum well led's
EP0874405A3 (en) * 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
US5927995A (en) 1997-04-09 1999-07-27 Hewlett-Packard Company Reduction of threading dislocations by amorphization and recrystallization
WO1998047170A1 (en) * 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
US5923946A (en) 1997-04-17 1999-07-13 Cree Research, Inc. Recovery of surface-ready silicon carbide substrates
US6011279A (en) 1997-04-30 2000-01-04 Cree Research, Inc. Silicon carbide field controlled bipolar switch
US5741431A (en) 1997-05-15 1998-04-21 Industrial Technology Research Institute Laser assisted cryoetching
US6100586A (en) 1997-05-23 2000-08-08 Agilent Technologies, Inc. Low voltage-drop electrical contact for gallium (aluminum, indium) nitride
US5969378A (en) 1997-06-12 1999-10-19 Cree Research, Inc. Latch-up free power UMOS-bipolar transistor
US6121633A (en) 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
US5847507A (en) 1997-07-14 1998-12-08 Hewlett-Packard Company Fluorescent dye added to epoxy of light emitting diode lens
AU9295098A (en) 1997-08-29 1999-03-16 Cree Research, Inc. Robust group iii light emitting diode for high reliability in standard packagingapplications
US5879588A (en) 1997-09-24 1999-03-09 Osram Sylvania Inc. Terbium-activated gadolinium oxysulfide phosphor with reduced blue emission
US5879587A (en) 1997-09-24 1999-03-09 Osram Sylvania Inc. Terbium-activated rare earth oxysulfide phosphor with enhanced green:blue emission ratio
US5958295A (en) 1997-09-24 1999-09-28 Osram Sylvania Inc. Terbium-activated rare earth oxysulfide phosphor with enhanced blue emission
JP3283802B2 (ja) * 1997-09-29 2002-05-20 日本電気株式会社 選択成長法を用いた半導体層及びその成長方法、選択成長法を用いた窒化物系半導体層及びその成長方法、窒化物系半導体発光素子とその製造方法
US5972781A (en) 1997-09-30 1999-10-26 Siemens Aktiengesellschaft Method for producing semiconductor chips
JP3955367B2 (ja) 1997-09-30 2007-08-08 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 光半導体素子およびその製造方法
US6201262B1 (en) 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
US5935705A (en) 1997-10-15 1999-08-10 National Science Council Of Republic Of China Crystalline Six Cy Nz with a direct optical band gap of 3.8 eV
JP3036495B2 (ja) * 1997-11-07 2000-04-24 豊田合成株式会社 窒化ガリウム系化合物半導体の製造方法
JP3589000B2 (ja) * 1997-12-26 2004-11-17 松下電器産業株式会社 窒化ガリウム系化合物半導体発光素子
US5920766A (en) 1998-01-07 1999-07-06 Xerox Corporation Red and blue stacked laser diode array by wafer fusion
US6051849A (en) * 1998-02-27 2000-04-18 North Carolina State University Gallium nitride semiconductor structures including a lateral gallium nitride layer that extends from an underlying gallium nitride layer
JPH11251685A (ja) * 1998-03-05 1999-09-17 Toshiba Corp 半導体レーザ
US6194742B1 (en) * 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6645885B2 (en) * 2001-09-27 2003-11-11 The National University Of Singapore Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
EP1363318A1 (en) * 2001-12-20 2003-11-19 Matsushita Electric Industrial Co., Ltd. Method for making nitride semiconductor substrate and method for making nitride semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485902B2 (en) 2002-09-18 2009-02-03 Sanyo Electric Co., Ltd. Nitride-based semiconductor light-emitting device
CN100440542C (zh) * 2003-05-15 2008-12-03 松下电器产业株式会社 半导体装置
CN100461468C (zh) * 2003-08-08 2009-02-11 住友电气工业株式会社 发光半导体器件及其制造方法
TWI586060B (zh) * 2011-06-15 2017-06-01 歐斯朗奧托半導體股份有限公司 光電半導體本體及光電元件
CN110783176A (zh) * 2019-10-30 2020-02-11 广西大学 一种低应力半导体材料制备方法

Also Published As

Publication number Publication date
US6835956B1 (en) 2004-12-28
JP3770014B2 (ja) 2006-04-26
EP1184913A4 (en) 2007-07-04
JP2000299497A (ja) 2000-10-24
AU2327200A (en) 2000-08-29
EP1184913A1 (en) 2002-03-06
KR100634340B1 (ko) 2006-10-17
EP1184913B1 (en) 2018-10-10
CN1157804C (zh) 2004-07-14
TW443018B (en) 2001-06-23
KR20010110430A (ko) 2001-12-13
AU771942B2 (en) 2004-04-08
US20050054132A1 (en) 2005-03-10
WO2000048254A1 (fr) 2000-08-17
US7083996B2 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
CN1157804C (zh) 氮化半导体器件及其制造方法
CN1208849C (zh) 制造半导体发光装置的方法及其制造的半导体发光装置
CN1252883C (zh) 氮化镓系列化合物半导体元件
CN1274008C (zh) Ⅲ族氮化物系化合物半导体器件及其制造方法
CN1698212A (zh) 使用氮化物半导体的发光器件和其制造方法
CN1194425C (zh) 半导体发光器件及其制造方法
CN1264262C (zh) 氮化物半导体器件
CN100350639C (zh) 氮化物半导体led和其制造方法
JP5556657B2 (ja) Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
CN1206744C (zh) 垂直结构lnGaN发光二极管
CN1185719C (zh) 碳化硅衬底上具有导电缓冲中间层结构的ⅲ族氮化物光子器件
US11430907B2 (en) Method for producing an optoelectronic semiconductor chip and optoelectronic semiconductor chip
KR100668351B1 (ko) 질화물계 발광소자 및 그 제조방법
JP5807015B2 (ja) 発光素子の製造方法
CN1471735A (zh) 在ⅲ-v族氮化物半导体基板上制作产生辐射的半导体芯片的方法以及产生辐射的半导体芯片
CN1586015A (zh) 紫外光发射元件
CN1193470C (zh) 氮化物半导体分层结构以及结合该分层结构部分的氮化物半导体激光器
CN1886827A (zh) 经表面粗化的高效氮化镓基发光二极管
JP2005294793A (ja) 窒化物半導体発光素子及びその製造方法
CN1487606A (zh) 氮化物系半导体发光元件
CN1147010C (zh) 自钝化非平面结三族氮化物半导体器件及其制造方法
JP3729065B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
KR101181182B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
CN1910738A (zh) Ⅲ族氮化物半导体多层结构
CN1306624C (zh) 选择性生长的发光二极管结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040714

Termination date: 20190208

CF01 Termination of patent right due to non-payment of annual fee