CN1309826A - 激光系统的脉冲控制 - Google Patents

激光系统的脉冲控制 Download PDF

Info

Publication number
CN1309826A
CN1309826A CN99808529A CN99808529A CN1309826A CN 1309826 A CN1309826 A CN 1309826A CN 99808529 A CN99808529 A CN 99808529A CN 99808529 A CN99808529 A CN 99808529A CN 1309826 A CN1309826 A CN 1309826A
Authority
CN
China
Prior art keywords
laser
pulse
emission
energy
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99808529A
Other languages
English (en)
Other versions
CN100399654C (zh
Inventor
唐纳德·V·斯玛特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novanta Inc
Original Assignee
General Scanning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Scanning Inc filed Critical General Scanning Inc
Publication of CN1309826A publication Critical patent/CN1309826A/zh
Application granted granted Critical
Publication of CN100399654C publication Critical patent/CN100399654C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/242Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/01Details
    • H01G5/019Means for correcting the capacitance characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device

Abstract

一种脉冲激光系统,包括一激光泵浦源(14);一激光棒(12);一反射镜(18),置于激光泵浦源与激光棒之间,来自激光泵浦源的能量通过它进入激光棒;一输出镜(24),通过其来自激光棒的能量发出;一开关(20),置于激光棒与输出镜之间;和一控制装置。该控制装置允许从激光棒发出的主激光脉冲在发射期间照射在一工件上,并且阻止在主脉冲发射之后在发射期间发生的次级激光发射照射在该工件上。在一重复频率范围内运转该脉冲激光系统,使得在每一重复频率下激光能量在多个发射期间发出。所发出的一部分激光能量射向目标结构。

Description

激光系统的脉冲控制
发明背景
本发明涉及激光系统的脉冲控制,并且更具体地说,涉及在例如电阻修整(trimming)或电容修整等微加工工艺中对不同重复频率脉冲的宽度和能量进行控制。
激光的脉冲宽度一般随重复频率(即激光器所发射脉冲的频率)的增加而增大。这是因为在较高重复频率时每次脉冲之前激光棒中存储能量的时间较短,而在较低重复频率时每次脉冲之前激光棒中存储能量的时间较长。因此,对于每次脉冲,其能量输出和瞬态脉冲宽度随着重复频率的变化而发生很大变化。
此现象缘于激光棒中可能提取的能量取决于其中所存储能量的事实。例如,在30kHz的重复频率时只有约33微秒能用于存储并打开Q-开关以允许激光脉冲发射,而在1kHz的重复频率时有约1000微秒能用于存储并进行Q-开关。激光增益正比于棒中所存储的能量大小。因此,当以降低的重复频率激发激光脉冲时,由于其棒中存储有较多的能量,使得其除清(sweep up)比以较高频率激发激光脉冲时迅速地多,从而产生较短的瞬态脉冲宽度。
对于每个脉冲的给定能量,其峰值功率反比于激光脉冲宽度。因此,300纳秒脉冲的峰值功率比具有相同总能量的100纳秒脉冲的峰值功率小得多。输送给工件的每脉冲总能量通常由一个用于衰减光束的装置加以控制;为了使每个时刻的脉冲具有相同的总能量,对1kHz的激光脉冲比对10kHz的激光脉冲进行更多的衰减。
可以通过在激光器以较低重复频率工作时降低激光棒中存储的能量来展宽较低重复频率给定激光束提供的激光脉冲。这可以通过降低从激光泵浦进入棒的能量来实现。Light Wave Electronics Model 110激光器即是根据该原理工作。
也可以通过在每激光脉冲之前不管重复频率以大约相同的存储时间将能量泵浦进入激光棒来确保不同重复频率下类似的脉冲宽度。在该高能量存储时间之后但是在打开Q-开关之前,泵浦进入激光棒的能量被降低至仅仅在用于补偿激光棒中存储能量的损耗所需的阈值之上的水平。可以保持该降低的能量水平直到打开Q-开关以允许脉冲从激光棒中射出。
General Scanning’s M320脉冲激光系统是一个不能保证不同重复频率下类似脉冲宽度的系统。在该系统中,在激光器与工件之间设置有声光调制器(AOM)。随着激光沿着工件的扫描,除了需要激光脉冲去除工件上的链接之外,声光调制器阻止激光脉冲照射在工件上。为了去除链接,声光调制器允许Q-开关打开即刻后发出的单个脉冲照射在该链接上。声光调制器可以根据需要只允许脉冲的一部分能量照射在该链接上。
Togari等人的美国专利US 5,719,372描述了一种激光标记系统,其中激光脉冲在工件中产生孔从而形成标记。Q-开关断开(打开)时的每个发射期间都足够长以允许激光器发射一个主发射脉冲和多个次级发射脉冲,所有这些脉冲都照射在工件上。这些主发射脉冲和次级发射脉冲的强度都小于在发射期间较短且重复频率相同时所发射的单个发射脉冲的强度。这些低功率次级发射向工件输送额外的能量。该专利指出低功率次级发射可以使包括含碳树脂薄膜的工件中的标记线具有改善的清晰度。
发明概述
本发明的一个方面其特征在于一种脉冲激光系统,其包括一激光泵浦源〔例如,连续波(CW)泵浦源〕;一激光棒;一反射镜,置于激光泵浦源与激光棒之间,来自激光泵浦源的能量通过其进入激光棒;一输出镜,来自激光棒的能量通过其发出;和一开关(例如,Q-开关),置于激光棒与输出镜之间。还有一个控制装置,可以在激光谐振腔的外部。所述Q-开关当其关闭时使能量存储在激光棒中,并且当其打开时可以使能量在发射期间从激光棒发出。所述控制装置允许从激光棒发出的主激光脉冲在发射期间照射在一工件上,并且阻止在发射期间在主脉冲之后发生的次级激光发射的至少一部分照射在该工件上。
根据本发明的二极管泵浦激光技术提供了脉冲宽度以及重复频率的弹性选择以及控制,从而优化了其性能。本发明使得可以采用在高重复频率具有短脉冲宽度的激光来在低重复频率下加工工件(例如,进行电阻修整),而不发射过度的短脉冲。对于某些应用例如修整高质量电阻,这种低重复频率会特别有用。
本发明不需要以激光泵浦输出的任何降低来提供低重复频率的宽脉冲。因此,不必重新设计或者安装用以确保激光泵浦源稳定输出的电源电路和反馈电路。而且,本发明不需要在主激光脉冲发射之后的发射期间部分使能量以减小的水平泵浦进入激光棒。因此,本发明不需要考虑在主激光脉冲发射之后存储在激光棒中的总能量中可能引入的误差,而这种误差在低衰减时是特别显著的。
因为设置有控制装置来阻止在主脉冲发射之后在发射期间发出的不利输出照射在工件上,所以这部分激光输出不会影响工件的温度,从而不会影响在各主脉冲之前可能进行的温度敏感的测量,并且不会影响工件的性能。例如,在厚膜电阻的修整中,可能在各主脉冲即刻之前进行电阻测量。在硅基片上半导体电路的微加工中,消除次级发射和连续波输出可以防止对硅基片的过度加热,从而保护硅基片不受损坏。
本发明的另一个方面其特征在于一种方法,其中在一重复频率范围运转所述脉冲激光系统,从而在每个重复频率下使激光能量在多个发射期间发出。发射期间发出的至少一部分激光能量被射向目标结构。在所述重复频率范围内使所述开关在各发射期间之前关闭与主激光脉冲重复频率无关的固定的予定时间。以恒定的功率连续地运转泵浦源。
从下面结合附图的详细说明可以清楚地了解本发明的许多其它特色、目的和优点。
附图的简要说明
图1是一个方框图,表示根据本发明的激光系统的主要部件。
图2是一个方框图,表示根据本发明的另一激光系统的主要部件。
图3是一组波形,说明图1的激光系统在较高固定重复频率时以及在较低重复频率时的操作。
图4表示在没有声光调制器的情况下图1的激光系统输出功率随时间变化的函数。
图5与图4相似,具有缩小的时间标度。
图6表示在采用声光调制器使激光器的连续波输出排出在散热器上时图1的激光系统输出功率随时间变化的函数。因此图6与图4相似,但是去除了不需要的次级脉冲。
详细说明
在厚膜电阻的修整过程中,最佳峰值激光脉冲功率、脉冲宽度,和脉冲能量取决于电阻涂料(paste)材料的类型和厚度。
例如,高欧姆涂料一般比低欧姆涂料含有较少的金属并且一般较厚。因为半绝缘高欧姆涂料中的热传导比低欧姆涂料中所需时间要长,所以高欧姆涂料一般比低欧姆涂料需要较长的激光脉冲宽度。
相反,低欧姆涂料一般含有大量的金属。这些涂料易于从激光脉冲所产生的切缝将热量横向传导开。短激光脉冲会限制这些低欧姆涂料中这种横向传导的可能性。
厚膜电阻一般为大约5微米厚,因此激光脉冲需要时间通过热扩散来加热整个电阻。一般地说,对于该电阻100纳秒是较好的脉冲宽度,但是70纳秒以下则可能不具有足够的时间在所有方向穿透电阻,因而可能会使某些电阻材料残留在切缝的底部。该材料可能会提高漏电流并且降低电阻的性能。另一方面,在300纳秒的脉冲宽度电阻可能被完全穿透,但是因为脉冲时间太长而使热量可能会通过电阻横向消散。该横向热传导会在电阻切缝的边缘产生一熔化的区域和残余,这会改变电阻温度系数(TCR)并且导致微裂纹。微裂纹反过来可以导致长期电阻漂移。
除了脉冲宽度,激光脉冲的能量也很重要,因为蒸发电阻材料需要一定量的能量。
而且,修整速度也很重要,且高修整速度一般是有利的。修整速度的极限是输送给电阻的每脉冲能量的函数。此每脉冲能量根据所用电阻涂料的类型近似为大约200至300微焦耳每脉冲。对于平均功率为7瓦的激光器,如果所需的每脉冲能量为200微焦耳,则脉冲重复频率不能超过7瓦除以0.0002焦耳,或35kHz。如果所需的每脉冲能量为300微焦耳,则脉冲重复频率不能超过7瓦除以0.0003焦耳,或约23kHz。300微焦耳的较高每脉冲能量一般用于低欧姆材料,它们通常以较低的重复频率加以修整。
采用高功率、短脉冲宽度、二极管泵浦的激光器实施下述的动态脉冲宽度控制技术。比较于灯泵浦激光系统提供较低重复频率的70纳秒脉冲和40kHz的300纳秒脉冲,该激光系统可以提供较低重复频率的30纳秒脉冲和50kHz的125纳秒脉冲。此外,也可以采用灯泵浦激光系统实施该动态脉冲宽度控制技术。
下面描述的动态脉冲宽度控制技术可以允许激光器例如SpectraPhysics DPL激光系统从单脉冲至50kHz以任何重复频率提供125纳秒的脉冲宽度。
虽然高重复频率通常是有利的,但是这种激光器可以以较低的重复频率工作以允许在各脉冲之间进行电阻测量,同时对电阻进行修整。如果所测电阻非常高,则一般可以较长时间地精确进行每次测量,因而较低的重复频率是有利的。根据本发明,这种激光器可以以例如约1kHz的低重复频率工作,脉冲宽度为大约125纳秒,而不是30纳秒(这在没有该动态脉冲宽度控制的情况下是通常的)。动态脉冲宽度控制保证脉冲宽度足够长以将电阻材料切断至电阻的底部。
参见图1,激光器10包括一个能量存储棒12和一个连续泵浦的二极管泵浦源14。来自二极管泵浦源的能量通过透镜16和100%反射镜18进入激光棒12。一个基本为光学快门的声光Q-开关20被接通和断开以使能量保持存储在激光棒12中。当Q-开关20被接通时,激光行为被禁止,从而允许来自激光二极管14的能量可以传送至棒12。因为Q-开关20阻止激光束的发射,所以存储在激光棒中的能量将增加。在Q-开关20断开(打开)后大约一微秒或两微秒,激光束通过反射镜24从激光棒12发射出。X扫描反射镜和Y扫描反射镜(未画出)移动脉冲激光束以进行厚膜电阻的修整。
Q-开关20断开时的期间为“发射期间”。Q-开关20被激发的频率公知为“重复频率”。
在图1电阻修整系统的一个应用中,激光器10在所有重复频率下具有一本征的短脉冲宽度。然而,激光脉冲的能量、脉冲宽度和峰值功率取决于能量存储的大小。在低重复频率其能量存储较高,因此脉冲宽度较短且每脉冲能量和峰值功率较高。如下面详细所述,在电阻修整系统以低重复频率工作的过程中,Q-开关20在激光脉冲消逝之后保持打开,从而从激光器10发出含有一系列次级脉冲和连续波(CW)输出的次级发射。这些次级脉冲的产生原因在于二极管泵浦源14连续地将能量泵浦进入能量存储棒12。无论何时由该连续输入产生的存储能量超过阈值(克服能量存储棒系统中损耗所需的最小能量),即会发射次级脉冲。
主脉冲的能量大致等于泵浦二极管激光器10的功率乘以Q-开关RF电源接通使Q-开关关闭时的存储时间。如果存储时间为大约30微秒并且激光器功率为大约7瓦,则主脉冲的总能量为大约210微焦耳。
在1kHz时,主脉冲以及连续波输出一起具有的总能量远超过210微焦耳。主脉冲输出由与Q-开关同步工作的声光调制器(AOM)26偏转向工件。声光调制器26的操作足够快以使主激光脉冲偏转向工件,然后通过断开,使来自短脉冲激光的连续波输出和次级脉冲排出至散热器28上。声光调制器26使主激光脉冲以至少80%的效率偏转,更优选以大约90%以上的效率偏转,并且短脉冲激光器10的所有连续波输出和次级脉冲都被排出至散热器28上。
可以采用其它光学快门例如电光调制器、液晶调制器,或高速光开关来替代声光调制器26。
根据一个替代方法,主脉冲通过声光调制器26,声光调制器26将不利的连续波输出和次级脉冲以90%的效率加以偏转,如图2所示。根据微加工应用的特性决定所用方法。因此,根据图2的方法,光学快门将不利的激光输出衍射、偏转、重新定向或者断续使其离开工件,而根据图1的方法,光学快门将所需的激光输出衍射、偏转、重新定向或者断续使其射向工件。
图3表示采用图1所示主光束偏转技术进行动态脉冲宽度控制的机构的工作原理。图3中上三个波形表示没有动态脉冲宽度控制的情况下短脉冲激光器在较高的固定重复频率下的操作。在此情况下,Q-开关以最大的所需重复频率(在此例中所示为40kHz)工作。激光触发脉冲30的上升期间触发RF Q-开关控制信号32的激发,它反过来施加至Q-开关以控制Q-开关的通/断状态。在RF Q-开关控制信号32被激发的同时,施加至Q-开关的RF信号使得Q-开关处于其“通”(关闭)状态,从而Q-开关阻止激光束的发射。这使得能量得以存储在激光棒中。激光触发脉冲30的下降使得RF Q-开关控制信号32去激发,从而因为没有RF信号施加,使得Q-开关处于“断”(打开)状态。这使得光功率在激光腔(激光腔包括位于100%反射镜与输出镜之间的所有元件)中积聚,经过一个较短时间之后,激光脉冲34在“发射期间”被发出。在该发射期间之后,另一激光触发脉冲30再次激发RF Q-开关控制信号32以使能量存储在激光棒中。在此较高重复频率下,RF Q-开关控制信号32的“通”时间被设定为允许各脉冲34之间具有最大的激光存储时间。例如,在40kHz的重复频率,存储时间应当为大约25微秒减去脉冲34在激光腔中积聚和发射所需的时间(约二至三微秒)。在另一实施例中,Q-开关可以是电光Q-开关,并且可以采用高压Q-开关控制信号来替代RF Q-开关控制信号。
图3中下五个波形表示在采用动态脉冲宽度控制的情况下短脉冲激光器在较低的固定重复频率下的操作。RF Q-开关控制信号32仅仅对于提供所需每脉冲存储能量和所需脉冲宽度所必需的期间才被激发,其中在此例中所需每脉冲存储能量和所需脉冲宽度与图3中上三个波形的较高重复频率例子中的每脉冲存储能量和脉冲宽度相同。在经过能量存储所需时间之后,RF Q-开关控制信号32被去激发,使得Q-开关断开从而允许激光器发射输出。Q-开关保持其断开状态直到需要进行下一发射期间的存储。根据该方法,能量存储时间与所需每脉冲能量和所需脉冲宽度相对应。在较低重复频率下,如图3的下五个波形所述,在发出主脉冲36之后,激光器在发射期间将积聚并以连续波模式输出38发射激光。主脉冲之后的该输出38包括一系列从激光器发出的次级脉冲并继以连续波输出。在图1的实施例中,在发出主脉冲36即刻之前声光调制器信号40触发声光调制器,以便使主脉冲偏转向所述电阻,然后断开声光调制器使得不利的次级和连续波输出排出至散热器上,如图1所示。相应地,可以防止对被修整电阻的不利加热。
图4和5表示在没有声光调制器的情况下激光输出的功率包括主脉冲36以及次级脉冲和连续波输出38随时间变化的函数。图6表示在采用声光调制器使来自激光器的连续波输出排出在散热器上的情况下的激光输出功率。
操作员可以根据计算机控制选择所需的激光脉冲宽度。采用查询表对计算机进行编程,以便对于所需的激光脉冲宽度提供准确的Q-开关存储时间。计算机还为AOM偏转器提供准确的时钟信号。一旦操作员选择了所需的脉冲宽度,则激光器可以在对应于该存储时间的最大重复频率之下的任意重复频率工作,而无须改变每脉冲总能量或脉冲宽度。因此,输送给电阻的能量、脉冲宽度和峰值功率在所有的重复频率上都固定在恒定值。
已经描述了用于控制激光系统中脉冲的新颖的和改进的设备和技术。显然本领域技术人员现在可以根据本文所述的特定实施例作出许多不同的应用和变型,而不偏离本发明的思想。例如,虽然本文公开的是该设备在厚膜电阻修整中的应用,但是该技术也可以有其它应用,例如厚膜电容修整、硅基片上半导体电路的微加工,电阻或电容的厚膜修整、链接去除,等等。

Claims (39)

1.一种脉冲激光系统,包括:
一激光泵浦源;
一激光棒;
一反射镜,置于激光泵浦源与激光棒之间,来自激光泵浦源的能量通过它进入激光棒;
一输出镜,来自激光棒的能量通过其发出;
一开关,置于激光棒与输出镜之间,当其关闭时使能量在激光棒中存储所需的时间间隔,并且当其打开时可以使能量在发射期间从激光棒发出;
一控制装置,其构造是使在发射期间从激光棒发出的主激光脉冲可以照射在一工件上,并且阻止在发射期间在主脉冲之后发生的次级激光发射的至少一部分照射在该工件上。
2.如权利要求1所述的脉冲激光系统,其中所述的控制装置包括光学快门。
3.如权利要求1所述的脉冲激光系统,其中所述光学快门包括声光调制器、电光调制器、液晶调制器,或者高速光开关。
4.如权利要求1所述的脉冲激光系统,其中所述控制装置通过将不利的次级激光发射加以衍射、偏转、重新定向或者断续使其离开工件来阻止次级激光发射照射在工件上。
5.如权利要求1所述的脉冲激光系统,其中所述控制装置通过将主脉冲加以衍射、偏转、重新定向或者断续以使其朝向工件而使主激光脉冲照射在工件上。
6.如权利要求1所述的脉冲激光系统,其中所述控制装置阻止主脉冲发射之后在发射期间产生的次级激光发射的80%以上照射在工件上。
7.如权利要求1所述的脉冲激光系统,其中所述控制装置在主脉冲发射即刻之后即开始阻止在发射期间产生的次级激光发射照射在工件上。
8.如权利要求1所述的脉冲激光系统,其中该激光泵浦源包括二极管泵浦系统。
9.如权利要求1所述的脉冲激光系统,其中该激光泵浦源包括灯泵浦系统。
10.如权利要求1所述的脉冲激光系统,其中所述开关为Q-开关。
11.如权利要求10所述的脉冲激光系统,其中所述Q-开关的构成是使在其接收控制信号时关闭,并且在没有控制信号施加在Q-开关上时打开。
12.如权利要求11所述的脉冲激光系统,其中所述控制信号是一高频信号。
13.如权利要求11所述的脉冲激光系统,其中所述控制信号是一高压信号。
14.如权利要求11所述的脉冲激光系统,其中所述控制信号是由一触发信号触发的。
15.如权利要求1所述的脉冲激光系统,其中所述开关被设置成在一重复频率范围内关闭一段与主激光脉冲重复频率无关的固定的予定时间。
16.如权利要求15所述的脉冲激光系统,其中在较低的主激光脉冲重复频率下,所述控制装置阻止主脉冲发射后产生的次级激光发射照射在该工件上,并且在较高的主激光脉冲重复频率下,在主脉冲发射后在发射期间没有次级激光发射产生。
17.如权利要求1所述的脉冲激光系统,其中所述激光泵浦源构造成连续工作。
18.一种运转脉冲激光系统的方法,包括如下步骤:
提供一脉冲激光系统,其包括一激光泵浦源;一激光棒;一反射镜,置于激光泵浦源与激光棒之间,来自激光泵浦源的能量通过它进入激光棒;一输出镜,来自激光棒的能量通过其发出;和一开关,置于激光棒与输出镜之间,当其关闭时使能量在激光棒中存储所需的时间间隔,并且当其打开时允许能量在发射期间从激光棒发出;
运转所述脉冲激光系统,使得激光能量在多个发射期间发出;
允许在每一发射期间从激光棒发出的主激光脉冲照射在一工件上;并且
阻止在主脉冲发射之后在每一发射期间发生的次级激光发射的至少一部分照射在该工件上。
19.如权利要求18所述的方法,还包括在一个重复频率范围内使所述开关关闭一段与主激光脉冲重复频率无关的固定的予定时间的步骤。
20.如权利要求19所述的方法,其中所述固定的予定时间为在所述重复频率范围的最高重复频率下可被采用的最长能量存储时间。
21.如权利要求18所述的方法,其中所述阻止在主脉冲发射之后在发射期间发生的次级激光发射照射在该工件上的步骤,是在主激光脉冲的较低重复频率下进行的,并且其中在主激光脉冲的较高重复频率下,在主脉冲发射之后的发射期间没有次级激光发射发生。
22.如权利要求18所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括以受控的激光脉冲宽度对一工作表面进行微加工。
23.如权利要求22所述的方法,其中所述对一工作表面进行微加工的步骤,包括对硅基片上的半导体电路进行微加工。
24.如权利要求18所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括对一可修整元件进行修整。
25.如权利要求24所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括对厚膜电子元件进行修整。
26.如权利要求24所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括对薄膜电子元件进行修整。
27.如权利要求24所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括对电阻进行修整。
28.如权利要求24所述的方法,其中所述允许主激光脉冲照射在一工件上的步骤,包括对电容进行修整。
29.如权利要求24所述的方法,其中所述运转该脉冲激光系统的步骤,包括连续地运转所述激光泵浦源。
30.一种运转脉冲激光系统的方法,包括如下步骤:
提供一脉冲激光系统,其包括一激光泵浦源;一激光棒;一反射镜,置于激光泵浦源与激光棒之间,来自激光泵浦源的能量通过它进入激光棒;一输出镜,来自激光棒的能量通过其发出;和一开关,置于激光棒与输出镜之间,当其关闭时使能量在激光棒中存储所需的时间间隔,并且当其打开时允许能量在发射期间从激光棒发出;以及
在一重复频率范围内运转所述脉冲激光系统,使得在每一重复频率下激光能量在多个发射期间发出,且此发射期间发出的至少一部分激光能量被射向目标结构;
运转所述脉冲激光系统的步骤,包括在所述重复频率范围内在每一发射期间之前使所述开关关闭一段与主激光脉冲重复频率无关的固定的予定时间;
运转所述脉冲激光系统的步骤,还包括以恒定的功率连续地运转所述泵浦源。
31.如权利要求30所述的方法,其中所述使发射期间发出的至少一部分激光能量射向目标结构的步骤,包括对所述目标结构进行功能的或被动的修整。
32.如权利要求30所述的方法,其中所述运转脉冲激光系统的步骤,包括对可修整元件进行修整。
33.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括对厚膜电子元件进行修整。
34.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括对薄膜电子元件进行修整。
35.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括对电阻进行修整。
36.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括对电容进行修整。
37.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括对一工作表面进行微加工。
38.如权利要求37所述的方法,其中所述对一工作表面进行微加工的步骤,包括对硅基片上的半导体电路进行微加工。
39.如权利要求32所述的方法,其中所述运转脉冲激光系统的步骤,包括连续地运转所述激光泵浦源。
CNB998085294A 1998-06-12 1999-06-02 激光系统的脉冲控制 Expired - Fee Related CN100399654C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/096,600 US6339604B1 (en) 1998-06-12 1998-06-12 Pulse control in laser systems
US09/096,600 1998-06-12

Publications (2)

Publication Number Publication Date
CN1309826A true CN1309826A (zh) 2001-08-22
CN100399654C CN100399654C (zh) 2008-07-02

Family

ID=22258140

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB998085294A Expired - Fee Related CN100399654C (zh) 1998-06-12 1999-06-02 激光系统的脉冲控制

Country Status (10)

Country Link
US (4) US6339604B1 (zh)
EP (1) EP1097492B1 (zh)
JP (1) JP3825631B2 (zh)
KR (1) KR100433374B1 (zh)
CN (1) CN100399654C (zh)
AU (1) AU4325899A (zh)
CA (1) CA2334764A1 (zh)
DE (1) DE69940693D1 (zh)
TW (1) TW463432B (zh)
WO (1) WO1999065123A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371431A (zh) * 2010-08-13 2012-03-14 豪晶科技股份有限公司 激光加工制程装置
CN107546563A (zh) * 2016-06-28 2018-01-05 广州禾信仪器股份有限公司 激光能量自动控制方法及装置
CN109891689A (zh) * 2016-12-05 2019-06-14 极光先进雷射株式会社 激光装置

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998759A (en) * 1996-12-24 1999-12-07 General Scanning, Inc. Laser processing
US6339604B1 (en) 1998-06-12 2002-01-15 General Scanning, Inc. Pulse control in laser systems
US6144118A (en) 1998-09-18 2000-11-07 General Scanning, Inc. High-speed precision positioning apparatus
US6300590B1 (en) * 1998-12-16 2001-10-09 General Scanning, Inc. Laser processing
US8217304B2 (en) * 2001-03-29 2012-07-10 Gsi Group Corporation Methods and systems for thermal-based laser processing a multi-material device
US7723642B2 (en) 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
US7838794B2 (en) * 1999-12-28 2010-11-23 Gsi Group Corporation Laser-based method and system for removing one or more target link structures
US7671295B2 (en) * 2000-01-10 2010-03-02 Electro Scientific Industries, Inc. Processing a memory link with a set of at least two laser pulses
US20030222324A1 (en) * 2000-01-10 2003-12-04 Yunlong Sun Laser systems for passivation or link processing with a set of laser pulses
US20060141681A1 (en) * 2000-01-10 2006-06-29 Yunlong Sun Processing a memory link with a set of at least two laser pulses
US20030024913A1 (en) * 2002-04-15 2003-02-06 Downes Joseph P. Laser scanning method and system for marking articles such as printed circuit boards, integrated circuits and the like
JP2001352120A (ja) * 2000-06-06 2001-12-21 Matsushita Electric Ind Co Ltd レーザ装置とその制御方法およびそれを用いたレーザ加工方法とレーザ加工機
JP2002040627A (ja) * 2000-07-24 2002-02-06 Nec Corp レーザパターン修正方法並びに修正装置
JP2002103066A (ja) * 2000-09-25 2002-04-09 Nec Corp レーザ加工装置
US20070173075A1 (en) * 2001-03-29 2007-07-26 Joohan Lee Laser-based method and system for processing a multi-material device having conductive link structures
DE10140254A1 (de) * 2001-08-09 2003-03-06 Trumpf Laser Gmbh & Co Kg Laserverstärkersystem
JP3838064B2 (ja) * 2001-09-28 2006-10-25 松下電器産業株式会社 レーザ制御方法
US6875950B2 (en) * 2002-03-22 2005-04-05 Gsi Lumonics Corporation Automated laser trimming of resistors
US7563695B2 (en) * 2002-03-27 2009-07-21 Gsi Group Corporation Method and system for high-speed precise laser trimming and scan lens for use therein
US6951995B2 (en) 2002-03-27 2005-10-04 Gsi Lumonics Corp. Method and system for high-speed, precise micromachining an array of devices
US7119351B2 (en) * 2002-05-17 2006-10-10 Gsi Group Corporation Method and system for machine vision-based feature detection and mark verification in a workpiece or wafer marking system
EP1416323B1 (en) * 2002-10-28 2007-12-05 FUJIFILM Corporation Laser marking method
ES2384871T3 (es) * 2003-02-14 2012-07-13 Universität Heidelberg Procedimiento de generación de al menos un impulso y/o secuencia de impulsos con parámetros controlables
US6930274B2 (en) * 2003-03-26 2005-08-16 Siemens Vdo Automotive Corporation Apparatus and method of maintaining a generally constant focusing spot size at different average laser power densities
US7616669B2 (en) * 2003-06-30 2009-11-10 Electro Scientific Industries, Inc. High energy pulse suppression method
US6947454B2 (en) * 2003-06-30 2005-09-20 Electro Scientific Industries, Inc. Laser pulse picking employing controlled AOM loading
DE112004001527T5 (de) * 2003-08-19 2006-07-06 Electro Scientific Industries, Inc., Portland Verfahren und Lasersysteme zur Verbindungsbearbeitung unter Verwendung von Laserimpulsen mit speziell zugeschnittenen Leistungsprofilen
US7505196B2 (en) * 2004-03-31 2009-03-17 Imra America, Inc. Method and apparatus for controlling and protecting pulsed high power fiber amplifier systems
US7020582B1 (en) 2004-04-28 2006-03-28 Altera Corporation Methods and apparatus for laser marking of integrated circuit faults
US7103077B2 (en) * 2004-04-29 2006-09-05 20/10 Perfect Vision Optische Geraete Gmbh System and method for measuring and controlling an energy of an ultra-short pulse of a laser beam
US7139294B2 (en) * 2004-05-14 2006-11-21 Electro Scientific Industries, Inc. Multi-output harmonic laser and methods employing same
DE112005001324T5 (de) * 2004-06-07 2007-08-23 Electro Scientific Industries, Inc., Portland AOM-Modulationstechniken zur Verbesserung von Lasersystemleistung
US7019891B2 (en) * 2004-06-07 2006-03-28 Electro Scientific Industries, Inc. AOM modulation techniques employing plurality of tilt-angled transducers to improve laser system performance
US7120174B2 (en) * 2004-06-14 2006-10-10 Jds Uniphase Corporation Pulsed laser apparatus and method
US20060000814A1 (en) * 2004-06-30 2006-01-05 Bo Gu Laser-based method and system for processing targeted surface material and article produced thereby
US7227098B2 (en) * 2004-08-06 2007-06-05 Electro Scientific Industries, Inc. Method and system for decreasing the effective pulse repetition frequency of a laser
US7372878B2 (en) * 2004-08-06 2008-05-13 Electro Scientific Industries, Inc. Method and system for preventing excessive energy build-up in a laser cavity
US20060159138A1 (en) * 2004-12-21 2006-07-20 Institut National D'optique Pulsed laser light source
US20060151704A1 (en) * 2004-12-30 2006-07-13 Cordingley James J Laser-based material processing methods, system and subsystem for use therein for precision energy control
US20060191884A1 (en) * 2005-01-21 2006-08-31 Johnson Shepard D High-speed, precise, laser-based material processing method and system
JP5183013B2 (ja) * 2005-01-27 2013-04-17 住友電工デバイス・イノベーション株式会社 レーザモジュールおよび外部共振型レーザの波長制御方法
JP4874561B2 (ja) * 2005-03-24 2012-02-15 芝浦メカトロニクス株式会社 Qスイッチレーザ装置
FR2883782B1 (fr) * 2005-04-01 2008-10-10 Valeo Electronique Sys Liaison Procede et dispositif de controle de la puissance transmise par un faisceau laser en un point de reference, dispositif et procede de brasage
FR2885265B1 (fr) * 2005-04-28 2009-10-09 Femlight Sa Dispositif laser declenche a fibre photonique
US20060289411A1 (en) * 2005-06-24 2006-12-28 New Wave Research Laser system with multiple operating modes and work station using same
US20070215575A1 (en) * 2006-03-15 2007-09-20 Bo Gu Method and system for high-speed, precise, laser-based modification of one or more electrical elements
US8822880B2 (en) * 2006-06-16 2014-09-02 Valeo Etudes Electroniques Method and device for controlling the power transmitted by a laser to a reference point, soldering device and method
US8084706B2 (en) * 2006-07-20 2011-12-27 Gsi Group Corporation System and method for laser processing at non-constant velocities
US7643521B2 (en) * 2006-07-27 2010-01-05 Technolas Perfect Vision Gmbh Material processing system with variable repetition rate laser
US7732731B2 (en) * 2006-09-15 2010-06-08 Gsi Group Corporation Method and system for laser processing targets of different types on a workpiece
WO2008086091A1 (en) * 2007-01-05 2008-07-17 Gsi Group Corporation System and method for multi-pulse laser processing
US7817685B2 (en) * 2007-01-26 2010-10-19 Electro Scientific Industries, Inc. Methods and systems for generating pulse trains for material processing
US9029731B2 (en) * 2007-01-26 2015-05-12 Electro Scientific Industries, Inc. Methods and systems for laser processing continuously moving sheet material
JP2008207210A (ja) * 2007-02-26 2008-09-11 Disco Abrasive Syst Ltd レーザー光線照射装置およびレーザー加工機
US8278595B2 (en) * 2007-03-16 2012-10-02 Electro Scientific Industries, Inc. Use of predictive pulse triggering to improve accuracy in link processing
KR20140137465A (ko) * 2007-09-19 2014-12-02 지에스아이 그룹 코포레이션 고속 빔 편향 링크 가공
JP5192213B2 (ja) * 2007-11-02 2013-05-08 株式会社ディスコ レーザー加工装置
JP5024118B2 (ja) * 2008-02-29 2012-09-12 住友電気工業株式会社 レーザ発振方法、レーザ、レーザ加工方法、及びレーザ測定方法
JP5461519B2 (ja) 2008-03-31 2014-04-02 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 複数のビームを結合し、繰り返し率と平均パワーが高い偏光レーザビームを形成する方法
US20110210105A1 (en) * 2009-12-30 2011-09-01 Gsi Group Corporation Link processing with high speed beam deflection
US8351477B2 (en) 2010-07-22 2013-01-08 Coherent Gmbh Modulation method for diode-laser pumped lasers
US8604380B2 (en) * 2010-08-19 2013-12-10 Electro Scientific Industries, Inc. Method and apparatus for optimally laser marking articles
US8593722B2 (en) 2011-07-05 2013-11-26 Electro Scientific Industries, Inc. Systems and methods for providing temperature stability of acousto-optic beam deflectors and acousto-optic modulators during use
TWI558578B (zh) * 2011-09-28 2016-11-21 伊雷克托科學工業股份有限公司 用於最佳化地雷射標記物品之方法和設備
US8767291B2 (en) * 2012-03-16 2014-07-01 Kla-Tencor Corporation Suppression of parasitic optical feedback in pulse laser systems
KR101442164B1 (ko) * 2013-04-15 2014-11-17 (주)엔에스 재단장치 및 이를 이용한 재단방법
US8995052B1 (en) * 2013-09-09 2015-03-31 Coherent Kaiserslautern GmbH Multi-stage MOPA with first-pulse suppression
CN103592783B (zh) * 2013-11-25 2016-04-20 核工业理化工程研究院 光致漂移实验研究中基于电光光开关的激光时域调制器
CN104332809B (zh) * 2014-08-25 2015-08-26 深圳市创鑫激光股份有限公司 基于声光开关的脉宽可调脉冲光纤激光器
JP2016070900A (ja) * 2014-10-02 2016-05-09 セイコーエプソン株式会社 磁気計測装置の製造方法、ガスセルの製造方法、磁気計測装置、およびガスセル
JP6588707B2 (ja) * 2015-02-06 2019-10-09 スペクトロニクス株式会社 レーザ光源装置及びレーザパルス光生成方法
WO2017042357A1 (en) * 2015-09-09 2017-03-16 Sei S.P.A. Laser machining apparatus and method for forming a pattern comprising a plurality of marks on a workpiece
CN110050394B (zh) * 2016-12-09 2021-01-12 古河电气工业株式会社 脉冲激光装置、加工装置及脉冲激光装置的控制方法
EP3794691A4 (en) 2018-05-14 2022-01-26 Civan Advanced Technologies Ltd. LASER BEAM PROCESSES AND SYSTEMS
DE102019205285A1 (de) * 2019-04-12 2020-10-15 Trumpf Laser Gmbh Verfahren und Vorrichtung zum Erzeugen von Laserpulsen
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US20230044929A1 (en) 2021-03-26 2023-02-09 Aeye, Inc. Multi-Lens Lidar Receiver with Multiple Readout Channels
US11619740B2 (en) 2021-03-26 2023-04-04 Aeye, Inc. Hyper temporal lidar with asynchronous shot intervals and detection intervals
US11486977B2 (en) 2021-03-26 2022-11-01 Aeye, Inc. Hyper temporal lidar with pulse burst scheduling
US11474213B1 (en) 2021-03-26 2022-10-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using marker shots
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
KR20220149828A (ko) 2021-04-30 2022-11-09 삼성전자주식회사 반도체 소자
US11874163B2 (en) 2022-01-14 2024-01-16 Ophir Optronics Solutions, Ltd. Laser measurement apparatus having a removable and replaceable beam dump

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US520579A (en) * 1894-05-29 Adjustable surgical chair
US412330A (en) * 1889-10-08 gibson
US5396A (en) * 1847-12-11 Dbagoon-saddletbee
US3747019A (en) 1970-07-16 1973-07-17 Union Carbide Corp Method and means for stabilizing the amplitude and repetition frequency of a repetitively q-switched laser
US3703687A (en) * 1971-02-12 1972-11-21 Bell Telephone Labor Inc Intracavity modulator
US4337442A (en) 1980-03-28 1982-06-29 Electro Scientific Industries, Inc. First laser pulse amplitude modulation
US4461005A (en) * 1980-10-27 1984-07-17 Ward Ernest M High peak power, high PRF laser system
US4341446A (en) 1980-10-27 1982-07-27 Realist, Inc. Microfiche reading carrel
US4412330A (en) 1981-04-16 1983-10-25 Electro Scientific Industries, Inc. Q-Switched laser with stable output and method of making the same
US4483005A (en) * 1981-09-24 1984-11-13 Teradyne, Inc. Affecting laser beam pulse width
US4423005A (en) * 1981-09-25 1983-12-27 Baxter Travenol Laboratories, Inc. Determining quantitative degree of ethylene oxide exposure in sterilization processes
DE3404396A1 (de) * 1984-02-08 1985-08-14 Dornier Gmbh, 7990 Friedrichshafen Vorrichtung und verfahren zur aufnahme von entfernungsbildern
US4590598A (en) 1984-06-13 1986-05-20 Britt Corporation Pulsed laser system
US4601037A (en) 1984-06-13 1986-07-15 Britt Corporation Pulsed laser system
US4604513A (en) 1985-05-07 1986-08-05 Lim Basilio Y Combination of a laser and a controller for trimming a metallized dielectric film capacitor
US4675872A (en) 1985-09-30 1987-06-23 Harris Corporation Driver unit for a laser Q-switch
JPS6286851A (ja) 1985-10-14 1987-04-21 Nec Corp レ−ザ−トリミング装置
US4730105A (en) 1986-07-25 1988-03-08 American Telephone And Telegraph Company, At&T Bell Laboratories Apparatus for the stabilization of the output intensity of a laser using a Fabry-Perot cavity
US5168400A (en) 1986-09-29 1992-12-01 United States Department Of Energy Laser pulse stacking method
DE3704338C2 (de) 1987-02-12 1995-04-06 Gsf Forschungszentrum Umwelt Einrichtung zur Erzeugung verschiedener Laserwellenlängen aus demselben Lasermedium
US4901323A (en) 1987-05-01 1990-02-13 Universities Research Association, Inc. Laser pulse stretcher method and apparatus
US5121245A (en) * 1989-04-06 1992-06-09 Electro Scientific Industries, Inc. Laser system incorporating an acousto-optic device having reduced susceptibility to stress-induced birefringence
US4972210A (en) * 1989-06-28 1990-11-20 Eastman Kodak Company Driver for a diode laser
IL91240A (en) 1989-08-07 1994-07-31 Quick Tech Ltd Pulsed laser apparatus and systems and techniques for its operation
ATE124465T1 (de) 1990-01-11 1995-07-15 Battelle Memorial Institute Verbesserung von materialeigenschaften.
US5157676A (en) 1990-06-19 1992-10-20 The United States Of America As Represented By The United States Department Of Energy Apparatus and process for active pulse intensity control of laser beam
DE4130802A1 (de) * 1990-09-19 1992-04-23 Tosoh Corp Festkoerper-laseroszillator
US5226051A (en) 1991-06-04 1993-07-06 Lightwave Electronics Laser pump control for output power stabilization
US5243615A (en) * 1991-11-20 1993-09-07 Laserscope High-powered intracavity non-linear optic laser
US5197074A (en) * 1991-12-26 1993-03-23 Electro Scientific Industries, Inc. Multi-function intra-resonator loss modulator and method of operating same
US5365532A (en) 1992-10-09 1994-11-15 Hughes Aircraft Company Cavity dump laser amplitude stabilization
US5291505A (en) * 1993-01-21 1994-03-01 Hughes Aircraft Company Active energy control for diode pumped laser systems using pulsewidth modulation
US5448417A (en) 1993-03-16 1995-09-05 Adams; Jeff C. Laser pulse synthesizer
US5339323A (en) 1993-04-30 1994-08-16 Lumonics Corporation Laser system for controlling emitted pulse energy
US5408480A (en) 1993-07-15 1995-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laser with optically driven Q-switch
US5466484A (en) 1993-09-29 1995-11-14 Motorola, Inc. Resistor structure and method of setting a resistance value
US5453594A (en) 1993-10-06 1995-09-26 Electro Scientific Industries, Inc. Radiation beam position and emission coordination system
JP2500648B2 (ja) 1993-10-29 1996-05-29 日本電気株式会社 ビ―ムスキャン式レ―ザマ―キング装置
JPH0837329A (ja) 1994-07-22 1996-02-06 Toshiba Corp パルスガスレーザ発振方法及びその装置
KR0132269B1 (ko) 1994-08-24 1998-04-11 이대원 노광장비에서의 자동초점과 자동수평 조절장치 및 조절방법
JP2682475B2 (ja) 1994-11-17 1997-11-26 日本電気株式会社 ビームスキャン式レーザマーキング方法および装置
JPH08172236A (ja) 1994-12-15 1996-07-02 Nec Corp Apc回路
US5730811A (en) 1995-12-21 1998-03-24 General Electric Company Cavity dumped laser shock peening process
US5596590A (en) * 1996-01-25 1997-01-21 Cymer Laser Technologies Beam diverting shutter for a laser beam
US5721749A (en) 1996-01-30 1998-02-24 Trw Inc. Laser pulse profile control by modulating relaxation oscillations
KR970063847A (ko) * 1996-02-09 1997-09-12 김광호 펄스 레이저광 발생 장치
US5982790A (en) 1997-01-16 1999-11-09 Lightwave Electronics Corporation System for reducing pulse-to-pulse energy variation in a pulsed laser
DE19705330C1 (de) * 1997-02-12 1998-02-19 Lambda Physik Gmbh Verfahren und Festkörperlasersystem zum Erzeugen von Laserimpulsen mit variabler Impulsfolgefrequenz und konstanten Strahleigenschaften
US5816573A (en) 1997-02-28 1998-10-06 Bolling, Sr.; Harold Lloyd Give and take card game
US5812569A (en) 1997-03-21 1998-09-22 Lumonics, Inc. Stabilization of the output energy of a pulsed solid state laser
US6172331B1 (en) 1997-09-17 2001-01-09 General Electric Company Method and apparatus for laser drilling
US6054673A (en) 1997-09-17 2000-04-25 General Electric Company Method and apparatus for laser drilling
US6021154A (en) 1997-11-21 2000-02-01 General Electric Company Laser shock peening method and reflective laser beam homogenizer
US6009110A (en) 1998-03-11 1999-12-28 Lightwave Electronics Corporation Pulse amplitude control in frequency-converted lasers
US6339604B1 (en) 1998-06-12 2002-01-15 General Scanning, Inc. Pulse control in laser systems
US6172325B1 (en) 1999-02-10 2001-01-09 Electro Scientific Industries, Inc. Laser processing power output stabilization apparatus and method employing processing position feedback
US6418154B1 (en) * 1999-06-07 2002-07-09 Coherent, Inc. Pulsed diode-pumped solid-state laser
GB2386184B (en) 2000-07-12 2004-05-26 Electro Scient Ind Inc UV laser system and method for single pulse severing of IC fuses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371431A (zh) * 2010-08-13 2012-03-14 豪晶科技股份有限公司 激光加工制程装置
CN102371431B (zh) * 2010-08-13 2015-06-10 豪晶科技股份有限公司 激光加工制程装置
CN107546563A (zh) * 2016-06-28 2018-01-05 广州禾信仪器股份有限公司 激光能量自动控制方法及装置
CN107546563B (zh) * 2016-06-28 2020-04-21 广州禾信仪器股份有限公司 激光能量自动控制方法及装置
CN109891689A (zh) * 2016-12-05 2019-06-14 极光先进雷射株式会社 激光装置
US10965090B2 (en) 2016-12-05 2021-03-30 Gigaphoton Inc. Laser apparatus
CN109891689B (zh) * 2016-12-05 2021-05-11 极光先进雷射株式会社 激光装置

Also Published As

Publication number Publication date
US6831936B1 (en) 2004-12-14
EP1097492A1 (en) 2001-05-09
AU4325899A (en) 1999-12-30
US6339604B1 (en) 2002-01-15
US20050271095A1 (en) 2005-12-08
CN100399654C (zh) 2008-07-02
KR20010071457A (ko) 2001-07-28
JP2002518834A (ja) 2002-06-25
EP1097492A4 (en) 2005-05-11
US20050105568A1 (en) 2005-05-19
WO1999065123A1 (en) 1999-12-16
JP3825631B2 (ja) 2006-09-27
EP1097492B1 (en) 2009-04-08
CA2334764A1 (en) 1999-12-16
KR100433374B1 (ko) 2004-05-27
US6973104B2 (en) 2005-12-06
DE69940693D1 (de) 2009-05-20
TW463432B (en) 2001-11-11
WO1999065123A9 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
CN1309826A (zh) 激光系统的脉冲控制
US4930901A (en) Method of and apparatus for modulating a laser beam
US6784399B2 (en) Micromachining with high-energy, intra-cavity Q-switched CO2 laser pulses
US7205501B2 (en) Laser machining method and laser machining apparatus
KR101123231B1 (ko) 제어된 aom 부하를 사용하는 레이저 펄스 피킹
US8081668B2 (en) High energy pulse suppression method
US7817686B2 (en) Laser micromachining using programmable pulse shapes
US6490299B1 (en) Method and laser system for generating laser radiation of specific temporal shape for production of high quality laser-induced damage images
JP4175544B2 (ja) パルス列生成のためのqスイッチ方法
WO2011123449A2 (en) Laser systems and methods using triangular-shaped tailored laser pulses for selected target classes
JP2013505837A (ja) 有益なパルス形状を有するレーザパルスのバーストを使用して薄膜材料にラインをスクライブする方法及び装置
KR101631673B1 (ko) 레이저 펄스 등화를 위한 시스템 및 방법
JP5082798B2 (ja) レーザ発振装置及びその制御方法
US6806440B2 (en) Quasi-CW diode pumped, solid-state UV laser system and method employing same
US6222862B1 (en) Control method of exciting a pulse laser and power supply unit for exciting a pulse laser
US6781090B2 (en) Quasi-CW diode-pumped, solid-state harmonic laser system and method employing same
CN112003122A (zh) 一种声光调q的亚纳秒红外固体激光器及其控制方法
JP2000252571A (ja) レーザマーキング装置
Subhash et al. Inexpensive timing circuit for a Q‐switched solid‐state laser using NE555 Timers
JPS6235871B2 (zh)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: GSI LUMONICS CORP.

Free format text: FORMER OWNER: GENERAL SCANNING, INC.

Effective date: 20131218

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20131218

Address after: Massachusetts USA

Patentee after: GSI Lumonics Corp.

Address before: Massachusetts, USA

Patentee before: General Scanning Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080702

Termination date: 20150602

EXPY Termination of patent right or utility model