CN1309035C - 减少SiGe衬底上应变Si中N+扩散的方法 - Google Patents

减少SiGe衬底上应变Si中N+扩散的方法 Download PDF

Info

Publication number
CN1309035C
CN1309035C CNB2004100624730A CN200410062473A CN1309035C CN 1309035 C CN1309035 C CN 1309035C CN B2004100624730 A CNB2004100624730 A CN B2004100624730A CN 200410062473 A CN200410062473 A CN 200410062473A CN 1309035 C CN1309035 C CN 1309035C
Authority
CN
China
Prior art keywords
room
source
sige
calking
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100624730A
Other languages
English (en)
Other versions
CN1595625A (zh
Inventor
D·奇丹巴尔拉奥
O·H·多库马奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1595625A publication Critical patent/CN1595625A/zh
Application granted granted Critical
Publication of CN1309035C publication Critical patent/CN1309035C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Abstract

本发明提供一种减少SiGe衬底上应变Si中N+扩散的方法。在SiGe衬底的上表面中形成第一源和漏区。第一源和漏区含有N型杂质。为减少第一源和漏区中含有的N型杂质的扩散,降低第一源和漏区中的空位浓度。通过第一源和漏区中的填隙元素或空位俘获元素降低空位浓度。通过离子注入提供填隙元素或空位俘获元素。

Description

减少SiGe衬底上应变Si中N+扩散的方法
技术领域
本发明涉及用于制造器件性能得到提高的半导体器件和展示出器件性能得到提高的器件结构的方法,尤其涉及用于制造展示出减少了N型杂质扩散的基于SiGe的器件的方法。
技术背景
对超大规模集成半导体器件的日益增加的需求,要求晶体管的性能和密度不断提高。随着器件尺寸的缩小达到极限,人们转为寻找能够提高器件性能的新材料和方法。优选方法之一是通过增加迁移率。
众所周知,在NFET器件中,对沟道区施加的双轴张应力增加了电子迁移率。这点可通过构建NFET器件实现,NFET器件由衬底上的一组层叠膜(如,硅-SiGe-硅)构成。从硅衬底开始,在硅衬底上生长SiGe。通常使用缓冲层来减少可以导致器件泄漏的螺旋位错缺陷密度,但是由于失配位错的形成,仍然达到了充分的弛豫。SiGe膜得到弛豫,从而具有比硅大的晶格常数。当接着在SiGe上淀积硅时,硅遵从弛豫SiGe的更大晶格,并受到双轴张力。沟道被完全容纳在应变硅中,并提高了电子迁移率。
然而,基于SiGe的衬底展示出某些缺陷,尤其当在其上形成NFET器件时。为了形成NFET器件,将N型杂质(如,As或P)离子注入到基于SiGe的衬底,以形成有源区(如,源和漏区)。这里,SiGe层中含有的大量空位不希望地增加了注入的N型杂质的扩散。这使得实现一致的频响跌落(roll-off)器件特性更加困难了。因此,需要更有效的用于制造基于SiGe的半导体器件的方法。
发明内容
本发明的一方面,提供了一种制造半导体器件的方法。该方法包括在基于SiGe的衬底的上表面形成源和漏延伸区的步骤。源和漏延伸区含有N型杂质。然后,为减少源和漏延伸区中含有的N型杂质的扩散,降低源和漏延伸区中的空位浓度。通过向源和漏延伸区提供填隙元素或空位俘获元素来降低空位浓度。
本发明的另一方面,提供了一种减少基于SiGe的衬底中N型杂质的扩散的方法。源和漏延伸区位于基于SiGe的衬底的上表面。将填隙元素或空位俘获元素离子注入到源和漏延伸区,以降低源和漏延伸区中的空位浓度。
本发明的再一方面为具有基于SiGe的衬底的半导体器件。在基于SiGe的衬底上形成栅极,在其二者之间具有栅氧化物。在SiGe衬底的上表面形成含有N型杂质的源和漏延伸区。与源和漏延伸区对应形成低空位区,低空位区含有填隙元素或空位俘获元素。
附图说明
通过参考附图对本发明的优选实施例的下述详细说明,将更好地理解前述和其它优点,其中:
图1到7按顺序描述了根据本发明的实施例的方法的诸阶段。
具体实施方式
本发明提供了一种方法,该方法显著减少了基于SiGe的衬底中N型杂质的不希望的扩散,从而提高了器件的频响跌落特性。在一实施例中,通过减少源和漏延伸区中的空位,减少了N型杂质的扩散。通过向源和漏延伸区提供填隙元素(如,Si或O)或空位俘获元素(如,F、N、Xe、Ar、He、Kr或惰性气体元素)来减少空位。
通常,填隙元素在提供的每个离子处产生一个额外的空隙,这些额外的空隙与基于SiGe的衬底中过剩的空位作用并湮灭它们。空位俘获元素俘获空位并形成基于空位的簇。因为空位或者由填隙元素湮灭,或者由空位俘获元素俘获,降低了空位浓度,从而减少了源和漏区中N型杂质的扩散。
图1示出了在硅衬底10上形成的包括SiGe层12的基于SiGe的衬底。在一实施例中,在硅衬底10上通过多次形成缓冲层的生长步骤形成总厚度通常为约200到20000的SiGe层12。然后使SiGe层12弛豫。通过在SiGe层12上生长,在SiGe层12上形成约30到400厚的Si帽盖层14。然后,在张力下使Si帽盖层14双轴应变以匹配下面的弛豫的SiGe晶格。在Si帽盖层14上形成栅氧化层16。基于SiGe的衬底被划分为NMOS区和PMOS区,其中分别形成NMOS器件和PMOS器件。
图2示出了在栅氧化层16上形成的栅极18。因为本发明针对于N型器件,有选择地在PMOS区上形成掩膜22,以在后序处理步骤中保护其中的PMOS器件。图2还示出了在栅极18的侧面上形成的可选择的侧壁20,用于在后序离子注入步骤中保护栅极18。
图3只示出了图2中的NMOS区,其中如箭头“A”所示,将N型杂质(如,As或P)离子注入到Si帽盖层14的上表面,以在基于SiGe的衬底的表层部分形成源和漏延伸区24。如其中所示,通过将栅极18用作掩膜,离子注入以自对准的方式进行,注入浓度约为1×1014原子/cm2到1×1016原子/cm2,注入能量约为0.3KeV到50KeV。注入的N型杂质的浓度峰值形成于距Si帽盖层的上表面约10到1000的深度。
如上所述,显著地和不希望地提高了在基于SiGe的衬底中N型杂质(如,As或P)的扩散,因为其中基于空位的机制更加显著。为解决该问题,如图4所示,将填隙元素(如,Si或O)或空位俘获元素(如,F、N、Xe、Ar、He、Kr或者其它惰性气体元素)离子注入到源和漏延伸区24,如箭头“B”所示,以形成与源和漏延伸区24基本重叠的低空位区26。
一旦注入,这种方式会造成损伤,一旦对损伤进行退火,空隙湮灭掉过剩的空位,从而降低了延伸区24中的空位浓度。类似地,注入的空位俘获元素俘获过剩的空位并形成基于空位的簇,从而降低源和漏延伸区24中的空位浓度。在此阶段的退火是可选的。
在一实施例中,以约1×1014原子/cm2到1×1016原子/cm2的注入浓度和约0.3KeV到100KeV的注入能量离子注入填隙元素或空位俘获元素。注入的填隙元素或空位俘获元素的浓度峰值形成于距Si帽盖层的上表面约5到2000的深度。通常,填隙元素或空位俘获元素的注入分布将完全包括N型杂质分布。注入的填隙元素或空位俘获元素的浓度峰值可接近于N型杂质峰值,以最大化扩散延迟。
无须在注入填隙元素或空位俘获元素之前形成源和漏延伸区24。可以在形成源和漏延伸区24之前形成低空位区26。然后可以进行退火,以同时激活注入的杂质和元素,从而控制通过空位中介机制的扩散。也可以在处理步骤之后(如,在源和漏形成之后)或在制作过程完成之后进行退火。
如图5所示,在形成侧壁隔板28之后,如箭头“C”所示,将N型杂质离子注入到基于SiGe的衬底,以形成源和漏区30,如图6所示。源和漏区30分别与源和漏延伸区24重叠。通过将栅极18和侧壁隔板28用作掩膜,N型杂质以自对准方式离子注入。在一实施例中,通过离子注入N型杂质形成源和漏区30,注入浓度约为1×1014原子/cm2到1×1016原子/cm2,注入能量约为0.3KeV到50KeV。
图7示出了离子注入填隙元素或空位俘获元素(如,F、N、Xe、Ar、He、Kr或者惰性气体元素)的可选步骤,如箭头“D”所示,以形成与源和漏区30对应的基于SiGe的衬底的低空位区32,以便降低基于SiGe的衬底中的空位浓度。在一实施例中,通过离子注入填隙元素或空位俘获元素形成低空位区32,注入浓度约为1×1014原子/cm2到1×1016原子/cm2,注入能量约为0.3KeV到100KeV。然而,如果通过如图4所示的前述离子注入步骤,已经充分降低了基于SiGe的衬底中的空位浓度,则该步骤可以不是必需的。此外,区30和32中N型注入与填隙元素或空位俘获元素的峰值可以在其顶部对准,或根据扩散控制移位。
进行退火以激活注入的杂质,并修复由注入填隙元素或空位俘获元素及源和漏注入引起的注入损伤。在一实施例中,退火在约700℃到1200℃的温度下进行约1秒到3分钟。这包括全部可能的退火,包括峰值退火、快速热退火、以及炉内退火。
如上所述,本发明提供了显著减少基于SiGe的衬底中N型杂质的不希望的扩散的方法。通过减少源和漏延伸区中的空位,减少N型杂质的扩散。通过向源和漏延伸区提供填隙元素或空位俘获元素减少了空位。注入的填隙元素产生额外的空隙,所述空隙与基于SiGe的衬底中的过剩的空位作用并湮灭它们。注入的空位俘获元素俘获空位并形成基于空位的簇。因为空位或者由填隙元素湮灭,或者由空位俘获元素俘获,空位浓度降低,并减少了源和漏区中N型杂质的扩散,从而提高了器件的频响跌落的特性。
尽管根据实施例说明了本发明,本领域的技术人员将认识到,可以在所附权利要求书的精神和范围内对发明进行修改。

Claims (20)

1.一种制造半导体器件的方法,包括以下步骤:
在基于SiGe的衬底的上表面形成源和漏延伸区,源和漏延伸区含有N型杂质;以及
降低源和漏延伸区中的空位浓度,以减少源和漏延伸区中含有的N型杂质的扩散。
2.根据权利要求1的方法,其中降低空位浓度的步骤包括在源和漏延伸区中提供填隙元素或空位俘获元素的步骤。
3.根据权利要求2的方法,其中填隙元素为Si或O,以及空位俘获元素为F、N、Xe、Ar、He、Kr或者惰性气体元素。
4.根据权利要求2的方法,其中提供填隙元素或空位俘获元素的步骤包括在基于SiGe的衬底上离子注入填隙元素或空位俘获元素的步骤。
5.根据权利要求4的方法,其中离子注入填隙元素或空位俘获元素的步骤包括以1×1014atoms/cm2到1×1016atoms/cm2的注入浓度和0.3KeV到100KeV的注入能离子注入填隙元素或空位俘获元素的步骤。
6.根据权利要求5的方法,其中SiGe衬底包括在硅衬底上的SiGe膜上的Si盖层。
7.根据权利要求6的方法,其中在源和漏延伸区中,填隙元素或空位俘获元素的浓度峰值与N型杂质的浓度峰值形成于距Si盖层的上表面基本相同的深度。
8.根据权利要求7的方法,其中填隙元素或空位俘获元素的浓度峰值形成于距Si盖层的上表面5到2000的深度。
9.根据权利要求4的方法,还包括在所述离子注入步骤之后的退火步骤。
10.根据权利要求9所述的方法,其中退火步骤在700℃到1200℃的温度下进行1秒到3分钟。
11.根据权利要求1的方法,还包括在基于SiGe的衬底的上表面形成栅极的步骤,在其二者之间具有栅氧化膜。
12.根据权利要求1的方法,还包括在基于SiGe的衬底的上表面形成源和漏区的步骤,源和漏区含有N型杂质,并与源和漏延伸区重叠。
13.根据权利要求12的方法,还包括在源和漏区提供填隙元素或空位俘获元素的步骤。
14.根据权利要求13的方法,其中填隙元素为Si或O,以及空位俘获元素为F、N、Xe、Ar、He、Kr或者惰性气体元素。
15.根据权利要求14的方法,其中在源和漏区提供填隙元素或空位俘获元素的步骤包括离子注入填隙元素或空位俘获元素的步骤。
16.一种减少基于SiGe的衬底中N型杂质的扩散的方法,该方法包括以下步骤:
在基于SiGe的衬底的上表面形成源和漏延伸区;以及
向源和漏延伸区离子注入填隙元素或空位俘获元素,以降低源和漏延伸区中的空位浓度。
17.根据权利要求16的方法,其中填隙元素为Si或O,以及空位俘获元素为F、N、Xe、Ar、He、Kr或者惰性气体元素。
18.根据权利要求16的方法,还包括形成源和漏区的步骤。
19.一种半导体器件,包括:
基于SiGe的衬底;
在基于SiGe的衬底上形成的栅极,在其二者之间具有栅氧化物;
在SiGe衬底的上表面形成的源和漏延伸区,其中含有N型杂质;以及
与源和漏延伸区对应形成的低空位区,其中含有填隙元素或空位俘获元素。
20.根据权利要求19的半导体器件,其中填隙元素为Si或O,以及空位俘获元素为F、N、Xe、Ar、He、Kr或者惰性气体元素。
CNB2004100624730A 2003-09-09 2004-07-08 减少SiGe衬底上应变Si中N+扩散的方法 Expired - Fee Related CN1309035C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/605,108 US7410846B2 (en) 2003-09-09 2003-09-09 Method for reduced N+ diffusion in strained Si on SiGe substrate
US10/605,108 2003-09-09

Publications (2)

Publication Number Publication Date
CN1595625A CN1595625A (zh) 2005-03-16
CN1309035C true CN1309035C (zh) 2007-04-04

Family

ID=34225870

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100624730A Expired - Fee Related CN1309035C (zh) 2003-09-09 2004-07-08 减少SiGe衬底上应变Si中N+扩散的方法

Country Status (2)

Country Link
US (3) US7410846B2 (zh)
CN (1) CN1309035C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247535B2 (en) * 2004-09-30 2007-07-24 Texas Instruments Incorporated Source/drain extensions having highly activated and extremely abrupt junctions
KR100863687B1 (ko) * 2007-05-17 2008-10-16 주식회사 동부하이텍 반도체 소자 및 반도체 소자의 제조 방법
JP2009272509A (ja) * 2008-05-09 2009-11-19 Advanced Lcd Technologies Development Center Co Ltd 光照射装置、結晶化装置、結晶化方法、およびデバイス
US8541305B2 (en) 2010-05-24 2013-09-24 Institute of Microelectronics, Chinese Academy of Sciences 3D integrated circuit and method of manufacturing the same
CN102263099B (zh) * 2010-05-24 2013-09-18 中国科学院微电子研究所 3d集成电路及其制造方法
FR2974180B1 (fr) * 2011-04-15 2013-04-26 Commissariat Energie Atomique Procede de determination de la concentration en oxygene interstitiel.
CN103187285B (zh) * 2011-12-29 2015-06-03 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN106298476B (zh) * 2015-06-01 2019-07-12 中国科学院微电子研究所 一种半导体器件的制造方法
WO2019173945A1 (zh) * 2018-03-12 2019-09-19 中国科学院半导体研究所 直接带隙发光的硅基材料及制备方法、芯片上发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298435A (en) * 1990-04-18 1994-03-29 National Semiconductor Corporation Application of electronic properties of germanium to inhibit n-type or p-type diffusion in silicon
US5514902A (en) * 1993-09-16 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having MOS transistor
US6087209A (en) * 1998-07-31 2000-07-11 Advanced Micro Devices, Inc. Formation of low resistance, ultra shallow LDD junctions employing a sub-surface, non-amorphous implant
US6475885B1 (en) * 2001-06-29 2002-11-05 Advanced Micro Devices, Inc. Source/drain formation with sub-amorphizing implantation

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US47125A (en) * 1865-04-04 Improved apparatus fob
US74598A (en) * 1868-02-18 Improved pmte-iifter
US227061A (en) * 1880-04-27 of pittsbueg
US3602841A (en) * 1970-06-18 1971-08-31 Ibm High frequency bulk semiconductor amplifiers and oscillators
US3831292A (en) * 1973-10-31 1974-08-27 Gen Electric Condenser apparatus
US4853076A (en) * 1983-12-29 1989-08-01 Massachusetts Institute Of Technology Semiconductor thin films
US4665415A (en) * 1985-04-24 1987-05-12 International Business Machines Corporation Semiconductor device with hole conduction via strained lattice
EP0219641B1 (de) * 1985-09-13 1991-01-09 Siemens Aktiengesellschaft Integrierte Bipolar- und komplementäre MOS-Transistoren auf einem gemeinsamen Substrat enthaltende Schaltung und Verfahren zu ihrer Herstellung
JPS6476755A (en) 1987-09-18 1989-03-22 Hitachi Ltd Semiconductor device
US4958213A (en) * 1987-12-07 1990-09-18 Texas Instruments Incorporated Method for forming a transistor base region under thick oxide
US5354695A (en) * 1992-04-08 1994-10-11 Leedy Glenn J Membrane dielectric isolation IC fabrication
US5459346A (en) * 1988-06-28 1995-10-17 Ricoh Co., Ltd. Semiconductor substrate with electrical contact in groove
US5006913A (en) * 1988-11-05 1991-04-09 Mitsubishi Denki Kabushiki Kaisha Stacked type semiconductor device
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
US4952524A (en) * 1989-05-05 1990-08-28 At&T Bell Laboratories Semiconductor device manufacture including trench formation
US5310446A (en) * 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
US5060030A (en) * 1990-07-18 1991-10-22 Raytheon Company Pseudomorphic HEMT having strained compensation layer
US5081513A (en) * 1991-02-28 1992-01-14 Xerox Corporation Electronic device with recovery layer proximate to active layer
US5371399A (en) * 1991-06-14 1994-12-06 International Business Machines Corporation Compound semiconductor having metallic inclusions and devices fabricated therefrom
US5134085A (en) * 1991-11-21 1992-07-28 Micron Technology, Inc. Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories
US5391510A (en) * 1992-02-28 1995-02-21 International Business Machines Corporation Formation of self-aligned metal gate FETs using a benignant removable gate material during high temperature steps
US6008126A (en) * 1992-04-08 1999-12-28 Elm Technology Corporation Membrane dielectric isolation IC fabrication
DE4223589A1 (de) * 1992-07-17 1994-01-20 Fluehs Drehtechnik Gmbh Ventiloberteil
US5561302A (en) * 1994-09-26 1996-10-01 Motorola, Inc. Enhanced mobility MOSFET device and method
US5679965A (en) * 1995-03-29 1997-10-21 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact, non-nitride buffer layer and methods of fabricating same
US5670798A (en) * 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5557122A (en) * 1995-05-12 1996-09-17 Alliance Semiconductors Corporation Semiconductor electrode having improved grain structure and oxide growth properties
JPH1079506A (ja) * 1996-02-07 1998-03-24 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US6403975B1 (en) * 1996-04-09 2002-06-11 Max-Planck Gesellschaft Zur Forderung Der Wissenschafteneev Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates
US5880040A (en) * 1996-04-15 1999-03-09 Macronix International Co., Ltd. Gate dielectric based on oxynitride grown in N2 O and annealed in NO
US5861651A (en) * 1997-02-28 1999-01-19 Lucent Technologies Inc. Field effect devices and capacitors with improved thin film dielectrics and method for making same
US5940736A (en) * 1997-03-11 1999-08-17 Lucent Technologies Inc. Method for forming a high quality ultrathin gate oxide layer
US6309975B1 (en) * 1997-03-14 2001-10-30 Micron Technology, Inc. Methods of making implanted structures
US6025280A (en) * 1997-04-28 2000-02-15 Lucent Technologies Inc. Use of SiD4 for deposition of ultra thin and controllable oxides
US5960297A (en) * 1997-07-02 1999-09-28 Kabushiki Kaisha Toshiba Shallow trench isolation structure and method of forming the same
US6372590B1 (en) * 1997-10-15 2002-04-16 Advanced Micro Devices, Inc. Method for making transistor having reduced series resistance
JP3139426B2 (ja) * 1997-10-15 2001-02-26 日本電気株式会社 半導体装置
US6066545A (en) * 1997-12-09 2000-05-23 Texas Instruments Incorporated Birdsbeak encroachment using combination of wet and dry etch for isolation nitride
US6274421B1 (en) * 1998-01-09 2001-08-14 Sharp Laboratories Of America, Inc. Method of making metal gate sub-micron MOS transistor
KR100275908B1 (ko) * 1998-03-02 2000-12-15 윤종용 집적 회로에 트렌치 아이솔레이션을 형성하는방법
US6165383A (en) * 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials
US6361885B1 (en) * 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
US5989978A (en) * 1998-07-16 1999-11-23 Chartered Semiconductor Manufacturing, Ltd. Shallow trench isolation of MOSFETS with reduced corner parasitic currents
JP4592837B2 (ja) * 1998-07-31 2010-12-08 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US6319794B1 (en) * 1998-10-14 2001-11-20 International Business Machines Corporation Structure and method for producing low leakage isolation devices
US6235598B1 (en) * 1998-11-13 2001-05-22 Intel Corporation Method of using thick first spacers to improve salicide resistance on polysilicon gates
US6117722A (en) * 1999-02-18 2000-09-12 Taiwan Semiconductor Manufacturing Company SRAM layout for relaxing mechanical stress in shallow trench isolation technology and method of manufacture thereof
US6255169B1 (en) * 1999-02-22 2001-07-03 Advanced Micro Devices, Inc. Process for fabricating a high-endurance non-volatile memory device
US6284626B1 (en) * 1999-04-06 2001-09-04 Vantis Corporation Angled nitrogen ion implantation for minimizing mechanical stress on side walls of an isolation trench
US6228694B1 (en) * 1999-06-28 2001-05-08 Intel Corporation Method of increasing the mobility of MOS transistors by use of localized stress regions
US6362082B1 (en) 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
US6281532B1 (en) * 1999-06-28 2001-08-28 Intel Corporation Technique to obtain increased channel mobilities in NMOS transistors by gate electrode engineering
US6656822B2 (en) * 1999-06-28 2003-12-02 Intel Corporation Method for reduced capacitance interconnect system using gaseous implants into the ILD
KR100332108B1 (ko) 1999-06-29 2002-04-10 박종섭 반도체 소자의 트랜지스터 및 그 제조 방법
TW426940B (en) * 1999-07-30 2001-03-21 United Microelectronics Corp Manufacturing method of MOS field effect transistor
US6200836B1 (en) * 1999-08-06 2001-03-13 Taiwan Semiconductor Manufacturing Company Using oxide junction to cut off sub-threshold leakage in CMOS devices
US6483171B1 (en) * 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6284623B1 (en) * 1999-10-25 2001-09-04 Peng-Fei Zhang Method of fabricating semiconductor devices using shallow trench isolation with reduced narrow channel effect
US6744079B2 (en) * 2002-03-08 2004-06-01 International Business Machines Corporation Optimized blocking impurity placement for SiGe HBTs
US6476462B2 (en) * 1999-12-28 2002-11-05 Texas Instruments Incorporated MOS-type semiconductor device and method for making same
US6221735B1 (en) * 2000-02-15 2001-04-24 Philips Semiconductors, Inc. Method for eliminating stress induced dislocations in CMOS devices
US6531369B1 (en) * 2000-03-01 2003-03-11 Applied Micro Circuits Corporation Heterojunction bipolar transistor (HBT) fabrication using a selectively deposited silicon germanium (SiGe)
US6368931B1 (en) * 2000-03-27 2002-04-09 Intel Corporation Thin tensile layers in shallow trench isolation and method of making same
ATE341836T1 (de) * 2000-05-31 2006-10-15 Matsushita Electric Ind Co Ltd Misfet
US6493497B1 (en) * 2000-09-26 2002-12-10 Motorola, Inc. Electro-optic structure and process for fabricating same
JP3881840B2 (ja) * 2000-11-14 2007-02-14 独立行政法人産業技術総合研究所 半導体装置
US6501121B1 (en) * 2000-11-15 2002-12-31 Motorola, Inc. Semiconductor structure
US7312485B2 (en) * 2000-11-29 2007-12-25 Intel Corporation CMOS fabrication process utilizing special transistor orientation
US6563152B2 (en) * 2000-12-29 2003-05-13 Intel Corporation Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel
US20020086497A1 (en) * 2000-12-30 2002-07-04 Kwok Siang Ping Beaker shape trench with nitride pull-back for STI
US6265317B1 (en) * 2001-01-09 2001-07-24 Taiwan Semiconductor Manufacturing Company Top corner rounding for shallow trench isolation
US6403486B1 (en) * 2001-04-30 2002-06-11 Taiwan Semiconductor Manufacturing Company Method for forming a shallow trench isolation
US6531740B2 (en) 2001-07-17 2003-03-11 Motorola, Inc. Integrated impedance matching and stability network
US6498358B1 (en) * 2001-07-20 2002-12-24 Motorola, Inc. Structure and method for fabricating an electro-optic system having an electrochromic diffraction grating
US6908810B2 (en) 2001-08-08 2005-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of preventing threshold voltage of MOS transistor from being decreased by shallow trench isolation formation
US6922475B2 (en) * 2001-08-16 2005-07-26 Wu-Hong Hsieh Shockproof microphone support device
JP2003060076A (ja) * 2001-08-21 2003-02-28 Nec Corp 半導体装置及びその製造方法
AU2002349881A1 (en) * 2001-09-21 2003-04-01 Amberwave Systems Corporation Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same
US20030057184A1 (en) * 2001-09-22 2003-03-27 Shiuh-Sheng Yu Method for pull back SiN to increase rounding effect in a shallow trench isolation process
US6656798B2 (en) * 2001-09-28 2003-12-02 Infineon Technologies, Ag Gate processing method with reduced gate oxide corner and edge thinning
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates
US6461936B1 (en) * 2002-01-04 2002-10-08 Infineon Technologies Ag Double pullback method of filling an isolation trench
US6621392B1 (en) * 2002-04-25 2003-09-16 International Business Machines Corporation Micro electromechanical switch having self-aligned spacers
US6689671B1 (en) * 2002-05-22 2004-02-10 Advanced Micro Devices, Inc. Low temperature solid-phase epitaxy fabrication process for MOS devices built on strained semiconductor substrate
US7388259B2 (en) * 2002-11-25 2008-06-17 International Business Machines Corporation Strained finFET CMOS device structures
US6812073B2 (en) * 2002-12-10 2004-11-02 Texas Instrument Incorporated Source drain and extension dopant concentration
US6825529B2 (en) * 2002-12-12 2004-11-30 International Business Machines Corporation Stress inducing spacers
US6717216B1 (en) * 2002-12-12 2004-04-06 International Business Machines Corporation SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
US6974981B2 (en) * 2002-12-12 2005-12-13 International Business Machines Corporation Isolation structures for imposing stress patterns
US6887798B2 (en) * 2003-05-30 2005-05-03 International Business Machines Corporation STI stress modification by nitrogen plasma treatment for improving performance in small width devices
US7279746B2 (en) * 2003-06-30 2007-10-09 International Business Machines Corporation High performance CMOS device structures and method of manufacture
US7119403B2 (en) 2003-10-16 2006-10-10 International Business Machines Corporation High performance strained CMOS devices
US8008724B2 (en) * 2003-10-30 2011-08-30 International Business Machines Corporation Structure and method to enhance both nFET and pFET performance using different kinds of stressed layers
US6977194B2 (en) * 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US7015082B2 (en) * 2003-11-06 2006-03-21 International Business Machines Corporation High mobility CMOS circuits
US7122849B2 (en) * 2003-11-14 2006-10-17 International Business Machines Corporation Stressed semiconductor device structures having granular semiconductor material
US7247912B2 (en) * 2004-01-05 2007-07-24 International Business Machines Corporation Structures and methods for making strained MOSFETs
US7205206B2 (en) * 2004-03-03 2007-04-17 International Business Machines Corporation Method of fabricating mobility enhanced CMOS devices
US7504693B2 (en) * 2004-04-23 2009-03-17 International Business Machines Corporation Dislocation free stressed channels in bulk silicon and SOI CMOS devices by gate stress engineering
US7354806B2 (en) * 2004-09-17 2008-04-08 International Business Machines Corporation Semiconductor device structure with active regions having different surface directions and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298435A (en) * 1990-04-18 1994-03-29 National Semiconductor Corporation Application of electronic properties of germanium to inhibit n-type or p-type diffusion in silicon
US5514902A (en) * 1993-09-16 1996-05-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having MOS transistor
US6087209A (en) * 1998-07-31 2000-07-11 Advanced Micro Devices, Inc. Formation of low resistance, ultra shallow LDD junctions employing a sub-surface, non-amorphous implant
US6475885B1 (en) * 2001-06-29 2002-11-05 Advanced Micro Devices, Inc. Source/drain formation with sub-amorphizing implantation

Also Published As

Publication number Publication date
US7410846B2 (en) 2008-08-12
US20060073649A1 (en) 2006-04-06
US20050145992A1 (en) 2005-07-07
US7297601B2 (en) 2007-11-20
US7345329B2 (en) 2008-03-18
US20050054145A1 (en) 2005-03-10
CN1595625A (zh) 2005-03-16

Similar Documents

Publication Publication Date Title
US7345329B2 (en) Method for reduced N+ diffusion in strained Si on SiGe substrate
US6803270B2 (en) CMOS performance enhancement using localized voids and extended defects
CN1459837A (zh) 半导体器件中晶体管的形成方法
KR20000069811A (ko) 임계전압을 승압하는 웰 부스팅
CN1326207C (zh) 在具有均匀错配位错密度的弛豫SiGe膜上的应变硅
CN1890781A (zh) 制造绝缘体上应变半导体衬底的方法
CN101517741A (zh) 具有包含性能增进材料成分的受应变沟道区的晶体管
CN1259694C (zh) 半导体衬底生产方法及半导体衬底和半导体器件
CN100517620C (zh) Pmos器件及其压缩沟道层的形成方法
US7638442B2 (en) Method of forming a silicon nitride layer on a gate oxide film of a semiconductor device and annealing the nitride layer
JP2003282440A (ja) 半導体基板の製造方法および半導体基板
CN1104740C (zh) 制造互补mos半导体器件的方法
KR100332107B1 (ko) 반도체 소자의 트랜지스터 제조 방법
US8546247B2 (en) Manufacturing method of semiconductor device with amorphous silicon layer formation
CN1167113C (zh) 具有超浅结延伸区的mos装置的制造方法
JP3933405B2 (ja) 半導体基板、半導体装置及びそれらの製造方法
DE10346608B4 (de) Herstellverfahren für ein Halbleiterbauteil
KR100468695B1 (ko) 짧은채널효과를개선시키기위한채널도우핑프로파일을갖는고성능모스트랜지스터제조방법
KR101002045B1 (ko) 반도체소자의 트랜지스터 형성방법
KR100665797B1 (ko) 게이트 산화막 계면의 전하 포획 밀도를 감소시키는 반도체소자 제조 방법
KR100634005B1 (ko) Cmos 소자용 변형된 실리콘 에피층의 형성 방법
JPH03293730A (ja) Mis型半導体装置の製造方法
KR20050011467A (ko) 반도체 소자의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171030

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171030

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20180708