CN1334234A - 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 - Google Patents

水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 Download PDF

Info

Publication number
CN1334234A
CN1334234A CN01120632A CN01120632A CN1334234A CN 1334234 A CN1334234 A CN 1334234A CN 01120632 A CN01120632 A CN 01120632A CN 01120632 A CN01120632 A CN 01120632A CN 1334234 A CN1334234 A CN 1334234A
Authority
CN
China
Prior art keywords
tube
catalyst
carbon nano
growth
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01120632A
Other languages
English (en)
Other versions
CN1251962C (zh
Inventor
申镇国
郑珉在
韩荣洙
金圭兑
尹尚帅
李在恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2000-0041012A external-priority patent/KR100379470B1/ko
Priority claimed from KR1020000068966A external-priority patent/KR100350794B1/ko
Priority claimed from KR10-2001-0034013A external-priority patent/KR100405974B1/ko
Priority claimed from KR10-2001-0037496A external-priority patent/KR100434272B1/ko
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN1334234A publication Critical patent/CN1334234A/zh
Application granted granted Critical
Publication of CN1251962C publication Critical patent/CN1251962C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/844Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Abstract

揭示了一种水平生长碳纳米管的方法,其中可以在形成有触媒的基底上的特定位置在水平方向选择性地生长碳纳米管,该方法可用于制造纳米器件。该方法包括以下步骤:(a)在第一基底上形成预定触媒图形;(b)在第一基底上形成垂直生长防止层,该防止层防止碳纳米管在垂直方向生长;(c)通过垂直生长防止层和第一基底形成多个小孔,以通过小孔露出触媒图形;(d)在触媒图形的暴露表面上合成碳纳米管以便在水平方向生长碳纳米管。

Description

水平生长碳纳米管的方法和使用 碳纳米管的场效应晶体管
发明领域
本发明涉及生长碳纳米管(carbon nanotube)的方法,具体涉及一种水平生长碳纳米管的方法,其中可以在形成有触媒的基底上的特定位置处沿水平方向选择性地生长碳纳米管,使得该方法可以用于制造纳米器件。
而且,本发明涉及一种水平生长碳纳米管的方法,其中在希望的特定位置形成纳米点或纳米线的形状的触媒,使得在特定位置选择性地生长碳纳米管,从而可以将该方法有效地用于制造纳米器件。
此外,本发明涉及一种场效应晶体管,其中在水平方向生长碳纳米管以形成获得场效应晶体管(FET)的碳纳米管桥,并且在希望的方向磁化与其间形成碳纳米管桥的源极和漏极接触的触媒,以便同时获得自旋阀(spin valve)和单电子晶体管(SET)。
背景技术
碳纳米管具有一维量子线的结构并且具有良好的机械和化学特性。而且,已经知道碳纳米管表现出非常有趣的电特性,例如量子迁移现象。此外,除上述特性外由于最近已经发现了其它的特殊性质,碳纳米管作为一种新材料已受到很多关注。
为了利用这种材料的优良特性,必须先提出可重新执行(re-executable)的碳纳米管制造工艺。但是,在现有工艺中,制造完碳纳米管后,要把它们一个接一个地放置到希望的位置。因此,对于以“单独处理模式”将生长的碳纳米管放置到希望位置的现有工艺,很难将其应用到电子元件或高度集成元件,并且现在进行了很多研究和开发,以便克服这个问题。
此外,在作为一种合成碳纳米管的现有方法的垂直生长方法中,在形成有触媒图形4的基底2上以整齐布置的麦田的形状在垂直方向生长碳纳米管6。对于垂直生长方法,已经存在大量报道。
但是,为了把碳纳米管作为一种具有新功能的纳米器件使用,从应用方面考虑,相对于垂直生长技术,一种能够在特定位置在水平方向选择性地生长碳纳米管的技术更为有用并且更为人们所需要。
图2中显示了Hong Jie Die所作的第一份报道(见Nature,vol.395,page 878),其中表示了可以在待相互连接的构图金属之间水平地生长碳纳米管。图2是用于示意性显示Hong Jie Die报道的水平生长碳纳米管的方法的图。但是,图2明显地显示了不仅在水平方向而且在垂直方向生长了大量碳纳米管。这是因为碳纳米管是从触媒金属的表面生长的,并且是在触媒的所有暴露表面上随机地生长的。
而且,由于在1988年在包括磁金属和非磁金属的多层膜中发现了巨磁阻(GMR)效应,在世界上广泛开展了关于磁金属薄膜的研究。而且,由于电子以自旋极化状态存在于磁金属中,可以通过利用这一特性产生极化自旋电流。因此,通过利用作为电子的一个重要固有特性的自旋自由程度,已经投入了大量努力来理解和开发自旋电子器件(spintronics)或磁电子器件。
近来,在纳米结构的磁性多层膜系统中发现的诸如隧穿磁阻(TMR)和巨磁阻(GMR)之类的现象已经被应用到磁阻(MR)磁头元件中并投入待商业化的计算机的硬盘驱动器(HDD)中。
在此情况下,TMR意味着一种现象,其中隧穿电流根据一个具有铁磁体/电介质(半导体)/铁磁体结构的结中的铁磁体材料的相对磁化方向而改变,并且具有比其它磁阻更大的磁阻比率和更大的场灵敏度,使得人们积极地开展研究,以在下一代磁随机存取存储器(MRAM)或磁阻头的材料中利用这种现象。但是,电介质层的形成的再现性和结阻抗的减小成为严重的问题。
当前,磁应用领域的很多科学家正利用在低磁场中显示磁阻现象的自旋阀和磁隧穿结(MTJ)在积极地进行MRAM制造方法的研究。
发明内容
因此,本发明致力于解决上述问题,本发明的目的是提供一种水平生长碳纳米管的方法,其中可以在形成有触媒的基底上的特定位置处沿水平方向选择性地生长碳纳米管,使得该方法可以用于制造纳米器件。
本发明的另一个目的是提供一种水平生长碳纳米管的方法,其中在希望的特定位置形成纳米点或纳米线的形状的触媒,使得在特定位置选择性地生长碳纳米管,由此该方法可以有效地用于制造纳米器件。
本发明的另一个目的是提供一种场效应晶体管,其中在水平方向生长碳纳米管以形成碳纳米管桥,从而获得场效应晶体管(FET),并且在希望的方向磁化与其间形成碳纳米管桥的源极和漏极接触的触媒,以便同时获得自旋阀和单电子晶体管(SET)。
根据一个方面,本发明提供一种水平生长碳纳米管的方法,该方法包括以下步骤:(a)在第一基底上形成预定触媒图形;(b)在第一基底上形成垂直生长防止层,该防止层防止碳纳米管在垂直方向生长;(c)通过垂直生长防止层和第一基底形成多个小孔以通过小孔露出触媒图形;和(d)在触媒图形的暴露表面合成碳纳米管,以便在水平方向生长碳纳米管。
在此情况下,步骤c中形成的小孔是通孔型,即小孔完全穿过垂直生长防止层和第一基底,或者是井型,即仅部分地腐蚀第一基底,使得小孔穿过垂直生长防止层和一部分第一基底。
根据另一个方面,本发明提供一种水平生长碳纳米管的方法,该方法包括以下步骤:(i)在第一基底上的预定位置形成掩模;(j)在第一基底和第一基底上形成的掩模上形成触媒图形;(k)在第一基底上形成垂直生长防止层,该防止层防止碳纳米管在垂直方向生长;(l)从垂直生长防止层和第一基底上去除掩模,以便形成小孔并露出触媒图形;和(m)在触媒图形的暴露位置合成碳纳米管,以便在水平方向生长碳纳米管。
根据另一个方面,本发明提供一种水平生长碳纳米管的方法,该方法包括以下步骤:在第一基底上以预定的二维布置方式形成触媒图形;制造用于防止碳纳米管垂直生长的第二基底,具有预定形式布置的孔;把用于防止碳纳米管垂直生长的第二基底以预定间隙放置在具有触媒图形的第一基底上;在触媒图形上合成碳纳米管,以便水平地生长碳纳米管。
根据另一个方面,本发明还提供一种水平生长碳纳米管的方法,该方法包括以下步骤:在一基底上形成纳米点或纳米线形状的触媒;在纳米点或纳米线形状的触媒上构图一个生长防止层,以便防止纳米点或纳米线在垂直方向生长;以及在纳米点或纳米线上在水平方向选择性地生长碳纳米管。
在此情况下,利用压印方法或自组装方法构图纳米点或纳米线形状的触媒。
此外,生长防止层可以由选自包括氮化硅(SiN)和氧化硅(SiO2)的组中的一种化合物构成的绝缘膜形成,或者可以由选自包括钯(Pd),铌(Nb)和钼(Mo)的组中的一种金属形成。
根据另一个方面,本发明还提供一种水平生长碳纳米管的方法,该方法包括以下步骤:在基底上形成纳米线形状的触媒;利用包括光刻工艺在内的半导体工艺在纳米线形状的触媒上形成生长防止层,该生长防止层与基底间隔预定间隙;利用湿腐蚀,在不形成生长防止层的区域中除去一部分纳米线形状的触媒;以及利用化学气相淀积方法,在与基底间隔预定间隙的生长防止层下形成的触媒之间在水平方向生长碳纳米管。
此外,根据另一个方面,本发明还提供一种场效应晶体管,包括:源极,漏极,和源极和漏极之间的碳纳米管桥,碳纳米管桥由源极和漏极之间在水平方向生长的碳纳米管形成,使得场效应晶体管可以控制电子流动。
在此情况下,在源极和漏极之间形成的碳纳米管桥包括具有半导体特性的碳纳米管。
而且,在源极和漏极之间形成的碳纳米管桥上,形成多个栅极碳纳米管,与源极和漏极之间的碳纳米管桥交叉,以便产生能垒来形成量子点(quantum point)并控制电流的流动。
而且,在栅极碳纳米管桥形成栅极时,量子点具有通过使用公共端子控制的大小。
此外,场效应晶体管还包括第一和第二导线,第一和第二导线可以通过电流并被分别设置在源极和漏极上,以便在希望的方向磁化与源极和漏极接触的触媒。源极上设置的第一导线和漏极上设置的第二导线被相互平行布置。
附图说明
在结合附图阅读了以下详细说明后,可以对本发明的上述目的、和其它特征和优点有更清楚的理解,在附图中:
图1是示意性显示垂直生长碳纳米管的常规方法的图;
图2是示意性显示Hong Jie Die揭示的水平生长碳纳米管的另一个常规方法的图;
图3A到3D是显示根据本发明一个实施例水平生长碳纳米管的方法的图;
图4是由图3A到3D中显示的方法制造的对象的透视图;
图5A和图5B是剖视图,分别显示了孔型和井型结构,在孔型结构中,小孔穿过垂直生长防止层和第一基底的孔型结构,在井型结构中,保留一部分第一基底不被腐蚀,以使得每个小孔不完全穿过垂直生长防止层和第一基底;
图6A到11是用于显示根据本发明的水平生长碳纳米管的方法所水平生长的碳纳米管的各种形状的图;
图12A和12B是用于显示结构的图,其中对金属进行构图以与由根据本发明的水平生长碳纳米管的方法水平生长碳纳米管形成一个结或多个结;
图13A到13D是示意性显示根据本发明另一个实施例的水平生长碳纳米管的另一个方法的图;
图14A到14C是示意性显示根据本发明另一个实施例的水平生长碳纳米管的另一个方法的图;
图15A到15C是示意性显示由根据本发明的水平生长碳纳米管的方法在希望位置水平生长碳纳米管的过程的图;
图16A到17D是显示在水平方向选择性地生长碳纳米管的方法的图,其中将触媒金属形成为纳米线形状,并且形成触媒的位置可以由湿腐蚀控制;
图18A和18B是示意性显示在根据本发明的水平生长碳纳米管的方法中用于形成纳米点或纳米线的纳米印刻过程的图;
图19是示意性显示在根据本发明的水平生长碳纳米管的方法中用于形成纳米点或纳米线的自组装方法的图;
图20是示意性显示利用根据本发明的碳纳米管的自旋阀单电子晶体管的结构的图;
图21是图20所示根据本发明的自旋阀单电子晶体管的透视图;
图22是示意性显示根据本发明另一个实施例的自旋阀单电子晶体管的图;
图23到26是示意性显示由根据本发明的水平生长碳纳米管的方法形成的各种场效应晶体管的图。
具体优选实施方案
从以下结合附图的说明中可以对本发明的上述和其它目的,特性和优点有更清楚的理解。
图3A到3D是显示根据本发明一个实施例的水平生长碳纳米管的方法的图,图4是由图3A到3D中显示的方法制造的对象的透视图。
参见图3A到4,根据本发明的水平生长碳纳米管的方法包括以下步骤:(a)在第一基底10上形成预定触媒图形12;(b)在第一基底10上形成垂直生长防止层14,该防止层防止碳纳米管在垂直方向生长;(c)通过垂直生长防止层14和第一基底10形成小孔16以通过小孔16露出触媒图形12;和(d)在触媒图形12的暴露表面18上合成碳纳米管,以便在水平方向生长碳纳米管。
根据目的的不同,第一基底10和垂直生长防止层14可以采用各种材料,例如硅,玻璃,氧化硅,涂敷有氧化铟锡(ITO)的玻璃。
对于上述触媒,可以使用能够生长碳纳米管的各种材料,包括金属,合金,超导金属,和其它特殊金属。而且,可以利用光刻,喷镀,蒸镀等工艺将这些材料形成为预定图形12。
在此情况下,可以利用激光钻孔,湿腐蚀和干腐蚀等方法形成位于触媒图形的特定位置的小孔16。同时,更详细地说,小孔16可以是孔型,即如图5A所示,小孔16穿过垂直生长防止层14和第一基底10,或者是井型,即如图5B所示,不腐蚀而保留第一基底10的一部分,使得每个小孔16不完全穿过垂直生长防止孔14和第一基底10。
然后,把通过上述工艺制备的图5A或图5B中所示的对象放置到用于合成碳纳米管的设备中,并进行合成,使得仅在暴露到源气氛的触媒图形的暴露表面18上生长各碳纳米管。即,仅在与第一基底10平行的水平方向生长碳纳米管。
在此情况下,在合成碳纳米管时可以使用以下方法,例如触媒热分解方法,等离子气相淀积方法,和热丝气相淀积方法。此外,可以使用碳氢化合物作为原材料,例如甲烷,乙炔,一氧化碳,苯和乙烯。
同时,图6A,6B和11显示由根据本发明的水平生长碳纳米管的方法水平生长的各种形状的碳纳米管。
图6A和6B显示在直线型触媒图形12上生长的碳纳米管20,其中在触媒图形的预定部分形成小孔。在此情况下,通过适当地控制合成时间,能够可选地获得桥式结构的碳纳米管20,其中触媒图形相互对着的暴露表面18通过碳纳米管相互连接,或者可选地获得自由悬挂结构的碳纳米管,其中相互对着的暴露表面18相互不连接。
同时,可以通过控制暴露的触媒表面的微粒的面积或尺寸来确定所生长的碳纳米管20的直径,并且通过改变形成图形的条件或者通过后续处理(例如等离子处理和酸处理)可以使暴露的触媒表面具有各种表面状态。因此,通过上述工艺,在单个暴露表面上至少可以生长两个碳纳米管20,并且如图6B所示,在触媒图形的相互对着的暴露表面18上生长的碳纳米管20可以具有不同的结构,即不同的直径,不同的螺旋特性(chirality)等等。
图7A到7D分别显示在交叉型触媒图形上水平生长的碳纳米管,其中在触媒图形的交叉区域上形成小孔。
与直线型触媒图形相同,在该交叉型触媒图形中也可以获得如图7A中所示的桥式结构的碳纳米管20或图7C中所示的自由悬挂结构的碳纳米管20。此外,如图7C所示,在触媒图形的相互对着的暴露表面上生长的碳纳米管20可以具有彼此不同的直径,并且如图7B所示在一个暴露表面上至少可以生长两个碳纳米管20。而且,通过在触媒图形的每个暴露表面上生长多个碳纳米管,所生长的碳纳米管可以具有如图7D所示的网形。
此外,如图7A所示,通过控制垂直方向和水平方向的触媒图形的高度,可以相互交叉地生长碳纳米管20,这可以被用作一个栅极元件。此外,相互交叉生长的碳纳米管可以相互机械接触,以便形成一个可以直接在结分析中使用的电结(electric junction),可以由元件使用这种结特性。
在此情况下,作为一种便于形成结的方法,可以利用材料的热扩张/收缩。由于碳纳米管的合成通常是在500℃至900℃之间的温度进行,可以通过利用热收缩现象(在合成之后的冷却阶段中发生)来便于交叉生长的碳纳米管20之间的接触。
图8,9,10和11分别显示在放射状触媒图形,圆形触媒图形,矩形触媒图形中水平生长的碳纳米管,和具有在至少两个直线型的触媒图形上布置的至少两个槽的结构,其中小孔分别在图形的交叉区域,圆的内部,和矩形的内部形成。
图6A到11显示根据本发明的水平生长的碳纳米管的各种形状,其并不限制本发明的范围,可以以更有效的方式修改触媒图形以应用于纳米器件。
同时,图12A和12B显示的结构中,对金属30构图与根据本发明的水平生长碳纳米管的方法水平生长的碳纳米管20形成一个结或多个结。因此,可以容易地获得碳纳米管20和金属30之间的结,并且可以可选地在特定位置形成这种结。
此外,通过利用上述方法,可以可选地在希望的位置形成碳纳米管/碳纳米管结,碳纳米管/金属结,和碳纳米管/半导体结。
同时,图13A到13D是示意性显示根据本发明另一个实施例的水平生长碳纳米管的另一个方法的图。
参见图13A到13D,根据本发明另一个实施例的水平生长碳纳米管的方法包括以下步骤:(i)在第一基底10上的预定位置形成掩模40;(j)在第一基底10和第一基底10上形成的掩模40上形成触媒图形12;(k)在第一基底10上形成垂直生长防止层14,该防止层防止碳纳米管在垂直方向生长;(l)从垂直生长防止层14和第一基底10上除去掩模40,以便形成小孔42并露出触媒图形12;以及(m)在触媒图形的暴露位置上合成碳纳米管,以便在水平方向生长碳纳米管。
在该实施例中,第一基底10和触媒图形12的材料,形成触媒图形的方法,和合成碳纳米管的方法与第一实施例中相同。此外,利用诸如蒸镀的方法在基底上形成掩模40,该掩模40可以通过腐蚀,加热等方法容易地去除。此外,可以将触媒图形形成为各种形状,包括直线形,交叉形,放射形,圆形,和矩形。本实施例也可以获得图6A到11所示的在水平方向生长的碳纳米管。
图14A到14C是示意性显示根据本发明另一个实施例的水平生长碳纳米管的另一个方法的图。
参见图14A到14C,根据本发明另一个实施例的水平生长碳纳米管的方法包括以下步骤:在第一基底10上以预定的二维布置方式形成触媒图形12;制造用于防止碳纳米管垂直生长的隔离基底50,具有预定方式布置的孔52;把垂直生长防止基底50以预定间隙54放置在具有触媒图形12的第一基底10上;以及在触媒图形12处合成碳纳米管以便水平地生长碳纳米管。
在此情况下,本实施例中第一基底10和触媒图形12的种类,形成触媒图形的方法,和合成碳纳米管的方法与第一实施例相同。此外,可以通过激光钻孔,湿腐蚀和干腐蚀等方法形成用于防止碳纳米管垂直生长的第二基底50的孔52。在把垂直生长防止基底50放置到第一基底10上方的步骤中,一个可以生长碳纳米管的间隔对于两个基底10和50之间的预定间隙54是适合的。并且可以在第一和第二基底10和50的角部之间设置间隔柱56,以便保持其间的间隙。
同时,图15A到15C是显示在根据本发明的水平生长碳纳米管的方法中,利用具有纳米点或纳米线形状的触媒,在希望的位置水平生长碳纳米管的过程的示意图。
首先,参见图15A,在形成有氧化膜的硅基底上淀积以纳米点或纳米线形状构图的触媒金属。在此情况下,通常使用与上述触媒图形12相同的材料作为触媒金属。
此外,如图15B所示,在纳米点或纳米线上淀积诸如钯(Pd),铌(Nb),钼(Mo)等材料或者氮化硅(SiN)膜或氧化硅(SiO2)膜等绝缘层来形成生长防止层。该层用于防止碳纳米管从触媒沿垂直方向生长,并且进一步用作电极(在金属的情况下)。在此情况下,利用光致抗蚀工艺(PR工艺)和光刻工艺之类的通用半导体工艺可以以希望的形状构图生长防止层。
因此,如图15C所示,在形成有生长防止层图形的基底上,可以利用化学气相淀积方法从触媒沿水平方向生长碳纳米管。
图16A到17D是显示在水平方向选择性生长碳纳米管的方法的图,其中将触媒金属形成为纳米线的形状,并且可以通过湿腐蚀控制触媒的形成位置。
首先,如图16A和17A所示,在形成有氧化膜的硅基底上淀积构图为纳米线形状的触媒金属。在此情况下,通常使用与上述触媒图形12相同的材料作为触媒金属。
此外,如图16B和17B所示,淀积诸如钯(Pd),铌(Nb),钼(Mo)等材料或者氮化硅(SiN)膜或氧化硅(SiO2)膜等绝缘层,在触媒上形成纳米点或纳米线的形状的生长防止层,防止层与触媒之间有预定间隙。该层用于防止碳纳米管从触媒沿垂直方向生长,并进一步用作电极(在金属的情况下)。
可以利用光致抗蚀工艺和光刻工艺之类的通用半导体工艺以希望的形状构图生长防止层。在此情况下,图17B显示了该情况,其中在形成图形的过程中发生了错误,即在生长防止层的构图过程中在不希望的区域露出了触媒。
而且,如图16C和17C所示,利用湿腐蚀去除了在不形成生长防止层的区域中的具有纳米线形状的触媒(即在不希望区域中的触媒)。在此情况下,在进行湿腐蚀的情况下,由于进行各向同性腐蚀,触媒金属被进一步向生长防止层内部腐蚀(见图16C),使得生长防止层的功能(即防止碳纳米管在垂直方向生长)变得更加重要。
此外,与以纳米点形状形成触媒的情况不同,在以纳米线形状形成触媒的情况下,甚至在已经进行了过度腐蚀时,用于生长碳纳米管的触媒仍保留在基底上,以便形成更有效的生长防止层。此外,如图17B和17C所示,甚至当在光刻工艺中错误地形成了生长防止层的图形时,也可以利用湿腐蚀处理光刻工艺中产生的错误。
因此,利用化学气相淀积方法,可以在以预定间隙在生长防止层下形成的触媒之间水平地生长碳纳米管。
同时,在图15A到17D所示的实施例中,可以使用以下的公知方法作为在基底上形成纳米点或纳米线形状的触媒图形的方法。
一种方法是利用如图18A和18B所示的纳米印刻过程。图18A和18B是示意性显示根据本发明的水平生长碳纳米管的方法中用于形成纳米点或纳米线的纳米印刻法过程的图。
纳米印刻法是一种压印工艺,其中把具有纳米图形的模具压到高分子薄膜上,以形成纳米尺寸的高分子图形,其可以应用于大面积晶片,如图18A和18B所示。纳米印刻法是用于简单地制造具有几十纳米尺寸的图形的工艺,与利用现有的精细光学处理技术的大面积纳米图形的形成工艺相比,已大为简化。
此外,可以利用图19所示的自组装方法形成纳米点或纳米线的触媒图形,图19是示意性显示根据本发明的水平生长碳纳米管的方法中用于形成纳米点或纳米线的自组装方法的图。
在上述自组装方法中,由金Au或硅Si之类的金属构成的基底上表面被涂敷了特定的材料,这种材料能够被吸收到表面上作为表面活性首基,大部分是单分子层中吸收的有机分子,然后再涂敷一种烃基中的材料,能实现与待涂敷在其上的材料的连接。然后,在其上涂敷具有膜的特性的表面基(surface group)材料,使得可以制造具有从单个层到多个层各种层的超精细薄膜。
即,施加能被基底吸收的特定材料,并且施加用于与待淀积的薄膜材料桥接的材料,然后淀积薄膜的希望材料。在把能进行化学吸收的特定材料淀积在表面上后,利用扫描隧道显微镜/原子力显微镜(STM/AFM)对其构图,从而可以获得具有希望图形的超精细薄膜。
同时,图20是示意性显示利用根据本发明的碳纳米管的自旋阀单电子晶体管的结构的图,图21是图20所示根据本发明的自旋阀单电子晶体管的透视图。通过利用由上述水平生长碳纳米管的方法在基底水平方向生长的碳纳米管可以获得如下的自旋阀单电子晶体管。
参见图20和21,在根据本发明的自旋阀单电子晶体管中,在源极210和漏极220之间在水平方向生长碳纳米管以形成碳纳米管桥260,碳纳米管桥260使得可以控制电流的单位电子流动。在此情况下,源极210和漏极220之间形成的碳纳米管桥260由具有半导体特性的碳纳米管组成。
此外,源极210和漏极220之间形成的碳纳米管桥260在多个栅极碳纳米管270和280上形成,栅极碳纳米管270和280被形成为产生一个能垒来形成量子点,并控制电流的流动。
此外,在源极210和漏极220上提供能流过电流的导线251和252,以便在希望的方向磁化与源极210和漏极220接触的触媒。此外,设置在源极210上的源极导线251和设置在漏极220上的漏极导线252被相互平行布置。
同时,图22是示意性显示根据本发明另一个实施例的自旋阀单电子晶体管的图。
参见图22,当多个栅极碳纳米管桥470和480形成栅极430和440时,通过使用公共端子490控制量子点的大小。本实施例中的其它元件与参考图20和21所述的元件相同。
此后,将对利用根据本发明的碳纳米管的具有上述结构的自旋阀单电子晶体管的操作进行说明。
参见图20和21,在源极210和漏极220之间形成的具有半导体特性的碳纳米管桥260中,把正电压施加到分别被定义为第一和第二栅极230和240的碳纳米管桥270和280。因此,在点C1和C2的电荷可能不充足,导致在点C1和C2形成能垒。在此情况下,在源极210和漏极220之间形成碳纳米管桥260的情况下,点C1和C2之间的部分与形成量子点的周围部分隔离。
此外,由于源极210和漏极220的电极通过过渡金属触媒(transition metal catalyst)与碳纳米管桥260接触,考虑适当的矫顽力,通过发送被定义为Im1和Im2的电流,可以在希望的方向磁化与源极210和漏极220接触的触媒。
利用上述方法,可以控制注入源极210的电子的自旋。在此情况下,当源极210和点C1之间以及点C2和漏极220之间的碳纳米管桥260部分是弹道导体(ballistic conductor)时,可以保持所注入电子的自旋。
因此,在电子通过隧穿(tunneling)到点C1和C2之间形成的量子点而进行访问的情况下,根据源极210和漏极220的磁化方向,当自旋方向相同时很容易产生隧穿,而当自旋方向互不相同时不容易产生隧穿。
如上所述,通过控制通过沟道的碳纳米管桥260发送的电流,可以获得与自旋有关的单电子晶体管。
同时,图23到26是示意性显示由根据本发明的水平生长碳纳米管的方法形成的各种场效应晶体管的图,下面将对场效应晶体管的各种结构进行说明。
图23显示一场效应晶体管,其中在碳纳米管的两侧都设置了栅极。在该示例中,可以使用铌(Nb),钼(Mo)之类的金属作为生长防止膜的电极或电极层。此外,用作触媒的触媒层被设置在源极和漏极的电极层的下面。在此情况下,可以使用与上述触媒图形12相同的材料作为触媒,并且通常使用镍(Ni),铁(Fe)和钴(Co)之类的材料。
在此情况下,栅电极被设置在源极和漏极的两侧。而且,利用热化学气相淀积方法(TCVD)在栅电极之间合成碳纳米管。因此,需要一个包括栅电极之间空间的几何设计,使得可以在栅电极之间合成碳纳米管。在此情况下,栅极之间的空间最好被设计为具有细长的结构,即一种长且窄的结构,以使得在产生足够的栅极电场的同时控制碳纳米管的生长。
图24显示一场效应晶体管,其中栅极结构位于底部。在此示例中,由于触媒层的高度比栅极的高度大,在触媒层下设置一缓冲层,以便利于高度调整和与晶片的绝缘层的粘附。
此外,由于碳纳米管具有良好弹性,可以利用电场使碳纳米管弯曲。在此情况下,弯曲程度根据碳纳米管的种类和长度改变。尽管最大弯曲程度可以是几十纳米,但通常预期碳纳米管弯曲几个纳米。因此,图23中所述结构被如下方式设计,使得栅极之间的距离比用于生长碳纳米管的触媒的宽度大几十纳米。在图24所述的地栅极的情况下,根据需要可以将一个薄电介质层淀积在栅电极上。同时,图25显示一个结构,其中把碳纳米管用作栅极。
同时,在合成碳纳米管时,碳纳米管可能垂直于电极的表面生长,并且在碳纳米管具有半导体特性时很难从希望的位置向相对的触媒层生长碳纳米管。为了解决这些问题,可以在触媒层之间设置一个用作引导碳纳米管生长的向导(guide)的路径,即一个用于碳纳米管生长的通道,碳纳米管可以在该路径或通道中生长(见图26)。
在此情况下,可以利用反应离子腐蚀(RIE)之类的干腐蚀,在氧化硅膜上非常精细地制造用于碳纳米管生长的向导。然后,在向导的两侧淀积触媒,然后在其上淀积电极。而且,在向导旁边设置栅极。此外,栅极可以如图所示位于电介质的表面上,并且栅电极可以被放置在象触媒层这样的腐蚀区域上,使得栅电极可以在与触媒层或碳纳米管的高度相同的高度施加电场。
可以通过两次光刻工艺制造图23和24中所示的结构。但是,图25和26中所示的结构需要三次光刻工艺。在此情况下,图25中所示的结构不仅可以制造为场效应晶体管(FET),而且可以制造为隧道晶体管(tunneling transistor)。而且,在把至少两个碳纳米管设置为栅极的情况下,根据栅极偏置所制造出的可以是利用Kondo谐振的Kondo元件或单电子晶体管(SET)。在图26所示的结构中,在合成碳纳米管时防止其在不希望的方向生长,从而减小这种缺陷。
虽然已经显示和描述了本发明的优选实施例,本领域技术人员应该理解,本发明不限于这些特定实施例,在不偏离本发明真实范围的情况下,可以对其元件进行各种变化,改进和替换。

Claims (35)

1.一种水平生长碳纳米管的方法,包括以下步骤:
(a)在第一基底上形成预定触媒图形;
(b)在第一基底上形成垂直生长防止层,该防止层防止碳纳米管在垂直方向生长;
(c)通过垂直生长防止层和第一基底形成多个小孔,以通过小孔露出触媒图形;以及
(d)在触媒图形的暴露表面上合成碳纳米管,以便在水平方向生长碳纳米管。
2.根据权利要求1的方法,其中在步骤c中形成的小孔是孔型的,即小孔完全穿过垂直生长防止层和第一基底。
3.根据权利要求1的方法,其中在步骤c中形成的小孔是井型的,即第一基底被部分地腐蚀,使得小孔穿过垂直生长防止层和一部分第一基底。
4.根据权利要求1的方法,其中触媒图形具有直线形、交叉形、放射形、圆形和矩形中的一种形状,同时小孔被形成在直线形、交叉形、和放射形的触媒图形的交叉区域,在圆形图形的内部,在矩形图形的内部。
5.根据权利要求4的方法,其中分别从触媒图形和小孔形成的碳纳米管生长为在它们之间形成结。
6.根据权利要求5的方法,其中利用材料的热收缩现象在相互交叉的碳纳米管之间形成结,热收缩现象是在生长碳纳米管后的冷却阶段中产生的。
7.根据权利要求4的方法,其中分别从触媒图形和小孔形成的碳纳米管相互交叉地生长。
8.根据权利要求1的方法,其中步骤d中生长的碳纳米管形成桥式结构,由此把相互对着的触媒图形的暴露表面相互连接。
9.根据权利要求1的方法,其中步骤d中生长的碳纳米管形成自由悬挂结构,其中来自相互对着的触媒图形的暴露表面的碳纳米管相互隔离。
10.根据权利要求1的方法,其中步骤d中生长的碳纳米管是在单个触媒图形上生长的多个碳纳米管。
11.根据权利要求1的方法,其中步骤d中生长的碳纳米管形成网形结构,其中从相互对着的触媒图形的每个暴露表面生长的多个碳纳米管相互连接。
12.根据权利要求1的方法,进一步包括在步骤d之后的以下步骤:在生长的碳纳米管上构图一个金属,以便选择性地在特定位置在碳纳米管和金属之间形成一个结。
13.一种水平生长碳纳米管的方法,包括以下步骤:
(i)在第一基底上的预定位置形成掩模;
(j)在第一基底和第一基底上形成的掩模上形成触媒图形;
(k)在第一基底上形成垂直生长防止层,该防止层防止碳纳米管在垂直方向生长;
(l)从垂直生长防止层和第一基底上除去掩模,以形成小孔并露出触媒图形;以及
(m)在触媒图形的暴露位置处合成碳纳米管,以便在水平方向生长碳纳米管。
14.根据权利要求13的方法,其中触媒图形具有直线形、交叉形、放射形、圆形和矩形中的一种形状,同时小孔被形成在直线形、交叉形、和放射形的触媒图形的交叉区域,在圆形图形的内部,在矩形图形的内部。
15.根据权利要求14的方法,其中分别从触媒图形和小孔形成的碳纳米管生长为在它们之间形成结。
16.根据权利要求14的方法,其中分别从触媒图形和小孔形成的碳纳米管相互交叉地生长。
17.根据权利要求13的方法,其中步骤m中生长的碳纳米管形成桥式结构,由此把相互对着的触媒图形的暴露表面相互连接。
18.根据权利要求13的方法,其中步骤m中生长的碳纳米管形成自由悬挂结构,其中来自相互对着的触媒图形的暴露表面的碳纳米管相互隔离。
19.根据权利要求13的方法,进一步包括在步骤m之后的以下步骤:在生长的碳纳米管上构图一个金属,以便选择性地在特定位置在碳纳米管和金属之间形成一个结。
20.一种水平生长碳纳米管的方法,包括以下步骤:
在第一基底上以预定二维布置方式形成触媒图形;
制造用于防止碳纳米管垂直生长的第二基底,具有预定方式布置的小孔;
把用于防止碳纳米管垂直生长的第二基底以预定间隙放置在具有触媒图形的第一基底上;以及
在触媒图形上合成碳纳米管,以便水平地生长碳纳米管。
21.一种水平生长碳纳米管的方法,包括以下步骤:
在基底上形成纳米点或纳米线形状的触媒;
在纳米点或纳米线形状的触媒上构图一生长防止层,以便防止纳米点或纳米线在垂直方向生长;以及
选择性地在纳米点或纳米线上在水平方向生长碳纳米管。
22.根据权利要求21的方法,其中纳米点或纳米线形状的触媒是利用压印方法构图的。
23.根据权利要求21的方法,其中纳米点或纳米线形状的触媒是利用自组装方法构图的。
24.根据权利要求21的方法,其中生长防止层由选自包括氮化硅(SiN)和氧化硅(SiO2)的组中的一种化合物构成的绝缘膜形成。
25.根据权利要求21的方法,其中生长防止层由选自包括钯(Pd),铌(Nb)和钼(Mo)的组中的一种金属形成。
26.一种水平生长碳纳米管的方法,包括以下步骤:
在基底上形成纳米线形状的触媒;
利用包括光刻工艺的半导体工艺在纳米线形状的触媒上形成生长防止层,该生长防止层与基底间隔预定间隙;
利用湿腐蚀法,在不形成生长防止层的区域中除去纳米线形状的触媒的一部分;以及
利用化学气相淀积方法,在与基底间隔预定间隙的生长防止层下形成触媒之间在水平方向生长碳纳米管。
27.根据权利要求26的方法,其中纳米线形状的触媒是利用压印方法构图的。
28.根据权利要求26的方法,其中纳米线形状的触媒是利用自组装方法构图的。
29.一种场效应晶体管,包括源极,漏极,以及源极和漏极之间的碳纳米管桥,碳纳米管桥由源极和漏极之间在水平方向生长的碳纳米管形成,使得场效应晶体管可以控制电子的流动。
30.根据权利要求29的场效应晶体管,其中源极和漏极之间形成的碳纳米管桥包括具有半导体特性的碳纳米管。
31.根据权利要求29的场效应晶体管,其中在源极和漏极之间形成的碳纳米管桥上,形成多个栅极碳纳米管,与源极和漏极之间的碳纳米管桥交叉,以便产生能垒来形成量子点并控制电流的流动。
32.根据权利要求31的场效应晶体管,其中在栅极碳纳米管桥形成栅极时,量子点具有通过使用公共端子控制的大小。
33.根据权利要求29的场效应晶体管,进一步包括第一和第二导线,第一和第二导线可以通过电流,并被分别设置在源极和漏极上,以便在希望的方向磁化与源极和漏极接触的触媒。
34.根据权利要求33的场效应晶体管,其中源极上设置的第一导线和漏极上设置的第二导线被相互平行布置。
35.根据权利要求29的场效应晶体管,其中在场效应晶体管的基底上形成一个引导槽,以允许碳纳米管在源极和漏极之间在水平方向生长,从而在源极和漏极之间在水平方向形成碳纳米管桥。
CNB011206322A 2000-07-18 2001-07-18 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 Expired - Fee Related CN1251962C (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2000-0041012A KR100379470B1 (ko) 2000-07-18 2000-07-18 카본 나노 튜브의 수평 성장 방법
KR41012/2000 2000-07-18
KR68966/2000 2000-11-20
KR1020000068966A KR100350794B1 (ko) 2000-11-20 2000-11-20 탄소나노튜브를 이용한 스핀 밸브 단전자 트랜지스터
KR34013/2001 2001-06-15
KR10-2001-0034013A KR100405974B1 (ko) 2001-06-15 2001-06-15 카본나노튜브의 수평 성장 방법
KR10-2001-0037496A KR100434272B1 (ko) 2001-06-28 2001-06-28 탄소나노튜브의 수평성장 방법
KR37496/2001 2001-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101070820A Division CN100521240C (zh) 2000-07-18 2001-07-18 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管

Publications (2)

Publication Number Publication Date
CN1334234A true CN1334234A (zh) 2002-02-06
CN1251962C CN1251962C (zh) 2006-04-19

Family

ID=36718402

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011206322A Expired - Fee Related CN1251962C (zh) 2000-07-18 2001-07-18 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管

Country Status (5)

Country Link
US (2) US6515339B2 (zh)
JP (1) JP3859199B2 (zh)
CN (1) CN1251962C (zh)
DE (1) DE10134866B4 (zh)
GB (1) GB2364933B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086968A1 (fr) * 2002-04-12 2003-10-23 Shang Hai Jiao Tong University Procede d'arrangement de nanotubes de carbone orientes selectivement sur la surface d'un substrat
CN100437120C (zh) * 2004-11-17 2008-11-26 中国科学院物理研究所 单根一维纳米材料的测试电极的制作方法
CN101126735B (zh) * 2007-09-30 2010-06-23 董益阳 一种场效应晶体管生物传感器的制备方法
CN101689581B (zh) * 2007-06-26 2011-04-06 惠普开发有限公司 纳米线光电二极管和制作纳米线光电二极管的方法
CN101807668B (zh) * 2002-03-20 2012-05-30 国际商业机器公司 碳纳米管场效应晶体管半导体器件及其制造方法
CN102668150A (zh) * 2009-11-30 2012-09-12 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN102175741B (zh) * 2003-05-23 2013-06-12 独立行政法人科学技术振兴机构 试样中的被检测物质的检测方法
CN101897009B (zh) * 2007-07-31 2013-11-06 射频纳米公司 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法
CN104401936A (zh) * 2014-12-19 2015-03-11 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法
CN104401935A (zh) * 2014-12-19 2015-03-11 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法

Families Citing this family (326)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507494A (ja) * 1998-03-24 2002-03-12 キア シルバーブルック ナノチューブ・マトリクス物質の形成方法
US6365059B1 (en) * 2000-04-28 2002-04-02 Alexander Pechenik Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
DE10123876A1 (de) * 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
US6593666B1 (en) * 2001-06-20 2003-07-15 Ambient Systems, Inc. Energy conversion systems using nanometer scale assemblies and methods for using same
JP2003017508A (ja) * 2001-07-05 2003-01-17 Nec Corp 電界効果トランジスタ
DE10135504A1 (de) * 2001-07-20 2003-02-06 Infineon Technologies Ag Filterstruktur mit Nanoporen
US6835591B2 (en) * 2001-07-25 2004-12-28 Nantero, Inc. Methods of nanotube films and articles
US7259410B2 (en) 2001-07-25 2007-08-21 Nantero, Inc. Devices having horizontally-disposed nanofabric articles and methods of making the same
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6706402B2 (en) 2001-07-25 2004-03-16 Nantero, Inc. Nanotube films and articles
US6919592B2 (en) 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
US7563711B1 (en) * 2001-07-25 2009-07-21 Nantero, Inc. Method of forming a carbon nanotube-based contact to semiconductor
US6924538B2 (en) * 2001-07-25 2005-08-02 Nantero, Inc. Devices having vertically-disposed nanofabric articles and methods of making the same
US7566478B2 (en) * 2001-07-25 2009-07-28 Nantero, Inc. Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles
US6574130B2 (en) * 2001-07-25 2003-06-03 Nantero, Inc. Hybrid circuit having nanotube electromechanical memory
US7176505B2 (en) * 2001-12-28 2007-02-13 Nantero, Inc. Electromechanical three-trace junction devices
US6784028B2 (en) 2001-12-28 2004-08-31 Nantero, Inc. Methods of making electromechanical three-trace junction devices
US20070178477A1 (en) * 2002-01-16 2007-08-02 Nanomix, Inc. Nanotube sensor devices for DNA detection
US20060228723A1 (en) * 2002-01-16 2006-10-12 Keith Bradley System and method for electronic sensing of biomolecules
US20040253741A1 (en) * 2003-02-06 2004-12-16 Alexander Star Analyte detection in liquids with carbon nanotube field effect transistor devices
US8154093B2 (en) 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
EP1341184B1 (en) * 2002-02-09 2005-09-14 Samsung Electronics Co., Ltd. Memory device utilizing carbon nanotubes and method of fabricating the memory device
CA2475790A1 (en) * 2002-02-11 2003-08-21 Rensselaer Polytechnic Institute Directed assembly of highly-organized carbon nanotube architectures
US20070035226A1 (en) * 2002-02-11 2007-02-15 Rensselaer Polytechnic Institute Carbon nanotube hybrid structures
US20080021339A1 (en) * 2005-10-27 2008-01-24 Gabriel Jean-Christophe P Anesthesia monitor, capacitance nanosensors and dynamic sensor sampling method
US20050161750A1 (en) * 2002-03-20 2005-07-28 Hongjie Dai Molybdenum-based electrode with carbon nanotube growth
US6699779B2 (en) * 2002-03-22 2004-03-02 Hewlett-Packard Development Company, L.P. Method for making nanoscale wires and gaps for switches and transistors
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
WO2003087709A1 (en) * 2002-04-05 2003-10-23 Integrated Nanosystems, Inc. Nanowire microscope probe tips
US7335395B2 (en) * 2002-04-23 2008-02-26 Nantero, Inc. Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
JP4974263B2 (ja) 2002-05-20 2012-07-11 富士通株式会社 半導体装置の製造方法
US7948041B2 (en) 2005-05-19 2011-05-24 Nanomix, Inc. Sensor having a thin-film inhibition layer
EP1560958A4 (en) * 2002-06-21 2006-05-10 Nanomix Inc DISPERSES BREEDING NANOTONES ON A SUBSTRATE
US6825607B2 (en) * 2002-07-12 2004-11-30 Hon Hai Precision Ind. Co., Ltd. Field emission display device
JP4338948B2 (ja) * 2002-08-01 2009-10-07 株式会社半導体エネルギー研究所 カーボンナノチューブ半導体素子の作製方法
JP3804594B2 (ja) * 2002-08-02 2006-08-02 日本電気株式会社 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ
US7358121B2 (en) * 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US20040043148A1 (en) * 2002-09-04 2004-03-04 Industrial Technology Research Institute Method for fabricating carbon nanotube device
JP4547852B2 (ja) * 2002-09-04 2010-09-22 富士ゼロックス株式会社 電気部品の製造方法
US7115916B2 (en) * 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
WO2004032193A2 (en) 2002-09-30 2004-04-15 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
EP1563480A4 (en) * 2002-09-30 2010-03-03 Nanosys Inc INTEGRATED ADS WITH NANOWIRE TRANSISTORS
DE10247679A1 (de) * 2002-10-12 2004-04-22 Fujitsu Ltd., Kawasaki Halbleitergrundstruktur für Molekularelektronik und Molekularelektronik-basierte Biosensorik
US6916511B2 (en) * 2002-10-24 2005-07-12 Hewlett-Packard Development Company, L.P. Method of hardening a nano-imprinting stamp
US7378347B2 (en) * 2002-10-28 2008-05-27 Hewlett-Packard Development Company, L.P. Method of forming catalyst nanoparticles for nanowire growth and other applications
AU2003304248A1 (en) * 2002-10-29 2005-01-13 President And Fellows Of Harvard College Carbon nanotube device fabrication
US7253434B2 (en) * 2002-10-29 2007-08-07 President And Fellows Of Harvard College Suspended carbon nanotube field effect transistor
GB0229191D0 (en) * 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
US6870361B2 (en) * 2002-12-21 2005-03-22 Agilent Technologies, Inc. System with nano-scale conductor and nano-opening
US6933222B2 (en) * 2003-01-02 2005-08-23 Intel Corporation Microcircuit fabrication and interconnection
US7828620B2 (en) * 2003-01-09 2010-11-09 Sony Corporation Method of manufacturing tubular carbon molecule and tubular carbon molecule, method of manufacturing field electron emission device and field electron emission device, and method of manufacturing display unit and display unit
JP4161191B2 (ja) * 2003-01-09 2008-10-08 ソニー株式会社 電界電子放出素子の製造方法
US7244499B2 (en) 2003-01-10 2007-07-17 Sanyo Electric Co., Ltd. Bonded structure including a carbon nanotube
EP1583853A4 (en) * 2003-01-13 2006-12-20 Nantero Inc CARBON NANOTUBES CONTAINING FILMS, LAYERS, TEXTILE SURFACES, BANDS, ELEMENTS AND ARTICLES
US7560136B2 (en) * 2003-01-13 2009-07-14 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US8937575B2 (en) 2009-07-31 2015-01-20 Nantero Inc. Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices
US9422651B2 (en) 2003-01-13 2016-08-23 Nantero Inc. Methods for arranging nanoscopic elements within networks, fabrics, and films
CA2512387A1 (en) * 2003-01-13 2004-08-05 Nantero, Inc. Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles
US7858185B2 (en) * 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
US9574290B2 (en) 2003-01-13 2017-02-21 Nantero Inc. Methods for arranging nanotube elements within nanotube fabrics and films
US6764874B1 (en) * 2003-01-30 2004-07-20 Motorola, Inc. Method for chemical vapor deposition of single walled carbon nanotubes
JP4774665B2 (ja) * 2003-02-05 2011-09-14 ソニー株式会社 半導体装置の製造方法
US7094679B1 (en) * 2003-03-11 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube interconnect
CN1235072C (zh) * 2003-03-11 2006-01-04 清华大学 一种光学偏振光源装置及其制造方法
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7294877B2 (en) * 2003-03-28 2007-11-13 Nantero, Inc. Nanotube-on-gate FET structures and applications
CA2520661A1 (en) 2003-03-28 2004-10-14 Nantero, Inc. Nanotube-on-gate fet structures and applications
GB0310492D0 (en) * 2003-05-08 2003-06-11 Univ Surrey Carbon nanotube based electron sources
WO2005019793A2 (en) * 2003-05-14 2005-03-03 Nantero, Inc. Sensor platform using a horizontally oriented nanotube element
WO2004105140A1 (ja) * 2003-05-22 2004-12-02 Fujitsu Limited 電界効果トランジスタ及びその製造方法
JP4774476B2 (ja) * 2004-02-16 2011-09-14 独立行政法人科学技術振興機構 センサー
US7199498B2 (en) * 2003-06-02 2007-04-03 Ambient Systems, Inc. Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same
US20040238907A1 (en) * 2003-06-02 2004-12-02 Pinkerton Joseph F. Nanoelectromechanical transistors and switch systems
US7095645B2 (en) * 2003-06-02 2006-08-22 Ambient Systems, Inc. Nanoelectromechanical memory cells and data storage devices
US7148579B2 (en) 2003-06-02 2006-12-12 Ambient Systems, Inc. Energy conversion systems utilizing parallel array of automatic switches and generators
US7280394B2 (en) * 2003-06-09 2007-10-09 Nantero, Inc. Field effect devices having a drain controlled via a nanotube switching element
US7274064B2 (en) * 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US7015142B2 (en) * 2003-06-12 2006-03-21 Georgia Tech Research Corporation Patterned thin film graphite devices and method for making same
US7989067B2 (en) * 2003-06-12 2011-08-02 Georgia Tech Research Corporation Incorporation of functionalizing molecules in nanopatterned epitaxial graphene electronics
US6921670B2 (en) * 2003-06-24 2005-07-26 Hewlett-Packard Development Company, Lp. Nanostructure fabrication using microbial mandrel
US6909151B2 (en) * 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US6987302B1 (en) * 2003-07-01 2006-01-17 Yingjian Chen Nanotube with at least a magnetic nanoparticle attached to the nanotube's exterior sidewall and electronic devices made thereof
US7115960B2 (en) 2003-08-13 2006-10-03 Nantero, Inc. Nanotube-based switching elements
EP1665278A4 (en) 2003-08-13 2007-11-07 Nantero Inc NANOROUS-BASED SWITCHING ELEMENTS WITH MULTIPLE CONTROLS AND CIRCUITS MADE THEREFROM
US7289357B2 (en) 2003-08-13 2007-10-30 Nantero, Inc. Isolation structure for deflectable nanotube elements
WO2005017967A2 (en) 2003-08-13 2005-02-24 Nantero, Inc. Nanotube device structure and methods of fabrication
WO2005084164A2 (en) 2003-08-13 2005-09-15 Nantero, Inc. Nanotube-based switching elements and logic circuits
US7583526B2 (en) 2003-08-13 2009-09-01 Nantero, Inc. Random access memory including nanotube switching elements
TWI239071B (en) * 2003-08-20 2005-09-01 Ind Tech Res Inst Manufacturing method of carbon nano-tube transistor
JP4669213B2 (ja) 2003-08-29 2011-04-13 独立行政法人科学技術振興機構 電界効果トランジスタ及び単一電子トランジスタ並びにそれを用いたセンサ
US6989325B2 (en) * 2003-09-03 2006-01-24 Industrial Technology Research Institute Self-assembled nanometer conductive bumps and method for fabricating
US7416993B2 (en) 2003-09-08 2008-08-26 Nantero, Inc. Patterned nanowire articles on a substrate and methods of making the same
US7375369B2 (en) * 2003-09-08 2008-05-20 Nantero, Inc. Spin-coatable liquid for formation of high purity nanotube films
US20050214197A1 (en) * 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
WO2005025734A2 (en) * 2003-09-17 2005-03-24 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
KR20060133974A (ko) * 2003-10-16 2006-12-27 더 유니버시티 오브 아크론 탄소 나노섬유 기판 상의 탄소 나노튜브
US7628974B2 (en) * 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
US7374793B2 (en) * 2003-12-11 2008-05-20 International Business Machines Corporation Methods and structures for promoting stable synthesis of carbon nanotubes
US7208094B2 (en) * 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
US7181836B2 (en) * 2003-12-19 2007-02-27 General Electric Company Method for making an electrode structure
US20050151126A1 (en) * 2003-12-31 2005-07-14 Intel Corporation Methods of producing carbon nanotubes using peptide or nucleic acid micropatterning
US7553371B2 (en) * 2004-02-02 2009-06-30 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20110039690A1 (en) 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US8025960B2 (en) * 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
FR2865946B1 (fr) * 2004-02-09 2007-12-21 Commissariat Energie Atomique Procede de realisation d'une couche de materiau sur un support
US7528437B2 (en) * 2004-02-11 2009-05-05 Nantero, Inc. EEPROMS using carbon nanotubes for cell storage
KR100695124B1 (ko) * 2004-02-25 2007-03-14 삼성전자주식회사 카본나노튜브의 수평성장방법
JP4448356B2 (ja) * 2004-03-26 2010-04-07 富士通株式会社 半導体装置およびその製造方法
US7327037B2 (en) * 2004-04-01 2008-02-05 Lucent Technologies Inc. High density nanostructured interconnection
US7312155B2 (en) * 2004-04-07 2007-12-25 Intel Corporation Forming self-aligned nano-electrodes
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
KR20070011550A (ko) * 2004-04-30 2007-01-24 나노시스, 인크. 나노와이어 성장 및 획득 시스템 및 방법
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
WO2006076027A2 (en) * 2004-05-17 2006-07-20 Cambrios Technology Corp. Biofabrication of transistors including field effect transistors
US7180107B2 (en) * 2004-05-25 2007-02-20 International Business Machines Corporation Method of fabricating a tunneling nanotube field effect transistor
US8075863B2 (en) 2004-05-26 2011-12-13 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
US7709880B2 (en) * 2004-06-09 2010-05-04 Nantero, Inc. Field effect devices having a gate controlled via a nanotube switching element
US7330709B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and logic
US7288970B2 (en) * 2004-06-18 2007-10-30 Nantero, Inc. Integrated nanotube and field effect switching device
US7167026B2 (en) 2004-06-18 2007-01-23 Nantero, Inc. Tri-state circuit using nanotube switching elements
US7652342B2 (en) 2004-06-18 2010-01-26 Nantero, Inc. Nanotube-based transfer devices and related circuits
US7164744B2 (en) 2004-06-18 2007-01-16 Nantero, Inc. Nanotube-based logic driver circuits
US7161403B2 (en) 2004-06-18 2007-01-09 Nantero, Inc. Storage elements using nanotube switching elements
US7329931B2 (en) * 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
JP4571452B2 (ja) * 2004-07-06 2010-10-27 日本電信電話株式会社 超伝導三端子素子の製造方法
JP2008506254A (ja) * 2004-07-07 2008-02-28 ナノシス・インコーポレイテッド ナノワイヤーの集積及び組み込みのためのシステムおよび方法
US7194912B2 (en) * 2004-07-13 2007-03-27 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon nanotube-based sensor and method for continually sensing changes in a structure
GB0415891D0 (en) * 2004-07-16 2004-08-18 Koninkl Philips Electronics Nv Nanoscale fet
JP2008506548A (ja) 2004-07-19 2008-03-06 アンビエント システムズ, インコーポレイテッド ナノスケール静電および電磁モータおよび発電機
DE102004035368B4 (de) 2004-07-21 2007-10-18 Infineon Technologies Ag Substrat mit Leiterbahnen und Herstellung der Leiterbahnen auf Substraten für Halbleiterbauteile
WO2006076044A2 (en) * 2004-07-30 2006-07-20 Agilent Technologies, Inc. Nanostructure-based transistor
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
WO2006121461A2 (en) * 2004-09-16 2006-11-16 Nantero, Inc. Light emitters using nanotubes and methods of making same
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
TWI348169B (en) * 2004-09-21 2011-09-01 Nantero Inc Resistive elements using carbon nanotubes
US20060060863A1 (en) * 2004-09-22 2006-03-23 Jennifer Lu System and method for controlling nanostructure growth
US7422946B2 (en) * 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
CN100539041C (zh) 2004-10-22 2009-09-09 富士通微电子株式会社 半导体器件及其制造方法
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
CN100420033C (zh) * 2004-10-28 2008-09-17 鸿富锦精密工业(深圳)有限公司 场效应晶体管及其制造方法
US7567414B2 (en) * 2004-11-02 2009-07-28 Nantero, Inc. Nanotube ESD protective devices and corresponding nonvolatile and volatile nanotube switches
US20100147657A1 (en) * 2004-11-02 2010-06-17 Nantero, Inc. Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches
US7560366B1 (en) * 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
WO2006065937A2 (en) * 2004-12-16 2006-06-22 Nantero, Inc. Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
JP4496094B2 (ja) * 2005-01-14 2010-07-07 シャープ株式会社 半導体装置及び半導体集積回路
US8362525B2 (en) 2005-01-14 2013-01-29 Nantero Inc. Field effect device having a channel of nanofabric and methods of making same
US7598544B2 (en) * 2005-01-14 2009-10-06 Nanotero, Inc. Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same
JP4555695B2 (ja) * 2005-01-20 2010-10-06 富士通株式会社 カーボンナノチューブ配線を備えた電子デバイス及びその製造方法
JP5028744B2 (ja) * 2005-02-15 2012-09-19 富士通株式会社 カーボンナノチューブの形成方法および電子デバイスの製造方法
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US7419832B2 (en) * 2005-03-10 2008-09-02 Streck, Inc. Blood collection tube with surfactant
US7824946B1 (en) 2005-03-11 2010-11-02 Nantero, Inc. Isolated metal plug process for use in fabricating carbon nanotube memory cells
KR100682942B1 (ko) * 2005-03-22 2007-02-15 삼성전자주식회사 금속 전구체 화합물을 포함하는 촉매 레지스트 및 이를이용한 촉매 입자들의 패터닝 방법
US20060220163A1 (en) * 2005-03-31 2006-10-05 Shih-Yuan Wang Light sources that use diamond nanowires
US9287356B2 (en) 2005-05-09 2016-03-15 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8941094B2 (en) 2010-09-02 2015-01-27 Nantero Inc. Methods for adjusting the conductivity range of a nanotube fabric layer
ATE529734T1 (de) * 2005-04-06 2011-11-15 Harvard College Molekulare charakterisierung mit kohlenstoff- nanoröhrchen-steuerung
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
US20060251897A1 (en) * 2005-05-06 2006-11-09 Molecular Nanosystems, Inc. Growth of carbon nanotubes to join surfaces
US7479654B2 (en) * 2005-05-09 2009-01-20 Nantero, Inc. Memory arrays using nanotube articles with reprogrammable resistance
US7835170B2 (en) * 2005-05-09 2010-11-16 Nantero, Inc. Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks
US7782650B2 (en) * 2005-05-09 2010-08-24 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8217490B2 (en) 2005-05-09 2012-07-10 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8013363B2 (en) * 2005-05-09 2011-09-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
TWI324773B (en) 2005-05-09 2010-05-11 Nantero Inc Non-volatile shadow latch using a nanotube switch
US8008745B2 (en) 2005-05-09 2011-08-30 Nantero, Inc. Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US8513768B2 (en) * 2005-05-09 2013-08-20 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9196615B2 (en) * 2005-05-09 2015-11-24 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US9911743B2 (en) 2005-05-09 2018-03-06 Nantero, Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US8183665B2 (en) 2005-11-15 2012-05-22 Nantero Inc. Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same
US7781862B2 (en) 2005-05-09 2010-08-24 Nantero, Inc. Two-terminal nanotube devices and systems and methods of making same
US8102018B2 (en) 2005-05-09 2012-01-24 Nantero Inc. Nonvolatile resistive memories having scalable two-terminal nanotube switches
GB0509499D0 (en) * 2005-05-11 2005-06-15 Univ Surrey Use of thermal barrier for low temperature growth of nanostructures using top-down heating approach
US7598127B2 (en) 2005-05-12 2009-10-06 Nantero, Inc. Nanotube fuse structure
TWI264271B (en) * 2005-05-13 2006-10-11 Delta Electronics Inc Heat sink
US7928521B1 (en) 2005-05-31 2011-04-19 Nantero, Inc. Non-tensioned carbon nanotube switch design and process for making same
JP4703270B2 (ja) * 2005-06-06 2011-06-15 三菱電機株式会社 ナノ構造体群を用いた電子素子
US7915122B2 (en) * 2005-06-08 2011-03-29 Nantero, Inc. Self-aligned cell integration scheme
US7541216B2 (en) 2005-06-09 2009-06-02 Nantero, Inc. Method of aligning deposited nanotubes onto an etched feature using a spacer
CN100417117C (zh) * 2005-06-15 2008-09-03 华为技术有限公司 自动交换光网络中节点可达性的识别方法
US20060292716A1 (en) * 2005-06-27 2006-12-28 Lsi Logic Corporation Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes
US7538040B2 (en) * 2005-06-30 2009-05-26 Nantero, Inc. Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers
EP1910217A2 (en) * 2005-07-19 2008-04-16 PINKERTON, Joseph P. Heat activated nanometer-scale pump
US7402875B2 (en) * 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
JP5049473B2 (ja) * 2005-08-19 2012-10-17 株式会社アルバック 配線形成方法及び配線
CA2621500A1 (en) 2005-09-06 2007-03-15 Nantero, Inc. Carbon nanotube resonators
EP1922743A4 (en) 2005-09-06 2008-10-29 Nantero Inc METHOD AND SYSTEM FOR USING NANOTUBE TISSUES AS OHMIC HEATING ELEMENTS FOR MEMORIES AND OTHER APPLICATIONS
WO2008054364A2 (en) 2005-09-06 2008-05-08 Nantero, Inc. Carbon nanotubes for the selective transfer of heat from electronics
KR100667652B1 (ko) * 2005-09-06 2007-01-12 삼성전자주식회사 탄소나노튜브를 이용한 배선 형성 방법
CA2621103C (en) 2005-09-06 2015-11-03 Nantero, Inc. Nanotube fabric-based sensor systems and methods of making same
US7371677B2 (en) * 2005-09-30 2008-05-13 Freescale Semiconductor, Inc. Laterally grown nanotubes and method of formation
WO2008054379A2 (en) * 2005-10-25 2008-05-08 Massachusetts Institute Of Technology Shape controlled growth of nanostructured films and objects
US7312531B2 (en) * 2005-10-28 2007-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
JP4984498B2 (ja) * 2005-11-18 2012-07-25 ソニー株式会社 機能素子及びその製造方法
US20080108214A1 (en) * 2005-12-09 2008-05-08 Intel Corporation Threshold voltage targeting in carbon nanotube devices and structures formed thereby
JP4997750B2 (ja) * 2005-12-12 2012-08-08 富士通株式会社 カーボンナノチューブを用いた電子素子及びその製造方法
WO2008048313A2 (en) * 2005-12-19 2008-04-24 Advanced Technology Materials, Inc. Production of carbon nanotubes
JP5034231B2 (ja) * 2005-12-21 2012-09-26 富士通株式会社 カーボンナノチューブトランジスタアレイ及びその製造方法
CA2624778A1 (en) * 2005-12-29 2007-11-22 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US20070155065A1 (en) * 2005-12-29 2007-07-05 Borkar Shekhar Y Statistical circuit design with carbon nanotubes
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
US7514116B2 (en) * 2005-12-30 2009-04-07 Intel Corporation Horizontal Carbon Nanotubes by Vertical Growth and Rolling
US7749784B2 (en) * 2005-12-30 2010-07-06 Ming-Nung Lin Fabricating method of single electron transistor (SET) by employing nano-lithographical technology in the semiconductor process
US8318520B2 (en) * 2005-12-30 2012-11-27 Lin Ming-Nung Method of microminiaturizing a nano-structure
TWI498276B (zh) * 2006-03-03 2015-09-01 Univ Illinois 製作空間上對準的奈米管及奈米管陣列之方法
EP1991723A2 (en) 2006-03-03 2008-11-19 The Board Of Trustees Of The University Of Illinois Methods of making spatially aligned nanotubes and nanotube arrays
KR101530379B1 (ko) * 2006-03-29 2015-06-22 삼성전자주식회사 다공성 글래스 템플릿을 이용한 실리콘 나노 와이어의제조방법 및 이에 의해 형성된 실리콘 나노 와이어를포함하는 소자
US7517732B2 (en) * 2006-04-12 2009-04-14 Intel Corporation Thin semiconductor device package
US7781267B2 (en) 2006-05-19 2010-08-24 International Business Machines Corporation Enclosed nanotube structure and method for forming
US7625766B2 (en) * 2006-06-02 2009-12-01 Micron Technology, Inc. Methods of forming carbon nanotubes and methods of fabricating integrated circuitry
CN101104513B (zh) * 2006-07-12 2010-09-29 清华大学 单壁碳纳米管的生长方法
US20080135892A1 (en) * 2006-07-25 2008-06-12 Paul Finnie Carbon nanotube field effect transistor and method of making thereof
US8545962B2 (en) * 2006-08-07 2013-10-01 Paradigm Energy Research Corporation Nano-fiber arrayed surfaces
WO2008079465A2 (en) * 2006-09-11 2008-07-03 William Marsh Rice University Production of single-walled carbon nanotube grids
US8143682B2 (en) * 2006-10-31 2012-03-27 Hewlett-Packard Development Company, L.P. Methods and systems for implementing logic gates with spintronic devices located at nanowire crossbar junctions of crossbar arrays
US7776760B2 (en) 2006-11-07 2010-08-17 Nanosys, Inc. Systems and methods for nanowire growth
KR100829579B1 (ko) * 2006-11-27 2008-05-14 삼성전자주식회사 나노튜브를 이용한 전계효과 트랜지스터 및 그 제조방법
US8168495B1 (en) * 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
US9806273B2 (en) * 2007-01-03 2017-10-31 The United States Of America As Represented By The Secretary Of The Army Field effect transistor array using single wall carbon nano-tubes
US7678672B2 (en) * 2007-01-16 2010-03-16 Northrop Grumman Space & Mission Systems Corp. Carbon nanotube fabrication from crystallography oriented catalyst
US7956345B2 (en) * 2007-01-24 2011-06-07 Stmicroelectronics Asia Pacific Pte. Ltd. CNT devices, low-temperature fabrication of CNT and CNT photo-resists
US8039870B2 (en) * 2008-01-28 2011-10-18 Rf Nano Corporation Multifinger carbon nanotube field-effect transistor
WO2008109204A2 (en) * 2007-01-30 2008-09-12 Rf Nano Corporation Multifinger carbon nanotube field-effect transistor
WO2008127780A2 (en) * 2007-02-21 2008-10-23 Nantero, Inc. Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs
WO2008112764A1 (en) 2007-03-12 2008-09-18 Nantero, Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
JP5194513B2 (ja) 2007-03-29 2013-05-08 富士通セミコンダクター株式会社 配線構造及びその形成方法
US7839028B2 (en) * 2007-04-03 2010-11-23 CJP IP Holding, Ltd. Nanoelectromechanical systems and methods for making the same
WO2009023304A2 (en) * 2007-05-02 2009-02-19 Atomate Corporation High density nanotube devices
TWI461350B (zh) 2007-05-22 2014-11-21 Nantero Inc 使用奈米結構物之三極管及其製造方法
US8641912B2 (en) * 2007-05-23 2014-02-04 California Institute Of Technology Method for fabricating monolithic two-dimensional nanostructures
KR101300570B1 (ko) * 2007-05-30 2013-08-27 삼성전자주식회사 전극, 전자 소자, 전계 효과 트랜지스터, 그 제조 방법 및탄소나노튜브 성장 방법
US8134220B2 (en) 2007-06-22 2012-03-13 Nantero Inc. Two-terminal nanotube devices including a nanotube bridge and methods of making same
EP2011572B1 (en) 2007-07-06 2012-12-05 Imec Method for forming catalyst nanoparticles for growing elongated nanostructures
US7701013B2 (en) * 2007-07-10 2010-04-20 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
US7550354B2 (en) * 2007-07-11 2009-06-23 International Business Machines Corporation Nanoelectromechanical transistors and methods of forming same
KR101345456B1 (ko) * 2007-08-29 2013-12-27 재단법인서울대학교산학협력재단 위치 선택적 수평형 나노와이어의 성장방법, 그에 의해형성된 나노와이어 및 이를 포함하는 나노소자
CA2700862C (en) * 2007-10-02 2016-11-15 President And Fellows Of Harvard College Carbon nanotube synthesis for nanopore devices
EP2062515B1 (en) * 2007-11-20 2012-08-29 So, Kwok Kuen Bowl and basket assembly and salad spinner incorporating such an assembly
KR101027517B1 (ko) 2007-11-23 2011-04-06 재단법인서울대학교산학협력재단 나노 구조체의 배치 방법 및 이를 이용한 나노 소자의 제조방법
WO2009066968A2 (en) * 2007-11-23 2009-05-28 Seoul National University Industry Foundation Method for arranging nanostructures and manufacturing nano devices using the same
FR2924108B1 (fr) * 2007-11-28 2010-02-12 Commissariat Energie Atomique Procede d'elaboration, sur un materiau dielectrique, de nanofils en materiaux semi-conducteur connectant deux electrodes
FR2925764B1 (fr) * 2007-12-20 2010-05-28 Commissariat Energie Atomique Procede de croissance horizontale de nanotubes/nanofibres.
JP2011522394A (ja) * 2007-12-31 2011-07-28 エータモタ・コーポレイション 端部接触型縦型カーボンナノチューブトランジスタ
US8308930B2 (en) * 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
US8460764B2 (en) * 2008-03-06 2013-06-11 Georgia Tech Research Corporation Method and apparatus for producing ultra-thin graphitic layers
US20090236608A1 (en) * 2008-03-18 2009-09-24 Georgia Tech Research Corporation Method for Producing Graphitic Patterns on Silicon Carbide
JP5081684B2 (ja) * 2008-03-26 2012-11-28 株式会社アルバック カーボンナノチューブ成長用基板及びその製造方法、並びにカーボンナノチューブの製造方法
JP5081683B2 (ja) * 2008-03-26 2012-11-28 株式会社アルバック カーボンナノチューブ成長用基板及びその製造方法、並びにカーボンナノチューブの製造方法
US8668833B2 (en) * 2008-05-21 2014-03-11 Globalfoundries Singapore Pte. Ltd. Method of forming a nanostructure
US8946683B2 (en) * 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US8587989B2 (en) * 2008-06-20 2013-11-19 Nantero Inc. NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
KR101045128B1 (ko) * 2008-08-04 2011-06-30 서울대학교산학협력단 나노구조물들의 교차 구조들의 제조
US8357921B2 (en) 2008-08-14 2013-01-22 Nantero Inc. Integrated three-dimensional semiconductor system comprising nonvolatile nanotube field effect transistors
US8673258B2 (en) * 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
US8357346B2 (en) * 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US7959842B2 (en) * 2008-08-26 2011-06-14 Snu & R&Db Foundation Carbon nanotube structure
US8021640B2 (en) * 2008-08-26 2011-09-20 Snu R&Db Foundation Manufacturing carbon nanotube paper
FR2935538B1 (fr) * 2008-09-01 2010-12-24 Commissariat Energie Atomique Substrat pour composant electronique ou electromecanique et nanoelements.
JP5246938B2 (ja) * 2008-11-13 2013-07-24 株式会社アルバック カーボンナノチューブ成長用基板、トランジスタ及びカーボンナノチューブ成長用基板の製造方法
US7915637B2 (en) 2008-11-19 2011-03-29 Nantero, Inc. Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same
US8013324B2 (en) * 2009-04-03 2011-09-06 International Business Machines Corporation Structurally stabilized semiconductor nanowire
US7943530B2 (en) * 2009-04-03 2011-05-17 International Business Machines Corporation Semiconductor nanowires having mobility-optimized orientations
US8237150B2 (en) * 2009-04-03 2012-08-07 International Business Machines Corporation Nanowire devices for enhancing mobility through stress engineering
US7902541B2 (en) * 2009-04-03 2011-03-08 International Business Machines Corporation Semiconductor nanowire with built-in stress
US8108802B2 (en) 2009-04-29 2012-01-31 International Business Machines Corporation Method for forming arbitrary lithographic wavefronts using standard mask technology
EP2433475B1 (en) 2009-05-19 2021-04-21 OneD Material, Inc. Nanostructured materials for battery applications
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
US8368125B2 (en) 2009-07-20 2013-02-05 International Business Machines Corporation Multiple orientation nanowires with gate stack stressors
US8574673B2 (en) 2009-07-31 2013-11-05 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
US8128993B2 (en) 2009-07-31 2012-03-06 Nantero Inc. Anisotropic nanotube fabric layers and films and methods of forming same
JP2013501921A (ja) 2009-08-07 2013-01-17 ナノミックス・インコーポレーテッド 磁性炭素ナノチューブに基づく生体検出
US20110034008A1 (en) * 2009-08-07 2011-02-10 Nantero, Inc. Method for forming a textured surface on a semiconductor substrate using a nanofabric layer
US8497499B2 (en) * 2009-10-12 2013-07-30 Georgia Tech Research Corporation Method to modify the conductivity of graphene
US8895950B2 (en) 2009-10-23 2014-11-25 Nantero Inc. Methods for passivating a carbonic nanolayer
US8351239B2 (en) * 2009-10-23 2013-01-08 Nantero Inc. Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array
US8551806B2 (en) 2009-10-23 2013-10-08 Nantero Inc. Methods for passivating a carbonic nanolayer
US8796668B2 (en) 2009-11-09 2014-08-05 International Business Machines Corporation Metal-free integrated circuits comprising graphene and carbon nanotubes
US8841652B2 (en) 2009-11-30 2014-09-23 International Business Machines Corporation Self aligned carbide source/drain FET
US8202749B1 (en) * 2009-12-18 2012-06-19 Ut-Battelle, Llc Array of aligned and dispersed carbon nanotubes and method of producing the array
US8222704B2 (en) 2009-12-31 2012-07-17 Nantero, Inc. Compact electrical switching devices with nanotube elements, and methods of making same
WO2011100661A1 (en) 2010-02-12 2011-08-18 Nantero, Inc. Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films
WO2011103558A1 (en) 2010-02-22 2011-08-25 Nantero, Inc. Logic elements comprising carbon nanotube field effect transistor (cntfet) devices and methods of making same
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
KR101200150B1 (ko) 2010-03-08 2012-11-12 경기대학교 산학협력단 나노 와이어 제조 방법 및 나노 와이어를 갖는 전자 소자
JP5578548B2 (ja) * 2010-03-16 2014-08-27 国立大学法人名古屋大学 カーボンナノウォールの選択成長方法および形成方法
US10661304B2 (en) 2010-03-30 2020-05-26 Nantero, Inc. Microfluidic control surfaces using ordered nanotube fabrics
KR20140009182A (ko) 2010-10-22 2014-01-22 캘리포니아 인스티튜트 오브 테크놀로지 낮은 열전도율을 위한 나노메쉬 포노닉 구조들 및 열전 에너지 변환 재료들
JP5401636B2 (ja) * 2010-10-25 2014-01-29 独立行政法人科学技術振興機構 試料中の被検出物質の検出方法
JP5294339B2 (ja) * 2010-10-25 2013-09-18 独立行政法人科学技術振興機構 試料中の被検出物質の検出方法
JP2014515181A (ja) * 2011-03-22 2014-06-26 ユニバーシティ・オブ・マンチェスター トランジスタデバイスおよびその作製材料
GB201104824D0 (en) 2011-03-22 2011-05-04 Univ Manchester Structures and methods relating to graphene
US8471249B2 (en) 2011-05-10 2013-06-25 International Business Machines Corporation Carbon field effect transistors having charged monolayers to reduce parasitic resistance
JP5772299B2 (ja) * 2011-06-29 2015-09-02 富士通株式会社 半導体デバイス及びその製造方法
US20130019918A1 (en) 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
US8716072B2 (en) 2011-07-25 2014-05-06 International Business Machines Corporation Hybrid CMOS technology with nanowire devices and double gated planar devices
WO2013049144A1 (en) 2011-09-27 2013-04-04 Georgia Tech Research Corporation Graphene transistor
US9595653B2 (en) 2011-10-20 2017-03-14 California Institute Of Technology Phononic structures and related devices and methods
WO2013109729A1 (en) 2012-01-17 2013-07-25 Silicium Energy, Inc. Systems and methods for forming thermoelectric devices
US8834597B1 (en) 2012-05-31 2014-09-16 The United Stated of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA) Copper nanowire production for interconnect applications
EP2885823B1 (en) 2012-08-17 2018-05-02 Matrix Industries, Inc. Methods for forming thermoelectric devices
WO2014070795A1 (en) 2012-10-31 2014-05-08 Silicium Energy, Inc. Methods for forming thermoelectric elements
US9842921B2 (en) * 2013-03-14 2017-12-12 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
US9007732B2 (en) 2013-03-15 2015-04-14 Nantero Inc. Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same
US9650732B2 (en) 2013-05-01 2017-05-16 Nantero Inc. Low defect nanotube application solutions and fabrics and methods for making same
US10654718B2 (en) 2013-09-20 2020-05-19 Nantero, Inc. Scalable nanotube fabrics and methods for making same
WO2015148554A1 (en) 2014-03-25 2015-10-01 Silicium Energy, Inc. Thermoelectric devices and systems
JP6475428B2 (ja) * 2014-06-18 2019-02-27 矢崎エナジーシステム株式会社 車載装置及び安全運転システム
JP5888685B2 (ja) * 2014-07-01 2016-03-22 国立大学法人名古屋大学 カーボンナノウォールを用いた電子デバイス
US9299430B1 (en) 2015-01-22 2016-03-29 Nantero Inc. Methods for reading and programming 1-R resistive change element arrays
CN107564946A (zh) * 2016-07-01 2018-01-09 清华大学 纳米晶体管
EP3214038A1 (en) * 2016-03-04 2017-09-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Quantum dot circuit and a method of operating such a circuit
US10343920B2 (en) * 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
CN109219780A (zh) 2016-05-03 2019-01-15 美特瑞克斯实业公司 热电设备和系统
US9934848B2 (en) 2016-06-07 2018-04-03 Nantero, Inc. Methods for determining the resistive states of resistive change elements
US9941001B2 (en) 2016-06-07 2018-04-10 Nantero, Inc. Circuits for determining the resistive states of resistive change elements
CN107564947A (zh) * 2016-07-01 2018-01-09 清华大学 纳米异质结构
CN107564910B (zh) * 2016-07-01 2020-08-11 清华大学 半导体器件
CN107564917B (zh) * 2016-07-01 2020-06-09 清华大学 纳米异质结构
USD819627S1 (en) 2016-11-11 2018-06-05 Matrix Industries, Inc. Thermoelectric smartwatch
WO2019118706A1 (en) 2017-12-13 2019-06-20 Analog Devices, Inc. Structural electronics wireless sensor nodes
CN109920867A (zh) * 2019-03-11 2019-06-21 天合光能股份有限公司 一种光伏电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69623550T2 (de) * 1995-07-10 2003-01-09 Japan Res Dev Corp Verfahren zur Herstellung von Graphitfasern
JP3363759B2 (ja) * 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6256767B1 (en) * 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
DE10032414C1 (de) * 2000-07-04 2001-11-22 Infineon Technologies Ag Feldeffekttransistor
US6423583B1 (en) * 2001-01-03 2002-07-23 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807668B (zh) * 2002-03-20 2012-05-30 国际商业机器公司 碳纳米管场效应晶体管半导体器件及其制造方法
WO2003086968A1 (fr) * 2002-04-12 2003-10-23 Shang Hai Jiao Tong University Procede d'arrangement de nanotubes de carbone orientes selectivement sur la surface d'un substrat
CN102175741B (zh) * 2003-05-23 2013-06-12 独立行政法人科学技术振兴机构 试样中的被检测物质的检测方法
CN102183569B (zh) * 2003-05-23 2013-09-04 独立行政法人科学技术振兴机构 试样中的被检测物质的检测方法
CN100437120C (zh) * 2004-11-17 2008-11-26 中国科学院物理研究所 单根一维纳米材料的测试电极的制作方法
CN101689581B (zh) * 2007-06-26 2011-04-06 惠普开发有限公司 纳米线光电二极管和制作纳米线光电二极管的方法
CN101897009B (zh) * 2007-07-31 2013-11-06 射频纳米公司 自对准t栅极碳纳米管场效应晶体管器件和用于形成该器件的方法
CN101126735B (zh) * 2007-09-30 2010-06-23 董益阳 一种场效应晶体管生物传感器的制备方法
CN102668150A (zh) * 2009-11-30 2012-09-12 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN102668150B (zh) * 2009-11-30 2015-05-20 国际商业机器公司 具有纳米结构沟道的场效应晶体管
CN104401936A (zh) * 2014-12-19 2015-03-11 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法
CN104401935A (zh) * 2014-12-19 2015-03-11 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法
CN104401936B (zh) * 2014-12-19 2016-04-13 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法
CN104401935B (zh) * 2014-12-19 2016-04-27 武汉大学 一种在基片水平方向可控生长碳纳米管束的方法

Also Published As

Publication number Publication date
US20040164327A1 (en) 2004-08-26
US20020014667A1 (en) 2002-02-07
GB2364933B (en) 2002-12-31
GB2364933A (en) 2002-02-13
US6515339B2 (en) 2003-02-04
DE10134866B4 (de) 2005-08-11
US6803260B2 (en) 2004-10-12
JP3859199B2 (ja) 2006-12-20
CN1251962C (zh) 2006-04-19
DE10134866A1 (de) 2002-04-04
GB0117520D0 (en) 2001-09-12
JP2002118248A (ja) 2002-04-19

Similar Documents

Publication Publication Date Title
CN1251962C (zh) 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
McEuen et al. Single-walled carbon nanotube electronics
Liu et al. Graphene-like nanoribbons periodically embedded with four-and eight-membered rings
US7678672B2 (en) Carbon nanotube fabrication from crystallography oriented catalyst
JP2007049084A (ja) スイッチ素子、メモリ素子および磁気抵抗効果素子
CN1868030A (zh) 包含延长纳米级元件的器件及制造方法
WO2016065499A1 (zh) 一种超高密度单壁碳纳米管水平阵列及其可控制备方法
Inami et al. Room temperature stable film formation of π-conjugated organic molecules on 3 d magnetic substrate
Liu et al. Thermally induced transformation of nonhexagonal carbon rings in graphene-like nanoribbons
JP4670640B2 (ja) カーボンナノチューブの製造方法、並びにカーボンナノチューブ構造体を用いた素子、及び配線
CN1770469A (zh) 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管
Umeta et al. Stable Resistance Switching in Lu3N@ C80 Nanowires Promoted by the Endohedral Effect: Implications for Single-Fullerene Motion Resistance Switching
Wang et al. Positioning growth of NPB crystalline nanowires on the PTCDA nanocrystal template
GB2382718A (en) Field effect transistor using horizontally grown carbon nanotubes
Liu et al. Control growth of one-dimensional nanostructures of organic materials
KR100544324B1 (ko) 실린더 형태의 게이트를 갖는 나노 전자소자의 제조 방법및 나노 전자소자
Xu et al. Supra‐Binary Polarization in a Ferroelectric Nanowire
JP4967160B2 (ja) カーボンナノチューブの製造方法
KR100869152B1 (ko) 탄소 나노튜브 반도체 소자 제조 방법 및 그에 의한 탄소나노튜브 반도체 소자
Yang et al. Negative differential resistance phenomena in colloidal quantum dots-based organic light-emitting diodes
Hong et al. Two‐Dimensional Self‐Organization of an Ordered Au Silicide Nanowire Network on a Si (110)‐16× 2 Surface
CN1160797C (zh) 点接触平面栅型单电子晶体管及其制备方法(二)
Kshirsagar et al. Fabrication of 100nm Nano Pillars on Silicon
Jin et al. Self-organized patterns of fullerene on molecular nanotemplate
Tkachuk van der Waals Heterostructures

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060419