CN1308347C - 用于通过选择性抑制vegf来治疗癌症的组合物和方法 - Google Patents

用于通过选择性抑制vegf来治疗癌症的组合物和方法 Download PDF

Info

Publication number
CN1308347C
CN1308347C CNB008094179A CN00809417A CN1308347C CN 1308347 C CN1308347 C CN 1308347C CN B008094179 A CNB008094179 A CN B008094179A CN 00809417 A CN00809417 A CN 00809417A CN 1308347 C CN1308347 C CN 1308347C
Authority
CN
China
Prior art keywords
antibody
vegf
composition
cell
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB008094179A
Other languages
English (en)
Other versions
CN1358197A (zh
Inventor
P·E·索普
R·A·布里肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Texas System
Original Assignee
University of Texas System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22449437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1308347(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of Texas System filed Critical University of Texas System
Publication of CN1358197A publication Critical patent/CN1358197A/zh
Application granted granted Critical
Publication of CN1308347C publication Critical patent/CN1308347C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6815Enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6845Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a cytokine, e.g. growth factors, VEGF, TNF, a lymphokine or an interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/10Ophthalmic agents for accommodation disorders, e.g. myopia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/808Materials and products related to genetic engineering or hybrid or fused cell technology, e.g. hybridoma, monoclonal products
    • Y10S530/809Fused cells, e.g. hybridoma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/863Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving IgM
    • Y10S530/864Monoclonal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/863Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving IgM
    • Y10S530/864Monoclonal
    • Y10S530/865Human
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/866Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof involving immunoglobulin or antibody fragment, e.g. fab', fab, fv, fc, heavy chain or light chain

Abstract

本发明公开了可特异性抑制VEGF结合两种VEGF受体之一VEGFR2的抗体。该抗体有效抑制血管发生并诱导肿瘤退化,而且改善了安全性,这要归功于它们的特异性。本发明由此提供了用于治疗癌症和其它血管发生性疾病的新的基于抗体的组合物、方法、和联合方案。还提供了使用新的VEGF特异性抗体的有益免疫缀合物和药物前体组合物和方法。

Description

用于通过选择性抑制VEGF来治疗癌症的组合物和方法
                    发明背景
本申请要求1999年4月28日提交的共同待审美国临时专利申请流水号60/131,432的优先权,本文特别收入该申请的全部正文和图作为参考,而不作任何具体放弃。美国政府依据国家卫生研究院(NationalInstitute of Health,NIH)的1RO1 CA74951、5RO CA54168、和T32GM07062拥有对本发明的权利。
1.发明领域
本发明主要涉及抗体、血管发生、和肿瘤治疗领域。具体而言,本发明提供了特异性抑制VEGF结合两种VEGF受体之一VEGFR2的抗VEGF抗体。这些抗体抑制血管发生并诱导肿瘤退化,而且已经证明了安全性,这要归功于它们的特异性阻断特性。本发明中基于抗体的组合物和方法还延伸至免疫缀合物和其它治疗性联合、试剂盒、和方法的使用,包括药物前体。
2.相关技术的描述
肿瘤细胞对化疗剂的抗性是临床肿瘤学中的一个重要问题。事实上,这是许多最普遍的人类癌症仍然不能有效化疗干预的主要原因之一,尽管该领域具有某些进展。
另一种肿瘤治疗策略是使用“免疫毒素”,即使用抗肿瘤细胞抗体将毒素投递至肿瘤细胞。然而,与化疗方法一样,当应用于实体瘤时,免疫毒素疗法也遭遇了重大障碍。例如,抗原阴性细胞或抗原缺陷细胞能够存活,并再次形成肿瘤或导致进一步的转移。
实体瘤耐受基于抗体疗法的另一个原因是高分子试剂(诸如抗体和免疫毒素)通常不能渗透肿瘤块(Burrows等人,1992;Dvorak等人,1991a;Baxter和Jain,1991)。肿瘤内的物理扩散距离和间质压力都严重限制了这种疗法。已经证明,在所有人类癌症中占超过90%的实体瘤耐受抗体和免疫毒素治疗。
最近的策略是靶向实体瘤的血管结构。靶向肿瘤血管而非肿瘤细胞自身具有某些优点,即不大可能形成抗性肿瘤细胞,而且容易接近靶向的细胞。此外,由于许多肿瘤细胞依赖单一血管供应氧和营养,所以破坏血管能够放大抗肿瘤效果(Burrows和Thorpe,1994a;1994b)。美国专利5,855,866和5,965,132描述了例示性的血管靶向策略,这两项专利具体描述了将抗细胞试剂和毒素靶向投递至肿瘤血管结构标记物。
血管靶向方法的另一种有效形式是使凝血因子靶向肿瘤血管结构表达或吸收的标记物(Huang等人,1997;美国专利号5,877,289、6,004,555、和6,093,399)。向肿瘤血管结构投递凝血剂而非毒素还具有其它优点,即降低免疫原性和甚至更低的毒副作用风险。正如美国专利5,877,289中公开的,优选用于这些肿瘤特异性“凝血配体”的凝血因子是截短形式的人凝血诱导蛋白质、组织因子(TF)、血液凝血主要起始物。
虽然使毒素和凝血因子向肿瘤血管的特异性投递是肿瘤治疗中的重大进步,但是某些外周肿瘤细胞能够幸免于由这些疗法引起的肿瘤内破坏。因此,需要联合使用抗血管发生策略与美国专利5,855,866和5,877,289中破坏肿瘤的方法。
抗血管发生肿瘤治疗策略基于抑制通常位于实体瘤外周的萌芽血管的增殖。大多在更传统干预(诸如手术或化疗)后,使用这些疗法来降低微转移的风险或抑制实体瘤的进一步生长。
血管发生指由原有血管和/或循环中的内皮干细胞形成新的血管结构(Asahara等人,1997;Springer等人,1998;Folkman和Shing,1992)。血管发生在许多生理学过程中具有至关重要的作用,诸如胚胎发生、创伤愈合、和月经。血管发生在某些病理学事件中也是重要的。除了在实体瘤生长和转移中的作用之外,具有血管发生性成分的其它值得注意的状况是关节炎、牛皮癣、和糖尿病性视网膜病变(Hanahan和Folkman,1996;Fidler和Ellis,1994)。
在正常和恶性组织中,血管发生受靶组织和较远位点产生的血管发生刺激剂与血管发生抑制剂之间平衡的调控(Fidler等人,1998;McNamara等人,1998)。血管内皮生长因子-A(VEGF,也称为血管通透因子,VPF)是血管发生的主要刺激物。VEGF是由缺氧和致瘤突变诱导的多功能细胞因子,可以由多种组织产生(Kerbel等人,1998;Mazure等人,1996)。
对于VEGF是病理性状况中血管发生的主要刺激物的认识导致了设想阻断VEGF活性的多次尝试。已经有人建议,将抑制性抗VEGF受体抗体、可溶性受体构建物、反义策略、针对VEGF的RNA aptamer、和低分子量VEGF受体酪氨酸激酶(RTK)抑制剂用于干扰VEGF信号传导(Siemeister等人,1998)。事实上,针对VEGF的单克隆抗体已经显示在小鼠中抑制人肿瘤异种移植物的生长和腹水的形成(Kim等人,1993;Asano等人,1998;Mesiano等人,1998;Luo等人,1998a;1998b;Borgstrom等人,1996;1998)。
虽然上述研究强调了VEGF在实体瘤生长中的重要性,及其作为肿瘤治疗靶的潜力,但是鉴定可抑制VEGF诱导的血管发生的其它试剂将有助于增加治疗选择。开发更特异性抑制VEGF受体结合的治疗剂将是重要进步,只要改进的特异性不显著危及抗肿瘤效果。
                发明概述
通过提供用于抗血管发生和抗肿瘤治疗的新型治疗性组合物和方法,本发明克服了现有技术的某些缺点。本发明以特异性抑制VEGF与两种主要VEGF受体中仅其一的VEGFR2的结合的抗体为基础。这些抗体可抑制血管发生并诱导肿瘤退化,就像其它抗VEGF抗体(包括早已用于临床试验的抗体)一样有效,而且已经证明了安全性,这要归功于它们的特异性阻断特性。使用提供的特定种类的抗体,本发明的组合物和方法还延伸至免疫缀合物和联合的应用,包括药物前体。
本发明的特殊优势是提供的抗体只抑制VEGF结合VEGFR2而非VEGFR1。这与包括A4.6.1在内的现有技术主导抗体相反,它们抑制VEGF结合VEGFR2和VEGFR1二者。因为VEGFR1具有与血管发生无关的重要生物学作用,特别是巨噬细胞的迁移和趋化性、破骨细胞和破软骨细胞的功能,所以这种只抑制VEGFR2所介导血管发生的能力具有明显优势。这可以转变成显著的临床好处,即巨噬细胞仍然能够介导宿主的抗肿瘤应答,而且骨的新陈代谢(如在儿科癌症治疗中)没有受到不利影响。
另一项优势是,因为在存在本发明抗体时仍旧维持了VEGF与VEGFR1的结合,所以借助VEGF结合在肿瘤内皮上上调的VEGFR1,本发明的抗体能够用于将附着的治疗剂特异性投递至肿瘤血管。因此,在免疫缀合物的内容中,本发明提供了在同一分子内具有抗血管发生和破坏肿瘤两种特性的试剂。
还有另一项优势在于提供的组合物能够中和由VEGFR2介导的VEGF存活信号裸露的或缀合的本发明抗体由此可以与其它疗法和/或附着试剂形成协同性联合,特别是那些因VEGF抵消其破坏特性而在体内不能实现最大效力的方法和试剂。
本发明由此提供了特异性阻断VEGF结合VEGFR2受体的抗体,或基本上只阻断VEGF结合VEGFR2受体的抗体。这些抗体显著抑制VEGF结合VEGFR2受体(KDR/Flk-1),而不显著抑制VEGF结合VEGFR1受体(Flt-1)。由此,抗体抑制VEGF结合VEGFR2受体(KDR/Flk-1),而基本上不抑制VEGF结合VEGFR1受体(Flt-1);在体内展示抗血管发生和抗肿瘤效果,且不显著抑制巨噬细胞的趋化性、破骨细胞或破软骨细胞的功能。
本发明的抗体简便的称为“阻断VEGFR2而不阻断VEGFR1的抗VEGF抗体”,甚至更简便的称为“阻断VEGFR2的抗VEGF抗体”,这用于简单提及本发明的所有组合物、应用、和方法。“阻断VEGFR2的抗VEGF抗体”是阻断VEGF结合VEGFR2受体的抗VEGF的抗体。显然,这些抗体不是抗VEGFR2受体自身的抗体。
在本发明之前,没有产生特异性阻断VEGF结合VEGFR2而非VEGFR1的抗VEGF抗体的动机,也没有预见这些抗体的任何优点。重要的是,由于阻断性抗体需要从物理学上防止生长因子与其受体的相互作用,并且由于生长因子上的受体结合位点受限于大小,所以没有任何迹象指出能够开发这些特异性阻断VEGFR2的抗VEGF抗体。
然而,根据本文公开的发明人令人惊讶的发现,为现有技术提供了这样的知识,即已经能够制备这些特异性抑制性抗VEGF抗体,而且具有明显优势。本申请还描述了用于产生候选的阻断VEGFR2的抗VEGF抗体的方法学,和由候选者群鉴定真正的阻断VEGFR2的特异性抗体所需测定法的常规技术方面。因此,参照本发明,能够制备一系列阻断VEGFR2的抗VEGF抗体并用于各种实施方案,包括抑制血管发生和治疗血管发生性疾病和肿瘤,而不抑制经VEGFR1受体介导的VEGF信号传导,且没有与其有关的显著缺点和副作用。
除了明确指出上限的情况,如贯穿完整申请书所用,术语“一个/种”的用意是“至少一个/种”、“至少第一个/种”、“一个/种或多个/种”、或“多数”所指成分或步骤。因此,如本文所用,“一种抗体”指“至少第一种抗体”。如同任何单个药剂的量一样,本领域技术人员参照本发明的内容可以知道各种联用的可操作范围和参数。
现在能够通过竞争和/或功能测定法来鉴定“特异性抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)的抗体。为了简便,优选的测定法是基于ELISA的竞争测定法。在竞争测定法中,将VEGF与不同量的待测抗体(如摩尔数过量100倍-1000倍)预先混和或混和,并测定待测抗体降低VEGF结合VEGFR2的能力。VEGF可以预先标记并直接检测,或者可以使用(第二种)抗VEGF抗体或二抗和三抗检测系统来检测。这种竞争测定法的ELISA形式是优选的形式,但是可以进行任何类型的免疫竞争测定法。
在存在完全无关抗体(包括非阻断性抗VEGF单克隆抗体)时,VEGF与VEGFR2的结合是这种竞争测定法的对照高值。在检验测定中,在存在待测抗体时,VEGF结合VEGFR2的显著降低指示待测抗体可显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)。
显著降低是“可重现的”,即一贯观察到结合的降低。“显著降低”,按照本申请的定义,指在抗体比VEGF摩尔数过量大约100倍至大约1000倍时,将VEGF与VEGFR2的结合可重现的降低至少大约45%、大约50%、大约55%、大约60%、或大约65%。
本发明的优选方面是所提供的抗体基本上不抑制VEGF结合VEGFR1,中等显著降低VEGF结合VEGFR2的抗体仍然是有用的,只要它们基本上不抑制VEGF结合VEGFR1。但是,更优选的抗体是能够更显著抑制VEGF结合VEGFR2的抗体。在抗体比VEGF摩尔数过量大约100倍至大约1000倍时,这些抗体将VEGF与VEGFR2的结合可重现的降低至少大约70%、大约75%、或大约80%。虽然并非实践本发明所需,但是将VEGF与VEGFR2的结合降低至少大约85%、大约90%、大约95%、或甚至更高的抗体绝非排除在外。
通过简单的竞争测定法(诸如上文所述的测定法,但是使用VEGFR1),可以容易的确认可抑制VEGF结合VEGF受体VEGFR2(KDR/F1k-1)、而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)的抗VEGF抗体或其抗原结合片段。
显著降低的不存在是指“可重现的”,即一贯观察到“结合的充分维持”。按照本申请的定义,“结合的充分维持”指在抗体比VEGF摩尔数过量大约100倍至大约1000倍时,将VEGF与VEGFR1的结合可重现的维持至少大约60%、大约75%、大约80%、或大约85%。
使用基本上不抑制VEGF结合VEGFR1的抗体的意图是维持VEGFR1介导的生物学功能。因此,抗体只需要维持足够的VEGF结合VEGFR1从而由VEGF诱导生物学应答。但是,更优选的抗体是能更显著维持VEGF结合VEGFR1的抗体。这些抗体是在抗体比VEGF摩尔数过量大约100倍至大约1000倍时,能将VEGF与VEGFR1的结合水平可重现的维持于至少大约88%、大约90%、大约92%、大约95%、或大约98-99%。
可以理解,能更显著抑制VEGF结合VEGFR2的抗体有可能耐受更大的VEGFR1结合降低。同样的,当抗体使VEGF与VEGFR2的结合有中等降低时,应当更严格的维持与VEGFR1的结合。
用于鉴定和/或确认抗体抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)的另一种优选的结合测定法是共沉淀测定法。共沉淀测定法检验抗体阻断VEGF结合溶液中的一种或多种受体的能力。在这种测定法中,将VEGF或可检测标记的VEGF与适当形式的受体一起温育。
免疫沉淀或共沉淀测定法存在许多形式。在本发明中,“适当形式的受体”可以是讨论中的VEGFR2受体或该受体的细胞外结构域。然后进行与针对VEGFR2受体或受体细胞外结构域上与VEGF结合位点不同的表位的抗体以及标准试剂的免疫沉淀。本发明提供了其它“适当”形式的VEGF受体,即连接了Fc抗体部分的受体细胞外结构域。这些受体/Fc构建物可以通过与有效的免疫沉淀组合物(诸如基于蛋白A的组合物)一起温育来沉淀。
不管适当的受体,优选与对照进行免疫沉淀或共沉淀测定法。应当通过在不存在抗VEGF抗体时的沉淀来确认VEGF单独结合选定受体的能力。优选在存在或不存在具有已知结合特性的抗体时进行平行温育作为对照。更优选平行进行使用阻断对照抗体和不阻断对照抗体的测定法。
然后,通过与有效免疫沉淀组合物(诸如蛋白A组合物或蛋白ASepharose珠)一起温育来免疫沉淀任何结合的免疫学物质。然后对沉淀检验VEGF的存在。当最初温育中的VEGF是可检测标记的VEGF(诸如放射性标记的VEGF)时,能够直接检测免疫沉淀中的任何VEGF。可以通过其它适当方法(如凝胶分离和使用抗VEGF抗体的免疫检测)来检测免疫沉淀中的未标记的VEGF。
可以容易的量化抗体在这种共沉淀测定法中阻断VEGF结合VEGF受体(诸如VEGFR2)的能力,但是定性的结果也是有价值的。可以通过直接测量经标记的VEGF或对免疫检测到的VEGF进行密度计分析来实现量化。由此可以检测能够可重现的(即一贯观察到)抑制VEGF结合VEGFR2的抗体,而且可以根据上文描述的定量标准来选择有用的抗体。
通过进行上文所述的共沉淀测定法(但是使用VEGFR1而非VEGFR2)也可以容易的鉴定不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)的抗VEGF抗体。因此,使用这些方法也可以容易的鉴定可抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)的抗VEGF抗体。
本申请还提供了用于鉴定和/或确认抗体可显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)的多种功能测定法。这些方法通常涉及VEGFR2作为负责某些已确定生物学应答的受体的鉴定。虽然与上文在无细胞系统中进行的最可重现、可靠、省力、和划算的竞争测定法相比并不优选,但是下文测定法也可用于本发明。
例如,可以通过检验抑制VEGF介导的内皮细胞生长(抑制VEGF的促有丝分裂活性)的能力来鉴定阻断VEGFR2的抗VEGF抗体。可以采用任何合适的测定法,在存在VEGF、存在或不存在待测抗体时使用多种内皮细胞进行。优选平行进行双份实验,诸如不含VEGF的和含具有确定特性(阻断和不阻断)的对照抗体的实验。可以测定内皮细胞生长,并优选通过任何可接受的测定细胞数目的方法(包括比色法)来精确量化。
能够抑制VEGF介导的内皮细胞生长的抗体通常展示可一贯观察到的将VEGF介导的内皮细胞生长抑制大约25%、30%、35%、40%、45%、或大约50%。这些范围内的抑制指示抗体完全能够在体内抑制血管发生。本发明并不排除具有更显著抑制活性的抗体。
用于鉴定本发明抗体的另一种功能测定法是检验对VEGF诱导的磷酸化的阻断。可以采用任何合适的测定法,使用表达任何形式的天然或重组的可磷酸化VEGFR2的多种内皮细胞进行。在存在或不存在待检验抗体时将细胞与VEGF一起温育适当时间。优选平行进行双份实验,诸如不含VEGF的和含具有确定特性(阻断和不阻断)的对照抗体的实验。
可以测定VEGF诱导的VEGFR2磷酸化,并优选通过任何可接受的方法来精确量化。通常,免疫沉淀VEGFR2用于进一步的分析。可以直接测定VEGFR2的磷酸化程度,例如可以将细胞与32P标记的ATP一起温育,使得能够直接量化的免疫沉淀的VEGFR2内32P。优选通过其它方法来鉴定免疫沉淀的VEGFR2,如凝胶分离和使用结合磷酸酪氨酸残基的抗体的免疫检测。能够抑制VEGF诱导的VEGFR2磷酸化的抗体通常(一贯观察到的)降低磷酸化VEGFR2的水平。
用于鉴定本发明的阻断VEGFR2的抗VEGF抗体的另一种功能测定法是检验对VEGF诱导的血管通透性的抑制。虽然可以使用任何测定法,特别合适的测定法是Miles通透性测定法,其中给动物(诸如豚鼠)注射染料(诸如Evan氏蓝色染料),并在存在或不存在待测抗体时提供VEGF,然后测定动物皮肤中出现的染料。优选平行进行双重实验,诸如不含VEGF的和含具有确定特性(阻断和不阻断)的对照抗体的实验。动物皮肤中出现的染料通常是动物背部的斑点(诸如蓝色斑点),可以拍照并测量。
阻断VEGFR2的抗VEGF抗体在低浓度时(诸如比VEGF摩尔数过量100倍或1000倍)抑制VEGF诱导的血管通透性,就像一贯观察到的抑制。不阻断VEGF结合VEGFR2的抗体不显著抑制VEGF诱导的血管通透性。只在高浓度时(诸如比VEGF摩尔数过量10倍)阻断VEGF诱导的通透性的抗体一般不会是具有本发明特性的抗体。
广泛接受用于血管发生及抗血管发生试剂的功能测定法是新血管形成的角膜微囊测定法和小鸡尿囊绒毛膜测定法(CAM)。美国专利号5,712,291(本文特别收入作为参考)显示了角膜微囊和CAM测定法足以鉴定用于治疗极广范围的血管发生性疾病的试剂。
为了描述CAM测定法,本文还特别收入美国专利号5,001,116作为参考。基本上,在第3或4天剥去受精鸡胚的壳将其取出,并将含待测化合物的甲基纤维素盘植入尿囊绒毛膜上。大约48小时后检查胚胎,如果甲基纤维素盘附近出现清晰的无血管区,那么测量该区的直径。正如美国专利号5,712,291(本文特别收入作为参考)中公开的,在本发明的内容中,任何无血管区的出现是抗血管发生抗体的充分证据。该区越大,抗体越有效。
可以使用大鼠或兔角膜来实践新血管形成的角膜微囊测定法。正如美国专利号5,712,291和5,871,723(本文特别收入作为参考)证明的,这种体内模型作为临床有效性的预兆获得广泛接受。虽然不认为与本发明有特别的关系,但是优选角膜测定法甚过CAM测定法,因为它们通常识别本身无活性但是代谢产生有活性化合物的化合物。
在本发明中,将角膜微囊测定法用于鉴定抗血管发生试剂。这由一贯观察到的(且优选显著的)角膜内血管数目的降低而表现的血管发生显著降低获得证明。这些应答优选定义为,当接触待测物质时角膜只显示偶然萌芽和/或发夹环而不显示维持生长。
本发明的例示性的阻断VEGFR2的抗VEGF抗体及其抗原结合片段包括具有下列特性的抗体或片段:
(a)显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1);
(b)不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1);
(c)抑制且优选显著抑制VEGF诱导的VEGFR2的磷酸化;
(d)抑制且优选显著抑制VEGF诱导的血管通透性;
(e)抑制且优选显著抑制VEGF介导的内皮细胞增殖;
(f)抑制且优选显著抑制血管发生;
(g)不显著抑制VEGFR1介导的巨噬细胞、破骨细胞、或破软骨细胞的刺激或激活;和
(h)对患有血管化肿瘤的动物施用后定位于肿瘤血管结构和肿瘤基质。
本发明的特定方面基于发明人最初令人惊讶的发现下述抗体:可特异性抑制VEGF结合VEGFR2受体,在体内具有显著的抗肿瘤效果,且不抑制VEGF结合VEGFR1受体。在某些实施方案中,本发明由此提供了具有确定表位特异性的抗体,这些抗体或其抗原结合片段结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同。
参照本说明书和易于获得的技术性参考文献、技术、和起始材料,能够实践本文申请的发明。2000年3月27日提交了产生2C3单克隆抗体的杂交瘤细胞系的样品,3月28日收到并保藏于美国典型培养物收藏中心(ATCC),10801 University Blvd.,Manassas,VA 20110-2209,美国;2000年4月11日给予ATCC编号ATCC PTA 1595。这一保藏是国际承认根据用于专利程序的微生物保藏布达佩斯条约及其实施细则的规定下进行的。根据布达佩斯条约,在具有有关权利的美国专利发布后,可以由ATCC获得杂交瘤。保藏的杂交瘤的可获得性不应解释为允许在违背任何政府机构参照本国专利法授予的权利的情况中实践本发明。
因此,某些优选的组合物是包含至少第一种抗VEGF抗体或其抗原结合片段、或者至少第一种纯化的抗VEGF抗体或其抗原结合片段的组合物,所述抗体或片段结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同;包含至少第一种单克隆抗体或其抗原结合片段的组合物,所述抗体或片段结合VEGF的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同;和包含至少第一种抗VEGF单克隆抗体或其抗原结合片段的组合物,所述抗体或片段结合的表位与单克隆抗体2C3(ATCC PTA1595)相同。
尽管如此,本发明的其它组合物、抗体、方法、特别是第一种和第二种医学应用涉及抗VEGF抗体或其抗原结合片段,它们不是单克隆抗体2C3(ATCC PTA 1595),但结合的表位与单克隆抗体2C3(ATCC PTA1595)相同或基本上相同。
术语“结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同或相同”指抗体与单克隆抗体2C3(ATCC PTA 1595)可发生“交叉反应”。“交叉反应性抗体”是识别、结合的表位或“表位位点”或者对表位或“表位位点”的免疫特异性与单克隆抗体2C3(ATCC PTA1595)相同或基本上相同,从而能够在与VEGF的结合中与单克隆抗体2C3(ATCC PTA 1595)有效竞争。“2C3交叉反应性抗体”简称为“2C3样抗体”和“基于2C3的抗体”,本文这些术语可交换使用并应用于组合物、应用、和方法。
结合的表位与单克隆抗体2C3(ATCC PTA 1595)大致相同、基本上相同或相同的一种或多种抗体的鉴定是简单的技术问题,现在已经提供了具有有益特性的2C3。因为是在与参考抗体的比较中进行交叉反应性抗体的鉴定,可以理解,为了鉴定结合的表位与单克隆抗体2C3相同或基本上相同的抗体,实际上并不需要确定参考抗体(2C3)和待测抗体结合的表位。然而,本文收入了关于2C3结合的表位的重要信息,而且如Champe等人(1995,本文特别收入作为参考)所述可以进一步进行表位定位。
使用评价抗体竞争的多种免疫学筛选测定法,可以容易的进行交叉反应性抗体的鉴定。所有这些都是本领域的常规测定法,本文进一步详细描述。1997年8月26日发布的美国专利号5,660,827(本文特别收入作为参考)进一步补充了关于如何产生结合的表位与指定抗体(诸如2C3)相同或基本上相同的抗体的教导。
例如,当待测抗体是由不同动物来源获得的甚至是不同的同种型时,可以采用简单的竞争测定法,其中混和(或预先吸收)对照(2C3)与待测抗体,并应用于VEGF抗原组合物。“VEGF抗原组合物”指包含2C3结合的本文所述VEGF抗原(诸如游离VEGF)的任何组合物。由此,基于ELISA和Western印渍的方案适用于这些简单的竞争研究。
在某些实施方案中,可以在应用于抗原组合物之前将对照抗体(2C3)与不同量的待测抗体预先混和(如1∶10或1∶100)一段时间。在其它实施方案中,可以在暴露于抗原组合物的过程中简单的混和对照与不同量的待测抗体。在任何情况中,通过使用异种型或同种型二抗,能够只检测结合的对照抗体,其结合将随识别基本上相同表位的待测抗体的存在而降低。
在进行对照抗体与任何待测抗体(无论是异种型或同种型)之间的抗体竞争研究中,可以首先用可检测标记物(诸如生物素、或酶标记物、甚至放射性标记物)标记对照(2C3)从而能够进行随后的鉴定。在这些情况中,可以多种比率(如1∶10或1∶100)预先混和或温育经标记的对照抗体与待测抗体,(任选在适当时间后)然后测定经标记的对照抗体的反应性,并与在不含潜在的竞争性待测抗体的温育中获得的对照值进行比较。
测定法也可以是基于抗体杂交的一系列免疫学测定法之一,并通过测定标记物的方法来检测对照抗体,如在生物素化抗体的情况中使用链霉亲和素,或者有关酶标记时使用显色底物(诸如过氧化物酶与3,3’,5,5’-四甲基联苯胺(TMB)底物),或者简单的检测放射性标记。结合的表位与对照抗体相同的抗体能够有效竞争结合,由此显著降低对照抗体的结合,表现为结合的标记的降低。
将不存在完全无关抗体时(经标记的)对照抗体的活性作为对照高值。将经标记(2C3)抗体与完全相同(2C3)的未标记抗体一起温育,此时发生竞争且经标记抗体的结合降低,由此获得对照低值。在检验测定法中,在存在待测抗体时经标记抗体反应性的显著降低指示待测抗体识别相同表位,即与经标记的(2C3)抗体发生“交叉反应”。
显著降低是“可重现的”,即一贯观察到的,结合的降低。“显著降低”在本发明中定义为(在ELISA中2C3结合VEGF)在大约1∶10与大约1∶100之间的任何比例,可重现的降低至少大约70%、大约75%或大约80%。具有更严格的交叉阻断活性的抗体在大约1∶10与大约1∶100之间的任何比例,(将ELISA或其它合适的测定法中2C3结合VEGF)可重现的降低至少大约82%、大约85%、大约88%、大约90%、大约92%、大约95%等。虽然本发明的实践绝不要求完全或几乎完全的交叉阻断,诸如将2C3与VEGF的结合可重现的降低大约99%、大约98%、大约97%、或大约96%等,但是也不排除这些情况。
本发明由杂交瘤ATCC PTA 1595产生的单克隆抗体2C3或其抗原结合片段进行例示。本发明的另一个方面是产生单克隆抗VEGF抗体的杂交瘤,该抗体结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同。
本发明还提供了结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗VEGF抗体,其制备过程包括用至少第一种免疫原性VEGF成分免疫动物,并由经免疫动物选择与单克隆抗体2C3(ATCC PTA1595)充分发生交叉反应的抗体;和结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗VEGF抗体,其制备过程包括用至少第一种免疫原性VEGF成分免疫动物,并通过鉴定充分降低2C3抗体结合VEGF的抗体而由经免疫动物选择交叉反应性抗VEGF抗体。
结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同、特异性抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)的抗VEGF抗体或其抗原结合片段;和结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同、抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)但不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)的抗VEGF抗体或其抗原结合片段构成了本发明的其它方面。
通过受体竞争、ELISA、共沉淀、和/或功能测定法和上文所述的2C3交叉反应性测定法中的一种或多种或组合,能够容易的鉴定具有这些特性组合的抗体。上文描述了关于一贯显著降低VEGF结合VEGFR2且一贯不显著抑制VEGF结合VEGFR1的2C3样抗体的定量评价指导。
本文显示了在摩尔数比VEGF过量100倍和1000倍时,2C3将结合于VEGFR2包被的ELISA孔中的VEGF量分别降低至大约26%和19%。这些数字等同于将VEGF与VEGFR2的结合分别降低了大约74%和81%。本文显示了在摩尔数比VEGF过量100倍和1000倍时,2C3将结合于VEGFR2包被的ELISA孔中的VEGF的量分别维持于大约92%和105%。
同样可以理解,更显著抑制VEGF结合VEGFR2的2C3样抗体或交叉反应性抗体有可能耐受更大的VEGFR1结合降低。同样,当抗体使VEGF与VEGFR2的结合具有中等降低时,应当更严格的维持与VEGFR1的结合。
因此,本发明的其它例示性抗VEGF抗体及其抗原结合片段:
(a)结合非构象依赖型VEGF表位(通过Western印渍中与VEGF的结合来评价);
(b)结合游离的VEGF;
(c)显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1);
(d)不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1);
(e)抑制且优选显著抑制VEGF诱导的VEGFR2的磷酸化;
(f)抑制且优选显著抑制VEGF诱导的血管通透性;
(g)抑制且优选显著抑制VEGF介导的内皮细胞增殖;
(h)抑制且优选显著抑制血管发生;
(i)不显著抑制VEGFR1介导的巨噬细胞、破骨细胞、或破软骨细胞的刺激或激活;
(j)对患有血管化肿瘤的动物施用后定位于肿瘤血管结构和肿瘤基质;或
(k)结合的表位与单克隆抗体2C3(ATCC PTA 1595)相同或基本上相同。
在下面关于本发明的组合物、免疫缀合物、药物、组合、混和药物、试剂盒、第一种和第二种医学应用、和所有方法的描述中,术语“抗体”和“免疫缀合物”或其抗原结合区指一系列阻断VEGFR2的抗VEGF抗体以及特异性2C3交叉反应性抗体,除非特别注明或由科学术语澄清。
如本文所用,术语“抗体”和“免疫球蛋白”泛指任何免疫学结合试剂,包括多克隆和单克隆抗体。根据重链恒定结构域的类型,将抗体主要分成5类:IgA、IgD、IgE、IgG、和IgM。它们中的一些又进一步分成亚类或同种型,诸如IgG1、IgG2、IgG3、IgG4、等等。对应于不同种类免疫球蛋白的重链恒定结构域依次称为α、δ、ε、γ、和μ。不同种类免疫球蛋白的亚基结构和三维构象是众所周知的。
通常,当本发明使用抗体而非抗原结合区时,优选IgG和/或IgM,因为它们是生理学环境中最常见的抗体而且它们最易于在实验室制备。
根据恒定结构域的氨基酸序列,哺乳动物抗体的“轻链”分成明显不同的两型:κ和λ。本发明抗体对于κ或λ轻链的使用基本上没有偏爱。
优选使用单克隆抗体(mAb)或其衍生物。认为mAb具有某些优点,如可再现和大规模生产,使得它们适用于临床治疗。本发明由此提供了鼠、人、猴、大鼠、仓鼠、兔、甚至青蛙或鸡起源的单克隆抗体。通常优选鼠、人、或人化单克隆抗体。
本领域技术人员可以理解,术语“抗体”涵盖的免疫学结合试剂延伸至来自所有物种的所有抗体及其抗原结合片段,包括二聚体、三聚体、和多聚体抗体;双特异性抗体;嵌合抗体;人和人化抗体;重组和工程化抗体及其片段。
术语“抗体”由此用于指具有抗原结合区的任何抗体样分子,而且该术语包括抗体片段,诸如Fab’、Fab、F(ab’)2、单结构域抗体(DAB)、Fv、scFv(单链Fv)、线性抗体、diabody、等等。本领域众所周知制备和使用各种基于抗体的构建物和片段的方法(Kabat等人,1991,特别收入本文作为参考)。具体而言,EP 404,097和W0 93/11161(都收入本文作为参考)进一步描述了diabody,Zapata等人(1995,特别收入本文作为参考)进一步描述了线性抗体。
在某些实施方案中,本发明的组合物包含至少第一种抗VEGF抗体,其中所述抗体包含的至少第一个可变区包含的氨基酸序列区与SEQ IDNO:7或SEQ ID NO:9的氨基酸序列具有至少大约75%的序列同一性,更优选至少大约80%,更优选至少大约85%,更优选至少大约90%,最优选至少大约95%;其中所述抗VEGF抗体至少基本上维持本发明由2C3抗体例示的阻断VEGFR2的抗VEGF抗体的生物学特性。
本文将关于本发明的这些或其它抗VEGF抗体序列的同一性或同源性定义为,比对序列并引入缺口(如果需要)从而实现最大序列同一性百分率后,候选序列中与序列SEQ ID NO:7或SEQ ID NO:9或与本发明的另一种抗VEGF抗体序列相同的氨基酸残基百分率。特别重要的是,维持与用于序列比较的阻断VEGFR2的抗VEGF抗体基本上相同、甚至更有效的生物学特性。使用本文详细描述的多种测定法中的一种或多种,可以容易的进行这些比较。
在某些优选的实施方案中,本发明的抗VEGF抗体包含的至少第一种可变区包含的氨基酸序列区具有氨基酸序列SEQ ID NO:7或SEQ IDNO:9,例如包含核酸序列SEQ ID NO:6或SEQ ID NO:8编码的氨基酸序列区的可变区。这些序列是涵盖重链和轻链可变区CDR1-3(互补决定区)的2C3scFv的Vh和Vκ序列。
在其它优选的实施方案中,提供了与最初的阻断VEGFR2的抗VEGF抗体(诸如2C3)相比具有改进的或更好的特性的第二代抗体。例如,第二代抗体可能具有更强的结合亲和力,更有效的阻断VEGF结合VEGFR2,更特异性的阻断VEGF结合VEGFR2,甚至更少的阻断VEGF结合VEGFR1,更强的抑制VEGF诱导内皮细胞增殖和/或迁移的能力,更好的抑制VEGF诱导血管通透性的能力,且优选增强在体内抑制VEGF所诱导血管发生并治疗血管发生性疾病(包括血管化肿瘤)的能力。
使用本文详细描述的多种测定法,可以容易的进行并量化用于鉴定有效的第二代抗体的比较。本发明涵盖,与由2C3抗体例示的本发明阻断VEGFR2的抗VEGF抗体相比,生物学特性或活性增强至少大约10倍的第二代抗体,优选至少大约20倍,更优选至少大约50倍。
在某些实施方案中,采用的抗体是“人化的”、部分人的、或人的抗体。“人化”抗体通常是来自小鼠、大鼠、或其它非人物种并携带人恒定区和/或可变区结构域(“部分人嵌合抗体”)的嵌合单克隆抗体。用于本发明的多种人化单克隆抗体是嵌合抗体,其中将小鼠、大鼠、或其它非人单克隆抗体的至少第一种抗原结合区或互补决定区(CDR)可操作连接或“移植”到人抗体恒定区或“框架”上。
本文使用的“人化”单克隆抗体也可以是来自非人物种的单克隆抗体,其中一个或多个选定氨基酸已经变成人抗体中更常见的氨基酸。使用常规的重组技术,特别是定点诱变,可以容易的实现这一点。
本发明也可以制备并使用完全人的而非“人化的”抗体。可以通过由健康的主体获得混和的外周血淋巴细胞群,其中包括抗原呈递和抗体生成细胞,并在体外与免疫有效量的VEGF样品混和来刺激细胞群,由此获得这些人抗体。一旦获得了人抗VEGF抗体生成细胞,则将它们用于杂交瘤和/或重组抗体生产。
用于单克隆抗体生产的其它技术包括用免疫有效量的VEGF样品免疫包含人抗体库的转基因动物,优选转基因小鼠。这也可以产生用于进行杂交瘤和/或重组抗体生产进一步操作的人抗VEGF抗体生成细胞,优势在于可以由转基因动物或小鼠容易的获得脾细胞而非外周血细胞。
通过包括下列步骤的过程和方法可以容易的制备本发明的阻断VEGFR2的抗VEGF抗体:
(a)制备候选抗体生成细胞;并
(b)由候选抗体生成细胞选择显著抑制VEGF结合VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGFR1(Flt-1)的抗体。
通过选择与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体可以容易的制备本发明的其它抗体。合适的制备过程和方法包括下列步骤:
(a)制备候选抗体生成细胞;并
(b)由候选抗体生成细胞选择与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体。
由此,可以在指定患者中原位进行一种用于制备合适的抗体生成细胞并由其获得抗体的方法,即仅仅给患者提供免疫有效量的免疫原性VEGF样品将导致适当抗体生成。由此,仍然是由抗体生成细胞“获得”抗体,但是不需要由宿主分离并随后提供给患者,而是自发的定位于血管结构并展示其抗肿瘤的生物学效果。然而,因为显著缺乏特异性,所以这些实施方案不是优选的。
也可以通过在体外用VEGF刺激外周血淋巴细胞来获得合适的抗体生成细胞并随后分离和/或纯化抗体。
其它方法包括对动物施用包含至少第一种免疫原性VEGF成分的免疫组合物,并由经免疫动物选择显著抑制VEGF结合VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGFR1(Flt-1)、任选的与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体。这些方法通常包括下列步骤:
(a)通过对动物施用至少一剂(任选的,超过一剂)免疫有效量的免疫原性VEGF样品(诸如第一种人VEGF成分、基本上全长的VEGF成分、或重组人VEGF)来免疫动物;并
(b)由经免疫动物获得合适的抗体生成细胞,诸如产生的抗体显著抑制VEGF结合VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGFR1(Flt-1)、任选与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体生成细胞。
可以以VEGF缀合物的形式或与任何合适的佐剂(诸如弗氏完全佐剂)联合施用免疫有效量的VEGF样品。可以采用任何经验性的技术或变化来增加免疫原性。通常优选完整的、基本上全长的人VEGF作为免疫原。
不管免疫方法的本质或免疫动物的类型如何,可以由经免疫动物获得合适的抗体生成细胞,并优选进行进一步的人工操作。如本文所用,“经免疫动物”是非人动物,除非特别注明。虽然可以使用任何抗体生成细胞,但是最优选以脾细胞作为抗体生成细胞的来源。可以将抗体生成细胞用于包括下列步骤的制备过程:
(a)融合合适的抗VEGF抗体生成细胞与永生化细胞,来制备产生本发明单克隆抗体的杂交瘤;并
(b)由杂交瘤获得本发明的合适的抗VEGF抗体。
“合适的”抗VEGF抗体生成细胞、杂交瘤、和抗体是可产生或作为阻断VEGFR2的抗VEGF抗体,即显著抑制VEGF结合VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGFR1(Flt-1)、任选与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体的那些。
基于杂交瘤的单克隆抗体制备方法由此包括下列步骤:
(a)通过对动物施用至少一剂(任选的,超过一剂)免疫有效量的免疫原性VEGF样品(优选完整的人VEGF样品)来免疫动物;
(b)由经免疫动物制备产生单克隆抗体的杂交瘤集合;
(c)由杂交瘤集合选择至少第一种杂交瘤,它产生至少第一种本发明的阻断VEGFR2的抗VEGF单克隆抗体,任选与单克隆抗体2C3(ATCCPTA 1595)充分发生交叉反应的抗VEGF抗体;并
(d)培养所述至少第一种抗体生成杂交瘤以提供至少第一种阻断VEGFR2的抗VEGF单克隆抗体;并优选的
(e)由培养的至少第一种杂交瘤获得所述至少第一种阻断VEGFR2的抗VEGF单克隆抗体。
在鉴定与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗VEGF抗体时,选择步骤可以包括:
(a)使VEGF样品接触有效量的单克隆抗体2C3(ATCC PTA 1595)和候选抗体;并
(b)测定候选抗体充分降低2C3抗体结合VEGF样品的能力;其中候选抗体充分降低2C3抗体结合VEGF样品的能力指示结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗VEGF抗体。
选择步骤还可以包括:
(a)使第一种VEGF样品接触结合有效量的单克隆抗体2C3(ATCCPTA 1595)并测定结合VEGF的2C3的量;
(b)使第二种VEGF样品接触结合有效量的单克隆抗体2C3(ATCCPTA 1595)和竞争有效量的候选抗体并测定在存在候选抗体时结合VEGF的2C3的量;并
(c)通过选择将结合VEGF的2C3的量降低(优选)至少大约80%的候选抗体来鉴定结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗VEGF抗体。
由于将非人动物用于免疫,所以由这些杂交瘤获得的单克隆抗体常常具有非人结构。正如本领域技术人员知道的和本文进一步描述的,可以对这些抗体任选的进行人化加工,移植或突变。或者,可以使用包含人抗体基因库的转基因动物(诸如小鼠)。这些动物的免疫将直接导致合适的人抗体的产生。
在产生了合适的抗体生成细胞、最优选杂交瘤(无论是产生人或是非人抗体)之后,可以克隆单克隆抗体编码核酸以制备“重组”单克隆抗体。可以使用任何重组克隆技术,包括使用PCRTM来引发抗体编码核酸序列的合成。因此,其它适用于制备单克隆抗体的方法包括含有如下使用抗体生成细胞的步骤的方法:
(a)由合适的抗VEGF抗体生成细胞(优选杂交瘤)获得至少第一种合适的抗VEGF抗体编码核酸分子或片段;并
(b)在重组宿主细胞中表达核酸分子或片段以获得本发明阻断VEGFR2的抗VEGF重组单克隆抗体。
然而,可以使用非常适用于制备重组体单克隆抗体的其它有效的重组技术。这些重组技术包括基于噬菌粒文库的单克隆抗体制备方法,包括下列步骤:
(a)通过对动物施用至少一剂(任选的,超过一剂)免疫有效量的免疫原性VEGF样品(诸如完整的人VEGF样品)来免疫动物;
(b)制备组合型免疫球蛋白噬菌粒文库,该文库表达由经免疫动物的抗体生成细胞(优选来自脾)分离的RNA;
(c)由噬菌粒文库选择至少第一种克隆,它表达至少第一种阻断VEGFR2的抗VEGF抗体,任选与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应的抗体;
(d)由所述至少第一种选定克隆获得阻断VEGFR2的抗VEGF抗体编码核酸并在重组宿主细胞中表达核酸以提供所述至少第一种阻断VEGFR2的抗VEGF抗体;并,优选的
(e)获得由来自所述至少第一种选定克隆的核酸表达的所述至少第一种阻断VEGFR2的抗VEGF抗体。
同样,在这些基于噬菌粒文库的技术中,可以采用包含人抗体基因库的转基因动物,由此产生重组人单克隆抗体。
不管第一种阻断VEGFR2的抗VEGF抗体核酸片段的制备方式如何,可以通过标准分子生物学技术容易的制备其它合适的抗体核酸片段。为了确认任何变体、突变体、或第二代阻断VEGFR2的抗VEGF抗体适用于本发明,对核酸片段进行检验以确认本发明阻断VEGFR2的抗VEGF抗体的表达。优选,还对变体、突变体、或第二代核酸片段进行检验以确认在标准(更优选标准严谨)杂交条件下的杂交。例示性的合适的杂交条件包括在大约7%十二烷基硫酸钠(SDS)/大约0.5M NaPO4/大约1mM EDTA中于大约50℃杂交;并用大约1%SDS于大约42℃清洗。
由于可以容易的制备多种重组体单克隆抗体(人或非人起源的),所以可以如下执行本发明的处理方法:给动物或患者提供在患者体内表达生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体的至少第一种核酸片段。“表达阻断VEGFR2的抗VEGF抗体、2C3样抗体、或基于2C3抗体的核酸片段”通常至少是表达构建物的形式,也可以是包含于病毒或重组宿主细胞内的表达构建物的形式。本发明优选的基因治疗载体通常是病毒载体,诸如重组逆转录病毒、单纯疱疹病毒(HSV)、腺病毒、腺伴随病毒(AAV)、巨细胞病毒(CMV)、等等的载体。
本发明还提供了包含至少第一种纯化的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同)或其抗原结合片段的组合物。这些组合物可以是制药学可接受的组合物或用于实验室研究的组合物。关于药物组合物,它们可以优选配制用于胃肠外施用,诸如静脉内施用。
本发明提供了关于阻断VEGFR2的抗VEGF抗体的大量方法和应用,包括2C3交叉反应性抗体、2C3样抗体、或基于2C3抗体。关于所有方法,术语“一个/种”指所述方法的“至少一个/种”、“至少第一个/种”、“一个/种或多个/种”、或“多数”步骤,除非特别注明。这与治疗方法的施用步骤特别有关系。因此,本发明不仅可以采用不同剂量,而且可以使用不同剂数(如注射次数),直至包括多次注射。可以使用联合治疗,在施用抗VEGF治疗性抗体之前、之后、或之中进行施用。
本发明提供了具有重要生物学意义的多种有用的体外方法和应用。首先提供的是结合VEGF的方法和应用,通常包括使包含VEGF(优选游离的即未结合受体的VEGF)的组合物有效接触至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段。
本发明还提供了检测VEGF的方法和应用,通常包括在能够有效形成VEGF/抗体复合物的条件下,使怀疑包含VEGF的组合物接触至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗体)或其抗原结合片段,并检测形成的复合物。检测方法和应用可以与生物学样品相结合,如用于血管发生和肿瘤的诊断,本发明还提供了基于这一点的诊断剂盒。
本发明还提供了优先或特异性抑制VEGF结合VEGF受体VEGFR2的方法和应用,通常包括在有效抑制VEGF结合VEGF受体VEGFR2的条件下,在存在VEGF时,使包含表达VEGFR2(KDR/FLK-1)的内皮细胞的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明还提供了显著抑制VEGF结合VEGF受体VEGFR2、而不显著抑制VEGF结合VEGF受体VEGFR1的方法和应用。这些方法包括在有效抑制VEGF结合VEGF受体VEGFR2、而不显著抑制VEGF结合VEGF受体VEGFR1的条件下,在存在VEGF时,使包含表达VEGFR2(KDR/Flk-1)和VEGFR1(Flt-1)的内皮细胞群的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明的其它方法和应用涉及分析称为VEGFR2和VEGFR1的VEGF受体的生物学作用,包括下列步骤:
(a)使包含VEGF和表达VEGFR2(KDR/Flk-1)和VEGFR1(Flt-1)受体的细胞群的生物学组合物或组织接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物;并
(b)测定阻断VEGFR2的抗VEGF抗体对针对VEGF的至少第一种生物学应答的影响;其中:
i)在存在阻断VEGFR2的抗VEGF抗体时生物学应答改变指示为由VEGFR2介导的应答;且
ii)在存在阻断VEGFR2的抗VEGF抗体时生物学应答维持指示为由VEGFR1介导的应答。
本发明还提供了抑制增殖的方法和应用,包括特异性抑制VEGF诱导的内皮细胞增殖和/或迁移,通常包括在有效抑制VEGF诱导内皮细胞增殖和/或迁移的条件下,使包含内皮细胞群和VEGF的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明还提供了抑制VEGF诱导的内皮细胞增殖和/或迁移、而不显著抑制VEGF诱导的巨噬细胞趋化性的方法和应用,通常包括在有效抑制VEGF诱导内皮细胞增殖和/或迁移、而不显著抑制VEGF诱导的巨噬细胞趋化性的条件下,使包含内皮细胞、巨噬细胞、和VEGF的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明还提供了抑制VEGF诱导的内皮细胞增殖和/或迁移、和任选的血管发生、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的方法和应用。这些方法通常包括在有效抑制VEGF诱导的内皮细胞增殖和/或迁移、或血管发生、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的条件下,使包含内皮细胞和巨噬细胞、破骨细胞、或破软骨细胞中至少一种的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
可以在体外或在体内进行上述方法和应用,在后一种情况中,组织或细胞位于动物体内,并对动物施用抗VEGF抗体。在两种情况中,上述方法和应用可以是用于抑制血管发生的方法或应用,包括在有效抑制血管发生的条件下,使包含潜在的血管发生性血管的组织或血管群(即潜在暴露于VEGF)接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段的抗血管发生组合物。
当先体外后体内维持潜在血管发生性血管群时,本发明可用于药物投递程序。优选将包含可靠的阳性和阴性对照的体外筛选实验作为用于抑制或促进血管发生的药物开发的第一步,以及用于描绘血管发生过程的更多信息。当潜在血管发生性血管群位于动物或患者体内时,对动物施用抗血管发生组合物作为治疗的一种形式。
在所有上述抑制方法中,“生物学有效量”指阻断VEGFR2的抗VEGF抗体(任选基于2C3抗体)的量能有效抑制VEGF诱导的内皮细胞增殖和/或迁移;抑制VEGF诱导的内皮细胞增殖和/或迁移或血管发生,而不显著抑制VEGF诱导的巨噬细胞趋化性;抑制VEGF诱导的内皮细胞增殖和/或迁移,而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞;和总体上以有效抑制血管生长或血管发生的方式降低血管内皮细胞的增殖和/或迁移。
本发明由此提供了抑制VEGF诱导的血管发生和(优选的)治疗血管发生性疾病、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的方法和应用。这些方法通常包括在有效抑制VEGF诱导的血管发生和治疗血管发生性疾病、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的条件下,使包含内皮细胞和巨噬细胞、破骨细胞、或破软骨细胞中至少一种的细胞或组织群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明还提供了抑制VEGF诱导的血管发生和(优选的)治疗血管发生性疾病、而不对骨代谢产生显著副作用的方法和应用。这些方法包括在有效抑制VEGF诱导的血管发生和治疗血管发生性疾病、通过不显著损害巨噬细胞、破骨细胞、或破软骨细胞的活性而不对骨代谢产生显著副作用的条件下,使包含血管内皮细胞和巨噬细胞、破骨细胞、或破软骨细胞中至少一种的组织或血管发生性血管群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明提供了关于患有或有风险形成特征为非期望的、不适当的、异常的、过度的、和/或病理性的血管形成的任何疾病或紊乱的动物和患者的抗血管发生药物筛选(体外)和疗法(体内)。本领域技术人员众所周知,异常血管发生存在于广泛的疾病和紊乱中;一旦给出的抗血管发生疗法在任何可接受的模型系统中显示是有效的,则可以用于治疗与血管发生有关的所有整个范围内的疾病和紊乱。
本发明的方法和应用特别有意用于患有或有风险形成任何形式的血管化肿瘤;黄斑变性,包括与年龄有关的黄斑变性;关节炎,包括类风湿性关节炎;动脉粥样硬化和动脉粥样硬化病斑;糖尿病性视网膜病变和其它视网膜病变;甲状腺增生,包括Grave氏病;血管瘤;新生血管性青光眼;和牛皮癣的动物和患者。
本发明的方法和应用还有意用于治疗患有或有风险形成动静脉畸形(AVM)、脑(脊)膜瘤、和血管再狭窄(包括血管成形术后的再狭窄)的动物和患者。本发明的治疗性方法和应用有意的其它靶是患有或有风险形成血管纤维瘤、皮炎、子宫内膜异位症、血友病关节、肥大性瘢痕、炎症性疾病和紊乱、脓性肉芽肿、硬皮病、滑膜炎、沙眼、和血管粘连的动物和患者。
正如美国专利5,712,291(本文特别收入作为参考)中公开的,上述优选治疗组绝非涵盖了本发明可治疗的所有种类的状况。为了某些特定目的,本文收入美国专利5,712,291作为参考,这些目的包括:鉴定可以用抗血管发生治疗剂有效治疗的大量其它状况;显示,一旦公开并要求专利保护确定类别的抑制血管发生化合物(在本案例中,是阻断VEGFR2的抗VEGF抗体,任选结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗体),所有血管发生性疾病的治疗代表统一的概念;和显示,仅由来自单一模型系统的资料就能够进行所有血管发生性疾病的治疗。
在另一个方面,正如美国专利5,712,291(本文收入作为参考)中公开的,本发明的方法和应用有意用于治疗患有或有风险形成纤维血管组织异常增殖、玫瑰痤疮(酒糟鼻)、获得性免疫缺陷综合症、动脉堵塞、特应性角膜炎、细菌性溃疡、Bechets病、血液传播肿瘤、颈总动脉梗阻性疾病、化学烧伤、脉络膜新血管形成、慢性炎症、慢性视网膜脱落、慢性眼色素层炎、慢性玻璃体炎(chronic vitritis)、隐形眼镜过度配戴、角膜移植排斥、角膜新血管形成、角膜移植新血管形成、Crohn氏病、Eales病、流行性角膜结膜炎、真菌性溃疡、单纯疱疹感染、带状疱疹感染、高粘滞性综合症、Kaposi氏肉瘤、白血病、脂肪变性、Lyme氏病、边缘角质分离、Mooren溃疡、除麻风病以外的分枝杆菌感染、近视、眼部新血管化病、视窝、Osler-Weber综合症(Osler-Weber-Rendu)、骨性关节炎、Pagets病、平坦部炎、类天疱疮、phylectenulosis、多动脉炎、激光后并发症(post-lasercomplications)并发症、原生动物感染、弹性假黄色瘤、翼状胬肉干燥性角膜炎、角膜放射状切开术、视网膜新血管形成、早产儿视网膜病变、晶状体后纤维组织形成、结节病、巩膜炎、镰刀形红细胞贫血病、Sogrens综合症、实体瘤、Stargarts病、Steven’s Johnson病、上缘角膜炎、梅毒、系统狼疮、Terrien氏边缘变性、弓形体病、外伤、Ewin肉瘤、神经母细胞瘤、骨肉瘤、视网膜母细胞瘤、横纹肌肉瘤、溃疡性结肠炎、静脉堵塞、维生素A缺乏、和Wegeners结节病的动物和患者。
本发明还提供了用于治疗患有或有风险形成关节炎的动物和患者的方法和应用,就与使用美国专利5,753,230(本文特别收入作为参考)描述的免疫学试剂治疗关节炎一样。美国专利5,972,922(本文也特别收入作为参考)进一步例示了抗血管发生策略对于治疗非期望血管发生的应用,关系到糖尿病、寄生虫病、异常创伤愈合、手术后肥大、烧伤、创伤或外伤、生发抑制、排卵和黄体形成抑制、植入抑制、和子宫内胚胎发育抑制。本发明的方法和应用的治疗范围涵盖所有上述状况。
美国专利5,639,757(本文收入作为参考)例示了抗血管发生策略在移植排斥的一般治疗中的应用。WO 98/45331(本文特别收入作为参考)描述了使用基于VEGF抑制的抗血管发生策略来治疗肺部炎症、肾病综合征、先兆子痫、心包积液(诸如与心包炎有关的心包积液)、和胸腔积液。本发明的方法和应用的治疗范围涵盖患有或有风险形成任何上述状况的动物和患者。
正如WO 98/16551(本文特别收入作为参考)中公开的,拮抗VEGF功能的生物学分子也适用于治疗特征为非期望的血管通透性的疾病和紊乱。因此,本发明的VEGF拮抗性抗体、方法、和应用可用于治疗患有或有风险形成特征为非期望的血管通透性的疾病和紊乱的动物和患者,如与脑瘤有关的浮肿、与恶性瘤有关的腹水、Meigs氏综合症、肺部炎症、肾病综合症、心包积液、和胸腔积液、等等。
虽然这一统一的发明能够治疗所有上述疾病,但是本发明的方法和应用特别优选的方面是抗血管发生疗法在患有或有风险形成血管化实体瘤、转移性肿瘤、或原发性肿瘤转移的动物和患者中的应用。
本发明还提供了抑制VEGF诱导的血管发生和(优选的)展现抗肿瘤或改进的抗肿瘤效果、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的方法和应用。这些方法通常包括在有效抑制VEGF诱导的血管发生和展现抗肿瘤或改进的抗肿瘤效果、而不显著抑制VEGF刺激巨噬细胞、破骨细胞、或破软骨细胞的条件下,使包含血管内皮细胞和巨噬细胞、破骨细胞、或破软骨细胞中至少一种的组织、肿瘤环境、或血管发生性血管群接触包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段的组合物。
本发明由此提供了治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的方法和应用,包括对患有这样一种疾病或癌症的动物或患者施用治疗有效量的包含阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段或者这种抗VEGF抗体的免疫缀合物的至少第一种药物组合物。
本发明将使用未缀合的或裸露的抗体及其片段的抗血管发生方法与使用抗体或其抗原结合片段可操作附着治疗剂的免疫缀合物的血管定向方法联系在一起。除非特别注明或由科学术语澄清,如本文所用,术语“抗体及其片段”指“未缀合的或裸露的”抗体或其片段,未附着另一种试剂,特别是治疗剂或诊断剂。这些定义不排除抗体修饰,诸如(只是作为范例)为了改进抗体的生物学半衰期、亲和力、亲合力、或其它特性的修饰,或者抗体与其它效应物的联合。
本发明的抗血管发生治疗方法和应用还涵盖未缀合的或裸露的抗体和免疫缀合物二者的应用。在基于免疫缀合物的抗血管发生治疗方法中,优选抗体或其抗原结合片段可操作附着第二种抗血管发生试剂(抗VEGF抗体自身是第一种抗血管发生试剂)。附着的抗血管发生试剂可能具有直接的或间接的抗血管发生效果。
抗血管发生治疗方法和应用包括对患有与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的动物或患者施用治疗有效量的包含至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的至少第一种药物组合物。同样的,施用的抗体可以可操作连接第二种抗血管发生试剂。
治疗转移性癌症的方法和应用包括对患有转移性癌症的动物或患者施用治疗有效量的包含至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的至少第一种药物组合物。其它方法包括施用的抗体可以可操作连接第二种抗血管发生试剂的方法。
减少原发性癌症转移的方法和应用包括对患有原发性癌症或曾经为此治疗的动物或患者施用治疗有效量的至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体或其抗原结合片段;其中未缀合的或裸露的阻断VEGFR2的抗VEGF抗体或其片段任选与单克隆抗体2C3(ATCC PTA1595)结合基本上相同的表位。相似的,施用的抗体可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的方法和应用还包括,以有效抑制疾病位点或血管化肿瘤内的血管发生的量,对患有这样一种疾病(如血管化肿瘤)的动物或患者施用至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段。同样的,施用的抗体可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的方法和应用还包括,以有效抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)由此抑制疾病或癌症位点内的血管发生的量,对患有这样一种疾病或癌症的动物或患者施用至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段。施用的抗体可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的方法和应用还包括对患有血管化肿瘤的动物或患者施用治疗有效量的至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段;其中抗VEGF抗体显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)。同样的,施用的抗体可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的另一种方法和应用包括对患有这样一种疾病、癌症、或血管化肿瘤的动物或患者施用治疗有效量的至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗体)或其抗原结合片段;其中抗VEGF抗体显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1),由此抑制疾病位点、癌症、或血管化肿瘤内的血管发生、而不显著损害动物体内巨噬细胞的趋化性。施用的抗体还可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的另一种方法和应用包括对患有这样一种疾病、癌症、或血管化肿瘤的动物或患者施用治疗有效量的至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗体)或其抗原结合片段;其中抗VEGF抗体显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)、而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1),由此抑制疾病位点、癌症、或血管化肿瘤内的血管发生、而不显著损害动物体内巨噬细胞、破骨细胞、和/或破软骨细胞的活性。同样的,施用的抗体还可以可操作连接第二种抗血管发生试剂。
治疗与血管发生有关的疾病(包括与血管发生有关的所有形式的癌症)的方法和应用还包括,以有效抑制疾病位点或血管化肿瘤内血管发生、而对骨代谢没有显著负面影响的量,对患有这样一种疾病(如血管化肿瘤)的动物或患者施用至少第一种未缀合的或裸露的阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段。
上述抗血管发生治疗方法和应用通常包括对动物或患者系统施用该制药学有效组合物,诸如通过穿皮、肌肉内、静脉内注射等等。然而,可以接受能够使治疗剂定位于血管发生位点(包括肿瘤或肿瘤内血管内皮细胞)的任何施用路径。因此,其它合适的投递路径包括口、直肠、鼻、局部、和阴道给药。美国专利5,712,291(本文特别收入作为参考)进一步描述了可以与血管发生性疾病或紊乱的治疗相结合的各种施用路径。
正如美国专利5,753,230(本文特别收入作为参考)中关于其它免疫学试剂的描述,对于治疗关节炎的方法和应用可以采用如滑膜内施用。对于与眼有关的状况,包括眼科配方和施用。
如本文所用,“施用”指以一定的量和一定的时间提供或投递基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂从而有效展现抗血管发生和/或抗肿瘤效果。通常优选被动施用蛋白质性状的治疗剂,这部分是因为比较简单和可重复。
然而,术语“施用”在本文用于指向肿瘤血管结构投递或提供基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂的任何和所有方法。因此,“施用”包括以有效投递至肿瘤的方式提供产生基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂的细胞。在这些实施方案中,可能需要将细胞配制或包装于选择性通透膜、结构、或可植入装置中,通常可以通过除去这种装置来终止治疗。通常优选施用外源性阻断VEGFR2的抗VEGF抗体或2C3样抗体,因为这代表了能够密切监测并控制剂量的非侵入式方法。
本发明的治疗性方法和应用还延伸至以在肿瘤附近有效表达或有效定位于肿瘤的方式提供编码基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂的核酸。可以采用任何基因治疗技术,诸如裸露DNA的投递、重组基因和载体、基于细胞的投递,包括对患者细胞的先体外后体内操作等等。
在其它实施方案中,本发明提供了向与疾病有关的血管发生性血管投递选定的治疗剂或诊断剂的方法和应用。这些实施方案优选用于向肿瘤或者肿瘤内血管结构或基质投递选定的治疗剂或诊断剂,包括对患有血管化肿瘤的动物或患者施用生物学有效量的包含至少第一种免疫缀合物的组合物,在所述免疫缀合物中诊断剂或治疗性可操作附着于阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段。
虽然实践这些实施方案并不需要理解本发明靶向方面的作用机制,但是认为本发明的抗体通过借助于VEGF结合血管发生性和肿瘤血管结构上表达的VEGFR1将附着的试剂投递至这些血管结构。由此,本发明的这些方法和应用包括将选定的治疗剂或诊断剂投递至血管发生性血管、肿瘤、或肿瘤内血管结构,包括以能够使抗体有效结合在血管发生性血管、肿瘤、或肿瘤内血管结构上表达、过度表达、或上调的VEGFR1上所结合的VEGF由此将诊断性或治疗剂投递至血管发生性血管、肿瘤、或肿瘤内血管结构上的VEGF-VEGFR1的方式,对需要治疗的动物或患者施用生物学有效量的包含免疫缀合物的组合物,在所述免疫缀合物中诊断性或治疗剂可操作附着于阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段。
投递至肿瘤或者肿瘤内血管结构或基质的选定治疗剂能够抑制或特异性抑制肿瘤血管结构中的血流;破坏或特异性破坏肿瘤血管结构;并诱导肿瘤坏死或特异性坏死。由此,这些方法和应用可以概括成用于治疗患有血管化肿瘤的动物或患者的方法,包括对动物或患者施用治疗有效量的包含至少第一种免疫缀合物的至少第一种药物组合物,所述免疫缀合物包含阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段,并任选附着有治疗剂。
用于本发明的“治疗有效量”指基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物,在施用于选定的动物或患者之后,能够有效的特异性杀死至少一部分肿瘤或肿瘤内血管内皮细胞;特异性诱导至少一部分肿瘤或肿瘤内血管内皮血管的坏死;特异性促进至少一部分肿瘤或肿瘤内血管的凝血;特异性阻塞或破坏至少一部分肿瘤输血血管;特异性诱导至少一部分肿瘤的坏死;和/或诱导肿瘤退化或缓解的量。在实现这些效果的同时,几乎不结合或杀死正常、健康组织中的血管内皮细胞;几乎不凝血、阻塞、或破坏健康、正常组织中的血管;并对动物或患者的正常、健康组织的不利副作用是可忽略的或易处理的。
如本文有关促进凝血或破坏肿瘤血管结构的内容和/或有关结合肿瘤基质和/或引起肿瘤坏死的内容,术语“优先”和“特异性”指基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物能够实现基本上局限于肿瘤基质、血管结构、和肿瘤位点的基质结合、凝血、破坏、和/或肿瘤坏死,而在动物或主体的正常、健康组织中基本上不引起凝血、破坏、和/或组织坏死。由此基本上维持了健康细胞和组织的结构和功能不受本发明实践的损害。
虽然本发明的抗体通过结合VEGFR1所结合的VEGF能够将试剂有效投递至血管发生性和肿瘤血管结构,但是其它方法和应用也能够利用将治疗剂投递至肿瘤基质的原理,并展现对附近血管的治疗性效果。这些方法和应用包括以能够使免疫缀合物有效结合肿瘤基质内非受体结合的VEGF的量,对患有血管化肿瘤的动物或患者施用含有治疗剂可操作附着于至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的免疫缀合物。
这些方法和应用包括以能够使免疫缀合物有效定位于肿瘤基质内使得附着的治疗剂展现对肿瘤周围血管结构和/或肿瘤细胞的抗肿瘤效果的量,对患有血管化肿瘤的动物或患者施用含有治疗剂可操作附着于至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段的免疫缀合物。
本发明的组合物以及方法和应用由此延伸至包含基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物的组合物,所述缀合物包含至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCCPTA 1595)基本上相同的抗体)或其抗原结合片段,以及可操作附着的至少第一种治疗性或诊断剂。基于阻断VEGFR2的抗VEGF抗体或2C3的治疗性缀合物优选连接放疗剂、抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物、抗细胞或毒害细胞试剂、或凝血剂(凝血因子)。
本发明由此提供了一系列缀合的抗体及其片段,其中抗体可操作附着至少第一种治疗性或诊断剂。术语“免疫缀合物”广泛用于定义抗体与另一种有效试剂的可操作连接,而非仅指任何类型的可操作连接,特别是不限制于化学“缀合”。特别涵盖重组融合蛋白质。只要投递或靶向试剂能够结合靶且治疗性或诊断剂在投递后充分发挥功能,则这种附着方式就是合适的。
还包括试剂经抗体上的碳水化合物部分的附着。抗体中天然存在O-连接的和N-连接的糖基化。如果需要,可以简单的通过在抗体一级序列中插入适当的氨基酸序列(诸如Asn-X-Ser、Asn-X-Thr、Ser、或Thr)来修饰重组抗体以再造或创造额外的糖基化位点。
目前优选用于基于阻断VEGFR2的抗VEGF抗体或2C3的治疗性缀合物以及相关方法和应用的药剂,是补充或增强抗体的效果,和/或选择用于特定肿瘤类型或患者的那些。“补充或增强抗体效果的治疗剂”包括放疗剂、抗血管发生试剂、诱导凋亡试剂、和抗微管蛋白药物,其中的任何一种或多种优选用于本文。
优选试剂与基于阻断VEGFR2的抗VEGF抗体或2C3的抗体的附着或连接产生了“免疫缀合物”,这些免疫缀合物常常具有增强的甚至协同的抗肿瘤特性。目前优选用于这种方式的抗血管发生试剂是制管张素(angiostatin)、抑内皮素(endostatin)、任何一种促血管生成素(angiopoietin)、抑血管素(vasculostatin)、制霉菌素(canstatin)、和maspin。目前优选的抗微管蛋白药物包括秋水仙素、紫杉醇、长春花碱、长春花新碱、长春碱酰胺(vindescine)、和任何一种或多种combretastatin。
抗细胞和毒害细胞试剂的使用产生基于阻断VEGFR2的抗VEGF抗体或2C3的“免疫毒素”;而凝血因子的使用产生基于阻断VEGFR2的抗VEGF抗体或2C3的“凝血配体”。还涵盖使用至少两种治疗剂,诸如一种或多种放疗剂、抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物、抗细胞和毒素细胞试剂、和凝血因子的组合。
在某些应用中,基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂可操作附着于能够杀死内皮细胞或抑制内皮细胞生长或分裂的毒害细胞、抑制细胞、或者抗细胞试剂上。合适的抗细胞试剂包括化疗剂,以及细胞毒素和抑制细胞的试剂。抑制细胞的试剂通常是干扰靶细胞的天然细胞周期,优选使细胞退出细胞周期的那些。
例示性化疗剂包括:类固醇;细胞因子;抗代谢物,诸如阿糖胞苷、氟尿嘧啶、氨甲喋呤、或氨基喋呤;蒽环霉素(anthracycline);丝裂霉素C;长春花生物碱;抗生素;秋水仙胺(demecolcine);依托泊甙(etoposide);光辉霉素;和抗肿瘤烷化试剂,诸如苯丁酸氮芥或苯丙氨酸氮芥。事实上,可以使用本文表C中公开的任何试剂。某些优选的抗细胞试剂是DNA合成抑制剂,诸如柔红霉素、羟基红比霉素(doxorubicin)、阿霉素(adriamycin)、等等。
在某些治疗性应用中,优选毒素部分,因为与其它潜在试剂相比,大多数毒素引起杀死细胞效果的能力要高得多。因此,某些优选用于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体构建物的抗细胞试剂是由植物、真菌、或细菌衍生的毒素。例示性毒素包括表鬼臼毒素;细菌内毒素或细菌内毒素的脂质A部分;核糖体灭活蛋白,诸如皂草素或gelonin;α-帚曲菌素(α-sarcin);曲霉菌素;局限曲菌素;核糖核酸酶,诸如胎盘核糖核酸酶;白喉毒素;和假单胞菌外毒素。
优选的毒素是A链毒素,诸如蓖麻毒蛋白A链。最优选的毒素部分常常是经处理而修饰或除去碳水化合物残基的蓖麻毒蛋白A链,即所谓的“脱糖基A链”(dgA)。脱糖基蓖麻毒蛋白A链是优选的,因为它极有效力、半衰期较长,而且进行临床等级和剂量的制造在经济上是可行的。也可以使用重组和/或截短的蓖麻毒蛋白A链。
对于肿瘤靶向和免疫毒素治疗,本文特别收入下列专利和专利申请作为参考,进一步补充关于抗细胞和毒害细胞试剂的传授:美国申请流水号07/846,349;08/295,868(美国专利号6,004,554);08/205,330(美国专利号5,855,866);08/350,212(美国专利号5,965,132);08/456,495(美国专利号5,776,427);08/457,487(美国专利号5,863,538);08/457,229;08/457,031(美国专利号5,660,827);和08/457,869(美国专利号6,051,230)。
本发明的基于2C3的抗体或其它阻断VEGFR2的抗VEGF抗体可以连接抗微管蛋白药物。如本文所用,“抗微管蛋白药物”指抑制细胞有丝分裂的任何试剂、药物、药物前体、或其组合,优选其抑制是通过直接或间接的抑制细胞有丝分裂必需的微管蛋白活性,优选微管蛋白的聚合或解聚达到的。
目前优选用于本文的抗微管蛋白药物是秋水仙素;taxanes,诸如紫杉醇;长春花生物碱,诸如长春花碱、长春花新碱、和长春碱酰胺;和combretastatin。例示性的combretastatin是combretastatinA、B、和/或D,包括A-1、A-2、A-3、A-4、A-5、A-6、B-1、B-2、B-3、B-4、D-1、和D-2及其药物前体形式。
基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂可以包含能够促进凝血的成分,即凝血剂。本文,靶向抗体可以直接或间接(如经另一种抗体)连接可直接或间接刺激凝血的因子。
优选用于这些用途的凝血因子是组织因子(TF)和TF衍生物,诸如截短的组织因子(tTF)、二聚体、三聚体、多聚体形式的组织因子、和激活因子VII能力缺陷的突变型组织因子。其它合适的凝血因子包括依赖维生素K的凝血因子,诸如因子II/IIa、因子VII/VIIa、因子IX/IXa、因子X/Xa;缺乏Gla修饰的依赖维生素K的凝血因子;Russell蝰蛇毒因子X激活剂;激活血小板的化合物,诸如血栓烷A2和血栓烷A2合酶;和纤维蛋白溶解抑制剂,诸如α2-抗纤溶酶。
下列专利和专利申请(本文特别收入作为参考)描述了使用凝血配体的肿瘤靶向和治疗,进一步补充关于凝血配体和凝血因子的传授:美国申请流水号07/846,349;08/205,330(美国专利号5,855,866);08/350,212(美国专利号5,965,132);08/273,567;08/482,369(美国专利号6,093,399);08/485,482;08/487,427(美国专利号6,004,555);08/479,733(美国专利号5,877,289);08/472,631;和08/479,727;和08/481,904(美国专利号6,036,955)。
本领域众所周知免疫缀合物和免疫毒素的制备(参阅美国专利4,340,535,本文收入作为参考)。本文收入下列专利和专利申请作为参考,进一步补充关于免疫毒素的产生、纯化、和使用的传授:美国申请流水号07/846,349;08/295,868(美国专利号6,004,554);08/205,330(美国专利号5,855,866);08/350,212(美国专利号5,965,132);08/456,495(美国专利号5,776,427);08/457,487(美国专利号5,863,538);08/457,229;08/457,031(美国专利号5,660,827);和08/457,869(美国专利号6,051,230)。
在免疫缀合物和免疫毒素的制备中,可以通过使用某些接头而获得某些优势。例如,常常优选包含空间上受阻碍的二硫键的接头,因为它们在体内的稳定性较高,由此防止在作用位点结合前释放毒素部分。通常需要缀合物在除预定作用位点以外的体内任何位点保持完整,而在预定作用位点具有优良的“释放”特征。
根据所用的特定毒素化合物,可能需要提供可操作附着阻断VEGFR2的抗VEGF抗体或基于2C3的抗体和毒素化合物的肽隔离物,其中肽隔离物能够折叠成二硫键环结构。环内的蛋白水解切割将产生杂二聚体多肽,其中抗体和毒素化合物仅仅通过一个二硫键连接在一起。
当使用某些其它毒素化合物时,可以提供不可切割的肽隔离物使阻断VEGFR2的抗VEGF抗体或基于2C3的抗体可操作附着毒素化合物。可用于连接不可切割的肽隔离物的毒素自身可以通过蛋白水解切割转变成毒性细胞的二硫键形式。这种毒素化合物的范例是假单胞菌外毒素化合物。
多种化疗剂和其它制药学试剂也能够成功缀合至基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂。例示性的缀合于抗体的抗肿瘤试剂包括羟基红比霉素(doxorubicin)、道诺霉素、氨甲喋呤、和长春花碱。此外,还描述了其它试剂的附着,诸如新制癌菌素、大分子霉素、三亚胺醌、和α-鹅膏菌素(参阅美国专利5,660,827;5,855,866;和5,965,132;本文收入作为参考)。
根据本发明人的一项早期工作,现在也能够容易的实践凝血配体的制备。一种或多种凝血因子与基于阻断VEGFR2的抗VEGF抗体或2C3的抗体的可操作连接可以是直接连接,诸如上文关于免疫毒素所述。或者,可操作连接可以是间接附着,诸如抗体可操作附着第二种结合区,优选结合凝血配体的抗体或其抗原结合片段。凝血因子应当附着于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体中不同于功能性促凝位点的其它位点,当利用共价键连接分子时尤其如此。
间接连接的凝血配体常常基于双特异性抗体。本领域也众所周知双特异性抗体的制备。一种制备方法包括分开制备具有针对(一方面)肿瘤成分和(另一方面)凝血剂的特异性的抗体;然后由两种选定抗体产生肽F(ab’γ)2片段,随后通过还原提供分开的Fab’γSH片段;再将待偶联的两种配偶体之一的SH基团用交联剂烷化,诸如邻-亚苯基二马来酰亚胺,从而在一种配偶体上提供游离的马来酰亚胺基团;然后再通过硫醚连接使这种配偶体连接另一种配偶体,从而产生所需F(ab’γ)2异缀合物(Glennie等人,1987;本文收入作为参考)。也可以进行其它方法,诸如使用SPDP或蛋白A的交联。
用于产生双特异性抗体的其它方法是通过融合两种杂交瘤来形成四倍体瘤。如本文所用,术语“四倍体瘤”用于描述两种B细胞杂交瘤的产生性融合。使用目前的标准技术,将两种抗体生成杂交瘤融合产生子代细胞,然后选择维持表达两组纯系型免疫球蛋白基因的那些细胞。
产生四倍体瘤的优选方法包括选择至少一种亲本杂交瘤的酶缺陷突变体。然后将这第一种突变体杂交瘤细胞系与经致死暴露于(如)碘乙酰胺而排除持续存活的第二种杂交瘤细胞融合。细胞融合能够挽救第一种杂交瘤,因为它们由经致死处理的杂交瘤获得原为酶缺陷的基因;也能够通过与第一种杂交瘤融合而挽救第二种杂交瘤。优选而非要求的是相同同种型、不同亚类的免疫球蛋白的融合。使用混合亚类的抗体可以便于用其它测定法分离优选的四倍体瘤。
可以使用微量滴定鉴定方案、FACS、免疫荧光染色、独特型特异性抗体、抗原结合竞争实验、和抗体鉴定领域的其它常用方法来鉴定优选的四倍体瘤。分离四倍体瘤后,由其它细胞产物纯化双特异性抗体。这可以通过免疫球蛋白纯化领域熟练技术人员知道的多种抗体分离方案来实现(参阅《抗体:实验室手册》(Antibodies:A LaboratoryManual),1988;本文收入作为参考)。优选蛋白A或蛋白G Sepharose柱。
在免疫缀合物、免疫毒素、和凝血配体的制备中,可以采用重组表达。将编码选定的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体和治疗剂、毒素、或凝血剂的核酸序列以相同读码框附着于表达载体中。重组表达由此导致核酸的翻译而产生所需免疫缀合物。化学交联剂和抗生物素蛋白:生物素桥连也可以将治疗剂连接至基于阻断VEGFR2的抗VEGF抗体或2C3的抗体。
本文收入下列专利和专利申请作为参考,进一步补充关于凝血配体(包括双特异性抗体凝血配体)的制备、纯化、和使用的传授:美国申请流水号07/846,349;08/205,330(美国专利号5,855,866);08/350,212(美国专利号5,965,132);08/273,567;08/482,369(美国专利号6,093,399);08/485,482;08/487,427(美国专利号6,004,555);08/479,733(美国专利号5,877,289);08/472,631;08/479,727;和08/481,904(美国专利号6,036,955)。
包含放疗剂、抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物、毒素、和凝血剂的免疫缀合物,无论是通过化学缀合或重组表达产生的,都可以采用生物学可释放键和/或可选择性切割隔离物或接头。这些组合物优选在循环过程中相当稳定,并在投递至疾病或肿瘤位点后优先或特异性释放。
某些优选的范例是对酸敏感的隔离物,其中特别包括连接秋水仙素或羟基红比霉素(doxorubicin)的阻断VEGFR2的抗VEGF抗体。其它优选的范例是包含肽酶和/或蛋白酶切割位点的肽接头,所述肽酶和/或蛋白酶特异性或优先存在于疾病位点(诸如肿瘤环境)或在该处有活性。将免疫缀合物投递至疾病或肿瘤位点将导致切割,并相对特异性释放凝血因子。
特别优选包含尿激酶、尿激酶原、纤溶酶、纤溶酶原、TGFβ、链激酶、凝血酶、因子IXa、因子Xa、或金属蛋白酶(MMP)(诸如间质胶原酶、明胶酶、或溶基质素)的切割位点的肽接头,正如美国专利5,877,289(本文收入作为参考)描述和赋予的,并由表B2进一步例示。
阻断VEGFR2的抗VEGF抗体还可以经衍生而导入能够经生物学可释放键附着治疗剂的功能基团。靶向抗体由此可以经衍生而导入酰肼、肼、伯胺、或仲胺终端的侧链。治疗剂可以经Schiff碱连接、腙或酰腙键、或酰肼接头而进行缀合(美国专利5,474,765和5,762,918,本文特别收入作为参考)。
无论主要基于抗血管发生还是血管靶向,本发明的组合物和方法可以与其它治疗剂和诊断剂联合使用。对于与本发明阻断VEGFR2的抗VEGF抗体(诸如基于2C3的抗体)“联合”使用的生物学试剂(优选诊断性或治疗剂),“联合”简便的用于包括一系列实施方案。除非特别注明或由科学术语澄清,术语“联合”用于各种形式的联合组合物、药物、混和药物、试剂盒、方法、以及第一种和第二种医学应用。
本发明的“联合”方案由此包括(例如)基于阻断VEGFR2的抗VEGF抗体或2C3的抗体是裸露抗体并与非可操作附着的试剂或治疗剂联合使用。在这些情况中,试剂或治疗剂可以以非靶向或靶向形式使用。在“非靶向形式”中,试剂,特别是治疗剂,通常参照本领域标准用法来使用。在“靶向形式”中,试剂通常可操作附着于将试剂或治疗剂投递至血管发生性疾病位点或肿瘤的独特抗体或靶向区。生物学试剂(诊断剂和治疗剂)的这些靶向形式在本领域也是相当标准的。
在本发明的其它“联合”方案中,基于阻断VEGFR2的抗VEGF抗体或2C3的抗体是免疫缀合物,其中抗体自身可操作连接试剂或治疗剂。在某些优选的范例中,试剂(包括诊断剂和治疗剂)是“2C3-靶向试剂”。可操作附着包括本文所述和本领域知道的所有形式的直接和间接附着。
“联合”应用,特别是基于阻断VEGFR2的抗VEGF抗体或2C3的抗体与治疗剂的联合,还包括联合组合物、药物、混和药物(cocktail)、试剂盒、方法、和第一种和第二种医学应用,其中治疗剂是药物前体的形式。在这些实施方案中,能够将药物前体转变成药物功能形式的激活成分也可以可操作附着于本发明基于阻断VEGFR2的抗VEGF抗体或2C3的抗体。
在某些优选的实施方案中,治疗性组合物、联合、药物、混和药物、试剂盒、方法、和第一种和第二种医学应用是“2C3-药物前体联合”。本领域普通技术人员可以理解,除非特别注明,术语“2C3-药物前体联合”指基于2C3的抗体可操作附着能够将药物前体转变成活性药物的成分,而不是指基于2C3的抗体附着药物前体自身。然而,不要求本发明的药物前体方案必需以2C3-药物前体联合的形式使用。因此,药物前体可以以它们用于本领域的任何方式使用,包括ADEPT和其它形式。
由此,优选就诊断剂,更优选就治疗剂描述联合组合物、药物、混和药物、试剂盒、方法、和第一种和第二种医学应用时,,联合包括阻断VEGFR2的抗VEGF抗体(诸如基于2C3的抗体)的裸露抗体和免疫缀合物;而本发明体内实施方案的实践包括在裸露抗体或免疫缀合物给药之前、之时、或之后施用生物学、诊断性、或治疗剂;条件是在有些缀合或未缀合形式中,实现有些形式的抗体与有些形式的生物学、诊断性、或治疗剂的全面供应。
本发明特别优选的联合组合物、方法、和应用包括阻断VEGFR2的抗VEGF抗体与抑内皮素的组合(美国专利5,854,205,本文特别收入作为参考)。这些包括阻断VEGFR2的抗VEGF抗体或2C3构建物是裸露抗体或免疫缀合物的情况;和免疫缀合物的情况,其中阻断VEGFR2的抗VEGF抗体或2C3连接抑内皮素,任选制管张素;其中联合治疗性方法或应用包括在此之前、之时、或之后施用抑内皮素,任选制管张素;条件是在有些缀合或未缀合形式中,实现2C3、抑内皮素、和任选制管张素的全面供应。还提供了可操作附着胶原酶的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,当特异性投递至肿瘤时,胶原酶将在原位产生抑内皮素,从而实现相似好处。
关于本发明对肿瘤效果的上述和其它解释是为了简单的说明联合操作模式、附着试剂种类、等等。不应当将这种叙述方法解释为对本发明基于阻断VEGFR2的抗VEGF抗体或2C3的抗体的有益特性的穷举或过度简化。因此,可以理解,这些抗体自身具有抗血管发生特性和VEGF中和特性(诸如中和VEGF的存活功能);这些抗体的免疫缀合物将维持这些特性并与附着试剂的特性联合;抗体与任何附着试剂的联合效果通常将增强和/或放大。
本发明由此提供了(任选)在至少第一种组合物或容器中包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段或者这种抗VEGF抗体的免疫缀合物,和生物学有效量的至少第二种生物学试剂、成分、或系统的组合物、药物组合物、治疗剂盒、和混和药物。
“至少第二种生物学试剂、成分、或系统”通常是治疗性或诊断剂、成分、或系统,但也未必。例如,所述至少第二种生物学试剂、成分、或系统可以包括用于修饰抗体和/或将其它试剂附着于抗体的成分。某些优选的第二种生物学试剂、成分、或系统是药物前体或产生并使用药物前体的成分,包括产生药物前体自身的成分和使本发明抗体适于在这些药物前体或ADEPT方案中发挥功能的成分。
当包含治疗性或诊断剂作为至少第二种生物学试剂、成分、或系统时,这些治疗剂和/或诊断剂通常就是用于血管发生性疾病的。这些试剂是适用于治疗或诊断在美国专利5,712,291、5,753,230、5,972,922、5,639,757、WO 98/45331、和WO 98/16551(本文特别收入作为参考)任一项中公开的疾病或紊乱的试剂。
当待治疗的疾病是癌症时,治疗剂盒或混和药物中将包含“至少第二种抗癌试剂”。术语“至少第二种抗癌试剂”是参照阻断VEGFR2的抗VEGF抗体或2C3构建物称为第一种抗癌试剂而选择的。本发明的抗体由此可以联合化疗剂、放疗剂、细胞因子、抗血管发生试剂、诱导凋亡试剂、或抗癌免疫毒素或凝血配体使用。
如本文所用,“化疗剂”指用于治疗恶性肿瘤的传统化疗剂或药物。该术语只是为了简单而使用,事实上展现抗癌效果的其它化合物在技术上也可以称为化疗剂。然而,“化疗”在本领域已经具有独特含义,并根据这一标准含义进行使用。本文描述了大量的例示性化疗剂。本领域普通技术人员可以容易的理解化疗剂的应用和适当剂量,但是当与本发明联合使用时,可以适当的降低剂量。
诱导凋亡的试剂是也可以称为“化疗剂”的新的一类药物。这些药物的任何一种或多种,包括基因、载体、反义构建物、和核酶,也可以适当的用于本发明的联合。目前优选的第二种试剂是抗血管发生试剂,诸如制管张素、抑内皮素、抑血管素、制霉菌素、和maspin。
其它例示性的抗癌试剂包括(如)新霉素、鬼臼毒素、TNFα、αvβ3拮抗剂、钙离子载体、诱导钙流试剂,及其任何衍生物或药物前体。目前优选的抗微管蛋白药物包括秋水仙素、紫杉醇、长春花碱、长春花新碱、长春碱酰胺、combretastatin,及其任何衍生物或药物前体。
抗癌免疫毒素或凝血配体也是合适的抗癌试剂。“抗癌免疫毒素或凝血配体”或靶向试剂-治疗剂构建物基于的是靶向试剂,包括结合肿瘤细胞、肿瘤血管结构、或肿瘤基质的可靶向或可接近成分并可操作附着治疗剂(包括毒害细胞试剂即免疫毒素和凝血因子即凝血配体)的抗体或其抗原结合片段。肿瘤细胞、肿瘤血管结构、或肿瘤基质的“可靶向或可接近成分”优选表面表达、表面可接近、或表面定位的成分,但是也可以靶向由坏死的或受损的肿瘤细胞或血管内皮细胞释放的成分,包括肿瘤细胞的细胞溶质和/或核抗原。
抗体和非抗体靶向试剂都可以使用,包括生长因子,诸如VEGF和FGF;包含三肽R-G-D、可特异性结合肿瘤血管结构的肽;和其它靶向成分,诸如膜联蛋白及相关配体。
抗肿瘤细胞免疫毒素或凝血配体可以包含由B3(ATCC HB 10573)、260F9(ATCC HB 8488)、D612(ATCC HB 9796)、和KS1/4例示的抗体,所述KS1/4抗体可以由包含载体pGKC2310(NRRL B-18356)或载体pG2A52(NRRL B-18357)的细胞获得。
还涵盖含有可结合坏死肿瘤细胞所释放细胞内成分的抗体或其抗原结合区的抗肿瘤细胞靶向试剂。优选的抗体是结合存在于经诱导可渗透的细胞中或基本上所有坏死和正常细胞的细胞空壳中,但是不存在于哺乳动物正常存活细胞的外部或在其上不可接近的不溶性细胞内抗原的单克隆抗体或其抗原结合片段。
授予Alan Epstein及其同事的美国专利5,019,368、4,861,581、和5,882626(本文特别收入作为参考)进一步描述并传授了如何产生并使用对由体内恶性细胞变得可接近的细胞内抗原具有特异性的抗体。所述抗体对哺乳动物恶性细胞的细胞内成分而非细胞外成分具有足够特异性。例示性的靶包括组蛋白,但是涵盖由坏死的肿瘤细胞特异性释放的所有细胞内成分。
对患有血管化肿瘤的动物或患者施用后,这些抗体定位于恶性细胞,因为血管化肿瘤必然包含坏死的肿瘤细胞,这要归功于在体内发生的并引起至少一部分恶性细胞坏死的肿瘤改造过程。另外,这些抗体与增强肿瘤坏死的其它疗法的联合使用有助于增强靶向和后继疗法的效力。
正如本文公开的,这些种类的抗体由此可以直接或间接的与促血管生成素(angiopoietin)相结合,并将促血管生成素施用至血管化肿瘤内的坏死恶性细胞。
也正如美国专利5,019,368、4,861,581、和5,882,626(本文收入作为参考)中公开的,这些抗体可以与诊断方法(见下文)联合使用,也可以用于测量抗肿瘤疗法的效力的方法。这些方法通常包括制备和施用经标记的抗体并测量经标记抗体与优先结合于坏死组织内的内部细胞成分靶的结合。这些方法由此使坏死组织成像,其中抗体的局部集中指示抗体的存在,并指示由抗肿瘤疗法杀死的细胞的空壳。
抗肿瘤基质免疫毒素或凝血配体通常包含结合结缔组织成分、基底膜成分、或激活的血小板成分的抗体;正如与纤维蛋白、RIBS、或LIBS的结合所例示的。
抗肿瘤血管结构免疫毒素或凝血配体可以包含结合血管化肿瘤的输血血管(优选肿瘤内血管)表面表达、表面接近、或表面定位成分的配体、抗体或其片段。这些抗体包括结合血管化肿瘤的肿瘤内血管的表面表达成分的那些抗体,包括肿瘤内血管结构细胞表面受体,诸如endoglin(TEC-4和TEC-11抗体)、TGFβ受体、E-选择蛋白、P-选择蛋白、VCAM-1、ICAM-1、PSMA、VEGF/VPF受体、FGF受体、TIE、αvβ3整联蛋白、pleiotropin、内皮唾液酸蛋白、和MHC II类蛋白质。抗体也可以结合肿瘤内血管的细胞因子或凝血剂可诱导成分。某些优选的试剂将结合氨基磷脂,诸如磷脂酰丝氨酸或磷脂酰乙醇胺。
其它抗肿瘤血管结构免疫毒素或凝血配体可以包含结合配体或生长因子的抗体或其片段,所述配体或生长因子可结合肿瘤内血管结构细胞表面受体。这些抗体包括结合VEGF/VPF(GV39和GV97抗体)、FGF、TGFβ、结合TIE的配体、肿瘤相关纤连蛋白异构体、分散因子(scatterfactor)/肝细胞生长因子(HGF)、血小板因子R(PF4)、PDGF、和TIMP的那些抗体。抗体或其片段也可以结合配体:受体复合物或生长因子:受体复合物;而当配体或生长因子或受体没有形成配体:受体复合物或生长因子:受体复合物时,抗体即不结合配体或生长因子,也不结合受体。
抗肿瘤细胞、抗肿瘤基质、或抗肿瘤血管结构的抗体-治疗剂构建物可以包含抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物、毒害细胞试剂(诸如由植物、真菌、或细菌衍生的毒素)。常常优选蓖麻毒蛋白A链和脱糖基蓖麻毒蛋白A链。抗肿瘤细胞、抗肿瘤基质、或抗肿瘤血管结构的抗体-治疗剂构建物可以包含凝血剂(直接和间接作用的凝血因子)或结合凝血因子的第二抗体结合区。常常优选可操作附着组织因子或组织因子衍生物,诸如截短的组织因子。
关于本发明的组合物、试剂盒、和/或药物,可以在单一容器或容器装置中或者在不同容器或容器装置中包含联合有效量的治疗剂。混和药物通常混和在一起供联合使用。常常优选配制用于静脉内施用的试剂。也包括成像成分。试剂盒还可以包含关于使用所含至少第一种抗体和一种或多种其它生物学试剂的指示。
一般而言,可以与基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂基本上同时施用至少第二种抗癌试剂于动物或患者,诸如施用单一药物组合物或紧密施用两种药物组合物。
或者,可以在一段时间对动物或患者相继施用基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂和至少第二种抗癌试剂。如本文所用,“一段时间后相继”指“交错”使用,使得对动物或患者施用至少第二种抗癌试剂的时间与基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂不同。通常以有效隔开的时间施用这两种试剂,使得两种试剂分别展现治疗性效果,即以“生物学有效时间间隔”施用两种试剂。可以在基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂之前或之后的生物学有效时间,对动物或患者施用所述至少第二种抗癌试剂。
因此,本发明提供了用于治疗患有血管化肿瘤的动物或患者的方法,包括:
(a)对动物或患者进行充分减小肿瘤负荷的第一种治疗;并
(b)随后以有效抑制任何存活肿瘤细胞转移的量对动物或患者施用至少第一种抗血管发生试剂;其中所述至少第一种抗血管发生试剂是至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段;任选其中所述抗体或其片段可操作连接第二种抗血管发生试剂。
优选的第一种治疗包括手术切除和化疗干预。也可以使用联合抗血管发生试剂,诸如促血管生成素2或靶向肿瘤的促血管生成素2构建物。
用于治疗患有血管化肿瘤的动物或患者的其它方法,包括:
(a)以有效诱导充分肿瘤坏死的量对动物或患者施用第一种抗体-治疗剂构建物;其中所述第一种抗体-治疗剂构建物包含的治疗剂可操作连接至可结合肿瘤细胞、肿瘤血管结构、或肿瘤基质的表面表达、可表面接近、或表面定位成分的第一种抗体或其抗原结合片段;并
(b)随后以有效抑制任何存活肿瘤细胞转移的量对动物或患者施用第二种抗体;其中所述至少第二种抗体是至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段;并且任选其中抗体或其片段可操作连接第二种抗血管发生试剂。
在特别优选的实施方案中,本发明提供了用于与药物前体和ADEPT联合使用的基于阻断VEGFR2的抗VEGF抗体和2C3的抗体。在这些组合物、联合、药物、试剂盒、方法、和应用中,基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或其片段将经修饰提供转变或酶促能力,或者可操作连接(优选共价连接或缀合)能够将至少一种药物前体转变成有活性药物的至少第一种转变剂或酶。
有酶活性或缀合了酶的抗体或其片段可以与最初分开的“药物前体”配方联合使用。药物前体是没有活性或略有活性的药物形式,在接触了与阻断VEGFR2的抗VEGF抗体或2C3抗体相连的酶能力、转变功能、或酶后,可转变成有活性的药物形式。
因此,提供了试剂盒,其优选在分开的组合物和/或容器中包含:
(a)生物学有效量的至少第一种具有酶功能的基于阻断VEGFR2的抗VEGF抗体和2C3的抗体或其片段,优选抗体或其片段可操作连接、共价连接、或缀合至少第一种酶;和
(b)生物学有效量的至少第一种基本上无活性的药物前体,通过阻断VEGFR2的抗VEGF抗体或2C3抗体或其片段的酶功能或与其可操作连接、共价连接、或缀合的酶,可将其转变成基本上有活性的药物。
本发明提供了有益方法和应用,其包括:
(a)对患有血管化肿瘤的动物或患者施用生物学有效量的至少第一种药物组合物,其包含至少第一种基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或其抗原结合片段,其中抗体或其片段具有酶功能,优选其中抗体或其片段可操作连接、共价连接、或缀合至少第一种酶;其中所述抗体或其片段在施用后定位于血管化肿瘤的血管结构、肿瘤内血管结构、或基质;并
(b)随后在有效时间后对动物或患者施用生物学有效量的至少第二种药物组合物,其包含生物学有效量的至少一种基本上无活性的药物前体;其中药物前体通过阻断VEGFR2的抗VEGF抗体或2C3抗体或其片段的酶功能或与其结合、连接、或缀合的酶转变成基本上有活性的药物;其中所述抗体或其片段定位于所述血管化肿瘤的血管结构、肿瘤内血管结构、或基质。
在某些其它实施方案中,本发明的抗体和免疫缀合物可以联合一种或多种诊断剂,通常就是用于血管发生性疾病的诊断剂。本发明由此包括一系列诊断性组合物、试剂盒、和方法。
关于癌症的诊断和治疗,本发明的诊断性和成像性组合物、试剂盒、和方法包括体内和体外诊断。例如,可以使用诊断有效量的肿瘤诊断成分使血管化肿瘤成像,所述肿瘤诊断成分包含可结合肿瘤细胞、肿瘤血管结构、或肿瘤基质的可接近成分的至少第一种结合区,且可操作附着体内诊断性成像试剂。
优选使用包含至少第一种可结合肿瘤血管结构或肿瘤基质可接近成分的结合区的诊断性成分进行肿瘤成像,来提供血管化肿瘤的基质和/或血管结构的影像。可以采用任何合适的结合区或抗体,诸如关于治疗性构建物所述。通过使用可检测标记的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体构建物可以提供某些优势,其中形成的影像将指示将要使用的治疗剂的结合位点。
无论是不是基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,可检测标记的体内肿瘤诊断剂可以包含X射线可检测的化合物,诸如铋(III)、金(III)、镧(III)、或铅(II);放射性离子,诸如铜67、镓67、镓68、铟111、铟113、碘123、碘125、碘131、汞197、汞203、铼186、铼188、铷97、铷103、锝99m、或钇90;核磁旋转共振同位素,诸如钴(II)、铜(II)、铬(III)、镝(III)、铒(III)、钆(III)、钬(III)、铁(II)、铁(III)、锰(II)、钕(III)、镍(II)、钐(III)、铽(III)、钒(II)、或镱(III);或者若丹明或荧光素。
可以在肿瘤治疗前如下进行预先成像:
(a)对动物或患者施用诊断有效量的药物组合物,其包含的诊断剂可操作附着至少第一种可结合肿瘤细胞、肿瘤血管结构(优选的)、或肿瘤基质(优选的)可接近成分的结合区,包括可操作附着基于阻断VEGFR2的抗VEGF抗体或2C3的抗体构建物的诊断剂;并
(b)随后检测结合至肿瘤细胞、肿瘤血管(优选的)、或肿瘤基质(优选的)的可检测标记的第一种结合区(或基于阻断VEGFR2的抗VEGF抗体或2C3的抗体);由此获得肿瘤、肿瘤血管结构、和/或肿瘤基质的影像。
还可以如下进行癌症治疗:
(a)通过对患有血管化肿瘤的动物或患者施用诊断最小量的至少第一种可检测标记的肿瘤结合剂来形成血管化肿瘤的影像,优选基于阻断VEGFR2的抗VEGF抗体或2C3的抗体构建物,其包含可操作附着于肿瘤结合剂或者基于阻断VEGFR2的抗VEGF抗体或2C3的抗体的诊断剂,由此形成肿瘤、肿瘤血管结构(优选的)、或肿瘤基质(优选的)的可检测影像;并
(b)随后对同一动物或患者施用治疗最佳量的至少第一种裸露的阻断VEGFR2的抗VEGF抗体或2C3抗体或者使用这种抗体的治疗剂-抗体构建物,由此引起抗肿瘤效果。
由此提供了成像和治疗配方或药物,其通常包括:
(a)第一种药物组合物,其包含诊断有效量的可检测标记的肿瘤结合剂,优选基于阻断VEGFR2的抗VEGF抗体或2C3的抗体构建物,并包含可操作附着于肿瘤结合剂或者基于阻断VEGFR2的抗VEGF抗体或2C3抗体的可检测试剂;和
(b)第二种药物组合物,其包含治疗有效量的至少第一种裸露的阻断VEGFR2的抗VEGF抗体或2C3抗体或者使用这种抗体的治疗剂-抗体构建物。
本发明还提供了体外诊断剂盒,它包含至少第一种组合物或药物组合物,所述组合物或药物组合物包含生物学有效量的至少第一种诊断剂,该诊断剂可操作附着于至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA 1595)基本上相同的抗体)或其抗原结合片段。
本发明还提供了联合试剂盒,其中的诊断剂有意用于体外应用,优选用于检验由动物或患者获得的生物学样品。如此,本发明提供了试剂盒,其通常在至少两个分开的容器中包含至少第一种组合物、药物组合物、或医学混和药物,其中包含生物学有效量的至少第一种阻断VEGFR2的抗VEGF抗体(任选结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同的抗体)或其抗原结合片段或者这种抗VEGF抗体的免疫缀合物;和生物学有效量的体外应用的至少第一种诊断剂、成分、或系统。
“体外应用的诊断剂、成分、或系统”可以是能够诊断一种或多种具有血管发生性成分的疾病的任何诊断剂或试剂联合。体外诊断由此包括适用于产生关于下列专利中公开的疾病或紊乱的诊断性或预后性信息的那些试剂:美国专利5,712,291、5,753,230、5,972,922、5,639,757、WO 98/45331、和WO 98/16551(本文特别收入作为参考)。
关于癌症的诊断和治疗,体外诊断优选包括包含至少第一种结合区的诊断性成分,所述结合区可结合肿瘤细胞、肿瘤血管结构(优选的)、或肿瘤基质(优选的)的可接近成分,且可操作附着通过体外诊断性检验可直接或间接检测的“可检测或报导试剂”。在体外可直接检测的“可检测或报导试剂”包括诸如放射性标记和可由免疫荧光检测的报导试剂等。
在体外可间接检测的“可检测或报导试剂”包括与其它外源试剂联合发挥功能的试剂,诸如在接触显色底物后产生有色产物的可检测酶。体外间接检测还延伸至包含第一种结合区的可检测或报导成分或系统,所述结合区可结合肿瘤细胞、肿瘤血管结构(优选的)、或肿瘤基质(优选的)的可接近成分,并联合至少一种针对第一种结合区具有免疫特异性的检测抗体。“检测抗体”优选附着直接或间接可检测试剂(诸如放射性标记或酶)的“第二抗体”。或者,可以使用“第二和第三抗体检测系统”,包括针对第一种结合区具有免疫特异性的第一种检测抗体与针对第一种检测抗体具有免疫特异性的第二种检测抗体的联合,其中第二种检测抗体附着直接或间接可检测试剂。
                       图的简述
附图构成了本说明书的一部分,而且进一步演示了本发明的某些方面。通过参考这些附图,并与本文描述的特定实施方案相结合,可以更好的理解本发明。
图1。2C3抑制了VEGF介导的ABAE细胞生长。在存在各种指定抗体和0.5nM VEGF的条件下培养ABAE细胞。通过用酶将MTS(Owen试剂)转变成黄色甲 的比色法来测定4天后的生长情况。以甲 生成占仅用VEGF进行培养的对照孔的百分率显示结果。通过在不含VEGF或抗体的条件下培养细胞来测定背景,并由对照和样品孔减去背景。结果显示三次测定的算术平均值,其标准偏差始终低于平均值的20%。图1显示在存在抗VEGF的IgG抗体的情况中的生长曲线,mAb 4.6.1作为阳性对照,具有无关特异性的IgG(对照IgG)作为阴性对照。
图2.2C3在ELISA中阻断了VEGF结合VEGFR2而非VEGFR1。用VEGFR1(Flt-1/Fc)或VEGFR2(sFlk-1)的细胞外结构域包被孔,然后仅与1nM VEGF一起温育,或者与VEGF和100nM或1000nM的指定IgG一起温育。然后将平板与1μg/ml兔抗VEGF(A-20,Santa Cruz Biotechnology公司)一起温育,并使用缀合了过氧化物酶的山羊抗兔抗体进行显色。测定进行三次。图2显示在不存在抗体的情况中的平均结合百分率和标准偏差。星号指示Student配对T检验在统计学上与不存在抗体的情况显著不同(p<0.002)的数值。
图3A和图3B.2C3抑制了人肿瘤异种移植物的体内生长。图3A:在第0天将1×107个NCI-H358 NSCLC细胞皮下注射到nu/nu小鼠中。图3B:在第0天将5×106个A673横纹肌肉瘤细胞皮下注射到nu/nu小鼠中。在第1天和其后每周两次给小鼠i.p.注射指定IgG。以100、10、或1μg/次的剂量注射2C3,而以100μg/次的剂量注射具有无关特异性的对照IgG(图3A)和3E7(图3B)。每周2-3次测量肿瘤。图3A显示研究期间的平均值和标准误差,图3B显示研究的最后一天(第26天)的数据。
图4.2C3治疗降低了成形人NCI-H358 NSCLC肿瘤异种移植物的大小。在指定时间给具有大约300-450mm3皮下NCI-H358肿瘤的小鼠腹膜内注射50μg或100μg 2C3(n=14)、mAb 4.6.1(n=5)、3E7(n=12)、或对照IgG(n=9)。图4显示116天的平均肿瘤体积以及SEM。
图5A和5B。2C3和3E7治疗成形人肿瘤异种移植物的比较。图5A:给具有大约450mm3皮下NCI-H358肿瘤的小鼠用2C3(n=6)或3E7(n=4)进行治疗。治疗(T)是腹膜内注射100μg IgG,但是起始治疗是静脉内注射500μg IgG。图5A显示平均肿瘤体积以及SEM。在研究结束时(第116天),处死小鼠,分离肿瘤并称重。2C3治疗组的平均肿瘤重量是0.054g,而3E7治疗组的平均肿瘤重量是0.545g。图5B:给具有大约200-250mm3皮下HT1080肿瘤的小鼠腹膜内注射100μg 2C3(n=9)、3E7(n=11)、对照IgG(n=11)、或生理盐水(n=11)。如图所示(T),隔天治疗小鼠。在第26天处死非2C3治疗小鼠,因为此时每组超过50%的小鼠具有大型溃疡肿瘤。图5B显示平均肿瘤体积以及SE。
                        发明详述
实体瘤和癌在人类所有癌症中所占比例超过90%。虽然在淋巴瘤和白血病的治疗中已经研究了单克隆抗体和免疫毒素的应用,但是这些试剂在针对癌和其它实体瘤的临床试验中无效的结果令人失望(Abrams和Oldham,1985)。基于抗体的治疗无效的首要原因是高分子不容易转运进入实体瘤。甚至一旦进入了肿瘤块内,由于存在肿瘤细胞间紧密连接、纤维基质、间质压力梯度、和结合位点屏障,这些分子也不能均匀分布(Dvorak等人,1991a)。
在开发用于治疗实体瘤的新策略的过程中,涉及靶向肿瘤血管结构而非肿瘤细胞的方法提供了明显优势。有效破坏或阻断肿瘤血管,则阻止了经过肿瘤的血流并导致血崩式的肿瘤细胞死亡。抗体-毒素和抗体-凝血剂构建物早已有效用于特异性靶向并破坏肿瘤血管,导致肿瘤坏死(Burrows等人,1992;Burrows和Thorpe,1993;WO 93/17715;WO 96/01653;美国专利号5,855,866;5,877,289;5,965,132;6,051,230;6,004,555;美国流水号08/482,369,1998年10月20日交纳颁证费;本文收入作为参考)。
当使用抗体、生长因子、或其它结合配体将凝血剂特异性投递至肿瘤血管结构时,这些试剂称为“凝血配体(coaguligand)”。目前优选用于凝血配体的凝血剂是截短的组织因子(tTF)(Huang等人,1997;WO 96/01653;美国专利号5,877,289)。TF是血液凝血的重要起始剂。在损伤位点,血液中的因子VII/VIIa开始接触并结合血管周围组织细胞上的TF。存在磷脂表面时,TF:VIIa复合物激活因子IX和X,继而导致凝血酶、纤维蛋白、和最终血块的形成。
已经描述了在肿瘤内皮上可供利用、但在正常内皮上基本上不存在的多种合适的靶分子。例如可以利用表达的靶,诸如endoglin、E-选择蛋白、P-选择蛋白、VCAM-1、ICAM-1、PSMA、TIE、与LAM-1反应的配体、VEGF/VPF受体、FGF受体、αvβ3整联蛋白、pleiotropin、或内皮唾液酸蛋白(美国专利号5,855,866;5,877,289;和6,004,555;Burrows等人,1992;Burrows和Thorpe,1993;Huang等人,1997;本文收入作为参考)。
如美国专利号5,776,427和6,036,955(本文收入作为参考)所述,通过天然的肿瘤环境或人为干预后可诱导的其它靶也是可靶向的实体。当与正常组织预先抑制和肿瘤血管诱导结合使用时,也可以采用MHC II类抗原作为靶(美国专利号5,776,427;6,004,554;和6,036,955;本文收入作为参考)。
吸收的靶是另一组合适的靶,诸如VEGF、FGF、TGFβ、HGF、PF4、PDGF、TIMP、结合TIE的配体、或肿瘤相关纤连蛋白异构体(美国专利号5,877,289和5,965,132;本文收入作为参考)。纤连蛋白异构体是可结合受体整联蛋白家族的配体。肿瘤相关纤连蛋白异构体是肿瘤血管结构和肿瘤基质二者的可靶向成分。
目前优选用于这些临床靶向应用的标记物是与受体相关的VEGF。事实上,VEGF:受体复合物的装配是至今观察到的最特异性的肿瘤血管结构标记物(美国专利号5,877,289;5,965,132;和6,051,230;Lin-Ke等人,1996;Dvorak等人,1991b)。
VEGF:受体复合物为将药物或其它效应物特异性靶向肿瘤内皮提供了有吸引力的靶——因为肿瘤富含细胞因子和生长因子,而且VEGF受体在缺氧条件(大多数实体瘤中存在)下上调(Mazure等人,1996;Forsythe等人,1996;Waltenberger等人,1996;Gerber等人,1997;Kremer等人,1997)。特别是肿瘤微环境中配体及其受体二者的上调将导致,与正常组织中的内皮相比,肿瘤血管内皮上的已占据受体浓度更高(美国专利号5,877,289和5,965,132)。Dvorak及其同事也显示针对VEGF N端的兔多克隆抗体在注射进入携有同系瘤的小鼠后选择性地使肿瘤血管显色(Lin-Ke等人,1996)。
VEGF作为临床干预靶的作用不限于免疫毒素或凝血配体疗法。事实上,VEGF是涉及实体瘤血管发生的关键因子之一(Ferrara,1995;Potgens等人,1995),既是有效的通透剂(Senger等人,1983;Senger等人,1990;Senger等人,1986)又是内皮细胞促分裂原(Keck等人,1989;Connolly等人,1989;Thomas,1996)。根据VEGF与血管发生之间的联系提出了多种针对VEGF干预的治疗性策略(Siemeister等人,1998)。
A.VEGF和VEGF受体
血管内皮生长因子(VEGF)是由缺氧和致癌突变诱导的多功能细胞因子。它是胚胎发生中血管网络的发育和维持的主要刺激物。它作为有效的诱导通透性试剂、内皮细胞趋化性试剂、内皮存活因子、和内皮细胞增殖因子而发挥功能(Thomas,1996;Neufeld等人,1999)。因为VEGF等位基因之一或二者的定向破坏将导致胚胎致死(Carmeliet等人,1996;Ferrara等人,1996),所以正常胚胎发育需要它的活性(Fong等人,1995;Shalaby等人,1995)。
VEGF是在大量生理学和病理学过程中驱动血管发生的重要因子,包括创伤愈合(Frank等人,1995;Burke等人,1995)、糖尿病性视网膜病变(Alon等人,1995;Malecaze等人,1994)、牛皮癣(Detmar等人,1994)、动脉粥样硬化(Inoue等人,1998)、类风湿性关节炎(Harada等人,1998;Nagashima等人,1999)、实体瘤生长(Plate等人,1994;Claffey等人,1996)。
多种细胞和组织产生VEGF,它存在至少5种异构体(121、145、165、189、和206个氨基酸),是由相同基因编码的剪接变体(Houck等人,1991;Ferrara等人,1991;Tischer等人,1991)。较小的两种异构体,121和165,是由细胞分泌的(Houck等人,1991;Anthony等人,1994)。分泌型VEGF是介于38-46kDa之间的专性二聚体,单体通过两个二硫键相连。
VEGF二聚体以高亲和力结合两种已详细鉴定的受体,VEGFR1(Flt-1)和VEGFR2(KDR/Flk-1),它们在内皮细胞上选择性表达(Flt-1和Flk-1是小鼠同源物)。VEGF结合VEGFR1和VEGFR2的Kd依次为15-100pM和400-800pM(Terman等人,1994)。最近鉴定的第三种细胞表面蛋白质neuropilin-1也以高亲和力结合VEGF(Olander等人,1991;De Vries等人,1992;Terman等人,1992;Soker等人,1998)。
VEGFR1和VEGFR2是III型受体酪氨酸激酶(RTK III)家族的成员,该家族的特征为七个细胞外IgG样重复、单个跨膜结构域、和一个细胞内断裂酪氨酸激酶结构域(Mustonen和Alitalo,1995)。直到最近,才认为VEGFR1和VEGFR2几乎专一的在内皮细胞上表达(Mustonen和Alito,1995)。虽然已经报导VEGFR1和VEGFR2在刺激内皮细胞增殖、迁移、和分化方面具有不同功能(Waltenberger等人,1994;Guo等人,1995),但是每种受体在VEGF生物学和内皮细胞体内平衡中的精确作用在本发明之前尚未清晰阐述。
使用敲除小鼠的最近研究显示VEGF、VEGFR1、和VEGFR2维管发生(vasculogenesis)、对于血管发生和胚胎发育而言是必需的(Fong等人,1995;Shalaby等人,1995;Hiratsuka等人,1998)。在致死敲除研究中,与缺乏每种受体有关的表型是不同的。VEGFR2的靶向破坏导致缺乏内皮细胞分化且不能形成卵黄囊血岛或经历维管发生的胚胎(Shalaby等人,1995)。VEGFR1无效突变体显示维管发生受损、内皮细胞装配紊乱、且血管膨胀(Fong等人,1995;Hiratsuka等人,1998)。VEGFR1显然具有生死攸关的生物学作用。
虽然VEGFR1具有较低的酪氨酸激酶活性,但是它与VEGF的亲和力比VEGFR2高。这说明VEGFR1的细胞外结构域特别重要。这一假设受到来自敲除小鼠的研究结果的强力支持,这些敲除小鼠删除了VEGFR1的酪氨酸激酶结构域,同时VEGF结合结构域保持完整(Hiratsuka等人,1998)。VEGFR1-酪氨酸激酶缺陷胚胎生成正常的血管并存活至产期(Hiratsuka等人,1998)。
除了较早的敲除(Fong等人,1995;Shalaby等人,1995),Hiratsuka等人(1998)的研究指出VEGFR1具有生死攸关的生物学作用。然而,酪氨酸激酶信号传导似乎并不是至关重要的因素。有趣的注意到,来自VEGFR1敲除小鼠的巨噬细胞不展示VEGF诱导的趋化性(Hiratsuka等人,1998;本文收入作为参考),由此暗示VEGFR1是负责介导对VEGF的这一重要生物学应答的受体。
某些小组已经报导VEGFR2是VEGF诱导的有丝分裂和通透性中的主要信号受体(Waltenberger等人,1994;Zachary,1998;Korpelainen和Alitalo,1998)。VEGFR1在内皮细胞功能中的作用不清楚得多,但是在巨噬细胞的迁移和趋化性中的功能已记录于上文Hiratsuka等人(1998)的研究中。
Clauss等人(1996;本文收入作为参考)还报导了VEGFR1在单核细胞的激活和趋化性中具有重要作用。事实上,巨噬细胞/单核细胞谱系的细胞只表达VEGFR1,它是负责介导单核细胞募集和促凝血活性的受体(Clauss等人,1996)。结合单核细胞和巨噬细胞上VEGFR1的VEGF还通过升高细胞内钙和诱导酪氨酸磷酸化来发挥作用(Clauss等人,1996)。
认为VEGF二聚体与VEGF受体的结合可诱导受体二聚体化。受体二聚体化引起特定酪氨酸残基(VEGFR2的细胞内侧Y801与Y1175和VEGFR1的细胞内侧Y1213与Y1333)的自身转磷酸化。这导致信号转导级联,包括磷脂酶Cγ(PLCγ)和磷脂酰肌醇3-激酶(PI3K)的激活和细胞内钙离子的增加(Hood和Meininger,1998;Hood等人,1998;Kroll和Waltenberger,1998)。
VEGF诱导的信号传导更下游的细胞内事件较不清楚,但是许多小组显示在VEGF激活VEGFR2后产生一氧化氮(NO)(Hood和Meininger,1998;Hood等人,1998;Kroll和Waltenberger,1998)。VEGF对VEGFR2而非VEGFR1的激活还显示激活Src和Ras-MAP激酶级联,包括MAP激酶ERK1和2(Waltenberger等人,1994、1996;Kroll和Waltenberger,1997)。
VEGFR1在内皮细胞功能中的作用不清楚得多,特别是因为Flt-1酪氨酸激酶缺陷小鼠能够存活并生成正常的血管(Hiratsuka等人,1998)。已有人提出内皮上VEGFR1的主要生物学作用是作为无信号配体结合分子,或向VEGFR2呈递VEGF可能需要的“诱饵”受体。
VEGF与病理性血管发生状态之间的联系促进了阻断VEGF活性的各种尝试,包括开发针对VEGF的某些中和性抗体(Kim等人,1992;Presta等人,1997;Sioussat等人,1993;Kondo等人,1993;Asano等人,1995)。也已经描述了针对VEGF受体的抗体,诸如美国专利号5,840,301和5,874,542,和在本发明之后的WO 99/40118。事实上美国专利号5,840,301和5,874,542提出阻断VEGF受体而非VEGF自身由于多种原因是有益的。
还已经报导了可溶性受体构建物(Kendall和Thomas,1993;Aiello等人,1995;Lin等人,1998;Millauer等人,1996)、酪氨酸激酶抑制剂(Siemeister等人,1998)、反义策略、RNA aptamer、和针对VEGF或VEGF受体的核酶(Saleh等人,1996;Cheng等人,1996;Ke等人,1998;Parry等人,1999;本文收入作为参考)。
B.抗VEGF抗体
B1.抗体特性范围
各种抑制性方法的应用显示,通过干预VEGF信号传导在阻断血管发生和/或抑制肿瘤生长中至少有些效果。事实上,针对VEGF的单克隆抗体显示在小鼠中抑制人类肿瘤异种移植物的生长和腹水的形成(Kim等人,1993;Asano等人,1995;1998;Mesiano等人,1998;Luo等人,1998a;1998b;Borgstrom等人,1996;1998)。
抗体A4.6.1是高亲和力的抗VEGF抗体,能够阻断VEGF结合VEGFR1和VEGFR2二者(Kim等人,1992;Wiesmann等人,1997;Muller等人,1998)。A4.6.1Fab片段结合的VEGF的丙氨酸扫描诱变和X射线结晶学显示,A4.6.1结合的VEGF表位集中于第89-94位氨基酸周围。这一结构资料证明A4.6.1竞争性抑制VEGF结合VEGFR2,但是最有可能通过位阻现象抑制VEGF结合VEGFR1(Muller等人,1998;Keyt等人,1996;本文收入作为参考)。
A4.6.1是至今文献中最广泛利用的中和性抗VEGF抗体。它显示在小鼠中抑制多种人类肿瘤的生长和VEGF诱导的血管通透性(Brem,1998;Baca等人,1997;Presta等人,1997;Mordenti等人,1999;Borgstrom等人,1999;Ryan等人,1999;Lin等人,1999;本文收入作为参考)。A4.6.1还在已详细鉴定的人卵巢癌小鼠模型中抑制腹水形成,并在新的转移小鼠模型中抑制肿瘤传播。A4.6.1最近已通过单价噬菌体展示技术进行了人化,目前作为抗癌剂正在进行I期临床试验(Brem,1998;Baca等人,1997;Presta等人,1997;本文收入作为参考)。
尽管使用针对VEGF的中和性抗体已经在本领域取得了一些成功,本发明人意识到新的抗体,特别是以更精确确定模式与VEGFR1(Flt-1)和/或VEGFR2(KDR/Flk-1)相互作用的受体,由于多种原因将是有益的。例如,开发选择性阻断VEGF与VEGF受体之一相互作用的抗VEGF抗体,将能够更精确的剖析表达VEGFR1和VEGFR2二者的细胞中由VEGF激活的途径。
本发明人认为具有确定表位特异性、只阻断VEGF结合一种受体(VEGFR2)的抗体可能具有临床好处,这当然取决于其抑制作用在体内环境中的维持。Hiratsuka等人(1998)的敲除小鼠研究显示VEGFR1和VEGFR2都具有重要的生物学作用。在本发明之前,针对抑制VEGF经两种受体之一所介导作用的治疗性干预的现实机会由于缺乏有效的、特制的抑制剂而受到牵制。
本发明人首先开发了具有各种表位特异性和特性的一系列新的抗VEGF抗体。提供了分泌针对VEGF:受体(Flk-1)复合物或VEGF自身的单克隆抗体的6组杂交瘤。5个抗体组不干预VEGF与其受体的结合,1组(2C3组)阻断这种相互作用并抑制VEGF介导的内皮细胞生长。
3E7、GV39M、和2C3组的抗体在经静脉内注射进入携有人类肿瘤异种移植物的小鼠后都选择性定位于肿瘤,目前优选将它们用于靶向、成像、和治疗实体瘤的血管结构或结缔组织。
本发明选择性识别VEGF:受体复合物的单克隆抗体在经注射进入携有人类肿瘤异种移植物的小鼠后定位于肿瘤内皮细胞。2C3组的单克隆抗体显著定位于肿瘤血管周围的结缔组织,还有周围的肿瘤血管。
识别N端的抗体通过ELISA与受体结合的VEGF发生反应。与非受体结合的VEGF相反,GV39M和11B5对受体结合的VEGF展示高特异性。大概N端上由GV39M和11B5识别的表位是构象表位,当VEGF结合其受体时产生。这两种抗体都是IgM因而较大的事实,对于它们对VEGF:受体复合物的选择性来说可能是重要的。
抗N端抗体不抑制VEGF介导的内皮细胞生长。这说明VEGF的N端不涉及与受体的相互作用,而且针对VEGF N端的抗体不干预VEGF介导的信号传导。
相反,2C3可抑制VEGF介导的内皮细胞生长,IC50为3nM。使用表达KDR的内皮细胞(ABAE细胞)进行的125I-VEGF结合研究证明,2C3以依赖浓度的方式阻断VEGF结合KDR。因此,2C3在体外能够通过干预VEGF结合其受体来中和KDR(VEGFR2)介导的VEGF活性。
免疫组织化学分析揭示,当直接应用于切片时,GV39M、11B5、3E7、和7G3与血管内皮的作用中等至强烈。GV39M展示对肿瘤内皮细胞有最高特异性,肿瘤细胞或结缔组织的染色相对很少。11B5、3E7、和7G3在低浓度应用时优先染色内皮细胞,但是在较高浓度时清楚染色肿瘤细胞和结缔组织。
使用11B5、3E7、和7G3观察到的染色模式是在使用针对VEGF、对VEGF没有特殊构象优先性的多克隆抗体时看到的典型染色类型(Lin-Ke等人,1996;Plate等人,1994;Claffey等人,1996)。GV39M对内皮的选择性染色说明它可结合这些细胞上的VEGF:受体复合物,并且与受体的内皮细胞定位和GV39M在ELISA中选择性结合VEGF:sFlk-1的事实是一致的。
相似的,3E7和7G3更广的染色模式与它们可识别游离的和受体结合的VEGF二者的能力是一致的。然而,预计11B5具有更限制于内皮的染色模式,因为它在捕获ELISA中强烈优选VEGF:Flk-1(见表2)。考虑到11B5在肿瘤切片上更广的反应性模式,它有可能能够识别结合基质成分的VEGF。
3E7和GV39M在体内选择性定位于肿瘤组织的血管内皮细胞,而2C3除了内皮之外还定位于肿瘤血管周围的结缔组织。经静脉内注射进入携有肿瘤的小鼠后24小时,在任何组织(除了肿瘤)的内皮上没有检测到3E7。另一方面,GV39M还结合肾小球系膜细胞或内皮细胞。GV39M与小鼠肾小球的反应性的原因还不清楚。可能是抗体结合肾中正常内皮细胞上的VEGF:受体复合物(Takahashi等人,1995)。然而,携有同系种系10肿瘤的豚鼠中的定位研究显示,GV39M定位于肿瘤血管而非肾小球或其它正常组织中的小管。
3E7和GV39M特异性定位于肿瘤内皮的能力或许是至少两个因素的结果。第一,VEGF:受体复合物在肿瘤血管上相对丰富,因为缺氧的肿瘤微环境刺激肿瘤细胞表达VEGF和内皮细胞表达VEGF受体。第二,肿瘤血管比正常血管通透性更高(Yuan等人,1996),这可能使得抗体更容易接近似乎在血管内面聚集的VEGF:受体复合物(Lin-Ke等人,1996;Hong等人,1995)。
在Lin-Ke及其同事(1996)的先前研究中,发现针对大鼠VEGF N端的兔多克隆抗体在经注射进入携有TA3/St小鼠乳癌或MOT卵巢癌的小鼠后定位于肿瘤内皮细胞。相反,针对完整VEGF蛋白质的兔多克隆抗体(Ab-618)并不特异性定位于这些肿瘤的内皮细胞或肿瘤自身内其它地方。
根据这些结果,Lin-Ke等人(1996)得出结论,VEGF的N端在VEGF与微血管内皮相连后能够结合抗体,而且游离的或非内皮细胞相连的VEGF的集合不足以聚集针对非N端表位的抗VEGF抗体(Lin-Ke等人,1996)。使用针对VEGF N端的3E7和GV39M获得的结果支持他们的结论。
然而,本发明的发现,即针对VEGF上非N端表位的2C3组抗体在小鼠中定位于实体瘤的血管结构和血管周围结缔组织二者,比Lin-Ke等人(1996)的工作更令人惊讶。本发明提出肿瘤基质中存在VEGF“集合”,事实上确实使得2C3在肿瘤块中聚集。由先前发表的研究不可能预言这种肿瘤基质靶向。本发明人预计VEGF可能结合肿瘤内的硫酸乙酰肝素蛋白聚糖(HSPG),但是理解作用机制对于实践本发明当然不是必需的。
本发明的早期结论是GV39M和3E7组的抗体在小鼠中选择性定位于肿瘤内皮细胞,而2C3组的抗体定位于肿瘤内皮细胞和肿瘤血管周围结缔组织。既然VEGF及其受体的分布在小鼠中与在人中是相似的,那么预计这些抗体在癌症患者中显示相似的定位模式。因此,推测可将GV39M和3E7用于将治疗或诊断剂投递至人体内肿瘤血管结构,而考虑将2C3组的抗体作为载体用于将治疗或诊断剂靶向肿瘤血管结构和肿瘤结缔组织。
B2.阻断VEGFR2的抗VEGF抗体和2C3抗体
关于2C3组抗体的进一步研究揭示了甚至更令人惊讶的特性,导致本发明的有效组合物和应用。
使用ELISA、受体结合测定法、和受体激活测定法获得的本发明重要发现是2C3组的单克隆抗体可选择性阻断VEGF与VEGFR2(KDR/Flk-1)而非VEGFR1(Flt-1)的相互作用。2C3抗体可抑制VEGF诱导的VEGFR2的磷酸化并阻断VEGF诱导的通透性,暗示VEGFR2是负责VEGF诱导的通透性的受体。2C3抗体还具有有效的抗肿瘤活性,在人类癌症的本领域接受的动物模型中可抑制多种已成形人类实体瘤的生长。
这些发现证明了2C3在剖析表达VEGFR1和VEGFR2二者的细胞中的VEGF激活的途径中有效性,又突出了VEGFR2活性在肿瘤生长和存活过程中的重要性。更重要的是,它们提供了治疗性干预的独特模式,从而能够特异性抑制VEGFR2诱导的血管发生,而并不同时抑制由VEGFR1介导的巨噬细胞的趋化性、破骨细胞和破软骨细胞的功能。
有关2C3的发现由此首次提供了制备和利用只抑制VEGF结合VEGFR2而非VEGFR1的抗VEGF抗体的动机和方法。这些抗体,简便的称为“阻断VEGFR2的抗VEGF抗体”,展现了本领域的进展,并在用于未缀合的或“裸露的”形式和与其它治疗剂缀合或相连的两种应用中提供了大量优势。
本发明采用ELISA和共沉淀测定法使用纯化的受体蛋白质的体外结合研究,证明了2C3可阻断VEGF与VEGFR2的结合。令人惊讶的是,2C3在任何测定系统中不抑制VEGF与VEGFR1的结合。为了确认初步结果,在不同的构型中重复结合ELISA。在每种构型中,结果指示2C3不干预VEGF与VEGFR1的相互作用。使用单克隆抗体3E7(针对VEGF氨基末端的抗体)作为这些研究的对照,它不抑制VEGF结合VEGFR1或VEGFR2。
因此,本发明的2C3组抗体与针对VEGF的其它阻断性抗体(包括A4.6.1)相比获得显著改进。A4.6.1抗VEGF抗体阻断VEGF与两种VEGF受体的结合。结晶学和诱变研究显示了VEGFR2和VEGFR1的结合表位集中于VEGF二聚体的两个对称极(Widsmann等人,1997;Muller等人,1997)。VEGF上与两种受体相互作用的结合决定簇部分重叠,而且分布在跨越二聚体表面的4个不同区段上(Muller等人,1998)。抗体A4.6.1结合VEGF的区域位于两种受体的受体结合区内(Muller等人,1998)。有人提出2C3结合的区域位于VEGFR2结合位点而非VEGFR1结合位点的附近。
关于2C3对VEGF诱导的受体磷酸化的作用的研究显示,2C3不阻断VEGF诱导的VEGFR2的磷酸化。这还与上文讨论的资料相符,进一步巩固了VEGFR2在VEGF诱导的增殖中的作用。
与来自其它研究的结果相似,不能证明VEGF诱导VEGFR1磷酸化的一致性(De Vries等人,1992;Waltenberger等人,1994;Davis-Smyth等人,1996;Landgren等人,1998)。因此,不能可靠的判断2C3是否抑制VEGF诱导的VEGFR1磷酸化。VEGF对VEGFR1磷酸化的低活性使别人提出,VEGFR1可能不是内皮细胞上的信号受体,但是它可能作为诱饵受体用于捕获VEGF并经VEGFR2扩增其信号。(Hiratsuka等人,1998)。然而,Kupprion等人(1998)使用人微血管内皮细胞(HMEC)、Sawano等人(1996)使用过度表达VEGFR1的NIH 3T3细胞,已经报导了通过VEGF结合进行的VEGFR1酪氨酸磷酸化。另外,Waltenberger等人(1994)显示可以使用体外激酶测定法来追踪VEGF诱导的VEGFR1激活。可以使用上述细胞类型之一或体外激酶测定法来测定2C3对VEGF诱导的VEGFR1磷酸化或缺乏的影响。
图2的ELISA数据和细胞结合数据证明2C3抗体不完全阻断VEGF结合表达VEGFR1和VEGFR2二者的细胞。2C3不阻断VEGF结合VEGFR1的事实意味着2C3抗体将是描绘VEGFR1在内皮细胞和其它细胞类型的生物学中作用的有效工具。
在豚鼠中进行Miles通透性测定法检验了2C3在阻断VEGF激活其受体中显示的选择性的功能性后果。当IgG的摩尔数比VEGF过量至少10倍时,2C3和A4.6.1都抑制VEGF诱导的通透性。3E7和对照抗体甚至在摩尔数过量1000倍时都不抑制VEGF诱导的通透性。这些结果显示VEGFR2涉及VEGF诱导的通透性。
这一发现符合最近的这一报导,即新形式的VEGF-C和两种病毒衍生的VEGF-E变体结合VEGFR2而非VEGFR1,但是仍保留增强血管通透性的能力(Joukov等人,1998;Ogawa等人,1998;Meyer等人,1999)。或许各种形式的VEGF经VEGFR2传送信号,引起NO生成,继而引起血管通透性增加(Hood和Granger,1998;Hood等人,1998;Kroll和Waltenberger,1998;Murohara等人,1998;Kupprion等人,1998;Sawano等人,1996;Fujii等人,1997;Parenti等人,1998)。这间接指出涉及VEGFR2,因为已显示NO生成是VEGFR2激活的结果。然而,还有一些相反的证据,如Couper等人(1997)发现由VEGF诱导的血管通透性增加与体内VEGFR1表达之间存在强烈的相关性。
2C3在体内抑制多种不同类型的人类肿瘤的生长。每周两次给药100μg 2C3的效果在携有皮下NCI-H358NSCLC和A673横纹肌肉瘤的小鼠中是相同的,将肿瘤生长有效抑制在大约150mm3的小瘤。在其它肿瘤模型中也看到相似效果,诸如HT29和LS174T(都是人结肠腺癌)。
2C3抑制肿瘤生长的量级与其它研究人员使用不同中和性抗VEGF抗体报导的相似(Asano等人,1998;Mesiano等人,1998)。单克隆大鼠抗小鼠VEGFR2抗体通过抗血管发生机制也强烈阻断恶性人角化细胞在小鼠中的生长(Skobe等人,1997)。2C3的有效性与其它研究人员使用不同抗VEGF抗体发现的相似,这进一步证明了VEGF在肿瘤血管发生和肿瘤生长中的作用。然而,根据本文讨论的特异性抑制特性,2C3应当提供更安全的治疗剂。
为了在接近人体状况的环境中分析抑制VEGF活性的影响,用2C3治疗携有已成形肿瘤的小鼠。在此环境中,2C3治疗显著减缓两种侵蚀性人肿瘤-A673横纹肌肉瘤和LS174T结肠腺癌肿瘤的生长。2C3抗体在携有NCI-H358 NSCLC肿瘤的小鼠中引起显著的肿瘤退化。
用2C3或A4.6.1治疗的肿瘤在治疗大约10周后与其最初的大小相比分别退化30%和35%。在治疗超过100天的研究中,观察到甚至更显著的退化。这一结果说明,VEGF不仅仅是为肿瘤内皮提供有丝分裂信号。
观察到肿瘤退化而非停滞的事实说明,VEGF不仅仅是为肿瘤内皮提供有丝分裂信号。Benjamin等人(1999)最近报导了,肿瘤包含大量的未成熟血管以与周围内皮细胞建立接触,而且这些血管依赖VEGF而存活。可能VEGF的中和引起了这些未成熟血管经历凋亡,由此降低肿瘤中存在的血管网络。也可能肿瘤中发生涉及血管形成和血管退化的血管改造动态过程,而且VEGF的中和防止血管形成而转向血管退化。
2C3抑制肿瘤生长就像A4.6.1一样完全(如果不是更多的话)的发现指出了VEGFR2在肿瘤血管发生中的主要作用。血管发生的多步骤过程需要内皮细胞的趋化性、金属蛋白酶的生成、侵入、增殖、和分化。VEGFR1可能在这些过程中不起作用,或者可能通过结合VEGF并将之呈递给信号受体VEGFR2而在该过程中起到辅助作用。
2C3与A4.6.1在肿瘤治疗中的可比性结果高度相关:虽然2C3只结合VEGFR2而非VEGFR1,但是它比A4.6.1略微更有效。本研究由此指出VEGFR1在VEGF介导的肿瘤血管发生中没有显著作用,并进一步提出VEGFR1特异性抑制剂可能不影响肿瘤血管发生。这些结果还意味着2C3能够比A4.6.1相同或更加有效,同时引起更小副作用。
特异性阻断VEGF结合并激活VEGFR2的能力在与临床有关的两个领域中是重要的。第一,因为巨噬细胞和单核细胞表达VEGFR1(Flt-1)并经VEGFR1信号对VEGF产生趋化性应答,所以认为VEGFR1在将这些细胞募集进入肿瘤中具有重要作用(Clauss等人,1996;Hiratsuka等人,1998;Akuzawa等人,2000)。激活巨噬细胞后,经Egr-1的诱导刺激flt-1基因转录(Egr-1结合人flt-1启动子中的重叠Egr-1/Sp1转录因子结合位点),由此提供flt-1基因是Egr-1的直接靶的证据,其中转录因子主要是在巨噬细胞分化时诱导的(Akuzawa等人,2000)。
为了维持产生严格的抗肿瘤应答所需的巨噬细胞激活,应当避免对VEGFR1信号的抑制。由于巨噬细胞浸润不会受损,使得这些细胞能够由坏死的肿瘤除去肿瘤细胞残骸并促进肿瘤收缩,由本发明提供的VEGFR1的特异性阻断由此在肿瘤治疗中与A4.6.1相比提供了重要优势。使用阻断VEGFR2的抗VEGF抗体(诸如2C3)也将使得浸润的巨噬细胞通过对肿瘤细胞产生直接杀细胞作用而能够有助于全面的抗肿瘤效果。
事实上,本发明提供了独特的有益试剂用于所有形式的抗血管发生疗法,因为它们能够阻断VEGF的血管发生活性,但是不抑制经VEGFR1介导的VEGF的其它有益作用,诸如对免疫和骨细胞的作用。临床重要性的第二个领域涉及参照本发明制备的抗体在体内发挥功能而不抑制破骨细胞和破软骨细胞的有益作用的能力。这意味着本发明的阻断VEGFR2的抗VEGF抗体治疗剂(包括2C3)的使用对骨和/或软骨将不具有副作用。
体内研究显示VEGF在软骨内骨化过程中偶联肥大软骨改造、骨化、和血管发生,而且VEGF对于软骨改造是必需的(Gerber等人,1999;本文特别收入作为参考)。据显示,通过施用可溶性VEGFR1受体嵌合蛋白(Flt-(1-3)-IgG)对经VEGFR1的VEGF信号灭活,可通过降低破软骨细胞的募集和/或分化,损害小梁骨(trabecular boneformation)的形成和肥大软骨细胞区的扩展(Gerber等人,1999)。
进一步显示,在对破骨细胞功能的支持中,VEGF能够在体内替代巨噬细胞集落刺激因子(M-CSF)(Niida等人,1999;本文特别收入作为参考)。在使用因M-CSF基因突变而破骨细胞缺陷的骨骼石化症(op/op)小鼠的研究中,注射重组人M-CSF(rhM-CSF)可使得破骨细胞募集并存活。最近的研究显示,一次注射重组人VEGF能够在op/op小鼠中相似的诱导破骨细胞募集(Niida等人,1999)。
据Niida等人(1999)报导,由于破骨细胞显著表达VEGFR1,而且重组人胎盘生长因子1对破骨细胞募集的活性与rhVEGF相当,所以骨骼石化症(op/op)小鼠中VEGF信号的有益效果是由VEGF受体VEGFR1介导的。这些作者进一步显示,rhM-CSF诱导的破骨细胞在使用VEGFR1受体嵌合蛋白VEGFR1/Fc抑制了VEGF后死亡,但是这些效果由伴随的rhM-CSF注射而消除。由rhM-CSF或内源VEGF支持的破骨细胞在体内活性中不显示显著差异(Niida等人,1999)。
突变的op/op小鼠经历与年龄有关的骨骼石化症消退,伴随着破骨细胞数目增加。在Niida等人(1999)的研究中,大多数破骨细胞在注射了抗VEGF抗体后消失,证明内源产生的VEGF在突变小鼠中负责破骨细胞的出现。另外,rhVEGF取代rhM-CSF来支持体外破骨细胞分化。这些结果证明M-CSF和VEGF在支持破骨细胞功能中功能有重叠,而且VEGF经VEGFR1受体发挥作用(Niida等人,1999)。
由此可以得出结论,本发明第一种阻断VEGFR2的抗VEGF抗体2C3不阻断VEGF结合并激活VEGFR1,但是阻断VEGF结合并激活VEGFR2。无疑可以证明这种VEGFR2抑制作用的抗肿瘤效果。这些结果显示VEGFR2是介导通透性的VEGF受体,并突出其在肿瘤血管发生中的作用。本发明由此进一步证实VEGF抑制作用可以作为治疗实体瘤的疗法。更重要的是,本发明提供了一系列新的阻断VEGFR2的抗VEGF抗体,诸如基于2C3的抗体,用于治疗性干预,特别是作为安全且有效的药物用于在肿瘤和其它疾病中抑制血管发生。
本发明的好处不限于无副作用。虽然存在具有显著好处的重要特性,特别是在治疗患有骨疾病的儿童和患者中,但是本发明的抗体具有大量的其它优势。
例如,基于阻断VEGFR2的抗VEGF抗体或2C3抗体的抗体缀合物可以用于将治疗剂投递至肿瘤环境。事实上,据本文显示,2C3抗体施用到体内后可结合肿瘤血管结构和肿瘤基质二者,但是不结合正常器官或组织中的血管结构或结缔组织。基于本发明抗体的治疗性构建物由此具有将两种功能组合于一个分子内的优势:抗体或其片段的抗血管发生特性和选择用于附着的治疗剂的特性。
由于VEGFR2是内皮上的关键受体,阻断VEGF结合VEGFR2对于抗血管发生效果是至关重要的。虽然VEGFR1在内皮上表达,但是在本文中,它不转导信号或是被动的。因此,本发明抗体不能阻断VEGF结合VEGFR1对于它们作为抗血管发生和抗肿瘤试剂的有效性无关紧要。事实上,胜过由现有技术的阻断性抗体抑制VEGF结合VEGFR1,本发明抗体结合VEGF且基本上不扰乱VEGF-VEGFR1相互作用的能力增强了这些新抗体的药物投递特性。
本发明人意识到,仍然期望阻断性抗体发挥通过结合定位于肿瘤而未结合受体的VEGF来将治疗剂投递至肿瘤环境的功能。具体的说,他们理解这些抗体将结合肿瘤基质中的VEGF并向那里投递治疗剂。这在内皮周围提供了药物池,引起对血管内皮细胞的杀细胞或其它破坏性效果,并发挥抗肿瘤效果。
与基质或结缔组织相连的VEGF不结合经典含义的VEGF受体,即细胞表面受体。相反,VEGF经其基本区结合一种或多种结缔组织成分,包括蛋白聚糖,诸如硫酸乙酰肝素蛋白聚糖。这些序列(和编码它们的外显子)在VEGF121蛋白质(和隐含的DNA)中缺失,所以这种异构体不应当在基质中以显著量存在。肿瘤基质中的VEGF常常称为“游离的”,但是它仍然定位于肿瘤内,所以“游离的”基本上是指非受体结合的。
发明人还推论得出,阻断VEGF结合一种而非两种受体的抗体通过结合血管结构上受体结合的VEGF仍然能够将治疗剂投递至肿瘤环境。这是本发明最有益的特性之一。即,提供阻断VEGF结合VEGFR2由此抑制来自VEGF的血管发生信号、但是不阻断VEGF结合VEGFR1的抗体。除了通过维持经其它细胞类型和组织中VEGFR1的VEGF信号传导来降低系统性副作用,这些抗体还能够定位于肿瘤血管结构上的VEGF-VEGFR1复合物并直接向那里投递治疗剂。
与正常组织中的内皮细胞相反,VEGFR1和VEGFR2在肿瘤内皮细胞上都上调。VEGFR1在肿瘤血管内皮上高度表达,使得本发明的靶向方面特别有效。事实上,VEGFR1虽然在内皮中是“非信号传导”的,但是表达水平与VEGFR2相比即使不是更高也是相同。支持这种现象的一个因素是VEGFR1在应答缺氧和VEGF时都上调,而VEGFR2只在应答VEGF时上调,不受缺氧影响。
虽然内皮上VEGFR1的作用尚不可知,但是VEGFR1可能作为诱饵受体来“捕获”VEGF并将配体传递给信号受体VEGFR2。如果这是真的,那么预计诱饵受体与VEGF的亲和力比信号受体更高,事实正是如此。据此,同时可能由于表达水平增强,本发明的阻断VEGFR2、不阻断VEGFR1的抗体是用于肿瘤治疗的理想投递剂。这些抗体的治疗性缀合物能够同时抑制经VEGFR2的血管发生并通过向VEGF-VEGFR1受体复合物投递治疗剂来破坏现存的血管结构。
发明人绝非限制上述科学推理作为对本发明抗体有益的抗血管发生和抗肿瘤定位特性的解释。虽然本发明的效用不证自明,且不需要将理论付诸实践,但是发明人已经考虑到阻断VEGFR2、不阻断VEGFR1的抗体可以有效且特异性定位于肿瘤血管结构的其它机制。
这些抗体能够结合与Npn-1或另一种至今未鉴定的细胞表面VEGF结合蛋白相连的VEGF,或者能够结合与内皮细胞表面硫酸乙酰肝素蛋白聚糖相连的VEGF。还可以通过结合VEGF蛋白质家族的另一成员来增强抗体定位,即与血管相关的VEGF-B、VEGF-C、VEGF-D,但是可能性不大。
本发明阻断VEGFR2的抗VEGF抗体或2C3抗体的另一有益特性是这些抗体能中和经VEGFR2介导的VEGF存活信号或“保护性效果”。除了使得抗体自身更有效,这一特性还使得它们在与受VEGF存活功能牵制的其它试剂的联合中特别有用。
例如,VEGF保护内皮免于放疗。因此,本发明的裸露抗体和免疫缀合物都可理想的用于与放疗联合。通过使用附着放疗剂的抗体可提供甚至更多的好处。这类构建物将具有3种优势:(1)经抗体部分发挥抗血管发生效果;(2)通过投递放疗剂来发挥破坏肿瘤血管结构的效果;和(3)防止VEGF典型存活信号抵消放疗剂的效果。
具有相似协同效果的其它构建物是与抗微管蛋白药物或药物前体、抗凋亡试剂、和其它抗血管发生试剂相连的阻断VEGFR2的抗VEGF抗体。引起凋亡的试剂或药物的作用受到VEGF的拮抗。本发明由此通过中和VEGF而改进了这些试剂的有效性。VEGF存活信号也对抗抑内皮素,限制这种疗法。因此,在与抑内皮素的联合中,本发明阻断VEGFR2的抗VEGF抗体或2C3抗体将中和VEGF,并放大抑内皮素的抗肿瘤效果。2C3或其它阻断VEGFR2的抗VEGF抗体还可以用于将胶原酶特异性投递至肿瘤,在那里胶原酶将在原处产生抑内皮素,获得相似好处。
在所有这些增强或协同联合中,抗体和其它试剂可以分开施用,或者第二种试剂可以与用于特异性投递(即靶向投递至VEGFR1)的抗体相连。在与抑内皮素的联合中,化学缀合物或重组融合蛋白质将是优选的,因为这样将抵消抑内皮素的短半衰期,而这在目前限制了潜在的抑内皮素疗法。还可以采用与组织型纤溶酶原激活剂(tPA)的联合或其靶向形式。
本发明治疗剂的其它优势包括降低间质压力的能力。由于VEGF介导的通透性增加有助于间质压力,因此降低经VEGFR2的信号传导将降低通透性和间质压力二者。继而将减少药物横穿全部肿瘤组织的障碍,使得能够杀死远离血管结构的肿瘤细胞。由于本发明组合物没有或者仅有可忽略的或低免疫原性,所以还可以实行延长疗法。
B3.2C3抗体的CDR序列
如本文所用,涉及抗体的术语“可变的”指抗体序列中广泛不同并用于每一种特定抗体对其特定抗原的结合和特异性的可变结构域某些部分。然而,可变性并不是均匀分布在整个抗体可变结构域上,而是集中在轻链和重链可变结构域中都有的称为“高变区”的三个区段中。
可变结构域中更高度保守的部分称为框架区(framework region,FR)。天然轻链和重链的可变结构域都包含4个FR(依次为FR1、FR2、FR3、和FR4),主要采用β-折叠构象,由3个高变区相连,它们形成环,连接(在某些情况中是构成)β-折叠结构部分。
每条链中的高变区由FR紧密维持在一起,并与其它链的高变区一起有助于形成抗体的抗原结合位点(Kabat等人,1991;本文特别收入作为参考)。恒定结构域不直接涉及抗体与抗原的结合,但是展示多种效应物功能,诸如抗体参与依赖抗体的细胞毒性。
如本文所用,术语“高变区”指抗体中负责抗原结合的氨基酸残基。高变区包含来自“互补决定区”或“CDR”的氨基酸残基(即轻链可变结构域第24-34位(L1)、第50-56位(L2)、和第89-97位(L3)残基和重链可变结构域第31-35位(H1)、第50-56位(H2)、和第95-102位(H3)残基;Kabat等人,1991,本文收入作为参考)和/或来自“高变环”的残基(即轻链可变结构域第26-32位(L1)、第50-52位(L2)、和第91-96位(L3)残基和重链可变结构域第26-32位(H1)、第53-55位(H2)、和第96-101位(H3)残基)。“框架”或“FR”残基是除了本文定义的高变区残基以外的可变结构域残基。
本文提供了2C3 ScFv片段的Vh和Vκ链的DNA和推导的氨基酸序列,见SEQ ID NO:6、7、8、和9。这些序列包含抗体重链和轻链可变区的CDR1-3。
如本文讨论的(C3部分),借助为生物学分子提供的结果和功能信息,能够产生一系列等同的或甚至改进的分子。这可应用于本发明阻断VEGFR2的抗VEGF抗体,由2C3抗体例示。虽然抗体的抗原结合和其它功能特性必须保留,但是在提供了参考抗体后产生等同的和甚至改进的抗体存在本领域极高程度的技术要求。这些技术可以根据本文提供的序列和信息应用于产生具有相似的、改进的、或其它期望特征的其它抗体。
对于等同的抗体,可以用某些氨基酸替代抗体恒定或可变结构域框架区中的其它氨基酸,而没有可觉察的相互结合能力损失。优选在编码抗体部分的DNA序列中进行这种改变,而且这些改变在本质上是保守的(见C3部分、表A中的密码子信息、和关于定点诱变的技术支持细节)。自然,对可以进行改变的数目存在限制,但是本领域普通技术人员是众所周知的可以。
其它类型的变体是由亲本抗体产生、相对而言又具有改进的生物学特性的抗体。这些变体或第二代化合物通常是在亲本抗体中包含一处或多处高变区残基替代的替代变体。用于产生这些替代变体的便利方法是使用噬菌体展示的亲和力成熟。
在使用噬菌体展示的亲和力成熟中,突变几个高变区位点(如6-7个位点)而在每个位点产生所有可能的氨基酸替代。由此产生的抗体变体以单价方式展示在丝状噬菌体颗粒上,与每个颗粒内包装的M13的基因III产物融合。然后,如本文公开的,对噬菌体展示变体筛选其生物学活性(如结合亲和力)。为了鉴定用于修饰的候选高变区位点,可以进行丙氨酸扫描诱变来鉴定显著有助于抗原结合的高变区残基。
或者/另外,预计可以描绘并分析抗原-抗体复合物的晶体结构,从而鉴定抗体与VEGF之间的接触点。这些接触残基和邻近残基候选用于替代。一旦产生了这些变体,如本文所述,对变体板进行筛选,选择在一种或多种相关测定法中具有相似但是不同或甚至更好特性的抗体用于进一步的开发。
本发明的另一方面因此涉及编码阻断VEGFR2的抗VEGF抗体重链和轻链CDR区的分离DNA片段和重组载体,和经应用DNA技术而表达这些CDR区的重组宿主细胞的制备和应用。
本发明由此涉及可由任何哺乳动物(优选人或鼠)分离的不含总基因组DNA、并能够表达阻断VEGFR2的抗VEGF抗体重链和轻链(诸如2C3重链和轻链)CDR区的DNA片段。如本文所用,术语“NA片段”指已分离的不含特定物种总基因组DNA的DNA分子。术语“DNA片段”包括DNA片段和这些片段的小片段,还有重组载体,包括例如质粒、粘粒、噬菌体、病毒、等等。
相似的,包含编码阻断VEGFR2的抗VEGF抗体重链和轻链(诸如2C3重链和轻链)的纯化CDR区的编码片段或分离基因部分的DNA片段,指包含这些编码序列而且在某些方面包含调控序列、与其它天然存在的基因或蛋白质编码序列基本上分离开的DNA片段。在这方面,术语“基因”简便的用于指功能性蛋白质、多肽、或肽编码单元。本领域技术人员可以理解,这种功能性术语包括表达或可能适合于表达合适的抗原结合蛋白质、多肽、或肽的天然抗体编码序列和更小的基因工程片段。
“与其它编码序列基本上分离开”指感兴趣的编码片段或分离基因部分构成DNA片段编码区的重要部分,而且DNA片段不含大部分的天然编码DNA,诸如大染色体片段或其它功能基因或cDNA编码区。当然,这指最初分离的DNA片段,不排除后来人工添加的基因或编码区。
在特定实施方案中,本发明涉及分离的编码片段或分离的基因部分,和掺入了编码阻断VEGFR2的抗VEGF抗体重链和轻链(诸如2C3重链和轻链)CDR区的DNA序列的重组载体,所含至少第一种序列区包含与氨基酸序列SEQ ID NO:7或SEQ ID NO:9有至少大约75%、更优选至少大约80%、更优选至少大约85%、更优选至少大约90%、最优选至少大约95%的氨基酸序列同一性的氨基酸序列区;其中所述CDR区至少基本上维持氨基酸序列SEQ ID NO:7或SEQ ID NO:9的CDR区的生物学特性。
如本文公开的,序列可以包含某些生物学功能等同的氨基酸或“保守性替代”。其它序列可以包含功能非等同的氨基酸或“非保守性替代”,其特意经基因工程改造以改进CDR或含CDR抗体的特性,本领域普通技术人员是知道的,本文将进一步描述。
也可以理解,氨基酸和核酸序列可以包含额外残基,诸如额外的N或C端氨基酸或者5’或3’序列而仍然符合本发明的序列,条件是序列符合上文提出的标准,优选包括涉及蛋白质表达时生物学蛋白质活性得到维持或改进。末端序列的添加包括位于编码区5’或3’部分侧翼的各种非编码序列以及控制区。
因此,本发明的核酸片段可以与其它DNA序列联合,诸如启动子、多聚腺苷酸化信号、额外的限制酶位点、多克隆位点、其它编码片段、等等,使得它们的整体长度可能显著变化。因此预计可以采用几乎任何长度的核酸片段,总长度优选限制于在意欲采用的重组DNA方案中制备和使用的难易程度。
因此,重组载体形成本发明的另一方面。特别有用的载体预计是将DNA片段编码部分置于启动子控制之下的载体。通常,但是也不排外,将采用重组或异源启动子,即在天然环境中与编码序列通常不相连的启动子。这些启动子可以包括细菌、病毒、真核、和哺乳动物启动子,只要启动子有效指导DNA片段在选择用于表达的细胞类型、生物体、或甚至动物中的表达即可。
用于蛋白质表达的启动子和细胞类型组合的使用对于分子生物学领域技术人员而言是知道的。采用的启动子可以是组成性的或可诱导的,而且可以在指导导入的DNA片段高水平表达的适当条件下使用,这在诸如大量生产重组蛋白质或肽中是有益的。
本发明核酸序列的表达可以方便的通过本领域普通技术人员知道的、本文进一步描述的任何一种或多种标准技术来实现。例如,关于融合蛋白质重组表达的后来描述同样可以应用于在核酸水平上不与另一种编码序列可操作相连的抗体和抗体片段。
B4.多克隆抗体
本领域众所周知用于制备并鉴定抗体的方法(参阅如《抗体:实验室手册》(Antibodies:A Laboratory Manual)冷泉港实验室,1988;本文收入作为参考)。为了制备多克隆抗血清,用免疫原性VEGF组合物免疫动物,并由经免疫动物收集抗血清。广泛的动物物种可以用于生产抗血清。用于生产抗血清的动物通常是兔、小鼠、大鼠、仓鼠、豚鼠、或山羊。因为兔的血量相对较大,所以优选兔用于生产多克隆抗体。
用于生成多克隆抗体的VEGF免疫原组合物的量随免疫原的本质以及用于免疫的动物而变化。多种途径可以用于施用本发明VEGF免疫原:包括皮下、肌肉内、真皮内、静脉内、腹膜内、和脾内。可以通过在免疫后多个时间点由经免疫动物取血样来监控多克隆抗体的生成。还可以给予第二次加强注射。重复加强和测效价过程,直至达到合适的效价。当获得期望效价水平时,可以给经免疫动物放血,分离并保存血清。动物还可用于产生单克隆抗体。
正如本领域众所周知的,特定组合物的免疫原性可以通过使用称为佐剂的免疫应答非特异性刺激剂而获得增强。例示性佐剂包括完全弗氏佐剂,其包含杀死的结核分支杆菌(Mycobacteriumtuberculosis)的免疫应答非特异性刺激剂;不完全弗氏佐剂;和氢氧化铝佐剂。
还可能期望加强宿主的免疫系统,这可以通过将VEGF与载体相连或偶联来实现。例示性载体是钥孔血蓝蛋白(KLH)和牛血清清蛋白(BSA)。其它清蛋白,诸如卵清蛋白、小鼠血清清蛋白、或兔血清清蛋白,也可以作为载体使用。正如本领域众所周知的,指定组合物的免疫原性可以变化。然而,产生针对VEGF的抗体并不特别困难。
B5.单克隆抗体
现在本领域还众所周知用于产生单克隆抗体(MAb)的各种方法。大多数标准单克隆抗体生成技术通常符合制备多克隆抗体的路线(《抗体:实验室手册》(Antibodies:A Laboratory Manual),冷泉港实验室,1988;本文收入作为参考)。通过用免疫原性VEGF组合物免疫动物来起始多克隆抗体应答,当获得期望的效价水平时,经免疫动物可以用于生产MAb。
通过使用众所周知的技术,诸如美国专利号4,196,265(本文收入作为参考)中例示的技术,可很容易制备MAb。这种技术通常涉及用选定的VEGF免疫原组合物免疫合适的动物。以能有效刺激抗体生成细胞的方式施用免疫组合物。优选动物是啮齿类动物,诸如小鼠和大鼠,但是也可以使用兔、绵羊、和蛙的细胞。使用大鼠可能有些好处(Goding,1986,第60-61页;本文收入作为参考),但是优选小鼠,最优选BALB/c小鼠,因为它是最常规使用的且通常具有较高的稳定融合百分比。
免疫后,选择有潜力生成VEGF抗体的体细胞,具体而言是B淋巴细胞(B细胞),用于产生mAb。这些细胞可以由脾、扁桃体、和淋巴结活组织切片或者由外周血样品获得。优选脾细胞和外周血细胞,因为前者是处于成浆细胞分裂阶段的抗体生成细胞的丰富来源,而后者易于获得。通常,需要免疫一组动物,切下具有最高抗体效价的动物脾脏,并用注射器对获得的脾进行匀浆而获得淋巴细胞。来自经免疫小鼠的脾通常包含大约5×107-2×108个淋巴细胞。
然后将来自经免疫动物、生成抗VEGF抗体的B淋巴细胞与永生化骨髓瘤细胞融合,永生化骨髓瘤细胞通常与免疫的动物属于相同物种。适用于杂交瘤生产融合程序的骨髓瘤细胞系优选不产生抗体的,具有高融合效率,并具有酶缺陷,使其不能在只支持期望的融合细胞(杂交瘤)生长的某些选择性培养基中生长。
正如本领域技术人员知道的,可以使用大量的骨髓瘤细胞中的任一种(Goding,第65-66页,1986;Campbell,第75-83页,1984;本文收入作为参考)。例如,当经免疫动物是小鼠时,可以使用P3-X63/Ag8、X63-Ag8.653、NS1/1.Ag41、Sp210-Ag14、FO、NSO/U、MPC-11、MPC11-X45-GTG 1.7、和S194/5XX0 Bul;对于大鼠,可以使用R210.RCY3、Y3-Ag 1.2.3、IR983F、4B210、或上文所列的小鼠细胞系;对于人细胞融合,可使用U-266、GM1500-GRG2、LICR-LON-HMy2、和UC729-6。
用于产生抗体生成脾细胞或淋巴结细胞与骨髓瘤细胞的杂交细胞的方法通常包括在存在促进细胞膜融合的(化学的或电学的)试剂的条件下将体细胞与骨髓瘤细胞以4∶1的比例混和,但是比例可以在约20∶1与约1∶1之间变化。Kohler和Milstein(1975;1976;本文收入作为参考)已经描述了使用仙台病毒(Sendai virus)的融合方法,Gefter等人(1977;本文收入作为参考)已经描述了使用聚乙二醇(PEG),诸如37%(v/v)PEG的方法。电诱导融合方法的使用也是合适的(Goding,第71-74页,1986;本文收入作为参考)。
融合程序常常以大约1×10-6-1×10-8的低频率产生能存活的杂交细胞。然而这不是问题所在,因为通过在选择性培养基进行培养,能够区分能存活的融合杂交细胞与亲本未融合细胞(特别是通常可持续进行无限期分裂的未融合的骨髓瘤细胞)。选择性培养基通常是在组织培养基中包含阻断核苷酸从头合成的试剂的培养基。例示性和优选的试剂是氨基蝶呤、氨甲喋呤、和重氮丝氨酸。氨甲喋呤和氨甲喋呤阻断嘌呤和嘧啶二者的从头合成,而重氮丝氨酸只阻断嘌呤合成。当使用氨甲喋呤或氨甲喋呤时,要向培养基中添加次黄嘌呤和胸苷作为核苷酸来源(HAT培养基)。当使用重氮丝氨酸时,要向培养基中添加次黄嘌呤。
优选的选择性培养基是HAT。只有能够进行核苷酸补救途径的细胞才能够在HAT培养基中存活。在骨髓瘤细胞中补救途径的关键酶是缺陷的,如次黄嘌呤磷酸核糖转移酶(HPRT),因此它们不能存活。B细胞能够进行该途径,但是它们在培养中的寿命是有限的,通常在大约2周内死亡。因此,能够在选择性培养基中存活的细胞只有由骨髓瘤与B细胞形成的杂交细胞。
这种培养提供了杂交瘤细胞群,由此可选择特定的杂交瘤。通常在微量滴定板中培养由单克隆稀释的细胞,随后在大约2-3周后对各个克隆的上清液检验期望的抗VEGF活性,从而选择杂交瘤。测定法应当是灵敏的、简单的、且快速的,诸如放射性免疫测定法、酶免疫测定法、细胞毒性测定法、噬斑测定法、斑点免疫结合测定法、等等。
然后对选择的杂交瘤进行系列稀释,并克隆形成产生抗VEGF抗体的细胞系,可以无限繁殖这些克隆来提供mAb。可以以两种基本方式用这些细胞系产生mAb。其一是将杂交瘤样品注射(通常为腹腔内)进入组织相容性动物,这些动物与提供体细胞和骨髓瘤细胞用于最初融合的动物种类相同。经注射动物形成的肿瘤分泌由融合的杂交细胞产生的特定单克隆抗体。然后可以对动物进行穿刺来吸取体液(诸如血清或腹水),提供高浓度的mAb。另一种方法是在体外培养单个细胞系,此时通常分泌mAb进入培养基,由此可容易的获得高浓度的mAb。
通过每种方法产生的mAb通常将进一步纯化,如使用过滤、离心、和各种层析法,诸如HPLC或亲和层析法,本领域技术人员众所周知所有纯化技术。这些纯化技术都涉及将期望抗体与混和物其它成分分开。特别适用于抗体制备的分析方法包括例如蛋白A-Sepharose和/或蛋白G-Sepharose层析法。
B6.来自噬菌粒文库的抗体
重组技术现在能够由编码一系列抗体的重组基因制备具有期望特异性的抗体(Van Dijk等人,1989;本文收入作为参考)。某些重组技术涉及对使用由经免疫动物的脾分离的RNA而制备的组合免疫球蛋白噬菌体表达文库进行免疫学筛选来分离抗体基因(Morrison等人,1986;Winter和Milstein,1991;本文收入作为参考)。
对于这些方法,使用由经免疫动物的脾分离的RNA来制备组合型免疫球蛋白噬菌粒文库,并通过使用表达抗原的细胞和对照细胞的淘选来选择表达适当抗体的噬菌粒。这种方法相对于传统杂交瘤技术的优势是可以在一轮中产生并筛选多达大约104倍的抗体,而且通过H链与L链的组合产生了新的特异性,进一步增加了产生适当抗体的可能性。
用于在细菌中产生多样性抗体分子大型文库的一种方法是利用细菌噬菌体λ作为载体(Huse等人,1989;本文收入作为参考)。使用λ载体的抗体生成涉及将重链和轻链DNA序列群克隆到不同的起始载体中。随后随机组合载体形成单一载体,来指导重链和轻链共表达形成抗体片段。由用选定抗原免疫的动物的脾细胞(或其杂交瘤)分离mRNA并进行扩增,优选通过PCRTM或相关扩增技术,获得重链和轻链DNA序列。重链和轻链序列通常使用引物进行扩增,所述引物将限制性位点引入扩增DNA片段末端,有助于将重链和轻链片段克隆到起始载体中。
用于产生并筛选全部或部分合成的抗体结合位点或互补位的大型文库的另一种方法利用由丝状噬菌体(诸如M13、fl、或fd)衍生的展示载体。这些称为“噬菌粒”的丝状噬菌体展示载体可产生具有不同的和新的免疫特异性的单克隆抗体大型文库。这种技术使用丝状噬菌体外壳蛋白膜锚定结构域作为在丝状噬菌体复制装配阶段过程中联系基因产物与基因的方法,而且已经用于由组合型文库克隆并表达抗体(Kang等人,1991;Barbas等人,1991;本文收入作为参考)。
美国专利号5,658,727描述了这种用于丝状噬菌体展示的常用技术,本文收入作为参考。在最常用的方面,这种方法为使用单一载体系统由抗体基因库同时克隆并筛选预先选定的配体结合特异性提供了系统。对文库的分离成员筛选预先选定的配体结合能力能够将表达的抗体分子的结合能力与用于分离文库成员编码基因的便利方法联系起来。
通过将进入细菌细胞周质从而能够装配功能性抗体的融合多肽靶向与噬菌体装配过程中融合多肽靶向丝状噬菌体颗粒外壳上从而能够方便的筛选感兴趣文库成员进行组合,可以实现表达与筛选的联系。通过融合多肽中存在的分泌信号结构域来提供周质靶向。通过融合多肽中存在的丝状噬菌体外壳蛋白膜锚定结构域(即cpIII或cpVIII衍生的膜锚定结构域)来提供噬菌体颗粒靶向。
可以通过重链和轻链基因的改组,通过改变克隆的文库重链基因的一个或多个互补决定区、或通过易错聚合酶链式反应将随机突变导入文库,来增加基于丝状噬菌体的组合型抗体文库的多样性。美国专利号5,580,717、5,427,908、5,403,484、和5,223,409描述了用于筛选噬菌粒文库的其它方法,本文收入作为参考。
已经开发了用于筛选大型组合型抗体文库的另一种方法,其中利用不同重链和轻链序列群在丝状噬菌体(诸如M13、fl、或fd)表面的表达(美国专利号5,698,426,本文收入作为参考)。通过聚合酶链式反应(PCRTM)合成了两套多样性重链(Hc)和轻链(Lc)序列群。将这些序列群克隆到不同的含表达必需元件的基于M13的载体中。重链载体包含基因VIII(gVIII)外壳蛋白序列,使得重链序列的翻译产生gVIII-Hc融合蛋白质。随机组合两套载体群,使得只有包含Hc和Lc序列的载体部分连接成单个环状载体。
组合型载体指导Hc与Lc序列二者的共表达,用于两种多肽的装配和M13表面表达(美国专利号5,698,426,本文收入作为参考)。组合步骤将两套多样性序列群的不同Hc和Lc编码序列随机带入单个载体。来自每个独立载体的载体序列对于产生能存活噬菌体是必需的。另外,既然两种起始载体中只有一种包含假的gVIII序列,那么在噬菌体表面不能够实现功能性抗体片段作为Lc相关性gVIII-Fc融合蛋白质的共表达,除非载体序列连接成单个载体。
在琥珀抑制子菌株中进行抗体文库的表面表达。Hc序列与gVIII序列之间的琥珀终止密码子在无抑制子菌株中拆开了两种成分。分离由无抑制子菌株产生的噬菌体并感染抑制子菌株,将在表达过程中将Hc序列与gVIII序列联系起来。感染后培养抑制子菌株能够在M13表面以gVIII融合蛋白质(gVIII-Fab融合蛋白质)形式共表达文库内所有抗体种类。或者,可以由无抑制子菌株分离DNA,然后导入抑制子菌株来实现相同效果。
通过标准亲和分离程序对表面表达文库筛选可结合预先选定分子的特异性Fab片段。这些方法包括例如淘选(Parmley和Smith,1988;本文收入作为参考)、亲和层析法、和固相印迹程序。优选淘选,因为可以在小体积中容易的、快速的筛选高效价噬菌体。而且,该程序可以选择群体中用其它方法检测不到的较少Fab片段种类,并扩增成基本上同质的群体。可以在扩增噬菌体群后对编码多肽的核酸进行测序来鉴定选定的Fab片段。
美国专利号5,667,988和5,759,817描述了用于产生多样性抗体文库并筛选期望结合特异性的另一种方法,本文收入作为参考。该方法涉及使用简并寡核苷酸和引物延伸反应将简并性引入免疫球蛋白可变的重链和轻链可变结构域CDR区,并将诱变的多肽展示在噬菌颗粒表面,由此以噬菌粒文库的形式制备杂二聚体免疫球蛋白分子文库。此后,对展示蛋白筛选结合预先选定抗原的能力。
用于产生杂二聚体免疫球蛋白分子的方法通常涉及(1)将感兴趣的重链或轻链V区编码基因导入噬菌粒展示载体;(2)通过使用包含抗体V区基因CDR同源区且包含产生随机化编码序列的简并区的寡核苷酸进行引物延伸,将随机化结合位点导入噬菌粒展示蛋白载体,形成展示载体的大型群体,其中的每一个都能够表达在噬菌粒表面展示蛋白上展示的不同的假定结合位点;(3)在丝状噬菌体颗粒表面表达展示蛋白和结合位点;并(4)使用亲和技术来分离(筛选)表面表达的噬菌体颗粒,诸如针对预先选定抗原的噬菌体颗粒淘选,由此分离所含展示蛋白包含可结合预先选定抗原的结合位点的一种或多种噬菌粒。
美国专利号5,702,892描述了用于产生多样性抗体文库并筛选期望结合特异性的这种方法的另一种形式,本文收入作为参考。在这种方法中只采用重链序列,对重链序列中编码CDRI或CDRIII高变区的所有核苷酸位置进行随机化,并独立于任何生物学过程产生CDR遗传变异性。
在这种方法中,对两个文库进行改造,即对重链基因结构框架内的寡核苷酸基序进行遗传改组。通过CDRI或CDRIII的随机突变,重建重链基因高变区产生高度多样序列集合。由突变基因序列集合编码的重链蛋白有可能具有免疫球蛋白的所有结合特征,而只需要两条免疫球蛋白链之一。
具体而言,在不存在免疫球蛋白轻链蛋白的情况中实践这种方法。将展示经修饰重链蛋白的噬菌体文库与已固定配体一起温育,来选择编码可特异性结合已固定配体的重组蛋白质的克隆。然后将结合噬菌体与已固定配体解离,通过在细菌宿主细胞中的生长进行扩增。扩增表达不同重组蛋白质的各个病毒斑,然后可以对各个克隆测定结合活性。
B7.来自人淋巴细胞的抗体
体外免疫或抗原刺激也可以用于产生人抗VEGF抗体。这些技术可以用于刺激来自正常、健康主体的外周血淋巴细胞,其中仅仅需要用VEGF对抗体生成细胞进行体外刺激。
这种“体外免疫”涉及通常为淋巴细胞混和群(混和淋巴细胞培养物,MLC)内的未免疫B淋巴细胞的抗原特异性激活。体外免疫还可以由B细胞生长和分化因子及淋巴因子获得支持。由这些方法产生的抗体常常是IgM抗体(Borrebaeck等人,1986;本文收入作为参考)。
美国专利号5,681,729描述了能够获得主要产生IgG或IgA抗体的人淋巴细胞的另一种方法,本文收入作为参考。一般地,这种方法涉及将人淋巴细胞移植到免疫缺陷型动物中,使得人淋巴细胞“接受”该动物体;用期望抗原免疫动物,使得生成可产生对抗原具有特异性的抗体人淋巴细胞;并由动物回收产生抗体的人淋巴细胞。由此产生的人淋巴细胞可以用于产生单克隆抗体:即使产生抗体的人淋巴细胞永生化,克隆获得的永生化、人起源、产生抗体的淋巴细胞,并由克隆的永生化、人起源淋巴细胞回收对期望抗原具有特异性的单克隆抗体。
在这种技术中可采用的免疫缺陷型动物是那些在移植了人淋巴细胞后不展示排异的动物。这些动物可以通过物理的、化学的、或生物学的处理而人工制备。可以采用任何免疫缺陷型动物。人淋巴细胞可以由人外周血、脾、淋巴结、扁桃体、等等获得。
动物中移植的人淋巴细胞的“接受”可以通过仅仅对动物施用人淋巴细胞来实现。施用途径不限于且可以是例如皮下、静脉内、或腹膜内。人淋巴细胞的剂量不受限制,通常可以是每只动物106-108个淋巴细胞。然后用期望的VEGF抗原免疫免疫缺陷型动物。
免疫后,通过任何传统方法由血液、脾、淋巴结、或其它淋巴组织回收人淋巴细胞。例如,单核细胞可以通过Ficoll-Hypaque(比重:1.077)离心法进行分离,并通过塑料盘吸附法除去单核细胞。来自免疫缺陷型动物的污染细胞可以通过使用对该动物细胞具有特异性的抗血清而除去。可以通过例如用该免疫缺陷型动物的脾细胞免疫第二种不同动物并由该不同的经免疫动物回收血清来获得抗血清。可以在任何阶段进行抗血清处理。也可以通过采用在细胞表面表达作为标记物的人免疫球蛋白的免疫学方法来回收人淋巴细胞。
通过这些方法,可以获得主要产生对一种或多种选定VEGF表位具有特异性的IgG和IgA抗体的人淋巴细胞。然后通过永生化、选择、细胞培养、和抗体生成,由人淋巴细胞获得单克隆抗体。
B8.含人抗体文库的转基因小鼠
重组技术现在可用于制备抗体。除了上文公开的组合型免疫球蛋白噬菌体表达文库,另一种分子克隆方法是由含人抗体文库的转基因小鼠制备抗体。美国专利号5,545,807描述了这些技术,本文收入作为参考。
在最常用的方面,这些方法涉及产生在其种系中插入了遗传物质的转基因动物,所述遗传物质编码至少部分的人起源免疫球蛋白,或者可以重排而编码免疫球蛋白集合。可以由人来源产生所述插入的遗传物质,或者可以人工合成。遗传物质可以编码至少部分的已知免疫球蛋白,或者可以经修饰编码至少部分的经改变免疫球蛋白。
插入的遗传物质在转基因动物中表达,导致至少部分由插入的人免疫球蛋白遗传物质衍生的免疫球蛋白的生成。发现遗传物质在转基因动物中发生重排,使得可以产生部分由插入的遗传物质衍生的免疫球蛋白集合,甚至有时插入的遗传物质以错误位置或错误几何学掺入种系。
可以以DNA的形式将插入的遗传物质克隆到原核载体中,诸如质粒和/或粘粒。使用酵母人工染色体载体(Burke等人,1987;本文收入作为参考),或者通过导入染色体片段(Richer和Lo,1989;本文收入作为参考),来插入较大的DNA片段。可以以传统方式将插入的遗传物质导入宿主,例如通过注射或其它程序进入受精卵或胚胎干细胞。
在优选方面,可利用最初不携带编码免疫球蛋白恒定区的遗传物质的宿主动物,使得产生的转基因动物在产生免疫球蛋白时将只使用插入的人遗传物质。这可以通过使用天然存在的缺乏相关遗传物质的突变宿主,或者通过人为制备突变体(如在细胞系中产生最终除去了相关遗传物质的宿主)来实现。
当宿主动物携带编码免疫球蛋白恒定区的遗传物质时,转基因动物将携带天然存在的遗传物质和插入的遗传物质,并将产生由天然存在的遗传物质、插入的遗传物质、和这两种遗传物质的混和物衍生的免疫球蛋白。在这种情况中,可以通过筛选由转基因动物衍生的杂交瘤来获得期望的免疫球蛋白,如利用抗体基因表达的等位基因排斥或差异染色体丢失现象。
一旦制备了合适的转基因动物,即可简单地用期望免疫原免疫动物。根据插入物质的本质,动物可能产生嵌合免疫球蛋白,如混和小鼠/人起源的免疫球蛋白,其中外源遗传物质只编码部分免疫球蛋白;或者,动物可能产生完全外来的免疫球蛋白,如完全人起源的免疫球蛋白,其中外源遗传物质编码完整免疫球蛋白。
可以由免疫后的转基因动物产生多克隆抗血清。可以由动物获得免疫球蛋白生成细胞来产生感兴趣的免疫球蛋白。优选由转基因动物产生单克隆抗体,如融合来自该动物的脾细胞与骨髓瘤细胞,并筛选产生的杂交瘤以选择产生期望抗体的杂交瘤。本文描述了用于这些过程的适用技术。
在另一种方法中,可以以这样一种方式将遗传物质掺入动物,使得在体液中产生期望抗体,诸如血清或动物的外部分泌物,诸如乳汁、初乳、或唾液。例如,在体外将编码至少部分的人免疫球蛋白的遗传物质插入编码乳蛋白的哺乳动物基因,然后通过如注射将该基因导入哺乳动物受精卵,由此卵可能发育成产生乳汁的成年雌性哺乳动物,乳汁中包含至少部分由插入的人免疫球蛋白遗传物质衍生的免疫球蛋白。然后可以由乳汁收获期望抗体。本领域技术人员知道用于进行这些过程的适用技术。
通常采用上述转基因动物来产生单一同种型的人抗体,更具体的说是B细胞成熟必需的同种型,诸如IgM,可能还有IgD。用于产生人抗VEGF抗体的另一种优选方法是使用美国专利号5,545,806、5,569,825、5,625,126、5,633,425、5,661,016、和5,770,429(本文收入作为参考)中描述的技术,其中转基因动物据描述能够由B细胞发育需要的同种型转变成其它同种型。
在B淋巴细胞的发育过程中,细胞最初产生IgM,其结合特异性由有效重排的VH和VL区决定。随后,每个B细胞及其后代合成具有相同L和H链V区的抗体,但是它们可能转变H链的同种型。μ或δ恒定区的使用很大程度上是通过改变剪接决定的,使得IgM和IgD在单个细胞中共表达。其它重链同种型(γ、α、和ε)只在基因重排事件删除了Cμ和Cδ外显子后天然表达。这一基因重排过程,称为同种型转变,通常通过位于紧邻每个重链基因(除了δ)上游的所谓转变片段之间的重组而发生。各个转变片段的长度为2-10kb,主要包含短重复序列。
由于这些原因,优选转基因在用来进行同种型转变的每个转变区上游大约1-2kb内掺入转录调控序列。这些转录调控序列优选包括启动子和增强子元件,更优选包括与转变区天然相连(即存在于种系结构中)的5’侧翼(即上游)区。虽然来自一个转变区的5’侧翼区可以可操作连接用于转基因构建的不同转变区,但是在一些实施方案中,优选转基因构建物中掺入的每个转变区具有在天然种系结构中紧接着上游的5’侧翼区。涉及免疫球蛋白转变区序列的序列信息是知道的(Mills等人,1990;Sideras等人,1989;本文收入作为参考)。
在美国专利号5,545,806、5,569,825、5,625,126、5,633,425、5,661,016、和5,770,429描述的方法中,转基因动物所含的人免疫球蛋白转基因在B细胞发育的整个途径中正确发挥功能,导致同种型转变。因此,在这种方法中,构建这些转基因来产生同种型转变和下列一项或多项:(1)高水平和细胞类型特异性表达,(2)功能性基因重排,(3)等位基因排斥的应答和激活,(4)足够大的初级库的表达,(5)信号转导,(6)体细胞超突变,和(7)免疫应答过程中转基因抗体基因座的控制。
对转基因功能的重要要求是产生的初级抗体库的多样性足以触发针对广泛抗原的再次免疫应答。重排的重链基因包含信号肽外显子、可变区外显子、和一列串联的多结构域恒定区(其中的每一个都由几个外显子编码)。每个恒定区基因编码不同种类免疫球蛋白的恒定部分。在B细胞发育过程中,删除了V区近端恒定区,导致重链新种类的表达。对于每种重链,RNA剪接的不同模式产生跨膜的和分泌的免疫球蛋白二者。
人重链基因座包含大约200个V基因片段,跨越2Mb;大约30个D基因片段,跨越大约40kb;6个J片段,群集于大约3kb内;和9个恒定区基因片段,跨越大约300kb。整个基因座在14号染色体长臂远端部分跨越大约2.5Mb。包含所有6种已知VH家族成员,D和J基因片段,以及μ、δ、γ3、γ1、和α1恒定区的重链转基因片段是知道的(Berman等人,1988;本文收入作为参考)。相似构建了包含所有来自人轻链基因座的必需基因片段和调控序列的基因组片段。
成功重排的免疫球蛋白重链和轻链转基因的表达常常通过在转基因非人动物中抑制内源免疫球蛋白基因的重排而具有显性效果。然而,在某些实施方案中,期望达到内源Ig基因座的完全灭活,使得不能通过例如转基因与内源Ig序列之间的转变而形成包含人可变区和非人(如鼠)恒定区的杂合免疫球蛋白链。使用胚胎干细胞技术和同源重组,可以容易的消除内源免疫球蛋白库。例外,可以使用多种技术(诸如反义技术)来实现内源Ig基因的抑制。
在本发明的其它方面,可能期望产生反式转变的(trans-switched)免疫球蛋白。包含这些嵌合的反式转变的免疫球蛋白的抗体可用于期望具有非人(如鼠)恒定区的多种应用,如用于在宿主中保留效应物功能。鼠恒定区的存在相对于人恒定区能够提供优势,例如提供鼠效应物功能(如ADCC、鼠补体固定),从而能够在小鼠疾病模型中检验嵌合抗体。在动物检验后,可以通过如由来源(杂交瘤克隆)进行PCRTM扩增或cDNA克隆来分离人可变区编码序列,并剪接成编码期望的人恒定区的序列,编码更适用于人治疗性用途的序列抗体。
B9.人化抗体
人抗体用于人的治疗通常具有至少3个潜在优势。第一,因为效应物部分是人的,所以它与人免疫系统其它部分的相互作用可能更好,如通过依赖补体的细胞毒性(CDC)或依赖抗体的细胞的细胞毒性(ADCC)更有效的破坏靶细胞。第二,人免疫系统不会将抗体识别成外来物质。第三,人体循环中的半衰期将与天然产生的人抗体相似,使得所需剂量较小,给药频率较低。
本文提供了用于制备人抗VEGF抗体的多种方法。除了人抗体,“人化”抗体也具有许多优势。“人化”抗体通常是来自小鼠、大鼠、仓鼠、兔、或其它物种并包含人恒定区和/或可变区结构域或特定变化的嵌合或突变单克隆抗体。本领域技术人员众所周知用于产生所谓的“人化”抗VEGF抗体的技术。
人化抗体也享有上述优势。第一,效应物部分仍是人的。第二,人免疫系统不会将框架或恒定区识别成外来的,因此针对这种注射抗体的抗体应答应当比针对完全外来的小鼠抗体的低。第三,与注射的小鼠抗体相反,注射的人化抗体的半衰期与天然产生的人抗体大概更相似,也使得所需剂量较小且频率较低。
已经描述了用于产生人化抗体的大量方法。可以利用通过二硫键结合在一起的抗体结构域的受控重排,形成新的人造蛋白质分子或“嵌合”抗体(Konieczny等人,1981;本文收入作为参考)。重组DNA技术也可以用于构建编码小鼠抗体轻链和重链可变结构域与人抗体轻链和重链恒定结构域的DNA序列之间的融和基因(Morrison等人,1984;本文收入作为参考)。
可以通过分子方法将编码鼠单克隆抗体抗原结合部分或互补决定区(CDR)的DNA序列移植到编码人抗体重链和轻链框架的DNA序列中(Riechmann等人,1988)。表达的重组产物称为“重塑(reshaped)”或人化抗体,其包含人抗体轻链和重链的框架和鼠单克隆抗体的抗原识别部分CDR。
美国专利号5,639,641描述了用于产生人化抗体的另一种方法,本文收入作为参考。这种方法经重新铺面(resurfacing)提供了因可变区展现人表面而具有改进的治疗功效的人化啮齿类抗体。在这种方法中:(1)产生抗体重链和轻链可变区群的位置比对,给出一组重链和轻链可变区框架表面暴露位置,其中所有可变区的比对位置至少大约98%是相同的;(2)对啮齿类抗体(或其片段)确定一组重链和轻链可变区框架表面暴露的氨基酸残基;(3)鉴定与一组啮齿类表面暴露的氨基酸残基最近似相同的一组重链和轻链可变区框架表面暴露的氨基酸残基;(4)用步骤(3)中鉴定的重链和轻链可变区框架表面暴露的氨基酸残基组替代步骤(2)中确定的重链和轻链可变区框架表面暴露的氨基酸残基组,不作改变的是距啮齿类抗体互补决定区的任何残基的任何原子5以内的那些氨基酸残基;和(5)产生具有结合特异性的人化啮齿类抗体。
美国专利号5,693,762、5,693,761、5,585,089、和5,530,101描述了用于产生人化抗体的类似方法,本文收入作为参考。这些方法涉及产生具有一个或多个互补决定区(CDR)和来自免疫球蛋白供者的可能的额外氨基酸和来自人免疫球蛋白受者的框架区的人化免疫球蛋白。每一条人化免疫球蛋白链除了CDR之外,通常还包含来自能够与该CDR相互作用而影响结合亲和力的免疫球蛋白供者框架的氨基酸,诸如与免疫球蛋白供者内CDR紧邻或者据分子模拟预测相距大约3以内的一个或多个氨基酸。重链和轻链都可以通过使用美国专利号5,693,762、5,693,761、5,585,089、和5,530,101描述的多种位置标准中的任一项、任意组合、或所有标准来进行设计,本文收入作为参考。当组合形成完整抗体时,人化免疫球蛋白在人中基本上没有免疫原性,并基本上保留与免疫球蛋白供者相同的针对最初抗原的亲和力。
美国专利号5,565,332和5,733,743描述了用于产生人化抗体的另一种方法,本文收入作为参考。这种方法将人化抗体的概念与也在本文详细描述的噬菌粒文库结合起来。一般地说,这种方法利用来自针对感兴趣抗原的抗体或抗体群的抗原结合位点的序列。由此,对于单一的啮齿类抗体,可以将包含抗体中部分抗原结合位点的序列与能够在组合时产生完整抗原结合位点的人抗体序列多样性文库联合起来。
由这一方法产生的抗原结合位点与由PCR移植产生的不同,只有原始啮齿类抗体的部分序列有可能以相似方式接触抗原。选择的人序列有可能在序列和与抗原的接触方面与最初的结合位点不同。然而,由部分原始序列与抗原的结合和抗原及其抗原结合位点的形状造成的约束,有可能驱动人序列与抗原相同区域或表位的新接触。这一过程因此称为“表位盖印选择”(epitope imprinted selection,EIS)。
由动物抗体开始,一种方法可以选择出对部分人源抗体。这些抗体可能与人抗体在序列方面足够相似,可直接或在改变少数关键残基后用于治疗。可以通过各个残基的定点诱变或通过整个环的CDR移植来取代那些与人序列残基不同的残基,从而将选定抗体的啮齿类成分与人序列之间的序列差异降至最低。然而,也可以产生完全为人序列的抗体。EIS由此提供了用于产生结合的表位与动物或部分人源抗体相同的部分人源或完全人源抗体的方法。在EIS中,可以将抗体片段库展示在丝状噬菌体表面,并通过噬菌体与抗原的结合来选择具有抗原结合活性的片段的编码基因。
美国专利号5,750,078、5,502,167、5,705,154、5,770,403、5,698,417、5,693,493、5,558,864、4,935,496、和4,816,567描述了在本发明中试图用于人化抗体的其它方法,本文收入作为参考。认为WO 98/45331和WO 98/45332特别具有指导意义,本文收入作为参考,通过应用于抗VEGF抗体进一步例示人化原理。
B10.经PCRTM的诱变
定点诱变是一种有用的技术,可通过其DNA的特异性诱变而用于制备各种抗体。通过将一个或多个核苷酸序列变化导入DNA,本技术还能够容易的用于制备并检验体现了一个或多个上述考虑的序列变体。
虽然有许多方法适用于诱变,但是目前通常优选使用聚合酶链反应(PCRTM)。此技术提供了快速、有效的将期望突变导入给定DNA序列中的方法。下文具体描述了如何使用PCRTM将点突变导入序列中,这可以用于改变由给定序列编码的氨基酸。此方法经改动也适于将限制性酶位点导入DNA分子。
在此方法中,可将合成的寡核苷酸设计成能在扩增片段的一端掺入点突变。PCRTM之后,通过用Klenow片段处理使扩增片段成为平端,然后连接平端片段并亚克隆至载体中以便于序列分析。
为了制备期望诱变的模板DNA,可使用待突变区侧翼的限制性位点将DNA亚克隆至高拷贝数的载体,如pUC19中。然后使用质粒微量制备法制备模板DNA。使用自动合成仪合成适当的寡核苷酸引物,该引物基于亲本序列,但含有期望的点突变,其5’端侧翼是限制性酶位点。通常要求引物与模板DNA有大约15个碱基是同源的。可通过变性的聚丙烯酰胺凝胶电泳纯化引物,但用于PCRTM中时,并不绝对需要这么做。然后,应使寡核苷酸的5’末端磷酸化。
应使用含有期望点突变的寡核苷酸引物,通过PCRTM扩增模板DNA。扩增缓冲液中的MgCl2浓度通常为大约15mM。通常应如下进行大约20-25轮PCRTM循环:95℃变性35秒;50℃杂交2分钟;72℃延伸2分钟。PCRTM通常包括于72℃最后一次延伸循环约10分钟。在最后的延伸步骤之后,应在反应混合物中加入约5个单位的Klenow片段,于约30℃再保温15分钟。需要有Klenow片段的外切核酸酶活性,以使末端成为平端并适于平端克隆。
通常通过非变性的琼脂糖或丙烯酰胺凝胶电泳分析得到的反应混合物,以证实扩增已产生预定的产物。通过除去大多数矿物油,用氯仿抽提以除去残留的油,用经缓冲的酚抽提,然后用100%乙醇沉淀浓缩来处理反应混合物。接着,用能够切割寡核苷酸侧翼序列的限制性酶消化大约一半的扩增片段。在低融点琼脂糖凝胶上纯化经消化的片段。
为了亚克隆片段和检查点突变,可通过平端连接将两种扩增片段亚克隆至经适当消化的载体中。然后用于转化大肠杆菌,随后使用微量制备法从中制备质粒DNA。通过DNA测序分析质粒DNA中的扩增部分以确认产生了正确的点突变。这一点至关重要,因为Taq DNA聚合酶能够将额外的突变导入DNA片段。
使用连续的PCRTM步骤也可实现点突变的导入。在此程序中,使包含突变的两种片段互相退火,并通过相互引发的合成而延伸。然后通过第二个PCRTM步骤扩增此片段,从而避免上述方案中需要的平端连接。在此方法中,如上所述进行模板DNA的制备、寡核苷酸引物的产生、和第一次PCRTM扩增。然而,在此方法中,选定的寡核苷酸与模板DNA应有大约15-大约20个碱基的一段序列是同源的,它们互相之间还必须重叠大约10个碱基或更多。
在第二次PCRTM扩增中,可使用各个扩增片段和各个侧翼序列引物,并使用上述条件进行大约20-25轮PCRTM循环。可使用上述步骤再次亚克隆片段并检查点突变是否正确。
在使用上述任一方法时,通常优选通过扩增尽可能小的片段来导入突变。当然,也应仔细考虑如寡核苷酸的解链温度这样的参数,该参数通常受寡核苷酸的GC含量和长度的影响。本领域技术人员众所周知这些方法的实施及其优化(必要时),多种出版物进一步描述了有关内容,如《分子生物学现行方案》(Current Protocol in MolecularBiology)(1995,本文收入作为参考)。
当进行定点诱变时,可以采用表A作为参考。
               表A
  氨基酸   密码子
  丙氨酸半胱氨酸天冬氨酸谷氨酸苯丙氨酸甘氨酸组氨酸异亮氨酸赖氨酸亮氨酸甲硫氨酸天冬酰胺脯氨酸谷氨酰胺精氨酸丝氨酸苏氨酸缬氨酸色氨酸酪氨酸   Ala A GCA GCC GCG GCUCys C UGC UGUAsp D GAC GAUGlu E GAA GAGPhe F UUC UUUGly G GGA GGC GGG GGUHis H CAC CAUIle I AUA AUC AUULys K AAA AAGLeu L UUA UUG CUA CUC CUG CUUMet M AUGAsn N AAC AAUPro P CCA CCC CCG CCUGln Q CAA CAGArg R AGA AGG CGA CGC CGG CGUSer S AGC AGU UCA UCC UCG UCUThr T ACA ACC ACG ACUVal V GUA GUC GUG GUUTrp W UGGTyr Y UAC UAU
B11.抗体片段和衍生物
不管最初的阻断VEGFR2的抗VEGF抗体的来源是什么,完整的抗体、抗体多聚体、或抗体多种功能性抗原结合区之任一种都可用于本发明。例示性功能区包括抗VEGF抗体的diabody、线性抗体、和scFv、Fv、Fab’、Fab、F(ab’)2片段。本领域技术人员众所周知用于制备这些构建物的技术,本文进一步例示。
抗体构建物的选择可能受到多种因素的影响。例如,肾内完整抗体的积极再吸附能够延长半衰期,这是免疫球蛋白Fc片段的特性。由此预计基于IgG的抗体展示的血液清除率比其Fab’对应物低。然而,基于Fab’的组合物通常展示更好的组织渗透能力。
可以由完整免疫球蛋白经非特异性硫醇蛋白酶木瓜蛋白酶进行蛋白水解获得抗体片段。木瓜蛋白酶消化产生两个相同的抗原结合片段,称为“Fab片段”,每个片段含有一个抗原结合位点;和一个残余的“Fc片段”。
首先必需用半胱氨酸、2-巯基乙醇、或二硫苏糖醇还原活性位点中的巯基而激活木瓜蛋白酶。应当用EDTA(2mM)的螯合作用除去酶原液中的重金属,以确保最大酶活性。通常以1∶100的重量比混和酶和底物。温育后,可以通过碘乙酰胺对巯基的不可逆烷化或仅通过透析来终止反应。应当通过SDS-PAGE来监控消化是否完全,并通过蛋白A-Sepharose或离子交换层析来分离各种片段。
用于由兔和人来源的IgG制备F(ab’)2片段的常用程序包括用胃蛋白酶进行有限的蛋白水解。反应条件是,100倍(w/w)抗体过量,在pH4.5的醋酸盐缓冲液中,37℃,这说明抗体是在重链间二硫键的C端被切割。小鼠IgG的消化速率随亚类而变化,选择的条件应当避免显著的完全降解IgG。具体而言,IgG2b易被完全降解。其它亚类要求不同的温育条件以产生最佳结果,这些本领域都是知道的。
胃蛋白酶对完整抗体的处理产生具有两个抗原结合位点、仍能够交联抗原的F(ab’)2片段。用胃蛋白酶消化大鼠IgG要求的条件包括在0.1M醋酸盐缓冲液(pH4.5)中透析,然后与1%(w/w)胃蛋白酶温育4小时;如果首先在0.1M甲酸盐缓冲液(pH2.8)中于4℃透析16小时,然后换成醋酸盐缓冲液,则可以改进IgG1和IgG2a的消化。将IgG2b在含葡萄球菌V8蛋白酶(3%w/w)的0.1M磷酸钠缓冲液(pH7.8)中于37℃温育4小时,将给出更一致的结果。
Fab片段也包含轻链的恒定结构域和重链的第一个恒定结构域(CH1)。Fab’片段与Fab片段不同,前者在重链CH1结构域的羧基末端多几个残基,包括来自抗体铰链区的一个或多个半胱氨酸。F(ab’)2抗体片段最初以成对的Fab’片段产生,相互之间有铰链半胱氨酸。还知道抗体片段的其它化学偶联。
“Fv”片段是包含完整的抗原识别和结合位点的最小抗体片段。该区包含一个重链可变区与一个轻链可变区紧密共价相连的二聚体。正是在这个构象中,每个可变结构域的3个高变区相互作用,在VH-VL二聚体表面形成抗原结合位点。总而言之,6个高变区赋予抗体以抗原结合特异性。然而,即使是单一可变结构域(或只包含3个具有抗原特异性的高变区的半个Fv)也能够识别并结合抗原,只是亲和力比完整结合位点低。
“单链Fv”或“scFv”抗体片段包含抗体的VH和VL结构域,这些结构域存在于一条多肽链中。通常,Fv多肽在VH与VL结构域之间还包含多肽接头,使得scFv能够形成结合抗原的所需结构。
为了进一步补充关于抗VEGF抗体功能性抗原结合区(包括scFv、Fv、Fab’、Fab、和F(ab’)2片段)的制备及使用的教授,本文特别收入下列专利和专利申请作为参考:美国专利5,855,866;5,965,132;6,051,230;6,004,555;和5,877,289;和1998年10月20日交纳颁证费的美国申请流水号08/482,369。为了进一步描述并传授抗体可变区、高变区、和互补决定区(CDR)的制备,本文还收入WO 98/45331作为参考。
“diabody”是包含两个抗原结合位点的小抗体片段,各片段包含在同一多肽链(VH-VL)中相连的重链可变结构域(VH)与轻链可变结构域(VL)。通过在同一条链上两个结构域之间使用短得不能配对的接头,使得结构域与另一条链上的互补结构域配对,并产生两个抗原结合位点。EP 404,097和WO 93/11161(本文特别收入作为参考)描述了diabody。如Zapata等人(1995,本文收入作为参考)所述,抑或双特异性抑或单一特异性的“线性抗体”,包含一对串连的Fd片段(VH-CH1-VH-CH1),形成一对抗原结合区。
在使用伴随组织渗透优势的抗体Fab’或抗原结合片段时,可以通过修饰片段而衍生得到额外优势,即延长半衰期。可以采用多种技术,诸如对抗体分子自身的操作或修饰,以及与惰性载体的缀合。对于仅仅为了延长半衰期而非为了靶向投递试剂而进行的缀合,应当小心选择Fab’和其它片段以渗透组织。尽管如此,已经尝试了与非蛋白质聚合物的缀合,诸如PEG等等。
因此,除缀合以外的其它修饰是基于修饰抗体片段的结构从而使其更稳定和/或降低体内代谢速率。用于这些修饰的一种机制是使用D-氨基酸来取代L-氨基酸。本领域普通技术人员将理解,导入这些修饰后需要对产生的分子进行严格的检验以确保它仍然保留了期望的生物学特性。其它稳定修饰包括在N末端或C末端之一或二者添加通常用于延长生物学分子半衰期的稳定部分。作为范例,可以通过酰化或胺化来修饰末端。
用于本发明的适度缀合型修饰包括在抗体片段中掺入挽救型(salvage)受体结合表位。用于实现该目的的技术包括抗体片段适当区域的突变或将表位作为肽标签附着于抗体片段由此掺入表位。为了进一步例示这些技术,本文特别收入WO 96/32487作为参考。挽救型受体结合表位通常是由Fc结构域的一个或两个环转移至抗体片段上类似位置的3个或更多氨基酸的区域。为了用于本发明,本文收入WO98/45331的挽救型受体结合表位作为参考。
B12.结合和功能测定法
本发明不但在动物和人的治疗方案中具有显著效用,而且它还具有许多其它实践用途,包括许多体外应用。某些应用涉及抗体或免疫缀合物的特异性结合特性。由于本发明的所有化合物都包含至少一种抗体成分,因此事实上它们可用于使用原始抗体的所有结合方案。
尽管相关时存在的附着试剂提供了有益特性,但是不否定第一种抗体区域在任何结合测定法中的效用。因此,适用的结合测定法包括常常被本领域所采用的方法,诸如免疫印渍、Western印渍、点印渍、RIA、ELISA、免疫组织化学、荧光激活细胞分拣术(FACS)、免疫沉淀、亲和层析、等等,本文进一步描述。
某些标准结合测定法将抗原固定在固体支持物基质上,如硝酸纤维素、尼龙、或其组合,诸如免疫印渍、Western印渍、和相关测定法。其它重要的测定法是ELISA。所有这些测定法可以容易的改动用于检测VEGF,如可以应用于血管发生性疾病的诊断。本发明的试剂还可在免疫组织化学中与新鲜冷冻的和福尔马林固定、石蜡包埋的组织块相结合使用;用于荧光激活的细胞分拣术、流式细胞计、或流式显微荧光测定法;用于免疫沉淀;用于抗原纯化实施方案,诸如亲和层析,甚至在双特异性抗体的情况中包括一步同时快速纯化一种或多种抗原;和用于本领域技术人员根据本文提供的信息将了解的其它结合测定法。
本发明的其它实用性用途是在功能测定法中作为对照,包括许多体外和离体(exvivo)测定法和系统,以及动物模型研究。由于本发明抗体的结合和功能特性特别有特异性,即它们抑制VEGF结合VEGFR2(而非VEGFR1)以及经其发出的信号,因此这种“对照”用途事实上极有价值。受益于本发明的这种实用性用途的测定法包括例如关注VEGF介导的内皮细胞生长、VEGF诱导的磷酸化、和VEGF诱导的血管通透性的测定法,以及新血管形成的角膜微囊测定法和鸡尿囊绒毛膜测定法(CAM)。这些测定系统还可以发展成体外或离体药物筛选测定法,其中本发明提供的具有详细描述特性的生物学物质特别重要。
C.免疫缀合物
本发明不但提供了非常有效的裸露的或未缀合的抗体用于抗血管发生方法,还提供了基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物、免疫毒素、和凝血配体。目前优选用于基于阻断VEGFR2的抗VEGF抗体或2C3的治疗性缀合物的试剂是放疗剂(由本文公开的放射性诊断剂例示)、抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物、抗细胞或细胞毒性试剂、和凝血剂(凝血因子)。
为了产生免疫缀合物、免疫毒素、和凝血配体,可以采用重组表达来产生融合蛋白质,正如本领域技术人员知道的和本文进一步公开的。同样的,可以使用抗生物素蛋白:生物素桥或为抗体缀合物而开发的任何化学缀合和交联剂技术来产生免疫缀合物、免疫毒素、和凝血配体。
C1.毒性剂和抗细胞的试剂
对于某些应用,治疗剂是毒害细胞的试剂或药理学试剂,特别是毒害细胞、抑制细胞、或者能够杀死细胞或抑制内皮细胞生长或分裂的其它抗细胞试剂。通常,本发明的这些方面涵盖能够与阻断VEGFR2的抗VEGF抗体或2C3样抗体缀合并以活性形式投递至靶内皮的任何药理学试剂的应用。
抗细胞试剂的范例包括化疗剂,以及细胞毒素。可以使用的化疗剂包括:激素,诸如类固醇;抗代谢物,诸如阿糖胞苷、氟尿嘧啶、氨甲喋呤、或氨基喋呤;蒽环霉素;丝裂霉素C;长春花生物碱;地美可辛(demecolcine);依托泊甙(etoposide);光辉霉素;抗肿瘤烷化试剂,诸如苯丁酸氮芥或苯丙氨酸氮芥。其它实施方案可以包括诸如细胞因子等试剂。基本上可以使用任何抗细胞试剂,条件是它能够以某种方式成功的缀合或连接抗体从而能够对靶向的内皮细胞位点血液成分进行靶向、内化、释放、和/或展现。
可能会有这样的情况,比如靶抗原没有通过与有毒化合物的有效去毒一致的途径发生内在化,需要靶向化疗剂,诸如抗肿瘤药物、细胞因子、抗代谢物、烷化剂、激素、等等。目前多种化疗剂和其它药理学试剂已经成功的缀合于抗体,并显示药学功能,包括羟基红比霉素(doxorubicin)、道诺霉素、氨甲喋呤、长春花碱、新抑癌蛋白(neocarzinostatin)、大分子霉素、三亚胺醌、和α-鹅膏菌素。
在其它情况中,可以通过使用DNA合成抑制剂来消除来自基于细胞毒素疗法的任何潜在副作用,诸如道诺霉素、羟基红比霉素(doxorubicin)、阿霉素、等等。因此这些试剂是用于本发明的抗细胞试剂的优选范例。
至于抑制细胞的试剂,这些化合物通常扰乱靶细胞的正常细胞周期,优选使得细胞退出细胞周期。
已知多种细胞毒性剂可以缀合于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体。范例包括大量有用的植物、真菌、或细菌衍生毒素,作为范例,只说出其中的一些,包括各种A链毒素,特别是蓖麻毒蛋白A链;核糖体灭活蛋白,诸如皂草素或gelonin;α-帚曲菌素;曲霉素;局限曲霉菌素;核糖核酸酶,诸如胎盘核糖核酸酶;白喉毒素;和假单胞菌外毒素。
在毒素中,优选蓖麻毒蛋白A链。最优选用于本文的毒素部分是经处理而修饰或除去碳水化合物残基的蓖麻毒蛋白A链,即所谓的脱糖基A链(dgA)。脱糖基蓖麻毒蛋白A链是优选的,因为它极有效、半衰期较长,而且进行临床等级和规模的制备在经济上是可行的。
从制药学的立场出发,可能希望采用尽可能小的分子而又提供适当的生物学应答。由此可能希望采用提供适当的抗细胞应答的较小A链肽。为了这个目标,已经发现蓖麻毒蛋白A链可以通过Nagarase(Sigama)除去30个N末端氨基酸而“截短”,但仍保留适当的毒素活性。建议需要时可以将这种截短的A链用于本发明的缀合物。
或者,可发现对毒素A链部分应用重组DNA技术可以提供本发明的额外好处。实现了有生物学活性的蓖麻毒蛋白A链的克隆和表达后,现在有可能鉴定并制备仍展示适当毒素活性的更小的肽或变体肽。此外,蓖麻毒蛋白A链已被克隆的事实使得能够应用定点诱变,由此容易的制备并筛选A链衍生肽,获得可用于本发明的其它有用部分。
C2.凝血因子
本发明的阻断VEGFR2的抗VEGF抗体可以连接能够直接或间接刺激凝血的成分,从而形成凝血配体。在这里,抗体可以直接连接凝血剂或凝血因子,或者可以连接可结合而后释放凝血剂或凝血因子的第二种结合区。如本文所用,术语“凝血剂”和“凝血因子”都用于指在适当条件下,优选当到达特定体内环境(诸如肿瘤血管结构)时,能够直接或间接刺激凝血的成分。
优选的凝血因子是组织因子组合物,诸如截短的TF(tTF)、二聚体、多聚体、和突变TF分子。“截短的TF”(tTF)指通过除去足够多的影响膜结合特性的氨基酸序列从而变成膜结合缺陷的TF构建物。文章中的“足够量”指最初足以使TF分子进入膜或介导TF蛋白质功能性膜结合的跨膜氨基酸序列的量。通过除去“足够量的跨膜序列”而产生的截短的组织因子蛋白质或多肽,结合磷脂膜的能力是缺陷的,使得蛋白质基本上不结合磷脂膜,而基本上可溶。因此,截短的TF在标准TF测定法中基本上不能够将因子VII转变成因子VIIa,但是仍然保留所谓的催化活性,包括在存在因子VIIa时激活因子X。
美国专利5,504,067(本文特别收入作为参考)进一步描述了这些截短的组织因子蛋白质。优选用于本发明这些方面的组织因子通常不含该蛋白质的跨膜和胞质区(第220-263位氨基酸)。但是,也不需要将截短的TF分子限制于长度恰好是219个氨基酸的分子。
二聚体的组织因子组合物也是有用的。可以以二聚体的形式制备任何截短的、突变的、或其它组织因子构建物以用于本发明。本领域普通技术人员可以理解,通过分子生物学和重组表达的标准技术,在同一读码框中制备两个编码区并由表达载体进行表达,由此可以制备这些TF二聚体。同样,可以将各种化学缀合技术用于制备TF二聚体。可以在缀合前衍生个别TF单体。本领域技术人员清楚的知道所有这些技术。
如果需要,可以经生物学可释放键连接组织因子二聚体或多聚体,诸如可选择性切割的接头或氨基酸序列。例如,可使用包含酶的可切割位点的肽接头,所述酶优先定位于肿瘤环境或在肿瘤环境内有活性。这些肽接头的例示性形式是供尿激酶、纤溶酶、凝血酶、因子IXa、因子Xa、或金属蛋白酶(诸如胶原酶、明胶酶、或溶基质素)切割的肽接头。
在某些实施方案中,组织因子二聚体还可以包含受阻的疏水性膜插入部分,以便在后面促进组织因子与磷脂酶的功能性联合,但是这只发生于某些特定条件下。正如关于截短的组织因子的内容中所述,疏水性膜联合序列通常是由于其疏水本质可驱动与磷脂环境的联合的氨基酸段。同样,脂肪酸可以用于提供潜在的膜插入部分。
这些膜插入序列可以位于TF分子的N末端或C末端,或者通常附着于该分子的任何其它位点,只要它们的附着不阻碍TF构建物的功能特性即可。受阻插入部分的意图是在TF构建物定位于肿瘤环境前保持无功能,并使得疏水性附着物能够接近并进一步驱动与膜的物理学联合。此外,预计生物学可释放键和可选择性切割序列在这方面特别有用,其中所述键或序列只在定位于肿瘤环境内并暴露于特定酶或其它生物活性分子时才受到切割或修饰。
在其它实施方案中,tTF构建物可以是多聚体。在此内容中,“多聚体构建物”包含3个或更多组织因子构建物。“多聚体TF构建物”指包含第一TF分子或衍生物可操作附着至少第二个和第三个TF分子或衍生物的构建物。多聚体可以包含大约3个-大约20个TF分子。多聚体中的各TF单元也可以通过可选择性切割肽接头或其它生物学可释放键相连。此外,正如上文就TF二聚体所述,可以使用重组操作和表达或使用标准合成化学来生成构建物。
可用于本发明的其它TF构建物是激活因子VII的能力缺陷的突变体。本文通常将这些“因子VII激活突变体”定义为可结合功能性因子VII/VIIa,通过蛋白水解激活因子X,但是基本上不能通过蛋白水解激活因子VII的TF突变体。因此,这些构建物是缺乏因子VII激活活性的TF突变体。
这些因子VII激活突变体启动肿瘤特异性凝血的能力基于它们对肿瘤血管结构的特异性投递和血浆中存在的低水平因子VIIa。在施用了这些因子VII激活突变体缀合物后,突变体将定位于血管化肿瘤的血管结构内。在定位前,由于TF突变体不能将因子VII转变成因子VIIa,因此它通常不能够在任何其它身体部位启动凝血。但是,在定位于肿瘤区并积累后,突变体将遭遇来自血浆的足够因子VIIa,从而起始外在凝血途径,导致肿瘤特异性血栓症。也可以对患者施用外源因子VIIa。
可以制备多种组织因子VII激活突变体并用于本发明。现在有了关于TF上因子VII/VIIa识别位点的充足知识。由此可以理解,因子VII结合区通常位于TF分子的大约第157位-大约第167位氨基酸之间。但是,预计该区域外的残基也与因子VII激活活性有关,由此可考虑在TF序列大约第106位-大约第209位氨基酸之间的一个或多个残基处导入突变(WO 94/07515;WO 94/28017;本文收入作为参考)。
多种其它凝血因子可以用于本发明,例示性试剂见下文。凝血酶、因子V/Va及其衍生物、因子VIII/VIIIa及其衍生物、因子IX/IXa及其衍生物、因子X/Xa及其衍生物、因子XI/XIa及其衍生物、因子XII/XIIa及其衍生物、因子XIII/XIIIa及其衍生物、因子X激活剂、和因子V激活剂可用于本发明。
Russell蝰蛇毒因子X激活剂预计可用于本发明。已生成了对Russell蝰蛇毒液中存在的因子X激活剂具有特异性的单克隆抗体,并可作为双特异性结合配体的一部分用于特异性投递试剂。
血栓烷A是由内过氧化物通过血小板微粒体中的环加氧酶和血栓烷合成酶的连续反应形成的。血栓烷A2是由血小板产生的,而且由于其能够引起血小板聚集还是有效的血管收缩剂。血栓烷A2及其活性类似物预计可用于本发明。
血栓烷合酶和合成激活血小板的前列腺素的其它酶也可在本文中作为“凝血剂”使用。针对血栓烷合酶的单克隆抗体和血栓烷合酶的免疫亲和纯化是已知的,人血栓烷合酶的cDNA也是已知的。
α2-抗纤溶酶或α2-纤溶酶抑制剂是人血浆中天然存在的蛋白酶抑制剂,能够有效抑制由纤溶酶原激活剂诱导的纤维蛋白凝块的裂解。α2-抗纤溶酶是特别有效的抑制剂,预计可用于本发明。
由于可以获得α2-抗纤溶酶的cDNA序列,因此优选重组表达和/或融合蛋白质。还可以获得针对α2-抗纤溶酶的单克隆抗体,可用于本发明的双特异性结合配体实施方案。这些抗体可用于将外源α2-抗纤溶酶投递至靶位点或储存外源α2-抗纤溶酶,并使其在靶区内浓缩。
C3.抗微管蛋白药物
一系列药物可经干扰微管蛋白活性来展现其效果。由于微管蛋白的功能是有丝分裂和细胞生存所必需的,所以某些“抗微管蛋白药物”是强有力的化疗剂。目前了解得更清楚也更优选用于本发明的抗微管蛋白药物包括秋水仙素;taxanes,诸如紫杉醇;长春花生物碱,诸如长春花碱、长春花新碱、和长春碱酰胺;和combretastatin。其它合适的抗微管蛋白药物是细胞松弛素(包括B、J、E)、dolastatin、auristatin PE、paclitaxel、ustiloxin D、根胆酸(rhizoxin)、1069C85、秋水仙胺、阿苯达唑(albendazole)、azatoxin、和诺考达唑(nocodazole)。
如美国专利5,892,069、5,504,074、和5,661,143(本文特别收入作为参考)中所述,combretastatin是通常抑制细胞有丝分裂的雌二醇衍生物。可用于本发明的例示性combretastatin包括基于combretastatin A、B、和/或D的combretastatin和美国专利5,892,069、5,504,074、和5,661,143中所述的combretastatin。combretastatin A-1、A-2、A-3、A-4、A-5、A-6、B-1、B-2、B-3、和B-4是上述类型的范例。
美国专利5,569,786和5,409,953(本文收入作为参考)描述了combretastatin A-1、A-2、A-3、B-1、B-2、B-3、和B-4的分离、结构特征、和合成,以及使用这些combretastatin来治疗肿瘤生长的配方和方法。这些combretastatin都可用于本发明。
如美国专利5,892,069、5,504,074、5,661,143、和4,996,237(本文特别收入作为参考)中所述,combretastatin A-4也可用于本文。美国专利5,561,122(本文收入作为参考)进一步描述了合适的combretastatin A-4药物前体,预计可与本发明联合使用。
美国专利4,940,726(本文特别收入作为参考)特别描述了命名为combretastatin D-1和combretastatin D-2、可与本发明的组合物和方法联合使用的大环内酯。美国专利5,430,062(本文特别收入作为参考)涉及具有抗癌活性、可与本发明联合使用的芪衍生物和combretastatin类似物。
C4.抗血管发生试剂
本发明特别提供了联合型抗血管发生剂。促血管生成素,与VEGF家族成员一样,是血管内皮的特异性生长因子(Davis和Yancopoulos,1999;Holash等,1999;本文收入作为参考)。首先被描述的促血管生成素是天然存在的受体激活剂或激动剂--促血管生成素-1(Ang-1),和天然存在的受体拮抗剂--促血管生成素-2(Ang-2),二者都是通过内皮细胞酪氨酸激酶受体Tie2来发挥作用的。
两种新的促血管生成素--促血管生成素-3(小鼠)和促血管生成素-4(人)也已经得到鉴定(Valenzuela等人,1999)。促血管生成素-3似乎作为拮抗剂(像Ang-2)发挥作用,而促血管生成素-4似乎作为激动剂(像Ang-1)发挥作用(Valenzuela等人,1999)。还由人的心脏克隆了称为促血管生成素-3的蛋白质,而且据报导对内皮细胞没有促有丝分裂的效果(Kim等人,1999)。
VEGF是血管发育早期所必需的,而促血管生成素-1是血管化晚期通常需要的。由此,VEGF促进内皮细胞分化、增殖、和原始血管形成。促血管生成素-1经Tie2受体促进成熟血管的维持和稳定。因此,促血管生成素-1是成熟或稳定因子,认为它通过促进内皮细胞与周围支持细胞之间的相互作用将未成熟血管转变成成熟血管(Holash等人,1999)。
已显示促血管生成素-1可增加缺血组织中的血管形成(Shyu等人,1998),且增加暴露于VEGF或一种形式的aFGF的血管网络的存活(Papapetropoulos等人,1999)。这些作者还显示,促血管生成素-1可防止HUVEC中由停止服用相同形式的aFGF而触发的凋亡(Papapetropoulos等人,1999)。这些资料与促血管生成素-1对人内皮细胞的直接作用及其与其它血管发生性分子通过促进已分化内皮细胞的存活来稳定血管结构的相互作用是一致的。
由于促血管生成素-1传达成熟和稳定信号,因此发明人已经仔细的设想了本发明中涉及促血管生成素-1靶向投递的方面。发明人推理认为,因为促血管生成素-1是成熟因子,所以它将使得肿瘤血管不依赖生长因子。因此,本发明的一个方面涉及靶向肿瘤的促血管生成素-1的应用,从而巩固靶血管的VEGF无应答特性。
推理认为,使用结合肿瘤的配体将促血管生成素-1投递至肿瘤血管,能够将大约500,000个促血管生成素-1分子投递至血管腔。这将覆盖Tie2受体系统,用促血管生成素-1配体使Tie2受体完全饱和。由此,促血管生成素-2不再能够结合,从而促血管生成素-2与VEGF的联合效果(见下文讨论)将受到抑制。
使促血管生成素-1趋向肿瘤(优选肿瘤血管结构)的投递,也可以与本文详细公开的多种其它抗癌策略联合使用,以实现联合治疗效果。肿瘤对诱导至少一些坏死的疗法的典型应答是启动血管再生。由于促血管生成素-1信号促使血管成熟,它们因而不能进行改造且不能补偿由主要治疗剂诱导的肿瘤块损失。因此,这些观察结果提供了促血管生成素投递的另一个优选方面,即促血管生成素-1靶向与任何一种或多种抗癌试剂(包括传统的化疗药物)的联合使用。
促血管生成素-1在投递后的作用从根本上说是防止血管改造。无论它是单独使用还是联合使用,促血管生成素-1靶向的价值因这种治疗方法的固有安全性而获得了显著提高。促血管生成素-1疗法没有显著的不利之处。甚至在一些靶向Ang-1错误指向非肿瘤组织这种不太可能的情况中,所有可能发生的后果也就是靶向区域内的血管结构将变得更稳定和/或静止。在这点上,Ang-1也可以作为抗炎症剂使用。
促血管生成素-2目前优选用于肿瘤靶向疗法,特别是与本发明的VEGF抑制联合使用。但是,由于促血管生成素-2在不同条件(特别是不同的VEGF水平)下的效果也不同,因此发明人再次仔细的设想了本发明中涉及促血管生成素-2靶向投递的方面。
促血管生成素-2还是Tie2受体的配体,但是通常对抗由促血管生成素-1介导的血管成熟/稳定。因而它是促血管生成素-1的拮抗剂,且扰乱毛细血管结构。在适当条件下,促血管生成素-2向靶细胞传达负信号,且由促血管生成素-2诱导的去稳定作用导致血管退化。这是试图将促血管生成素-2投递至肿瘤(优选肿瘤血管结构)的第一个特性。
预计通过使用阻断VEGFR2的抗VEGF抗体(诸如2C3)而易于实现的简单投递足够的促血管生成素-2,将掩盖肿瘤环境中可能存在的所有其它信号并促进血管退化。由于天然环境中的促血管生成素之间存在精细控制的相互影响,因此通过不断的促血管生成素-2信号传导使系统极度倾向退化,可以彻底消除促血管生成素-1和VEGF的影响。
靶向肿瘤的促血管生成素-2的单独使用因而可有利的用于诱导肿瘤血管退化,特别是作为治疗性干预的早期机制。不过由促血管生成素-2诱导的去稳定作用通常可以导致血管退化或再生。当不存在其它血管发生性刺激(特别是VEGF)时,去稳定作用导致血管退化;而当存在高水平VEGF时,去稳定作用促进血管发生性应答(Holash等人,1999)。
应答促血管生成素-2而经历去稳定的血管可以通过暴露于其它刺激而由退化获得“挽救”。促血管生成素-2因而能够在特定条件下使内皮细胞对其它血管发生性刺激产生应答并促进血管发生性应答。特别是VEGF能够促进因Ang-2而去稳定的细胞进行增殖并形成新的原始血管(Asahara等人,1998;Holash等人,1999)。事实上,已经报导了促血管生成素-2在肿瘤组织中的表达(Tanaka等人,1999),在此推定它与VEGF联合作用,促进血管发生(Stratmann等人,1998)。由促血管生成素-2和VEGF启动的新血管形成使得这些分子成为“共血管发生”(co-angiogenic)。
目前已经报导的经调整模型,解释了促血管生成素-2对某些肿瘤类型中血管的正的和负的作用(Holash等人,1999)。在这种模型中,由促血管生成素-2诱导的去稳定作用最初通过由周围宿主血管结构占有(coopting)肿瘤血管从而在肿瘤中引起显著的血管退化。由肿瘤相关内皮细胞产生的高水平促血管生成素-2抵消显然由低水平、组成性表达的促血管生成素-1提供的存活信号。促血管生成素-2由此使被占(coopted)血管进行凋亡性退化(Holash等人,1999)。但是,不管产生的肿瘤坏死,存活的肿瘤细胞上调VEGF以确保其存活。由于VEGF使来自促血管生成素-2的退化信号变得无效并实际上促进血管结构发育,于是VEGF与促血管生成素-2的一致表达在肿瘤周围导致旺盛的血管发生(Holash等人,1999)。
虽然第一眼从表面上看是矛盾的,但是可以根据存在的其它信号,特别是VEGF,来预测并解释促血管生成素-2的作用。当不存在另一种血管发生信号时,促血管生成素-2引起血管去稳定并变得不成熟,导致退化。当存在刺激,特别是VEGF时,由促血管生成素-2引起的去稳定确实导致血管发生,血管“被引发”接受第二种血管发生性刺激。由此认为,通过调控微血管内皮细胞中促血管生成素-2活性的自分泌环,至少部分实现了大量调控剂的血管发生效果(Mandriota和Pepper,1998)。
促血管生成素-2的双重生物学作用促使发明人发展能够利用肿瘤环境中其它信号(特别是VEGF)的其它治疗性策略。由于促血管生成素-2与VEGF协同刺激血管发生,因此本发明的优选方面是联合投递靶向肿瘤的促血管生成素-2与现有的VEGF抑制性抗体。这将确保促血管生成素-2起到退化作用而非血管发生作用。
根据上述解释,可以理解本发明提供了可操作附着或功能性连接促血管生成素-1、促血管生成素-2、促血管生成素-3、和/或促血管生成素-4之任一种或多种的阻断VEGFR2的抗VEGF抗体(诸如2C3)。例示性的促血管生成素-1组合物显示于SEQ ID N0:1(DNA)和SEQ ID NO:2(蛋白质),而促血管生成素-2组合物例示于SEQ ID NO:3(DNA)和SEQ ID NO:4(蛋白质)。作为拮抗剂,促血管生成素-3通常如促血管生成素-2一样使用;而激动剂促血管生成素-4可以以促血管生成素-1的方式使用。Valenzuela等人(1999;本文特别收入作为参考)的论文进一步补充了本文关于促血管生成素-3和促血管生成素-4的传授。
另外,还设想将促血管生成素的融合蛋白质用于本发明。一个范例是本文所包括的稳定Ang-1-Ang-2融合蛋白质,见SEQ ID NO:5。该蛋白质包含促血管生成素-2的最初73个氨基酸,直至DAPLEY序列,并融合了促血管生成素-1自第77位氨基酸开始的序列。它还在促血管生成素-1的第265位包含突变,Cys被Ser取代。
其它可用于本文的抗血管发生剂包括制管张素和抑内皮素。美国专利5,776,704、5,639,725、和5,733,876(本文收入作为参考)描述了制管张素。制管张素是分子量在大约38kDa-大约45kDa之间的蛋白质(通过还原性聚丙烯酰胺凝胶电泳测定),大致包含纤溶酶原分子的第1-4个Kringle区。制管张素的氨基酸序列通常与完整鼠纤溶酶原分子自第98位氨基酸开始的片段基本上相似。
制管张素的氨基酸序列在物种间略有变化。例如,在人的制管张素中,氨基酸序列与上述鼠纤溶酶原片段的序列基本上相似,但是有活性的人制管张素序列可以自完整人纤溶酶原氨基酸序列的第97位或第99位氨基酸开始。而且,人纤溶酶原在小鼠肿瘤模型中具有相似的抗血管发生活性,因而可以使用。
由于制管张素和抑内皮素是最早在小鼠中证明不仅能够抑制肿瘤生长而且能够引起肿瘤退化的血管发生抑制剂,因此它们已经成为深入研究的焦点。已经显示多种蛋白酶由纤溶酶原产生制管张素,包括弹性蛋白酶、巨噬细胞金属弹性蛋白酶(MME)、基质溶素(MMP-7)、和92kDa的明胶酶B/IV类胶原酶(MMP-9)。
MME能够在肿瘤中由纤溶酶原产生制管张素,而粒细胞-巨噬细胞集落刺激因子(GMCSF)通过上调巨噬细胞的MME表达而诱导制管张素生成。MME在制管张素生成中的作用受到MME确实在来自患者的肝细胞癌临床样品中表达这一发现的支持。认为能够产生制管张素的另一种蛋白酶是溶基质素-1(MMP-3)。MMP-3显示在体外由纤溶酶原产生制管张素样片段。制管张素的作用机制目前还不清楚,猜测它结合内皮细胞上尚未鉴定的细胞表面受体,诱导内皮细胞经历程序化细胞死亡或有丝分裂阻滞。
抑内皮素似乎是甚至更强有力的抗血管发生和抗肿瘤试剂,且特别优选用于连接阻断VEGFR2的抗VEGF抗体(诸如2C3)。抑内皮素在大量的小鼠肿瘤模型中能够有效引起退化。肿瘤没有形成针对抑内皮素的抗性,而且肿瘤在多个治疗周期后进入体积不再增加的休眠阶段。在此休眠阶段,经历凋亡的肿瘤细胞百分比上升,产生基本上保持相同大小的群体。
授予Folkman和O’Reilly的美国专利5,854,205(本文特别收入作为参考)涉及抑内皮素及其作为内皮细胞增殖和血管发生抑制剂的应用。抑内皮素蛋白质对应于XVIII型胶原的C末端片段,而且可以由多种来源分离该白质。美国专利5,854,205还讲授了,抑内皮素具有XVIII型胶原、XV型胶原、或BOVMPE 1 pregastric酯酶片段的氨基酸序列。美国专利5,854,205还描述了抑内皮素与其它抗血管发生蛋白质(特别是制管张素)的联合,这些联合的组合物能够有效的使依赖血管发生的肿瘤块消退。
抑内皮素和制管张素是优选用于参照本发明投递至肿瘤的试剂。抑血管素、制霉菌素、和maspin也是优选的试剂。特别是抑内皮素,它是最优选的试剂之一。可以如本文所述制备抑内皮素-2C3融合蛋白质。本申请还描述了化学连接的抑内皮素-2C3构建物的各种形式。
C5.诱导凋亡试剂
本发明还可用于投递在肿瘤内任何细胞(包括肿瘤细胞和肿瘤血管内皮细胞)中诱导凋亡的试剂。虽然许多抗癌试剂可能具有诱导凋亡的效果作为其作用机制的一部分,但是如下文所述,已经发现、设计、或选择了以此作为主要机制的某些试剂。
据报导,许多形式的癌症在肿瘤抑制基因中包含突变,诸如p53。p53的灭活导致不能促进凋亡。由于这一失败,癌细胞进行肿瘤发生,而非注定的细胞死亡。本发明因此还试图通过投递肿瘤抑制基因来刺激细胞死亡。例示性的肿瘤抑制基因包括(但不限于)p53、成视网膜细胞瘤基因(Rb)、Wilm氏肿瘤(WT1)、bax α、白介素-1β-转换酶及其家族、MEN-1基因、1型神经纤维瘤(NF1)、cdk抑制剂p16、结肠直肠癌基因(DCC)、家族性多发性腺癌基因(FAP)、多瘤抑制基因(MTS-1)、BRCA1、和BRCA2。
优选使用的是p53(美国专利5,747,469、5,677,178、和5,756,455,本文收入作为参考)、成视网膜细胞瘤、BRCA1(美国专利5,750,400、5,654,155、5,710,001、5,756,294、5,709,999、5,693,473、5,753,441、5,622,829、和5,747,282,本文收入作为参考)、MEN-1(GenBank编号U93236)、和腺病毒E1A(美国专利5,776,743,本文收入作为参考)基因。
可以由阻断VEGFR2的抗VEGF抗体(诸如2C3)投递的其它组合物包括肿瘤坏死因子相关凋亡诱导配体(称为TRAIL)的编码基因及TRAIL多肽(美国专利5,763,223,本文收入作为参考);24kD凋亡相关蛋白酶(美国专利5,605,826,本文收入作为参考);Fas相关因子1(FAF1)(美国专利5,750,653,本文收入作为参考)。本发明的这些方面还包括提供白介素-1β-转换酶及其家族成员,据报导,它们也刺激凋亡。
还可以使用诸如2-羟基喹啉衍生物(美国专利5,672,603和5,464,833,本文收入作为参考)、branched apogenic peptide(美国专利5,591,717,本文收入作为参考)、磷酸酪氨酸抑制剂及不可水解的磷酸酪氨酸类似物(美国专利5,565,491和5,693,627,本文收入作为参考)、RXR类视黄酸受体激动剂(美国专利5,399,586,本文收入作为参考)、和甚至抗氧化剂(美国专利5,571,523,本文收入作为参考)等化合物。还可以将酪氨酸激酶抑制剂(诸如染料木黄酮)连接至本发明靶向细胞表面受体VEGFR1的试剂(正如美国专利5,587,459所支持的,本文收入作为参考)。
C6.生物学功能等同物
现在(通常)使用上文提供的材料作为起点,可以生成基于2C3的抗体或任何其它阻断VEGFR2的抗VEGF抗体的等同物或甚至改进。可以对这种抗体的结构进行修饰和改变,但是仍然能够获得具有类似或所需特征的分子。例如,可以用某些氨基酸替代蛋白质结构中的其它氨基酸,而在相互作用的结合能力方面没有明显损失。这些考虑也可应用于毒素、抗血管发生试剂、诱导凋亡试剂、凝血剂、等等。
由于蛋白质相互作用的能力和本质确定了该蛋白质的生物学功能活性,因此可以在蛋白质序列(当然也可以是根本的DNA序列)中进行某些氨基酸序列替代,从而得到具有类似(激动剂)特性的蛋白质。因此,预计可在以抗体或治疗剂的序列(或根本的DNA序列)中进行多种改变,而不会使其生物学效用或活性明显损失。可以根据本文表A提供的密码子信息和关于定点诱变的支持性技术细节,通过突变根本的DNA序列而产生生物学功能等同物。
本领域技术人员也深入领会到,“生物学功能等同的”蛋白质或肽这一定义的内在含义是,在分子确定部分内可以进行的、仍然导致分子具有可接受水平的等同生物活性的改变数目存在限制。因此,本文将生物学功能等同的蛋白质和肽定义为某些而非大多数或所有氨基酸可被替代的蛋白质和肽。当然,根据本发明可以容易的制备和使用具有不同替代的多种不同的蛋白质/肽。
氨基酸替代通常基于氨基酸侧链取代基的相对相似性,例如其疏水性、亲水性、电荷、大小、等等。对氨基酸侧链取代基大小、形状、和类型的分析揭示了精氨酸、赖氨酸、和组氨酸都是带正电的残基;丙氨酸、甘氨酸、和丝氨酸大小相似;苯丙氨酸、色氨酸、和酪氨酸都具有基本上相似的形状。因此,根据这些考虑,本文将精氨酸、赖氨酸、和组氨酸;丙氨酸、甘氨酸、和丝氨酸;以及苯丙氨酸、色氨酸、和酪氨酸确定为生物学功能等同物。
在进行更多的量变时,可以考虑氨基酸的水性指数(hydropathicindex)。根据其疏水性和带电特性确定了各种氨基酸的水性指数,即:异亮氨酸(+4.5);缬氨酸(+4.2);亮氨酸(+3.8);苯丙氨酸(+2.8);半胱氨酸/胱氨酸(+2.5);甲硫氨酸(+1.9);丙氨酸(+1.8);甘氨酸(-0.4);苏氨酸(-0.7);丝氨酸(-0.8);色氨酸(-0.9);酪氨酸(-1.3);脯氨酸(-1.6);组氨酸(-3.2);谷氨酸(-3.5);谷氨酰胺(-3.5);天冬氨酸(-3.5);天冬酰胺(-3.5);赖氨酸(-3.9);和精氨酸(-4.5)。
本领域技术人员通常都理解氨基酸水性指数在赋予蛋白质相互作用性生物学功能方面的重要性(Kyte和Doolittle,1982,本文收入作为参考)。已知某些氨基酸可以被具有相似水性指数或评分的其它氨基酸替代,而仍保留相似的生物学活性。在根据水性指数进行改变时,优选水性指数为±2之间的氨基酸替代,特别优选水性指数为±1之间的氨基酸替代,甚至更特别优选水性指数为±0.5之间的氨基酸替代。
因此,可以理解,氨基酸可以用具有相似亲水性值的另一种氨基酸取代,而仍得到生物学等同的蛋白质。如美国专利4,554,101(本文收入作为参考)中所述,已经为氨基酸残基指定了下列亲水性值:精氨酸(+3.0);赖氨酸(+3.0);天冬氨酸(+3.0±1);谷氨酸(+3.0±1);丝氨酸(+0.3);天冬酰胺(+0.2);谷氨酰胺(+0.2);甘氨酸(0);苏氨酸(-0.4);脯氨酸(-0.5±1);丙氨酸(-0.5);组氨酸(-0.5);半胱氨酸(-1.0);甲硫氨酸(-1.3);缬氨酸(-1.5);亮氨酸(-1.8);异亮氨酸(-1.8);酪氨酸(-2.3);苯丙氨酸(-2.5);和色氨酸(-3.4)。
在根据亲水性值进行改变时,优选亲水性值为±2之间的氨基酸替代,特别优选亲水性值为±1之间的氨基酸替代,甚至更特别优选亲水性值为±0.5之间的氨基酸替代。
C7.融合蛋白质和重组表达
可以使用分子生物学技术以融合蛋白质的形式容易的制备本发明的基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物。使用本文公开的和本领域技术人员知道的任何治疗剂,可以设计并产生任何融合蛋白质。融合蛋白质技术可以容易的应用于制备其中通过可选择性切割的肽序列连接两个部分的融合蛋白质。目前优选的融合蛋白质是包含抑内皮素的融合蛋白质。与任何其它治疗剂一样,抑内皮素可以附着于抗体的末端或CDR以外的任意点。也可以“整体的”制备诸如抑内皮素等治疗剂,其中治疗剂优选与可选择性切割的肽相连,从而能够在靶向之后释放试剂。
使用重组DNA技术来实现这些目标现在对于本领域技术人员而言已是标准实践。这些方法包括例如体外重组DNA技术、合成技术、和体内重组/基因重组。还可以使用自动合成仪来进行DNA和RNA合成(参阅例如Sambrook等人描述的技术,1989,本文收入作为参考)。
这种融合蛋白质的制备通常必需制备第一个和第二个DNA编码区,并在同一读码框中功能性连接这些区从而产生编码所需融合蛋白质的单个编码区。在本文中,阻断VEGFR2的抗VEGF抗体或2C3样抗体DNA序列将在同一读码框中连接编码治疗剂的DNA序列。通常不认为构建物的哪个部分作为N末端区或C末端区特别有关系。
一旦产生了所需编码区,就可产生表达载体。表达载体在插入的DNA区上游包含一种或多种启动子,该启动子启动DNA的转录并由此启动编码的重组蛋白质的表达。这就是“重组表达”。
为了获得所谓的基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物的“重组”形式,在重组细胞中进行表达。可以通过重组表达领域技术人员通常知道的技术对用于在原核或真核系统中表达的DNA片段进行改造。我们认为事实上可以采用任何表达系统来表达基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物构建物。
这些蛋白质可以在真核表达系统中成功的表达,如CHO细胞,但是预计细菌表达系统(诸如大肠杆菌pQE-60)对于基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物的大量制备及随后纯化将是特别有用的。cDNA也可以在细菌系统中进行表达,所编码的蛋白质表达为与β-半乳糖苷酶、泛素、日本裂体吸虫(Schistosoma japonicum)谷胱甘肽S转移酶、等等的融合形式。我们认为细菌表达系统相对于真核表达系统在易于使用和由此获得的物质的量方面具有优势。
关于微生物表达,美国专利5,583,013、5,221,619、4,785,420、4,704,362、和4,366,246(本文收入作为参考)进一步补充了本公开书关于重组宿主细胞中基因表达的内容。
可以纯化重组产生的基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物,并配制施用于人。或者,可以经基因疗法投递编码免疫缀合物的核酸。虽然可以采用裸露的重组DNA或质粒,但是优选使用脂质体或载体。某些病毒经受体介导的内吞作用进入细胞的能力,和整合到宿主细胞基因组并稳定的、有效的表达病毒基因的能力,使得它们成为将外来基因转移至哺乳动物细胞内的引人注目的候选者。优选用于本发明的基因治疗载体通常是病毒载体。
逆转录病毒有希望作为基因投递载体,因为它们能够将它们的基因整合宿主基因组中,从而转移大量的外来遗传物质,感染广泛的物种和细胞类型,且在特定细胞系中包装。其它病毒,诸如腺病毒、单纯疱疹病毒(HSV)、巨细胞病毒(CMV)、和腺伴随病毒(AAV),诸如美国专利5,139,941(本文收入作为参考)中描述的病毒,也可以改造作为基因转移的载体。
虽然有些能够接受外来遗传物质的病毒所能够容纳的核苷酸的量受到限制,且它们感染的细胞范围也受到限制,但是这些病毒已经证明能够成功的实现基因表达。然而,腺病毒不将其遗传物质整合到宿主基因组中,因而基因表达不需要宿主复制,这使得它们特别适用于快速、有效的异源基因表达。本领域众所周知用于制备复制缺陷的感染性病毒的技术。
在其它实施方案中,基因治疗载体是HSV。使HSV成为引人注目的载体的一个因素是基因组的大小和组织。因为HSV比较大,所以与其它较小的病毒系统相比,掺入多个基因或表达盒不太会成问题。另外,与其它系统相比,具有不同性能(如时间、强度)的不同病毒控制序列的可用性使得它有可能更大程度的控制表达。病毒具有相对较少的剪接信息,进一步简化基因操作,这也是优点。HSV还相对易于操作,而且可以生长至高滴度。
当然,在使用病毒投递系统时,需要充分纯化病毒粒子使它基本上不含不需要的污染物,诸如缺陷型感染性病毒颗粒或内毒素和其它热原,由此不会在接受载体构建物的细胞、动物、或个体中引起任何不恰当的反应。纯化载体的优选方法包括使用有浮力的密度梯度,诸如氯化铯梯度离心。
C8.抗体缀合物
基于阻断VEGFR2的抗VEGF抗体或2C3的抗体可以缀合抗细胞的或毒害细胞的试剂,由此制备“免疫毒素”;或者可操作连接能够直接或间接刺激凝血的成分,由此形成“凝血配体”。在凝血配体中,抗体可以直接连接直接的或间接的凝血因子,或者可以连接第二个结合区,由该第二个结合区结合然后释放直接的或间接的凝血因子。“第二个结合区”的方法通常使用凝血剂结合抗体作为第二个结合区,由此产生双特异性抗体构建物。本领域通常众所周知双特异性抗体的制备和应用,本文进一步公开。
在免疫毒素、凝血配体、和双特异性抗体的制备中,可以采用重组体表达。在同一读码框中,将编码选定抗体的核酸序列附着编码选定毒素、凝血剂、或第二个结合区的核酸序列,从而产生表达单元或载体。重组表达导致新核酸的翻译,产生所需蛋白质产物。虽然采用的是编码抗体的核酸而非蛋白质结合配体,但是重组方法与上文所述基本上相同。
回到缀合物技术,本领域通常众所周知免疫毒素的制备。但是,通过在制备免疫毒素和纯化该毒素以供随后临床施用的过程中使用某些优选的技术可获得某些好处。例如,尽管基于IgG的免疫毒素与其Fab’对应物相比通常展示更好的结合能力和更慢的血液清除速率,但是基于Fab’片段的免疫毒素与基于IgG的免疫毒素相比通常展示更好的组织穿透能力。
另外,尽管已知多种类型的含二硫键的接头可以成功的用于将毒素部分缀合于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,但是基于不同的制药学特征和能力,某些接头通常优于其它接头。例如,优选含有空间上“受阻”的二硫键的接头,因为这种接头在体内更加稳定,可防止毒素部分在结合至作用位点之前就被释放下来。
已知多种毒害细胞的试剂可以缀合于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,包括来自植物、真菌、和细菌的毒素,诸如蓖麻毒蛋白A链或脱糖基A链。在某些情况中,毒素A链与抗体的交联需要具有二硫键功能的交联剂。这样做的原因尚不清楚,但可能是由于需要在试剂将毒素“投递至”被靶向细胞时某些毒素部分能够容易地从抗体上释放下来。
交联剂的类型,以及如何进行交联将会改变所得缀合物的药物动力学。归根结底,在希望毒素可以释放的情况中,期望的缀合物是在除了预定作用位点以外的所有身体部位中的条件下能够保持完整,而在所述作用位点处具有良好的“释放”特性。因此,具体交联方案,特别包括所用的具体交联剂和被交联的结构,具有一定的意义。
取决于作为融合蛋白一部分使用的特定毒素化合物,可能会需要提供抗体和毒素化合物可操纵附着的肽间隔区,所述间隔区能折叠成以二硫键键合的环结构。然后,环内的蛋白水解切割会产生异二聚体多肽,其中抗体和毒素化合物仅通过单个二硫键连接。这种毒素的范例是蓖麻毒蛋白A链毒素。
当利用其它一些毒素化合物时,可以提供不能被切割的肽间隔区,以可操作附着融合蛋白质中基于阻断VEGFR2的抗VEGF抗体或2C3的抗体与毒素化合物。可以与不能被切割的肽间隔区结合使用的毒素是自身可通过蛋白水解切割而转变成毒害细胞的二硫键键合形式的毒素。这种毒素化合物的范例是假单胞菌外毒素化合物。
可能存在这些情况,如靶抗原没有通过与免疫毒素产生的有效去毒一致的途径发生内在化,需要靶向化疗剂,诸如抗肿瘤药物、其它细胞因子、抗代谢物、烷化剂、激素、等等。目前多种化疗剂和其它药物学试剂已经成功的缀合于抗体,并显示制药学功能。已经研究过的例示性抗肿瘤试剂包括羟基红比霉素(doxorubicin)、道诺霉素、氨甲喋呤、长春花碱、和其它多种试剂。此外,已经描述了诸如新抑癌蛋白、大分子霉素、三亚胺醌、和α-鹅膏菌素等其它试剂的附着。
当将凝血因子用于本发明时,与抗体的任何共价连接应当在功能性凝血位点以外的位点进行。组合物由此以任何可操作方式“连接”,使得每个部分都能够发挥预定功能而无显著削弱。由此,抗体可结合VEGF,而凝血因子可促进血液凝血。
C9.生化交联剂
除了本文提供的一般信息,可以使用某些优选的生化交联剂使基于阻断VEGFR2的抗VEGF抗体或2C3的抗体缀合一种或多种治疗剂。交联剂用于形成将两种不同分子的官能团维系在一起的分子桥接。为了以分步方式连接两种不同的蛋白质,可以使用杂双功能交联剂来消除不需要的同多聚体形成。例示性的杂双功能交联剂可以参考表B1。
                            表B1.杂双功能交联剂
  接头   对下列基团具有反应性   优点和应用   交联后的间隔物臂长
  SMPTSPDPLC-SPDPSulfo-LC-SPDPSMCCSulfo-SMCCMBSSulfo-MBSSIABSulfo-SIABSMPBSulfo-SMPBEDC/Sulfo-NHSABH   伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺巯基伯胺羧基碳水化合物无选择性   较高的稳定性硫化可切割交联间隔物臂延长间隔物臂延长可溶于水稳定的马来酰亚胺反应基团酶-抗体缀合半抗原-载体蛋白质缀合稳定的马来酰亚胺反应基团可溶于水酶-抗体缀合酶-抗体缀合半抗原-载体蛋白质缀合可溶于水酶-抗体缀合可溶于水间隔物臂延长酶-抗体缀合间隔物臂延长可溶于水半抗原-载体缀合与糖基发生反应   11.2A6.8A15.6A15.6A11.6A11.6A9.9A9.9A10.6A10.6A14.5A14.5A011.9A
杂双功能交联剂包含两个反应基团:一个通常与伯胺基团发生反应(如N-羟基琥珀酰亚胺),而另一个通常与硫醇基发生反应(如吡啶二硫物(pyridyldisulfide)、马来酰亚胺、卤素、等等)。交联剂通过伯胺反应基团与一种蛋白质(如选定的抗体或其片段)的赖氨酸残基发生反应,而通过硫醇反应基团,已经与第一种蛋白质连接的交联剂与另一种蛋白质(如凝血剂)的半胱氨酸残基(游离的巯基)发生反应。
由此,组合物通常具有或经衍生具有可用于交联目的的官能基。并不认为这一要求构成限制,因为多种基团可用于这种方式。例如,伯胺或仲胺基、酰肼或肼、羧基醇、磷酸酯(phosphate)、或烷化基团可用于结合或交联。
交联剂的两种反应基团之间的间隔臂可以具有不同的长度和化学组成。较长的间隔臂能够使缀合物成分获得较好的柔性,而桥接中的有些特定成分(如苯基)可以给反应基团带来额外的稳定性或使化学连接对各方面作用的抗性增加(如二硫键对还原剂的抗性)。还包括使用诸如L-Leu-L-Ala-L-Leu-L-Ala等肽间隔物。
优选采用在血液中具有合理稳定性的交联剂。已知大量类型的含二硫键接头能够成功的用于缀合物靶向和毒性剂或凝血剂。可以证明含空间受阻的二硫键的接头能够带来较好的体内稳定性,防止试剂在结合作用位点前释放。这些接头因而成为一组优选的连接剂。
最优选用于免疫毒素的交联剂之一是SMPT,这是一种含二硫键的双功能交联剂,二硫键因邻近的苯环和甲基而“空间受阻”。认为二硫键的空间位阻有助于保护该键免受硫醇阴离子(诸如组织和血液中可能存在的谷胱甘肽)的攻击,由此有助于防止在缀合物将附着的试剂投递至肿瘤位点前发生脱偶联。预计SMPT试剂也可用于本发明的双特异性配体。
与许多其它已知的交联剂一样,SMPT交联剂带来了交联官能基(诸如半胱氨酸的SH或伯胺如赖氨酸的ε-氨基)的能力。另一种可能类型的交联剂包括含可切割二硫键的杂双功能光反应性叠氮基苯,诸如磺基琥珀酰亚胺基-2-(对叠氮水杨酰氨基)-1,3’-二硫丙酸乙酯。N-羟基-琥珀酰亚胺基团与伯胺基团发生反应,而叠氮基苯(在光分解作用后)无选择性的与任何氨基酸残基发生反应。
除了受阻的交联剂,本文还可以采用不受阻的接头。认为不含或不产生受保护二硫键的其它有用交联剂包括SATA、SPDP、和2-亚氨基硫杂戊环(2-iminothiolane)。本领域完全理解这些交联剂的应用。
一旦完成缀合,将缀合物与未缀合的靶向和治疗剂以及其它污染物分开。大量的纯化技术可用于提供足够纯的缀合物,从而能够用于临床。使用最多的通常是基于大小分离的纯化方法,诸如凝胶过滤、凝胶渗透、或高效液相层析。也可以使用其它层析技术,诸如Blue-Sepharose分离。
C10.生物学可释放接头
虽然任何连接部分优选具有合理的血液稳定性以防止在靶向疾病或肿瘤位点前显著释放附着的试剂,但是在某些方面,也可以使用生物学可释放键和/或可选择性切割间隔物或接头。“生物学可释放键”和“可选择性切割间隔物或接头”仍然具有合理的循环稳定性。
本发明的阻断VEGFR2的抗VEGF抗体(诸如2C3样抗体)由此可以经生物学可释放键连接一种或多种治疗剂。可以采用任何形式的阻断VEGFR2的抗VEGF抗体或者“靶向抗体或试剂”,包括完整抗体。在某些实施方案中,优选scFv片段。
“生物学可释放键”或“可选择性水解键”包括只有或优先在某些条件下可释放的、可切割的、或可水解的所有键合。这包括二硫键和三硫键和酸不稳定键,正如美国专利5,474,765和5,762,918(本文收入作为参考)所述。
特别涵盖使用对酸敏感的间隔物将治疗剂或药物附着于本发明的抗体。在这些实施方案中,治疗剂或药物在细胞的酸性区室内释放。预计使酸敏感性释放发生于细胞外,但是是在特异性靶向(优选)肿瘤位点之后。目前优选的某些范例包括经酸敏感间隔物连接了秋水仙素或羟基红比霉素(doxorubicin)的2C3样抗体。还涵盖经抗体的碳水化合物部分进行附着。在这些实施方案中,治疗剂或药物在细胞的酸性区室内释放。
靶向的抗VEGF抗体还可以经衍生导入能够经生物学可释放键附着治疗剂的官能基。靶向抗体由此可以经衍生导入以酰肼、肼、伯胺、或仲胺基终止的侧链。治疗剂可以经Schiff碱连接、腙或酰腙键、或酰肼接头而进行缀合(美国专利5,474,765和5,762,918,本文特别收入作为参考)。
同样如美国专利5,474,765和5,762,918(本文特别收入作为参考)所述,靶向的抗VEGF抗体可以经一种或多种对酶敏感的生物学可释放键可操作附着治疗剂,包括肽键、酯键、酰胺键、磷酸二酯键、和糖苷键。
本发明的优选方面涉及包含肽酶和/或蛋白酶的至少第一种切割位点的肽接头的使用,而所述肽酶和/或蛋白酶优先定位于疾病位点,特别是肿瘤环境内。由抗体介导的附着治疗剂的投递导致疾病位点和肿瘤环境内的特异性切割,继而导致活性试剂的特异性释放。某些肽接头包含由改造中涉及的一种或多种酶可识别的切割位点。
特别优选包含尿激酶、尿激酶原、纤溶酶、纤溶酶原、TGFβ、链激酶、凝血酶、因子IXa、因子Xa、或金属蛋白酶(诸如间质胶原酶、明胶酶、或溶基质素)的切割位点的肽接头。本文特别引入美国专利6,004,555、美国专利5,877,289、和美国申请流水号08/482,369(1998年10月20日交纳颁证费)作为参考,以进一步描述如何产生并使用包含生物学可释放键和可选择性切割接头和肽的靶向剂-治疗剂构建物。本文特别收入美国专利5,877,289(1999年3月2日颁证)作为参考,以进一步描述如何产生并使用包含可被肿瘤环境内尿激酶、纤溶酶、凝血酶、因子IXa、因子Xa、或金属蛋白酶(诸如间质胶原酶、明胶酶、或溶基质素)切割的可选择性切割肽接头的靶向剂-治疗剂构建物。
目前优选的可选择性切割肽接头是包含纤溶酶或金属蛋白酶(也称为“基质金属蛋白酶”或“MMP”)(诸如间质胶原酶、明胶酶、或溶基质素)的切割位点的肽接头。可有利用于本发明的其它肽接头包括例如表2中所列的肽接头。
                   表B2.可切割接头序列
  可切割序列的种类   氨基酸序列  SEQ ID NO:
  纤溶酶可切割序列尿激酶原TGFβ纤溶酶原链激酶因子Xa可切割序列MMP可切割序列明胶酶A胶原酶可切割序列小牛皮肤胶原(α1(I)链)小牛皮肤胶原(α2(I)链)牛软骨胶原(α1(II)链)人肝胶原(α1(III)链)人α2M人PZP大鼠α1M大鼠α2M大鼠α1I3(2J)大鼠α1I3(27J)人成纤维细胞胶原酶(自溶切割) PRFKIIGGPRFRIIGGSSRHRRALDRKSSIIIRMRDVVLSSSFDKGKYKKGDDASSSFDKGKYKRGDDAIEGRIDGRGGSIDGRPLGLWAGPQGIAGQGPQGLLGAGIAGQGPLGIAGIGPEGLRVGYGAGLGVVAGLGVVERAGLGISSTEPQALAMSQALAMSAIAAYHLVSQMDAFLESSESLPVVAVSAPAVESEDVAQFVLTVAQFVLTEAQFVLTEGPVQPIGPQ 15161718192021222324252627282930313233343536373839404142
C11.双特异性抗体
双特异性抗体在本发明的凝血配体和联合抗血管发生方面特别有用。通常可以采用双特异性抗体,条件是一条臂结合VEGF,任选结合的表位与2C3基本上相同,且双特异性抗体附着治疗剂,通常附着位点与抗原结合位点不同。
一般而言,本领域众所周知双特异性抗体的制备。一种方法涉及分开制备对靶向的抗原具有特异性的抗体,另一方面(在此)对凝血剂有特异性的抗体。由两种选定抗体制备F(ab’γ)2肽片段,随后还原以提供分开的Fab’γSH片段。然后用交联剂(诸如邻-亚苯基二马来酰亚胺)烷化待偶联的两种配偶体之一的SH基团,从而在一种配偶体上提供游离的马来酰亚胺基团。然后通过硫醚键使这种配偶体缀合另一种配偶体,从而产生所需F(ab’γ)2杂缀合物。还知道使用SPDP或蛋白A进行交联的其它方法,或者制备三特异性构建物。
产生双特异性抗体的另一种方法是通过融合两种杂交瘤以形成四倍体瘤。如本文所用,术语“四倍体瘤”用于描述两种B细胞杂交瘤的生产性融合体。使用目前的标准技术,将两种产生抗体的杂交瘤融合在一起,得到子代细胞,然后选择出维持表达两套克隆型免疫球蛋白基因的那些细胞。
产生四倍体瘤的优选方法包括选择出至少一种亲代杂交瘤的酶缺陷突变体。然后,将第一种突变型杂交瘤细胞系与经致死暴露于如碘乙酰胺以防其持续存活的第二种杂交瘤的细胞融合。通过细胞融合,通过从经致死性处理的杂交瘤处获得补偿酶缺陷的基因,从而挽救第一种杂交瘤,而通过与第一种杂交瘤的融合也挽救了第二种杂交瘤。优选相同同种型、不同亚类的免疫球蛋白融合,但并非必需。如果用其它测定法分离优选的四倍体瘤,则可使用混合亚类的抗体。
更详细的说,培育和筛选四倍体瘤的一种方法包括获得分泌第一种选定mAb的杂交瘤细胞系,并使其缺陷必需的代谢酶,即次黄嘌呤鸟嘌呤磷酸核糖转移酶(HGPRT)。为了获得该杂交瘤的缺陷突变体,在浓度渐增的8-氮杂鸟嘌呤(1×10-7M至1×10-5M)的存在下培养细胞。通过有限稀释亚克隆突变体,并测试其对次黄嘌呤/氨基蝶呤/胸苷(HAT)的敏感性。培养基可由例如添加了10%FCS/2mM L-谷氨酰胺/1mM青霉素-链霉素的DMEM组成。
通过标准的细胞融合技术,使用产生第二种所需mAb的互补杂交瘤细胞系来产生四倍体瘤。简单的说,将4.5×107个HAT敏感型的第一种细胞与2.8×107个HAT抗性的第二种细胞混合,所述第二种细胞已于融合前,在冰上用致死剂量的不可逆生化抑制剂碘乙酰胺(5mM于磷酸盐缓冲盐水中)预处理30分钟。使用聚乙二醇(PEG)诱导细胞融合,将细胞平铺在96孔微量培养板上。使用含有HAT的培养基选择四倍体瘤。使用例如固相同种型特异性ELISA和同种型特异性免疫荧光染色鉴定含有双特异性抗体的培养物。
在一个鉴定双特异性抗体的鉴定实施方案中,用一种试剂包被微量培养板(Falcon,Becton Dickinson Labware)的孔,所述试剂可与亲代杂交瘤抗体之一特异性相互作用,但缺乏与两种抗体的交叉反应性。清洗培养板,封闭,并向每个孔中加入待测上清液(SN)。将培养板于室温温育2小时,弃去上清液,清洗板,加入经稀释的碱性磷酸酶-抗抗体缀合物并于室温温育2小时。清洗板,向每个孔中加入磷酸酶底物,如对硝基苯基磷酸(p-nitrophenyl phosphate)(Sigma,St.Louis)。将培养板温育,向每个孔中加入3N NaOH以终止反应,并使用ELISA读数器测定OD410的值。
在另一个鉴定实施方案中,使用经聚-L-赖氨酸预处理的微量滴定板将靶细胞之一结合至每个孔中,然后使用例如1%的戊二醛固定细胞,检测双特异性抗体结合完整细胞的能力。另外,本发明中也可结合使用FACS、免疫荧光染色、独特型特异性抗体、抗原结合竞争测定法、和抗体鉴定领域知道的其它方法来鉴定优选的四倍体瘤。
分离四倍体瘤之后,从其它细胞产物中纯化出双特异性抗体。通过免疫球蛋白纯化领域技术人员知道的多种蛋白质分离方法可实现纯化目的。本领域众所周知制备和鉴定抗体的方法(参阅如《抗体:实验室手册》,1988)。
例如,可以将来自选定四倍体瘤的上清液流经蛋白质A或蛋白质GSepharose柱以结合IgG(取决于其同种型)。然后用例如pH5.0的柠檬酸盐缓冲液洗脱结合的抗体。将含BsAb的洗脱级分在等渗的缓冲液中进行透析。或者,也可将洗脱液流经抗免疫球蛋白-Sepharose柱。然后用3.5M氯化镁洗脱BsAb。然后如上所述,可通过例如同种型特异性ELISA和靶细胞的免疫荧光染色测定法来检测以此方式纯化的BsAb的结合活性。
也可以通过SDS-PAGE电泳,随后用银或考马斯蓝染色,从而鉴定和分离经纯化的BsAb和亲代抗体。当亲代抗体之一的分子量比另一种更高时即有可能如此,其中BsAb带迁移至两种亲代抗体的中间。样品的还原证实了其中存在两种不同表观分子量的重链。
D.药物组合物
本发明的药物组合物通常包含有效量的至少第一种基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物,它们溶解或散布于制药学可接受的载体或水性介质中。还包括联合治疗剂,而相同类型的基本药物组合物可用于单一和联合药物。
术语“制药学或药理学可接受的”指当适当施用于动物或人后不会产生不利的、过敏的、或其它不良反应的分子实体和组合物。本发明同样包括兽医应用,且“制药学可接受的”配方包括可用于临床和/或兽医应用的配方。
如本文所用,“制药学可接受的载体”包括任何和所有溶剂、分散介质、包衣、抗细菌和抗真菌试剂、等渗和吸收迟滞试剂、等等。本领域众所周知这些介质和试剂对制药学活性物质的应用。在此范围内,除了活性成分与任何常规介质或试剂不相容,否则,预计它们能用于治疗组合物中。为了施用于人,制剂应当达到FDA局生物试剂标准要求的无菌、热原性、全面安全性、和纯度标准。组合物中还可以掺入补充的活性成分。
“单位剂量”配方包含所施用成分适用于特定定时投递的一份剂量或亚剂量。例如,例示性的“单位剂量”配方包含每日剂量或单位或每日亚剂量、每周剂量或单位或每周亚剂量、等等。
D1.可注射配方
本发明的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体缀合物常常经配制供非肠道施用,如经配制供静脉内、肌肉内、皮下、穿真皮、或其它这种途径的注射,包括蠕动施用和直接滴注至肿瘤或疾病位点(腔内施用)。本领域技术人员参照本公开书将知道含有抗体或免疫缀合物作为活性成分的水性组合物的制备。这些组合物通常制备成可注射的液体溶液或悬浮液;也可以制备成适用于在注射前通过加入液体而制成溶液或悬浮液的固体形式;而且制品也可进行乳化。
适于注射使用的制药学形式包括无菌水溶液或分散液;包括麻油、花生油、或水性丙二醇的制剂;和用于即时制备无菌注射液或分散液的无菌粉末。在所有情况下都必须是无菌形式,并且流动程度必须易于注射。制剂在制备和储存条件下必须很稳定,而且必须能够防止微生物(诸如细菌和真菌)的污染作用。
基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物组合物可配制成中性或盐形式的无菌水性组合物。可以在与表面活性剂(诸如羟丙基纤维素)适当混合的水中制备溶液作为游离碱或制药学可接受盐。制药学可接受的盐包括酸加成的盐(与蛋白质的游离氨基基团形成),以及与无机酸(诸如盐酸或磷酸)或有机酸(诸如乙酸、三氯乙酸、草酸、酒石酸、扁桃酸等)形成的盐。与游离羧基基团形成的盐也可衍生自无机碱(诸如氢氧化钠、钾、铵、钙、或铁)和有机碱(诸如异丙基胺、三甲基胺、组氨酸,普鲁卡因、等等)。
合适的载体包括含例如水、乙醇、多元醇(例如甘油、丙二醇、液体聚乙二醇、等等)、其适当混和物、和植物油的溶剂和分散介质。在许多情况中,优选包含等渗剂,例如糖或氯化钠。通过使用包衣,诸如卵磷脂,(在分散剂的情况中)通过维持所需颗粒大小,和/或通过使用表面活性剂,可以维持适当流动性。
在普通的储存和使用条件下,所有这些制剂应当包含防腐剂以防止微生物的生长。通过多种抗细菌和抗真菌试剂,例如对羟基苯甲酸酯类、氯代丁醇、苯酚、山梨酸、乙基汞硫代水杨酸钠、等等,可以防止微生物的作用。通过在组合物中使用迟滞吸收的试剂,例如单硬脂酸铝和明胶,可以延长可注射组合物的吸收。
在配制之前或之后,基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物应当彻底透析以除去不需要的小分子量分子,和/或适当时冻干,从而更易于配制到所需载体中。通过将所需量的溶于适当溶剂的活性试剂与各种上述其它成分混和,随后过滤除菌,由此制备无菌的可注射溶液。通常,通过将各种无菌的活性成分掺入含基本分散介质和所需的上述其它成分的无菌载体来制备分散剂。
在用于制备无菌可注射溶液的无菌粉末的情况中,优选的制备方法是真空干燥和冻干技术,由先前无菌过滤的溶液产生活性成分加上任何其它所需成分的粉末。
本发明的合适药物组合物通常包含与可接受的制药学稀释剂或赋形剂(诸如无菌水溶液)混合以达到所需终浓度范围(取决于预定用途)的一定量的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物。本领域通常众所周知制备技术,例如可参阅《雷明顿制药科学》(Remington’s Pharmaceutical Sciences),第16版,Mack出版公司,1980(本文收入作为参考)。应当理解,内毒素污染应该控制到最低程度,达到安全水平,例如低于0.5ng/mg蛋白质。另外,为了施用于人,制剂应当达到FDA局生物制剂标准要求的无菌、致热性、全面安全性、和纯度标准。配制后,以与剂型相容的方式,以治疗有效量施用抗体或免疫缀合物溶液。
D2.缓释配方
可以以多种剂型容易的施用基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物溶液的配方,诸如上述可注射溶液的形式,还包括其它制药学可接受形式,如片剂、丸剂、胶囊或用于口服的其它固体、栓剂、阴道栓剂、滴鼻液或喷雾剂、气雾剂、吸入剂、局部配方、脂质体形式、等等。施用形式的类型应与治疗的疾病或紊乱匹配。
可以使用制药学“慢释”胶囊或“缓释”组合物或制剂,而且是常规适用的。慢释配方通常被设计成在较长的一段时间内维持恒定的药物水平,并可用于投递本发明的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物。通常将慢释配方植入疾病位点(例如肿瘤位点)附近。
缓释制剂的合适范例包括含抗体或免疫缀合物的固体疏水性聚合物半透性基质,该基质为有形物品的形式,如薄膜或微囊。缓释基质的范例包括聚酯、水凝胶(例如聚(2-羟乙基甲基丙烯酸酯)或聚乙烯醇)、聚交酯(如美国专利3,773,919)、L-谷氨酸与L-谷氨酸γ-乙酯的共聚物、不可降解的乙烯乙酸乙烯酯、可降解的乳酸-乙醇酸共聚物(诸如Lupron DepotTM,由乳酸-乙醇酸共聚物与乙酸亮丙瑞林组成的可注射微球体)、和聚D-(-)-3-羟基丁酸。
诸如乙烯乙酸乙烯酯和乳酸-乙醇酸等共聚物能够在长达100天的时间里释放分子时,而某些水凝胶释放蛋白质的时间要短一些。当包囊的抗体在体内维持了较长时间后,它们可能因暴露于37℃的潮湿环境而变性或聚集,导致生物学活性降低和/或免疫原性改变。根据涉及的机制,可采用合理的策略来进行稳定。例如,若聚集机制涉及经硫-二硫键交换形成分子间S-S键,则可以通过修饰巯基残基、由酸性溶液冻干、控制水气含量、使用适当添加剂、开发特异性聚合物基质组合物、等等来实现稳定。
D3.脂质体和纳米颗粒(nanoparticle)
在某些实施方案中,可以将脂质体和/或纳米颗粒用于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物。本领域技术人员通常知道脂质体的制备和使用,见下文概述。
由分散于水性介质的磷脂形成脂质体,自发形成多层同心双层囊泡(也称为多层囊泡,MLV)。MLV的直径通常为25nm-4μm。对MLV的超声波处理导致形成小型单层囊泡(SUV),直径为200-500,其核心含有水性溶液。
当分散于水中时,根据脂质与水的摩尔比,磷脂还能够形成除脂质体以外的多种结构。在低比率,脂质体是优选结构。脂质体的物理特征取决于pH、离子强度、和二价阳离子的存在。脂质体能够对离子和极性物质显示低通透性,但是当温度升高时发生相变,显著改变其通透性。相变涉及由紧密的有序结构(称为凝胶态)变成松散的无序结构(称为流体态)。这发生于特征性相变温度,并导致对离子、糖、和药物的通透性增加。
脂质体经四种不同的机制与细胞发生相互作用:网状内皮系统吞噬细胞的内吞作用,诸如巨噬细胞和嗜中性细胞;细胞表面的吸收,通过非特异性弱疏水作用或静电作用,或者通过与细胞表面成分的特异性相互作用;脂质体的脂双层通过嵌入原生质膜而与细胞膜的融合,同时将脂质体内容物释放进入细胞质;和脂质体磷脂转移至细胞或亚细胞膜,或反向转移,无脂质体内容物的任何结合。改变脂质体配方能够改变起作用机制,但是可能同时有超过一种机制起作用。
纳米颗粒通常能够以稳定且可重现的方式俘获化合物。为了避免因细胞内聚合物过多引起的副作用,应当使用体内可降解的聚合物来设计这些超微颗粒(大小为大约0.1μm)。预计符合这些要求的生物可降解的聚烷基-氰基丙烯酸酯纳米颗粒可用于本发明,而且这些颗粒易于制备。
D4.眼科配方
具有血管发生成分的许多疾病与眼有关。例如,能够参照本发明进行治疗的与角膜新血管形成有关的疾病包括(但不限于)糖尿病性视网膜病变、早产儿视网膜病变、角膜移植排斥、新血管性青光眼和晶体后纤维增生症、流行性角膜结膜炎、维生素A缺乏、隐形眼镜佩戴过度、特应性角膜炎、上缘角膜炎、翼状角膜炎干燥症、Sjogren症(干燥症)、玫瑰痤疮(酒糟鼻)、phylectenulosis、梅毒、分支杆菌感染、脂肪变性、化学烧伤、细菌性溃疡、真菌性溃疡、单纯性疱疹感染、带状疱疹感染、原生动物感染、Kaposi氏肉瘤、Mooren溃疡、Terrien氏边缘变性、边缘角质层分离、外伤、类风湿性关节炎、系统狼疮、多动脉炎、Wegeners类肉瘤、巩膜炎、Steven’s Johnson病、角膜放射状切开术、和角膜移植排斥。
能够参照本发明进行治疗的与视网膜/脉络膜新血管形成有关的疾病包括(但不限于)糖尿病性视网膜病变、黄斑变性、镰刀形红细胞贫血病、结节病、梅毒、弹性假黄色瘤、Pagets病、静脉堵塞、动脉堵塞、颈动脉梗阻性疾病、慢性眼色素层炎/玻璃体炎、分支杆菌感染、Lyme氏病、系统性红斑狼疮、早产儿视网膜病变、Eales病、Bechets病、引起视网膜炎或脉络膜炎的感染、推测的眼组织胞浆菌病、Bests病、近视、视窝、Stargarts病、平坦部睫状体炎、慢性视网膜脱落、高粘度综合症、弓形体病、外伤、和激光后并发症。
能够参照本发明进行治疗的其它疾病包括(但不限于)与发红有关的疾病(虹膜角的新血管形成)和由纤维血管或纤维组织异常增殖引起的疾病,包括所有形式的增殖性玻璃体视网膜病变,无论是否与糖尿病有关。
本发明基于阻断VEGFR2的抗VEGF抗体或2C3的抗体和免疫缀合物由此可以有利的用于制备适合作为眼科用液使用的药物组合物,包括玻璃体内和/或眼房内(intracameral)施用的眼科用液。为了治疗任何上述或其它疾病,参照传统制药学实践,参阅例如《雷明顿制药科学》(Remington’s Pharmaceutical Sciences),第15版,第1488-1501页(Mack出版公司,Easton,PA),将本发明基于阻断VEGFR2的抗VEGF抗体或2C3的抗体组合物配制成眼科制剂,施用于需要治疗的主体的眼部。
眼科制剂在制药学可接受的溶液、悬浮液或油膏中已含基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,其浓度为大约0.01-大约1%(重量百分比),优选大约0.05-大约0.5%。根据采用的具体化合物、待治疗主体的状况、诸如此类,可能需要改变浓度。负责治疗的人员将为个别主体确定最适浓度。眼科制剂通常优选无菌水性溶液的形式,如果需要,还可以包含额外成分,例如防腐剂、缓冲液、张力剂、抗氧化剂和稳定剂、非离子湿润剂或澄清剂、增稠剂、等等。
适用于这种溶液的防腐剂包括氯化苄烷铵、苯索氯铵、氯代丁醇、硫柳汞、等等。合适的缓冲液包括硼酸、碳酸氢钠和碳酸氢钾、硼酸钠和硼酸钾、碳酸钠和碳酸钾、醋酸钠、磷酸氢钠、等等,其量足以将pH维持在大约pH6-pH8,优选大约pH7-pH7.5。合适的张力剂是dextran40、dextran70、右旋糖、甘油、氯化钾、丙二醇、氯化钠、等等,使得眼科用液的氯化钠当量为0.9±.2%。
合适的抗氧化剂和稳定剂包括亚硫酸氢钠、焦亚硫酸钠、硫代亚硫酸钠、硫脲、等等。合适的湿润剂和澄清剂包括polysorbate80、polysorbate 20、poloxamer282、和泰洛沙泊(tyloxapol)。合适的增稠剂包括dextran40、dextran70、明胶、甘油、羟乙基纤维素、羟甲基丙基纤维素、羊毛脂、甲基纤维素、凡士林、聚乙二醇、聚乙烯醇、聚乙烯吡咯烷酮、羧甲基纤维素、等等。眼科制剂将通过传统方法局部施用于需要治疗的主体的眼部,例如以滴液的形式或以眼科用液洗眼。
D5.局部配方
在最广的意义上,局部施用配方包括用于经口(口腔)和经皮肤投递的配方。“局部投递系统”还包括含待施用成分的穿真皮贴剂。如果需要,还可以通过离子电渗或电转移来实现经皮肤的投递。
适用于口局部施用的配方包括在调味基质(通常是蔗糖与阿拉伯胶或黄芪胶)中包含活性成分的锭剂、在惰性基质(诸如明胶与甘油或蔗糖与阿拉伯胶)中包含活性成分的软锭剂、和在合适液态载体中包含待施用成分的漱口剂。
适用于皮肤局部施用的皮肤包括在制药学可接受载体中包含待施用成分的油膏、乳膏、凝胶、和糊剂。正如本领域众所周知的,用于局部施用的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体的配方,诸如乳膏、油膏、和凝胶,包括油质或水溶性油膏基底的制剂。例如,这些组合物可以包含植物油、动物脂肪、和更优选的得自石油的半固体碳氢化合物。所用具体成分可以包括白色油膏、黄色油膏、十六烷基酯蜡、油酸、橄榄油、石蜡、凡士林、白色凡士林、鲸蜡、甘油淀粉、白蜡、黄蜡、羊毛脂、无水羊毛脂、和甘油单硬脂酸酯。还可以使用各种水溶性油膏基底,包括乙二醇醚及其衍生物、聚乙二醇、硬脂酸40聚烃氧基酯、和polysorbate。
用于直肠施用的配方可以是在合适基底中包含例如可可脂或水杨酸酯的栓剂。适用于阴道施用的配方可以是除了活性成分之外还包含本领域已知的适当载体的阴道栓剂、塞子、乳膏、凝胶、糊剂、泡沫或喷雾剂配方。
D6.鼻科配方
经鼻和呼吸路径的局部投递可用于治疗各种状况。这些投递路径还适用于将试剂投递到系统循环中。本发明因此包括在适用于鼻施用的载体中包含活性成分的配方,例如鼻科用液、喷雾剂、气雾剂、和吸入剂。当载体是固体时,配方包括具有20-500微米颗粒大小的粗粉,当施用时,将装有粉末的容器置于鼻下由鼻孔快速吸入。
载体是液体的合适配方可用于鼻施用。鼻科用液常常是设计并制备成滴液或喷雾剂、经鼻孔施用的水性溶液,它们在许多方面与鼻分泌物相似,使得能够维持正常的纤毛作用。由此,水性鼻科用液通常是等渗并略有缓冲的,维持于pH5.5-6.5。另外,如果需要,配方中可以包含与用于眼科制剂相似的抗微生物防腐剂和合适的药物稳定剂。已知多种商品化的鼻科制剂,包括例如抗生素和抗组胺剂,并用于预防哮喘。
吸入剂是设计用于将药物或化合物投递至患者呼吸树的药物制剂。施用水汽或水雾并使之到达受疾病侵袭区域。此路径还可用于将试剂投递至系统循环中。可以通过鼻或口呼吸路径施用吸入剂。只有当小液滴足够细小且大小均一从而水雾能够到达细支气管时,吸入液的施用才会有效。
同样称为吸入剂、有时称为吹入剂的另一组产品包含精细粉状或液体药物,并由特殊投递系统(诸如在液化气体推进剂中包含药物溶液或悬浮液的药物气雾剂)携带进入呼吸通路。当经合适阀门和口接管释放时,将计量剂量的吸入剂推进到患者呼吸道中。颗粒大小在这种类型制剂的施用中特别重要。据报导,渗透进入肺腔的最佳颗粒大小范围为0.5-7μm。通过对气雾剂增压而产生精细水雾,由此使其应用具有上述优点。
E.治疗剂盒
本发明还提供了包含基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物的治疗剂盒,用于本发明的治疗方法。这些试剂盒通常在合适的容器装置中包含至少一种基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物的制药学可接受配方。试剂盒还可以包含用于诊断/成像或联合疗法的其它制药学可接受配方。例如,这些试剂盒可以包含任何一种或多种化疗或放疗药物、抗血管发生试剂、抗肿瘤细胞抗体、和/或抗肿瘤血管结构或抗肿瘤基质的免疫毒素或凝血配体。
试剂盒中可以只有单一容器(容器装置),其中装有基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物,含或不含其它成分;或者,试剂盒中可以有不同容器,其中装有各种所需试剂。当提供联合治疗剂时,可以以等摩尔或一种成分过量的联合方式预先混和单一溶液;或者,可以在施用于患者前,在不同容器中分开保存试剂盒中基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物与其它抗癌试剂成分。
当以一种或多种液态溶液提供试剂盒成分时,液态溶液优选水性溶液,特别优选无菌水性溶液。但是,也可以以干粉形式提供试剂盒成分。当以干粉形式提供试剂或成分时,可以通过向干粉中加入合适溶剂来进行重建。预计还可以在其它容器中提供溶剂。
试剂盒的容器通常包括至少一种小瓶、试管、烧瓶、玻璃瓶、注射器、或其它容器装置,其中装有基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物和任何其它所需试剂,且优选适当分装。当包含分开的成分时,试剂盒通常包含至少第二种小瓶或其它容器,其中装有这些成分,能够施用分开的所需剂量。试剂盒还可以包含第二种/第三种容器装置,用来包装制药学可接受的无菌缓冲液或其它稀释剂。
试剂盒还可以包含对动物或患者施用基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物的装置,如一套或多套针头或注射器、眼滴瓶、取液器、或其它这类装置,由此将配方注射到动物体内或应用于体内疾病区域。本发明的试剂盒通常还包含装这些小瓶等和其它成分以供出售的密封装置,诸如注射或吹制成型的塑料容器,其中装有所需小瓶和其它装置。
F.抗血管发生疗法
本发明可用于治疗患有异常血管发生的动物和患者,诸如促成多种疾病和紊乱的异常血管发生。在癌症治疗领域之外,最普遍和/或在临床上重要的疾病和紊乱包括关节炎、类风湿性关节炎、牛皮癣、动脉粥样硬化、糖尿病性视网膜病变、与年龄有关的黄斑变性、Grave氏病、血管再狭窄(包括血管成形术后再狭窄)、动静脉畸形(AVM)、脑(脊)膜瘤、血管瘤、和新血管性青光眼。其它潜在的干预靶包括血管纤维瘤、动脉粥样硬化病斑、角膜移植物新血管形成、血友病性关节、肥大性瘢痕、Osler-Weber综合症、脓性肉芽肿、晶状体后纤维增生症、硬皮病、沙眼、血管粘连、滑膜炎、皮炎、各种其它炎症性疾病和紊乱、和甚至子宫内膜异位症。下文列出了本发明可以治疗的其它疾病和紊乱,以及这些血管发生性疾病的统一基础。
涉及血管发生的一种疾病是类风湿性关节炎,其中关节滑膜内层的血管经历血管发生。除了形成新血管网络,内皮细胞还释放导致血管翳生长和软骨破坏的因子和活性氧类。血管发生中涉及的因子可以积极促成并维持类风湿性关节炎的慢性发炎状态。与血管发生有关的因子在骨关节炎中也有作用,促成关节的破坏。
Harada等人(1998,本文特别收入作为参考)显示,VEGF涉及类风湿性关节炎的发病机理,而且血清VEGF浓度的测量是用于监测类风湿性关节炎疾病活性的有用的非侵入式方法。这支持本发明对类风湿性关节炎的治疗性和诊断性应用。
Nagashima等人(1999,本文特别收入作为参考)描述了在培养的风湿性滑膜细胞中抗风湿药物对VEGF的抑制效果。VEGF在类风湿性关节炎的滑膜中组成性表达。据显示,已知的抗风湿药物,布西拉明(bucillamine,BUC),在其作用机制中包括抑制由滑膜细胞的VEGF生成。由此,BUC的抗风湿效果是由关节炎滑膜中经抑制滑膜细胞的VEGF生成来抑制血管发生和滑膜增殖介导的。本发明作为抗关节炎疗法的应用受到这一现存治疗剂对VEGF抑制作用的支持。
由血管发生介导的另一种疾病范例是眼部新血管性疾病。该疾病的特征为新血管侵入眼结构,诸如视网膜或角膜。这是失明的最常见原因,并涉及大约20种眼科疾病。在与年龄有关的黄斑变性中,相关视觉问题是由脉络膜毛细血管经Bruch氏膜(玻璃膜)的缺陷向内生长,同时视网膜色素上皮下纤维血管组织增殖引起的。血管发生性损伤还涉及糖尿病性视网膜病变、早产儿视网膜病变、角膜移植排斥、新血管性青光眼、和晶状体后纤维组织形成。
与角膜新血管形成有关的其它疾病包括(但不限于)流行性角膜结膜炎、维生素A缺乏、隐形眼镜过度佩戴、特应性角膜炎、上缘角膜炎、翼状胬肉干燥性角膜炎、Sjogren症(干燥症)、玫瑰痤疮(酒糟鼻)、phylectenulosis、梅毒、分支杆菌感染、脂肪变性、化学烧伤、细菌性溃疡、真菌性溃疡、单纯性疱疹感染、带状疱疹感染、原生动物感染、Kaposi氏肉瘤、Mooren溃疡、Terrien氏边缘变性、边缘角质层分离、外伤、类风湿性关节炎、系统狼疮、多动脉炎、外伤、Wegeners类肉瘤、巩膜炎、Steven’s Johnson病、角膜放射状切开术、和角膜移植排斥。
与视网膜/脉络膜新血管形成有关的疾病包括(但不限于)糖尿病性视网膜病变、黄斑变性、镰刀形红细胞贫血病、结节病、梅毒、弹性假黄色瘤、Pagets病、静脉堵塞、动脉堵塞、颈动脉梗阻性疾病、慢性色素层炎/玻璃体炎、分支杆菌感染、Lyme氏病、系统性红斑狼疮、早产儿视网膜病变、Eales病、Bechets病、引起视网膜炎或脉络膜炎的感染、推测的眼组织胞浆菌病、Bests病、近视、视窝、Stargarts病、平坦部炎、慢性视网膜脱落、高粘滞性综合症、弓形体病、外伤、和激光后并发症。
其它疾病包括(但不限于)与发红有关的疾病(虹膜角的新血管形成)和由纤维血管或纤维组织异常增殖引起的疾病,包括所有形式的增殖性玻璃体视网膜病变。
慢性炎症也涉及病理性血管发生。这些疾病状态(如溃疡性结肠炎和Crohn氏病)显示组织学变化,其中有新血管进入发炎组织的向内生长。巴尔通体病(在南美洲发现的细菌性感染)能够导致特征为血管内皮细胞增殖的慢性阶段。
在动脉粥样硬化中发现了与血管发生有关的另一种病理学作用。在血管内腔内形成的病斑显示具有血管发生刺激活性。Inoue等人(1998,本文特别收入作为参考)证明了人冠状动脉粥样硬化损伤中的VEGF表达。这证明了VEGF在人冠状动脉粥样硬化发展中,以及在冠脉梗阻性疾病的血管再成形过程中有病理生理学重要性。本发明为这些状况提供了有效治疗。
血管瘤是儿童时期最频繁的血管发生性疾病之一。在大多数情况中,肿瘤是良性的,并在没有干预的条件下就退化。在更严重的情况中,肿瘤发展成大型海绵状和渗透性形式并产生临床并发症。血管瘤的系统形式,血管瘤病,具有较高的死亡率。存在耐受治疗的血管瘤,不能用目前使用的治疗剂进行治疗。
血管发生还与在遗传性疾病(诸如Osler-Weber-Rendu病或遗传性出血性毛细管扩张症)中发现的损伤有关。遗传性出血性毛细管扩张是特征为多处小型血管瘤、血管或淋巴管肿瘤的遗传病。血管瘤存在于皮肤和粘膜中,常常伴随鼻出血或胃肠出血,有时伴随肺或肝动静脉瘘管。
血管发生还与正常的生理学过程有关,诸如再生和创伤愈合。血管发生是排卵还有受精后囊胚着床中的重要步骤。预防血管发生可用于诱导闭经,阻断排卵或防止囊胚着床。
在创伤愈合中,过度修复或纤维增生成为手术治疗的有害副作用,而且可能由血管发生引起并恶化。粘附是手术后频繁的并发症,并导致诸如小型肠梗阻等问题。
本发明还可以治疗特征为不良血管通透性的疾病和紊乱。这包括与脑瘤有关的浮肿、与恶性肿瘤有关的腹水、Meigs氏综合症、肺炎、肾病综合症、心包积液、和胸膜积液,正如WO 98/16551(本文特别收入作为参考)所公开的。
参照如美国专利5,712,291(本文特别收入作为参考)中公开的本领域知识(该专利归纳了将抗血管发生策略应用于治疗血管发生性疾病的好处),本发明可以有效治疗上述每种疾病和紊乱,以及下文所述所有类型的肿瘤。
本发明的抗体和/或免疫缀合物最优选用于治疗肿瘤。血管发生占有重要地位的肿瘤包括恶性肿瘤,和良性肿瘤,诸如听神经瘤、神经纤维瘤、沙眼、和脓性肉芽肿。血管发生在实体瘤的形成和转移中特别显著。但是,血管发生还与血液肿瘤(诸如白血病)有关,还有发生白血球无限制增殖的各种急性或慢性肿瘤性骨髓疾病,常常伴随贫血、血液凝血受损、和淋巴结、肝、和脾肿大。血管发生在引起白血病样肿瘤的骨髓异常中也具有重要作用。
血管发生在肿瘤转移的两个阶段占有重要地位。在原发性肿瘤的血管形成中,血管发生使得细胞能够进入血流并循环全身。在肿瘤细胞离开原发性位点并进入继发性位点即转移位点后,血管发生必须在新肿瘤能够生长并扩张前启动。因此,预防血管发生也就能够预防肿瘤转移,并包括原发性位点的肿瘤生长,使得能够用其它治疗剂进行治疗,特别是治疗剂-靶向剂构建物(见下文)。
由本发明提供的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物方法由此可以广泛的应用于治疗具有血管成分的任何恶性肿瘤。在使用本发明的抗体和/或免疫缀合物治疗肿瘤(特别是血管化恶性肿瘤)时,可以单独使用试剂,或者与如化疗剂、放疗剂、诱导凋亡试剂、抗血管发生试剂、和/或免疫毒素或凝血配体联合使用。
需要治疗的典型血管化肿瘤是实体瘤,特别是需要血管成分提供氧和营养的癌。使用本发明可以治疗的例示性实体瘤包括(但不限于)肺癌、乳癌、卵巢癌、胃癌、胰腺癌、喉癌、食道癌、睾丸癌、肝癌、腮腺癌、胆管癌、结肠癌、直肠癌、子宫颈癌、子宫癌、子宫内膜癌、肾癌、膀胱癌、前列腺癌、甲状腺癌、鳞状上皮细胞癌、腺癌、小细胞癌、黑素瘤、神经胶质瘤、胶质母细胞瘤、神经母细胞瘤、等等。WO 98/45331(本文收入作为参考)进一步例示了使用抗VEGF抗体可以有效治疗的多种肿瘤类型。
关于血管发生在肿瘤维持和转移中作用的知识可以为诸如乳癌等癌症提供预后指示剂。通过计数侵入性乳癌中新血管形成最强区域的微血管密度来测定在原发性肿瘤中发现的新血管形成的量。发现高水平的微血管密度与肿瘤复发有关。通过本发明的疗法来控制血管发生将减少或消除这些肿瘤的复发。
本发明预计可用于治疗患有实体瘤的任何患者。根据基于阻断VEGFR2的抗VEGF抗体的组合物的特异性特性,本发明的治疗剂将减少副作用。特定优势是将导致由巨噬细胞介导的针对肿瘤的宿主免疫应答的维持或增强,而对骨组织没有不利影响。本发明将因此成为治疗小儿科癌症和患有或有风险形成骨质疏松症和其它骨缺陷患者的抗血管发生疗法选择。
虽然通过本发明可以治疗所有的恶性肿瘤和实体瘤,但是本发明未缀合的阻断VEGFR2的抗VEGF抗体和2C3抗体特别预计可用于治疗患有更多血管发生性肿瘤的患者或有风险转移的患者。
本发明还意欲作为预防性治疗。本发明的这些方面包括本发明治疗患有原发性肿瘤且可能具有肿瘤转移或者肿瘤细胞处于转移性肿瘤植入早期阶段的患者的能力。作为抗血管发生策略,本发明还可用于在根据预后性检验和/或近亲患有遗传性癌症判定有中等或高风险形成肿瘤的主体内预防肿瘤发展。
本发明阻断VEGFR2的抗VEGF抗体和2C3抗体的缀合或免疫毒素形式特别预计用于破坏或减小实体瘤。本发明的这些方面可以与本发明的未缀合抗血管发生抗体或其它抗血管发生方法联合使用。
本领域技术人员将容易的认识到,本发明治疗方法的免疫缀合物和药物前体具有独特优点,即在单一治疗剂中提供两种特性:抗体固有的抗血管发生特性和附着试剂的治疗特性(如毒害细胞、凝血、凋亡、等等)。本发明抗体的缀合和药物前体治疗形式由此在整个癌症治疗领域中具有不可想象的广泛应用。
本文提供的关于使用本发明不同方面治疗更合适患者的指导意欲指出,某些患者特征可能有助于选择可用本发明治疗的患者。预先选择某些患者,或将患者分类,并不否定本发明可用于治疗患有血管化肿瘤或上述其它血管发生性疾病的所有患者。进一步考虑的事实是本发明对肿瘤的攻击可能使肿瘤易于接受进一步的治疗从而使随后的治疗导致全面协同效果或甚至导致完全消除或治愈。
不认为任何特定类型的肿瘤应当排除在本发明治疗以外。但是,肿瘤细胞的类型可能与本发明与其它治疗剂的联合使用有关,特别是化疗剂和抗肿瘤细胞免疫毒素。本发明疗法的未缀合和缀合方面都包括抑制肿瘤血管结构增殖的抗血管发生效果。缀合和药物前体治疗方面将进一步破坏或堵塞肿瘤血管结构。由于所有实体瘤中的血管结构基本上或完全相同,所以可以理解,本发明方法学广泛或完全适用于治疗所有实体瘤,无论肿瘤细胞自身是哪种特定的表型或基因型。
使用来自动物模型的资料,如本文详细显示的研究,可以容易的确定基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物构建物的治疗有效剂量。在转移到临床环境之前,携有实体瘤的实验动物被频繁用于优化合适的治疗剂量。已知这些模型能够很可靠的预测有效的抗癌策略。例如,携有实体瘤的小鼠(诸如实施例中使用的)被广泛用于临床前检验。发明人已经使用这些技术上可接受的小鼠模型确定治疗剂给出有益抗肿瘤效果而伴随最低毒性的工作范围。
在抗血管发生疗法中使用未缀合的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体时,还可以利用其它已发表资料,从而有助于设计用于临床治疗的剂量。例如,虽然本发明的抗体相对于本领域其它抗体具有独特优势,但是本申请的资料和传授也可以与关注使用其它抗VEGF抗体进行治疗的文献资料联合用于设计和/或优化治疗方案和剂量。
例如,Borgstrom等人(1999,本文特别收入作为参考)描述了VEGF在使用mAb A4.6.1的体内乳癌血管发生中的重要性。由于本发明的2C3样抗体相对于A4.6.1的研究展示等同的甚至改进的抗肿瘤应答,所以这些抗体在治疗乳癌中也将具有显著效果。发明人进一步意识到,本领域普通技术人员也将认识到,患有乳癌的患者通常是中年或老年女性,她们显然还关注骨质疏松症。本发明基于阻断VEGFR2的抗VEGF抗体和2C3的抗体由此具有额外优势,即不会引起对骨代谢的不利影响,由此不会优选用于患有或有风险形成骨质疏松症的乳癌患者。
相同类型的好处使得基于阻断VEGFR2的抗VEGF抗体和2C3的治疗剂成为用于治疗小儿癌症的优选药物。在患有癌症的儿童中,显然需要保持健康和基本的骨生长。由于阻断VEGFR2的抗VEGF抗体(诸如2C3)不会显著损害在形成骨中占有重要地位的破骨细胞和破软骨细胞的活性,所以2C3相对于其它抗体(诸如A4.6.1)具有重要优势。
Borgstrom等人(1999,本文特别收入作为参考)也报导了,mAbA4.6.1在与羟基红比霉素联合使用时导致显著的肿瘤退化。他们还报导了为了在治疗各种癌症中实现显著临床效果而进行的阻断VEGFR2的抗VEGF抗体与传统的细胞毒性试剂或化疗剂的联合应用。包括与未缀合的羟基红比霉素和羟基红比霉素药物前体的联合。
Ferrara及其同事也报导了鼠抗VEGF单克隆抗体在携有肿瘤小鼠中和外推至人治疗时的功效和浓度-应答(Mordenti等人,1999,本文特别收入作为参考)。该研究被设计成用于评价鼠抗VEGF单克隆抗体的浓度-应答相互关系,由此可估计抗体的重组人化形式在癌症患者中的有效血浆浓度。Mordenti等人(1999)得出结论,使用几剂可以容易应用于人系统的鼠抗体在裸鼠中可实现满意的肿瘤抑制,由此可确定将用于人的治疗性抗体有效维持在有效范围内的临床给药方案。从而,使用本文所述熟练技术人员知道的技术,以及Mordenti等人(1999)报导的分析方法,还可以将来自现有技术可接受的小鼠模型的数据转变成适当的人剂量。
来自Genentch公司抗VEGF抗体的重组人化形式在猴中的临床前安全性评价的结果(Ryan等人,1999,本文特别收入作为参考)例示了该特定候选治疗剂的缺点。虽然该抗体在这种动物中具有药理学活性,但是这些研究中的猴展示特征为肥大软骨细胞的剂量相关增加、软骨下骨盘形成、和血管侵入生长盘受抑制的physeal发育异常。使用不抑制破软骨细胞和软骨细胞中由VEGFR1介导的VEGF结合和信号传导的基于阻断VEGFR2的抗VEGF抗体和2C3的治疗剂时,不会有这些缺点。
Lin等人(1999,本文特别收入作为参考)报导了来自关于Genentch公司人化单克隆抗VEGF抗体的临床前药代动力学、种间缩放比例、和组织分布的其它研究的资料。这些研究是在小鼠、大鼠、猴、和兔中进行的,后者使用了125I标记的抗体。来自小鼠、大鼠、和猴的药代动力学资料被用于使用人异速生长比例来预测人化对应物的药代动力学。由此,可以得到用于治疗人病理学状况(诸如类风湿性关节炎、眼新血管形成、和癌症)的适当剂量信息。
抗VEGF抗体A4.6.1的人化形式已经作为抗癌试剂用于临床试验(Brem,1998;Baca等人,1997;Presta等人,1997;本文收入作为参考)。因此,当设计本发明阻断VEGFR2的抗VEGF抗体和2C3治疗的治疗性剂量时,这些临床资料也可以作为参考来源。本发明显示,2C3在携有肿瘤的小鼠中与A4.6.1一样有效,但是只抑制由VEGFR2介导的VEGF作用的特异性是一种优势。WO 98/45331(本文收入作为参考)进一步例示了可用于治疗的人化抗VEGF抗体的剂量。
关于在肿瘤疗法中使用基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物,可以参考关于成功的向肿瘤血管结构投递广泛的治疗剂从而实现有益效果的科学和专利文献。作为例示,美国专利5,855,866、5,877,289、5,965,132、6,051,230、6,004,555、5,776,427、6,004,554、和6,036,955;和美国流水号08/482,369(1998年10月20日交纳颁证费)(本文收入作为参考)进一步描述了这些治疗剂-靶向剂构建物的应用。在本发明的情况中,治疗剂-靶向剂构建物包括展现抗血管发生效果的靶向剂部分,它将放大或增强附着的治疗剂的抗肿瘤活性。
正如本领域知道的,在进行临床治疗前的临床前检验中存在现时目标可以作为指导方针。然而,根据其它抗VEGF抗体进入临床的过程、本文显示的在可接受模型中已证明的抗肿瘤效果、和本发明策略增强的安全性,本发明提供了快速进入临床治疗的治疗剂。因此,临床前检验可用于选择最有利的抗体、剂量、或联合。
导致任何一贯可检测的抗血管发生效果、抑制转移、破坏肿瘤血管结构、肿瘤血栓症、坏死、和/或全面抗肿瘤效果的任何基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物药物或其联合药物都将成为有用的发明。本发明还对肿瘤下游的脉管有效,即靶向至少一类引流脉管,特别是当由肿瘤释放的细胞因子作用于这些脉管,改变它们的抗原特性时。
还可以理解,甚至在基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物药物或其联合疗法的抗血管发生和/或抗肿瘤效果为预定治疗范围低端值,与特定肿瘤靶或患者中的其它已知疗法相比,这种疗法仍然可能同样甚至更加有效。不幸的是,临床医生知道某些肿瘤和状况不能在中期或长期中获得有效治疗,但是这并不否定本发明疗法的有效性,当它与通常建议的其它策略至少大致一样有效时尤其如此。
在为治疗血管化肿瘤设计基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物构建物或其联合治疗剂的适当剂量时,可以容易的由本文所述动物研究和文献中的知识进行外推,从而获得临床施用的适当剂量。为了实现由动物向人剂量的转变,需要考虑对单位质量的实验动物所施用的试剂量,优选考虑实验动物与人患者之间的体表面积(m2)差异。所有这些计算对于本领域普通技术人员而言是众所周知的,而且是常规的。
例如,采用小鼠研究中2C3的成功剂量,并通过应用基于质量和表面积的标准计算得出,用于人患者的有效剂量是大约1mg/m2-大约1000mg/m2,优选大约50mg/m2-大约500mg/m2,最优选大约10mg/m2-大约100mg/m2。这些剂量对于基于阻断VEGFR2的抗VEGF抗体或2C3的裸露抗体和基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物是适当的,但是这些剂量优选用于作为抗血管发生试剂使用的裸露的或未缀合的抗体。
由此,根据这一信息,发明人预计,基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物施用于人的有用低剂量将是大约1、2、3、4、5、6、7、8、9、10、12、15、20、25、30、35、40、45、或大约50mg/m2;这些抗体或免疫缀合物施用于人的有用高剂量将是大约600、650、700、750、800、850、900、925、950、975、或大约1000mg/m2。预计基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物施用于人的有用中间剂量是介于低范围与高范围之间的任何剂量,诸如大约55、60、70、80、90、100、125、150、175、200、250、300、350、400、450、500、525、550、或大约575mg/m2
使用上文记录的例示性剂量的任何特定范围或介于上述范围之间的任何特定值都包括在内。还可以理解,当使用基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物时,凝血剂免疫缀合物的剂量通常高于毒素免疫缀合物的剂量。
基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物的剂量范围通常优选大约10-100mg/m2、大约10-90mg/m2、大约10-80mg/m2、大约20-100mg/m2、大约20-90mg/m2、大约20-80mg/m2、大约30-100mg/m2、大约30-90mg/m2、大约30-80mg/m2、大约15-100mg/m2、大约25-100mg/m2、大约35-100mg/m2、大约15-90mg/m2、大约25-90mg/m2、大约35-90mg/m2。可以理解,除了上述范围,根据本文所述参数和详细指导,本发明还涵盖对活性或最佳范围做进一步的变化。
因此,可以理解,较低剂量更适于与其它试剂联合,而且仍然可以耐受高剂量,特别是考虑到由于只结合VEGFR2,所以基于阻断VEGFR2的抗VEGF抗体和2C3的抗体的安全性获得增强,并进一步增强基于阻断VEGFR2的抗VEGF抗体和2C3的凝血剂和抗血管发生免疫缀合物的安全性。人或人化抗体(任选人凝血剂或抗血管发生蛋白质)的应用使得本发明在临床应用中甚至更安全,可进一步降低在健康组织中产生显著毒性或副作用的机会。
本发明治疗方案的意图通常是产生显著的抗肿瘤效果,同时将剂量维持在与不可接受的毒性相关的水平以下。除了改变剂量本身以外,还可以改变施用方案以优化治疗策略。一种治疗方案是施用大约1mg/m2-大约1000mg/m2,优选大约50mg/m2-大约500mg/m2,最优选大约10mg/m2-大约100mg/m2,基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或免疫缀合物或其治疗性混和药物,大约1-3次/周,优选静脉内或肌肉内施用,最优选静脉内施用。
在施用特定剂量时,优选给患者全身性提供制药学可接受的组合物(符合FDA关于无菌、致热性、纯度、和全面安全性的标准)。通常优选静脉内注射。还包括在大约1或2小时的时间内进行连续灌注。
自然,在广泛应用前需要进行临床试验。本领域技术人员参照本公开书将知道进行临床试验的多种要素,包括患者治疗和监测。提供下列资料作为建立这些试验的一般性指导。
选择用于第一种基于阻断VEGFR2的抗VEGF抗体或2C3的治疗研究的患者应是对至少一个疗程的传统疗法没有应答,而且通过体格检查、实验室技术、和/或放射显影方法测定出该患者患有可见的可测量疾病。在开始研究前2周应当停止任何化疗。当使用鼠单克隆抗体或抗体部分时,患者应当对小鼠免疫球蛋白没有变态反应史。
发现使用具有三联腔门的内置式中枢静脉导管具有某些优点。应当使用例如0.22μm的滤器过滤基于阻断VEGFR2的抗VEGF抗体或2C3的试剂,并用诸如生理盐水适当稀释至终体积100ml.使用前,也应当以相似方式过滤待测样品,过滤之前和之后通过测定A280评估其浓度。预计回收率应当在87%-99%范围内,然后可以根据蛋白质的损失进行调整。
基于阻断VEGFR2的抗VEGF抗体或2C3的抗体或缀合物可以在大约4-24小时的时间内施用,而且每个患者以2-7天的间隔接受2-4次输液。也可以在7天的时间内以稳定的输液速率施用。输液的剂量水平应当取决于是否观察到任何毒性。因此,如果任何单次输液后或稳定速率输液的特定时间点达到II级毒性,那么应当停止进一步的给药或停止稳定速率输液直至毒性改善为止。应当将剂量逐渐增加的基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂施用于患者组直至任一组中大约60%的患者显示不可接受的III级或IV级毒性。将该值2/3的剂量确定为安全剂量。
当然,治疗之前和治疗后每隔不超过1个月应当进行体格检查、肿瘤测量、和实验室检验。实验室检验应当包括全血计数、血清肌酸酐、肌酸激酶、电解质、脲、氮、SGOT、胆红素、白蛋白、和总血清蛋白。应当通过放射免疫测定法评价治疗后不超过60天取的血清样品中所施用的治疗剂和针对其任何部分的抗体的存在。使用任何标准测定法,诸如ELISA或RIA,对血清进行免疫学分析,能够评价基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂的药代动力学和清除情况。
为了评价抗肿瘤应答,应当在最后一次输液后48小时-1周内和第30天检查患者。当存在可触知的疾病时,应当在治疗过程中的每一天、治疗完成后的1周内、和第30天测定所有肿瘤块的两个正交直径。为了测量不可触知的疾病,应当在48小时-1周内和第30天,遍及胸、腹、和骨盆以1cm为间隔进行系列CT扫描。还应当使用疾病位点活组织切片或适当时使用血液或流体样品,在组织学上和/或通过流式细胞术评价组织样品。
可以通过可接受的测量来确定临床应答。例如,治疗后1个月所有可测量肿瘤消失可以确定为完全应答。而治疗后1个月所有可评估的肿瘤结的正交直径乘积的总和降低50%或更多,并且无肿瘤位点显示增大,可以确定为部分应答。相似的,治疗后1个月所有可测量病变的正交直径乘积减少50%或更多,并且一个或多个位点发生恶化,可以确定为混合应答。
根据来自临床试验的结果(诸如上文所述),可以设计甚至更精确的治疗方案。虽然如此,根据治疗主体的状况,后来可能必须对剂量做一些改变。负责施用的医师参照本公开书将能够为各个受试者确定适当剂量。这些优化和调整在本领域是常规的,绝非反映需要过多实验。
G.联合疗法
无论是用于治疗血管发生性疾病,诸如关节炎、牛皮癣、动脉粥样硬化、糖尿病性视网膜病变、与年龄有关的黄斑变性、Grave氏病、血管再狭窄、血管瘤、和新血管性青光眼(或上述其它疾病),还是用于治疗实体瘤,本发明都可以联合其它疗法。
本发明基于阻断VEGFR2的抗VEGF抗体或2C3的治疗方法可以联合常用于治疗患者展示的特定肿瘤、疾病或紊乱的任何其它方法。只要知道特定的治疗方法自身对患者状况无害,且不显著抵消基于阻断VEGFR2的抗VEGF抗体或2C3的治疗,那么就可以与本发明联合使用这种方法。
对于实体瘤的治疗,本发明可以联合经典方法,诸如手术、放疗、化疗、等等。本发明由此提供了联合疗法,即在手术或放疗之前、之时、或之后使用基于阻断VEGFR2的抗VEGF抗体或2C3的构建物;或者,在传统的化疗、放疗、或抗血管发生试剂、或者靶向免疫毒素或凝血配体之前、之时、或之后对患者进行施用。
特别优选本发明与放疗、放疗剂、抗血管发生试剂、诱导凋亡试剂、和抗微管蛋白药物的联合应用。上文中本发明关于免疫缀合物的部分已经描述了这些试剂的许多范例。最初描述作为治疗性缀合物一部分使用的任何试剂也可以分开使用,但是仍与本发明有效组合。
当一种或多种试剂与基于阻断VEGFR2的抗VEGF抗体或2C3的疗法联合使用时,不要求联合结果是分开进行每种治疗时观察到的效果的加和。虽然通常希望获得至少加和的效果,但是抗肿瘤效果相对于一种单一疗法有任何增长也是有益的。同样,没有特别要求联合治疗展示协同效果,尽管这当然是可能的且有益的。
为了实践联合的抗肿瘤疗法,可以以在动物体内有效导致联合抗肿瘤作用的方式,简单的对动物施用基于阻断VEGFR2的抗VEGF抗体或2C3的构建物联合另一种抗癌试剂。应以有效量和足够时间提供试剂,使得它们联合存在于肿瘤血管结构内并导致对肿瘤环境的联合作用。为了实现这一目标,可以以单一组合物或者两种不同组合物(使用不同施用路径)对动物同时施用基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂与抗癌剂。
或者,可以在抗癌剂治疗之前或之后间隔几分钟-几周和几月进行基于阻断VEGFR2的抗VEGF抗体或2C3的治疗。应确保抗癌剂和基于阻断VEGFR2的抗VEGF抗体或2C3的试剂对肿瘤展现有利的联合效果。
大多数抗癌剂应在基于阻断VEGFR2的抗VEGF抗体或2C3的抗血管发生疗法之前给药。但是,当使用基于阻断VEGFR2的抗VEGF抗体或2C3的免疫缀合物时,可以同时或随后施用各种抗癌剂。
众所周知物质联合在癌症治疗中的一般性应用。例如,美国专利5,710,134(本文收入作为参考)公开了与无毒物质或“药物前体”联合时在肿瘤中诱导坏死的成分。由坏死过程释放的酶切割无毒的“药物前体”变成有毒的“药物”,从而导致肿瘤细胞死亡。同样,美国专利5,747,469(本文收入作为参考)公开了编码p53的病毒载体与DNA破坏剂的联合应用。任何这些相似方法都可用于本发明。
在有些情况中,当各次施用间隔几天(2、3、4、5、6、或7)、几周(1、2、3、4、5、6、7、或8)、或甚至几月(1、2、3、4、5、6、7、或8)时,甚至可能需要显著延长治疗时间。这对于其中一种治疗(诸如手术或化疗)意欲充分破坏肿瘤而另一种治疗(诸如基于抗血管发生的疗法)意欲防止微转移或肿瘤再生长的情况也是有益的。应当注意在手术后一段安全时间施用抗血管发生剂以确保有效的创伤愈合。
也可以预计可不止一次的施用基于阻断VEGFR2的抗VEGF抗体或2C3的试剂或抗癌剂。可以在不同的日子或星期交替施用药剂;或者先进行一系列的基于阻断VEGFR2的抗VEGF抗体或2C3的治疗,随后再进行一系列的抗癌剂治疗。在为了实现肿瘤退化而使用联合疗法的任何情况中,只需要以有效展现抗肿瘤效果的联合量投递两种试剂,而不用管施用的次数。
至于手术,任何手术干预都可以与本发明联合实践。至于放疗,包括用于在肿瘤细胞内局部诱导DNA损伤的任何机制,诸如γ照射、X射线、UV照射、微波、和甚至电子发射等。也包括将放射性同位素直接投递至肿瘤细胞,这可以与靶向抗体或其它靶向方法(优选阻断VEGFR2的抗VEGF抗体,诸如2C3)联合使用。
已经证明细胞因子疗法是联合治疗方案的有效配对方法。多种细胞因子可用于这些联合疗法。细胞因子的范例包括IL-1α、IL-1β、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11、IL-12、IL-13、TGF-β、GM-CSF、M-CSF、G-CSF、TNFα、TNFβ、LAF、TCGF、BCGF、TRF、BAF、BDG、MP、LIF、OSM、TMF、PDGF、IFN-α、IFN-β、IFN-γ。根据与诸如患者状况和细胞因子相对毒性等临床指征一致的标准方案施用细胞因子。子宫珠蛋白也可用于防止或抑制转移(美国专利5,696,092,本文收入作为参考)。
G1.化疗剂
在某些实施方案中,本发明基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂可以与化疗剂联合施用。多种化疗剂可用于本文公开的联合治疗方法中。作为范例的化疗剂包括如阿霉素、更生霉素、丝裂霉素、洋红霉素、道诺霉素、羟基红比霉素、它莫西芬(tamoxifen)、紫杉酚、泰素帝(taxotere)、长春花新碱、长春花碱、vinorelbine、依托泊甙(VP-16)、5-氟尿嘧啶(5FU)、阿糖胞苷、环磷酰胺、噻替派(thiotepa)、氨甲蝶呤、喜树碱、放线菌素D、丝裂霉素C、顺铂(CDDP)、氨基喋呤、combretastatin、及其衍生物和药物前体。
本领域普通技术人员可以理解,化疗剂的适当剂量通常就是化疗剂单独施用或与其它化疗剂联合施用的临床疗法中已采用的大致剂量。例如,可以使用诸如顺铂等试剂和其它DNA烷基化剂。顺铂被广泛用于治疗癌症,其临床应用的有效剂量为每3周5天给药20mg/m2,共3个疗程。顺铂不能口服吸收,因此必须经静脉内、皮下、肿瘤内、或腹膜内注射。
其它有用的试剂包括干扰DNA复制、有丝分裂、和染色体分离的化合物。这些化疗化合物包括阿霉素、也称为羟基红比霉素、依托泊甙、异搏定(verapamil)、鬼臼毒素等。在广泛用于治疗肿瘤的临床环境中,对于阿霉素而言,以25-75mg/m2的剂量范围,每隔21天通过大剂量静脉内注射给药;对于依托泊甙而言,以35-50mg/m2的剂量静脉内给药或以双倍于静脉内剂量的剂量口服。
也可以使用破坏多核苷酸前体的合成和精确性的试剂。特别有用的是已经过深入检验并容易获得的试剂。例如,致瘤性组织优先使用诸如5-氟尿嘧啶(5FU)等试剂,使得此试剂对靶向致瘤性细胞特别有用。尽管5-FU毒性很大,但它可用于宽范围的载体,包括局部使用,然而,常用剂量范围是3-15mg/kg/天的静脉内施用。
表C列出了可用于联合疗法的例示性化疗剂,其中所列的各种试剂仅作为例示而非限制。熟练技术人员可参照《雷明顿制药科学》,第15版,第33章,特别是第624-652页。根据治疗对象的病情必需对剂量作一些改变。负责治疗的医师能够为各个受试者确定适当剂量。
                       表C.用于致瘤性疾病的化疗剂
  类别   药剂类型   非专有名称(其它名称)   疾病
  烷化剂 氮芥类   氮芥(HN2)   何杰金氏病,非何杰金氏淋巴瘤
环磷酰胺异环磷酰胺   急性和慢性淋巴细胞白血病,何杰金氏病,非何杰金氏淋巴瘤,多发性骨髓瘤,成神经细胞瘤,乳腺癌,卵巢癌,肺癌,肾胚细胞瘤,宫颈癌,睾丸癌,软组织肉瘤
  苯丙氨酸氮芥(L-溶肉瘤素)   多发性骨髓瘤,乳腺癌,卵巢癌
  苯丁酸氮芥   慢性淋巴细胞白血病,原发性巨球蛋白血症,何杰金氏病,非何杰金氏淋巴瘤
 Ethylenimenes和甲基蜜胺类   六甲基蜜胺   卵巢癌
  三胺硫磷   膀胱癌,乳腺癌,卵巢癌
  烷基磺酸盐   二甲磺酸丁酯   慢性粒细胞白血病
亚硝基脲三嗪   亚硝基脲氮芥(BCNU)   何杰金氏病,非何杰金氏淋巴瘤,原发性脑瘤,多发性骨髓瘤,恶性黑素瘤
  环己亚硝脲(CCNU)   何杰金氏病,非何杰金氏淋巴瘤,原发性脑瘤,小细胞肺癌
  甲环亚硝脲(甲基-CCNU)   原发性脑瘤,胃癌,结肠癌
  链脲霉素三嗪咪唑胺(DTIC二甲基三氮烯基咪唑甲酰胺)   恶性胰腺胰岛瘤,恶性类癌瘤恶性黑素瘤,何杰金氏病,软组织肉瘤
表C-续
  类别   药剂类型   非专有名称(其它名称)   疾病
  抗代谢物   叶酸类似物   氨甲蝶岭   急性淋巴细胞白血病,绒膜癌,蕈样霉菌病,乳腺癌,头颈癌,肺癌,骨原性肉瘤
嘧啶类似物   氟尿嘧啶(5-氟尿嘧啶;5-FU)5-氟脱氧尿苷(FUdR)   乳腺癌,结肠癌,胃癌,胰腺癌,卵巢癌,头颈癌,泌尿膀胱癌,恶化前的皮肤损害(局部)
  阿糖胞苷   急性粒细胞和急性淋巴细胞白血病
  嘌呤类似物和相关抑制剂   巯基嘌呤(6-巯基嘌呤;6-MP)   急性淋巴细胞、急性粒细胞和慢性粒细胞白血病
  硫代鸟嘌呤(6-硫代鸟嘌呤;TG)   急性淋巴细胞、急性粒细胞和慢性粒细胞白血病
  戊制菌素(2-脱氧助间型霉素)   多毛细胞白血病,蕈样霉菌病,慢性淋巴细胞白血病
  天然产物 长春花生物碱   长春花碱(VLB)   何杰金氏病,非何杰金氏淋巴瘤,乳腺癌,睾丸癌
  长春新碱   急性淋巴细胞白血病,成神经细胞瘤,肾胚细胞瘤,横纹肌肉瘤,何杰金氏病,非何杰金氏淋巴瘤,小细胞肺癌
  表鬼臼毒素类   表鬼臼毒素吡喃葡糖苷Tertiposide   睾丸癌,小细胞肺癌和其它肺癌,乳腺癌,何杰金氏病,非何杰金氏淋巴瘤,急性粒细胞白血病,卡波西氏肉瘤
抗生素   更生霉素(放线菌素D)   绒膜癌,肾胚细胞瘤,横纹肌肉瘤,睾丸癌,卡波西氏肉瘤
  道诺霉素 急性粒细胞和急性淋巴细胞白血病
  阿霉素(doxorubicin)   软组织肉瘤,骨原性肉瘤和其它肉瘤,何杰金氏病,非何杰金氏淋巴瘤,急性白血病,乳腺癌,生殖泌尿器癌,甲状腺癌,肺癌,胃癌,成神经细胞瘤
博来霉素   睾丸癌,头颈癌,皮肤癌,食道癌,肺癌和生殖泌尿道癌;何杰金氏病,非何杰金氏淋巴瘤
表C-续
  类别   药剂类型   非专有名称(其它名称)   疾病
  光辉霉素   睾丸癌,恶性高钙血症
  丝裂霉素(丝裂霉素C)   胃癌,宫颈癌,结肠癌,乳腺癌,胰腺癌,膀胱癌,头颈癌
  酶   L-天冬酰胺酶   急性淋巴细胞白血病
生物反应修饰物 α干扰素   毛细胞白血病,卡波西氏肉瘤,黑素瘤,类癌瘤,肾细胞癌,卵巢癌,膀胱癌,非何杰金氏淋巴瘤,蕈样霉菌病,多发性骨髓瘤,慢性粒细胞白血病
  各种试剂   铂配位复合物   顺铂(cis-DDP)碳铂   睾丸癌,卵巢癌,膀胱癌,头颈癌,肺癌,甲状腺癌,宫颈癌,子宫内膜癌,成神经细胞瘤,骨原肉瘤
  蒽二酮   二羟基蒽酮   急性粒细胞白血病,乳腺癌
  取代的脲   羟基脲   慢性粒细胞白血病,真性红细胞增多症,原发性血小板增多症,恶性黑素瘤
  甲基苄肼衍生物   甲基苄肼(N-甲基肼,MIH)   何杰金氏病
  肾上腺皮质抑制剂   邻对滴滴滴(o,p’-DDD)   肾上腺皮质病
  氨苯乙哌啶酮   乳腺癌
  激素和拮抗剂   肾上腺皮质类固醇类   去氢皮质素(几种其它的功能等同的制品也可以)   急性和慢性淋巴细胞白血病,非何杰金氏淋巴瘤,何杰金氏病,乳腺癌
孕酮类   己酸羟孕酮甲孕酮去氢甲孕酮 子宫内膜癌,乳腺癌
  雌激素类   己烯雌酚炔雌醇(其它制品也可以)   乳腺癌,前列腺癌
  抗雌激素   他莫昔芬   乳腺癌
雄激素类   丙酸睾酮氟甲睾酮(其它制品也可以) 乳腺癌
  抗雄激素   氟利坦   前列腺癌
  促性腺素释放激素类似物   亮丙瑞林   前列腺癌
G2.抗血管发生试剂
在正常生理学条件下,人或动物只在非常特殊的有限情况中才经历血管发生。例如,通常在创伤愈合、胚胎发育、卵巢黄体、子宫内膜、和胎盘形成中观察到血管发生。不受控制的(持续的和/或不受调控的)血管发生涉及多种疾病状态,并发生于肿瘤转移过程中。
受到控制和不受控制的血管发生被认为是以相似方式进行的。由基底膜包围的内皮细胞和外膜细胞形成毛细血管。血管发生从由内皮细胞和白细胞释放的酶对基底膜的侵蚀开始。然后沿血管腔排列的内皮细胞凸出基底膜。血管发生刺激物诱导内皮细胞迁移出受侵蚀的基底膜。迁移细胞在亲本血管外形成“萌芽”,内皮细胞在此经历有丝分裂和增殖。内皮萌芽彼此汇合形成毛细血管环,从而形成新的血管。
基于阻断VEGFR2的抗VEGF抗体或2C3的本发明可用于联合任何一种或多种其它抗血管发生疗法,包括与抑制VEGF的其它试剂的联合,诸如其它中和性抗体(Kim等人,1992;Presta等人,1997;Sioussat等人,1993;Kondo等人,1993;Asano等人,1995)、可溶性受体构建物(Kendall和Thomas,1993;Aiello等人,1995;Lin等人,1998;Millauer等人,1996)、酪氨酸激酶抑制剂(Siemeister等人,1998)、反义策略、RNA aptamer、和针对VEGF或VEGF受体的核酶(Saleh等人,1996;Cheng等人,1996;Ke等人,1998;Parry等人,1999;本文收入作为参考)。正如WO 98/16551(本文特别收入作为参考)所述,还可以采用具有拮抗剂特性的VEGF变体。
抗血管发生疗法可以基于提供抗血管发生试剂或抑制血管发生试剂。可以通过为抑制VEGF而描述的一种或多种方法来实现对血管发生试剂的抑制,包括中和性抗体、可溶性受体构建物、小分子抑制剂、反义、RNA aptamer、和核酶在内的方法都可以采用。例如,如美国专利5,520,914(本文特别收入作为参考)所述,可以采用针对血管生成素的抗体。由于FGF涉及血管发生,因此也可以使用FGF抑制剂。范例是序列中以交替的N-乙酰葡糖胺与2-O-硫酸化糖醛酸作为主要重复单元的化合物,包括葡糖胺基聚糖,诸如archaran sulfate。美国专利6,028,061(本文特别收入作为参考)描述了这些化合物,它们可用于与本文的联合。
现在已知大量的酪氨酸激酶抑制剂可用于治疗在多种疾病状态中出现的血管发生,包括例如美国专利5,639,757(本文特别收入作为参考)描述的4-氨基吡咯并[2,3-d]嘧啶,它也可以与本发明联合使用。能够调节经VEGFR2受体的酪氨酸激酶信号转导的有机分子的其它范例是美国专利5,792,771(本文特别收入作为参考)的喹唑啉化合物和组合物,这项专利可以与本发明联合用于治疗血管发生性疾病。
其它化学类化合物也已经显示可抑制血管发生,而且可用于与本发明的联合。例如,联合疗法中可以采用类固醇,诸如美国专利5,972,922(本文特别收入作为参考)中描述的抑血管的4,9(11)-类固醇和C21-氧合类固醇。美国专利5,712,291和5,593,990(本文特别收入作为参考)描述了瑟利德米(thalidomide)及相关化合物、前体、类似物、代谢物和水解产物,它们也可以与本发明联合用于抑制血管发生。美国专利5,712,291和5,593,990中的化合物可以口服施用。表D列出了可用于联合疗法的其它例示性抗血管发生试剂,其中列出的每一种试剂只是例示绝非限制。
                               表D.血管发生的抑制剂和负调控剂
  物质   参考文献
  制管张素   O’Reilly等人,1994
  抑内皮素   O’Reilly等人,1997
  16kDa催乳素片段   Ferrara等人,1991;Clapp等人,1993;D′Angelo等人,1995;Lee等人,1998
  层粘连蛋白肽   Kleinman等人,1993;Yamamura等人,1993;Iwamoto等人,1996;Tryggvason,1993
  纤连蛋白肽   Grant等人,1998;Sheu等人,1997
  组织金属蛋白酶抑制剂(TIMP 1、2、3、4)   Sang,1998
  纤溶酶原激活剂抑制剂(PAI-1、2)   Soff等人,1995
  肿瘤坏死因子α(高剂量,体外)   Frater-Schroder等人,1987
  TGF-β1   RayChadhury和D’Amore,1991;Tada等人,1994
  干扰素(IFN-α、β、γ)   Moore等人,1998;Lingen等人,1998
  ELR-CXC趋化因子:IL-12;SDF-1;MIG;血小板因子4(PF-4);IP-10   Moore等人,1998;Hiscox和Jiang,1997;Coughlin等人,1998;Tanaka等人,1997
  血小板反应蛋白(TSP)   Good等人,1990;Frazier,1991;Bornstein,1992;Tolsma等人,1993;Sheibani和Frazier,1995;Volpert等人,1998
  SPARC   Hasselaar和Sage,1992;Lane等人,1992;Jendraschak和Sage,1996
  2-甲氧基雌二醇   Fotsis等人,1994
  增殖蛋白相关蛋白质   Jackson等人,1994
  苏拉明   Gagliardi等人,1992;Takano等人,1994;Waltenberger等人,1996;Gagliardi等人,1998;Manetti等人,1998
  瑟利德米   D’Amato等人,1994;Kenyon等人,1997;Wells,1998
  可的松   Thorpe等人,1993;Folkman等人,1983;Sakamoto等人,1986
  linomide   Vukanovic等人,1993;Ziche等人,1998;Nagler等人,1998
  烟曲霉素(AGM-1470;TNP-470)   Sipos等人,1994;Yoshida等人,1998)
  他莫西芬   Gagliardi和Collins,1993;Lindner和Borden,1997;Haran等人,1994
  韩国槲寄生提取物(Viscum albumcoloratum)   Yoon等人,1995
  视黄醇(醛、酸)类   Oikawa等人,1989;Lingen等人,1996;Majewski等人,1996
  CM101   Hellerqvist等人,1993;Quinn等人,1995;Wamil等人,1997;DeVore等人,1997
  地塞米松   Hori等人,1996;Wolff等人,1997
  白血病抑制因子(LIF)   Pepper等人,1995
某些优选用于抑制血管发生的成分是制管张素、抑内皮素、抑血管素、制霉菌素、和maspin。这些试剂如上所述缀合于本发明免疫缀合物,但是也可以以未缀合形式联合应用。上述免疫缀合物形式的其它优选试剂是促血管生成素,特别是促血管生成素-2,预计可与本发明联合应用。
某些抗血管发生疗法早就显示可引起肿瘤退化,包括细菌多糖CM101和抗体LM609。CM101是已经详细鉴定其在肿瘤中诱导新血管炎症能力的细菌多糖。CM101结合并交联在去分化内皮上表达的受体,刺激补体系统的激活。它还启动由细胞因子驱动的、选择性靶向肿瘤的炎症应答。它是下调VEGF及其受体表达的唯一抗病理性血管发生试剂。CM101目前作为抗癌剂正在进行临床试验,而且可用于与本文的联合。
血小板反应蛋白(TSP-1)和血小板因子4(PF4)也可用于与本发明的联合。它们都是与肝素有关的血管发生抑制剂,并在血小板α颗粒中发现。TSP-1是细胞外基质成分的450kDa大型多结构域糖蛋白。TSP-1结合在细胞外基质中发现的许多蛋白聚糖分子,包括HSPG、纤连蛋白、层粘连蛋白、和不同类型的胶原。TSP-1在体外抑制内皮细胞迁移和增殖,在体内抑制血管发生。TSP-1还抑制经转化内皮细胞的恶性表型和肿瘤发生。肿瘤抑制基因p53显示直接调控TSP-1的表达,使得p53活性的丧失引起TSP-1生成显著降低,伴随着由肿瘤起始的血管发生增加。
PF4是含70个氨基酸的蛋白质,是CXC ELR趋化因子家族的成员,能够在体外有效抑制内皮细胞增殖,在体内有效抑制血管发生。肿瘤内施用或通过腺病毒载体投递的PF4能够引起对肿瘤生长的抑制。
干扰素和金属蛋白酶抑制剂是能够联合本发明的另外两类天然存在的血管发生抑制剂。20世纪80年代早期就已经知道干扰素的抗内皮活性,但是抑制机制仍然不清楚。已知它们能够抑制内皮细胞迁移,而且它们在体内确实具有一些抗血管发生活性,这可能是由抑制肿瘤细胞产生血管发生性促进剂的能力介导的。特别是血管肿瘤对干扰素较敏感,例如用IFNα可以成功的治疗增殖血管瘤。
金属蛋白酶组织抑制剂(TIMP)是天然存在的基质金属蛋白酶(MMP)抑制剂家族,它们也能够抑制血管发生,而且可用于联合治疗方案。MMP在血管发生过程中具有重要作用,它们降解内皮细胞和成纤维细胞在延伸或改造血管网络时迁移经过的基质。事实上,MMP的一个成员MMP-2显示与推测为此目的经整联蛋白αvβ3激活的内皮有关。若这种相互作用被MMP-2片段破坏,则血管发生下调,肿瘤生长受抑制。
存在大量抑制血管发生的制药学试剂,其中任何一种或多种都可用于与本发明的联合。这包括AGM-1470/TNP-470、瑟利德米(thalidomide)、和羧基酰胺三唑(CAI)。1990年发现烟曲霉素是血管发生的有效抑制剂,从此开发了烟曲霉素的合成类似物AGM-1470和TNP-470。这两种药物可抑制体外内皮细胞增殖和体内血管发生。在人临床试验中对TNP-470进行了广泛研究,结果表明进行长期给药是最佳的。
瑟利德米最初作为镇静剂使用,但是发现是有效的致畸剂,因而停用。1994年发现瑟利德米是血管发生抑制剂。瑟利德米目前作为抗癌剂和血管性眼疾病的治疗正在进行临床试验。
CAI是血管发生的小分子量合成抑制剂,作为钙通道阻断剂防止肌动蛋白再组织、内皮细胞迁移、和在胶原IV上的展开。CAI在生理学可达到浓度抑制新血管形成,而且癌症患者口服后耐受较好。CAI的临床试验在49%的治疗前患有进行性疾病的癌症患者中稳定了疾病。
在存在肝素或肝素片段时,可的松在小鼠中显示通过阻断内皮细胞增殖来抑制肿瘤生长。类固醇和肝素的其它抑制效果所涉及的机制尚不清楚,但是认为肝素可能增加内皮细胞对类固醇的摄取。混和物显示可增加新形成的毛细血管下基底膜的解体,这也是其它血管抑制性效果的可能解释。肝素-可的松缀合物在体内还具有有效的血管抑制性和抗肿瘤效果活性。
预计其它特异性血管发生抑制剂也可作为抗血管发生组合物用于本发明的联合应用,包括(但不限于)抗侵入因子、视黄酸和paclitaxel(美国专利5,716,981,本文收入作为参考)、AGM-1470(Ingber等人,1990;本文收入作为参考)、鲨鱼软骨提取物(美国专利5,618,925,本文收入作为参考)、阴离子聚酰胺或聚脲寡聚物(美国专利5,593,664,本文收入作为参考)、羟吲哚衍生物(美国专利5,576,330,本文收入作为参考)、雌二醇衍生物(美国专利5,504,074,本文收入作为参考)、和噻唑并嘧啶衍生物(美国专利5,599,813,本文收入作为参考)。
包含αvβ3整联蛋白拮抗剂的组合物也可以与本发明联合用于抑制血管发生。正如美国专利5,766,591(本文收入作为参考)所公开的,含RGF多肽及其盐,包括环状多肽,是αvβ3整联蛋白拮抗剂的合适范例。
针对αvβ3整联蛋白的抗体LM609也诱导肿瘤退化。整联蛋白αvβ3的拮抗剂,诸如LM609,诱导血管发生性内皮细胞的凋亡,而对静止(休眠)血管没有影响。LM609或其它αvβ3拮抗剂还可以通过抑制αvβ3与MMP-2的相互作用来发挥作用,认为MMP-2是在内皮细胞和成纤维细胞迁移中具有重要作用的蛋白水解酶。美国专利5,753,230(本文特别收入作为参考)描述了可以与本发明联合用于抑制血管发生的针对αvβ3(玻连蛋白αvβ3)的抗体。
血管发生性内皮的凋亡在这种情况中可能对剩余血管网络具有级联效果。抑制肿瘤血管网络对肿瘤扩张信号产生完全应答,事实上可能启动网络的部分或全部崩溃,导致肿瘤细胞死亡和肿瘤体积损失。可能抑内皮素和制管张素以相似方式发挥功能。LM609不影响静止(休眠)血管但能够引起肿瘤退化的事实,强烈说明为了获得抗肿瘤效果而进行的治疗不需要靶向肿瘤中所有血管。
基于改变经Tie2受体的信号传导的其它治疗性干预方法也可用于与本发明的联合,诸如使用能够阻断Tie2激活的可溶性Tie2受体(Lin等人,1998)。据显示,使用重组体腺病毒基因疗法来投递这种构建物在治疗癌症和降低转移中是有效的(Lin等人,1998)。
G3.诱导凋亡试剂
基于阻断VEGFR2的抗VEGF抗体或2C3的治疗剂还可以有利地与诱导凋亡的方法联合。上文关于本发明免疫缀合物的方面描述了多种诱导凋亡试剂。任何这些诱导凋亡试剂可用于与本发明的联合,而无需连接本发明抗体。
除了上述作为免疫缀合物的诱导凋亡试剂,已鉴定了大量的癌基因,可抑制凋亡或程序性细胞死亡。这类癌基因的范例包括(但不限于)bcr-abl、bcl-2(与bcl-1、细胞周期蛋白D1不同;GenBank编号M14745、X06487;美国专利5,650,491和5,539,094;本文收入作为参考)、和家族成员,包括Bcl-xl、Mcl-1、Bak、A1、A20。bcl-2的过度表达最初是在T细胞淋巴瘤中发现的。bcl-2通过结合并激活Bax(凋亡途径中的一种蛋白质)来发挥癌基因的功能。对bcl-2功能的抑制可防止Bax的激活,并使得凋亡途径能够进行。
本发明包括通过如使用反义核苷酸序列来抑制这类癌基因,由此增强凋亡(美国专利5,650,491、5,539,094、和5,583,034,本文收入作为参考)。
G4.免疫毒素和凝血配体
本发明的治疗方法可以与(其它)免疫毒素和/或凝血配体联合应用,其中免疫毒素和/或凝血配体的靶向部分(如抗体或配体)指向肿瘤细胞、肿瘤血管结构、或肿瘤基质上相对特异性的标记物。与上文讨论的化疗剂和抗血管发生剂一样,靶向毒素或凝血剂的联合应用通常导致加和的、显著高于结合的、或甚至协同的抗肿瘤效果。
一般而言,用于本发明这些额外方面的抗体或配体优选识别优先或特异性表达于肿瘤位点的可接近肿瘤抗原。抗体或配体还优选展示高亲和力特性;而且抗体、配体、或其缀合物在人体内对维持生命的正常组织(诸如选自下组的一种或多种组织)不展示显著体内副作用:心、肾、脑、肝、骨髓、结肠、乳房、前列腺、甲状腺、胆囊、肺、肾上腺、肌肉、神经纤维、胰、皮肤、或人体内其它维持生命的器官或组织。如本文所用,术语“显著副作用”指当体内施用抗体、配体、或其缀合物时只产生可忽略的或临床上易处理的副作用,诸如在化疗过程中经常遭遇的那些副作用。
用于与本发明联合应用的这些第二种抗癌试剂的至少一个结合区是能够将毒素或凝血因子投递至肿瘤区域(即能够定位于肿瘤位点内)的成分。这些靶向试剂可以针对肿瘤细胞、肿瘤血管结构、或肿瘤基质的成分。靶向试剂通常结合肿瘤细胞、肿瘤血管结构或肿瘤基质上的表面表达、表面可接近、或表面定位的成分。然而,一旦开始破坏肿瘤血管结构和肿瘤细胞,将释放内在成分,从而能够进一步靶向事实上任何肿瘤成分。
已经描述了许多肿瘤细胞抗原,其中的任何一种都可以作为靶用于本发明的联合方面。适用于额外免疫毒素和凝血配体进一步靶向的肿瘤细胞抗原包括由抗体B3(美国专利5,242,813,本文收入作为参考);ATCC HB 10575;KSI/4(美国专利4,975,369,本文收入作为参考);由包含载体NRRL B-18356和/或NRRL B-18357的细胞获得的抗体;260F9(ATCC HB 8488);D612(美国专利5,183,756,本文收入作为参考);和ATCC HB 9796识别的抗原。还可以参考随后任何年份的ATCC目录来鉴定产生抗肿瘤细胞抗体的其它适当细胞系。
为了靶向肿瘤血管结构,靶向抗体或配体常常结合血管化肿瘤内血管表达、吸收、诱导、或定位其上的标记物。适当的表达靶分子包括例如endoglin、E-选择蛋白、P-选择蛋白、VCAM-1、ICAM-1、PSMA(Liu等人,1997)、TIE、与LAM-1有反应性的配体、VEGF/VPF受体、FGF受体、αvβ3整联蛋白、pleiotropin、和内皮唾液酸蛋白。合适的吸收靶是诸如VEGF、FGF、TGFβ、HGF、PF4、PDGF、TIMP、结合TIE的配体、和肿瘤相关纤连蛋白异构体。也可以靶向天然或者可用细胞因子和凝血剂人工诱导的抗原,诸如ELAM-1、VCAM-1、ICAM-1、与LAM-1有反应性的配体、endoglin、和甚至II类MHC(细胞因子可诱导的,如用IL-1、TNF-α、IFN-γ、IL-4、和/或TNF-β诱导);和E-选择蛋白、P-选择蛋白、PDGF、和ICAM-1(凝血剂可诱导的,如凝血酶、因子IX/IXa、因子X/Xa、和/或纤溶酶可诱导的)。
本文特别收入下列专利和专利申请作为参考,进一步补充本发明
关于制备和使用针对肿瘤血管结构的表达、吸收、诱导、或定位标记物的免疫毒素的传授:美国申请流水号08/482,369(1998年10月20日交纳颁证费)、美国专利5,855,866、5,965,132、6,051,230、6,004,555、5,877,289、6,004,554、5,776,427、5,863,538、5,660,827、和6,036,955。
其它肿瘤血管结构靶向组合物和方法包括靶向最近发现可接近的肿瘤血管特异性标记物氨基磷脂,诸如磷脂酰丝氨酸和磷脂酰乙醇胺。单独施用抗氨基磷脂抗体足以诱导血栓形成和肿瘤退化。本发明由此能够有效联合未缀合的抗磷脂酰丝氨酸和/或磷脂酰乙醇胺抗体;或者可以使用这些抗体的免疫缀合物。
本文收入下列临时专利申请作为参考,进一步补充本发明关于制备和使用抗氨基磷脂抗体和免疫毒素的传授:临时申请流水号60/092,672(1998年7月13日提交)和临时申请流水号60/092,589(1998年7月13日提交)。本文再次收入申请流水号60/092,589作为参考,进一步补充本发明关于将氨基磷脂结合抗体缀合物(诸如膜联蛋白缀合物)用于将毒素和凝血剂投递至肿瘤血管并诱导血栓形成和肿瘤退化的传授。
合适的肿瘤基质靶包括肿瘤基质或细胞外基质的成分,或其结合的成分;包括基底膜标记物、IV型胶原、层粘连蛋白、硫酸乙酰肝素、蛋白聚糖、纤连蛋白、激活的血小板、LIBS、和肌腱蛋白。优选用于这些用途的靶是RIBS。
本文特别收入下列专利和专利申请作为参考,进一步补充本发明关于制备和使用肿瘤基质靶向剂的传授:美国申请流水号08/482,369(美国专利6,093,399)、08/485,482、08/487,427(美国专利6,004,555)、08/479,733(美国专利5,877,289)、08/472,631、08/479,727、和08/481,904(美国专利6,036,955)。
第二种抗癌治疗剂可以可操作附着本文描述用于基于阻断VEGFR2的抗VEGF抗体或2C3的免疫毒素的任何毒害细胞的或其它抗细胞的试剂。然而,合适的抗细胞试剂还包括放射性同位素。优选毒素部分,诸如蓖麻毒蛋白A链和脱糖基A链(dgA)。
本发明任选使用的第二种靶向剂可以包含能够促进凝血的靶向成分,即凝血配体。由此,靶向抗体或配体可以直接或间接(如经另一种抗体)连接直接或间接刺激凝血的任何因子,包括本文所述用于基于阻断VEGFR2的抗VEGF抗体或2C3的凝血配体中所述的任一种。优选用于这些用途的凝血因子是组织因子(TF)及其衍生物,诸如截短的TF(tTF)、二聚体和多聚体的TF、和激活因子VII能力缺陷的突变体TF。
在治疗癌症时,经静脉内途径以大约1周1次的频率联合使用免疫毒素和凝血配体的有效剂量为大约0.1-2mg/kg,优选大约0.8-1.2mg/kg。根据治疗对象的状态必须对剂量做一些改动。负责施用的医师将为各个受试者确定适当剂量。
G5.ADEPT和药物前体疗法
本发明基于阻断VEGFR2的抗VEGF抗体或2C3的抗体可以与药物前体联合应用,其中基于阻断VEGFR2的抗VEGF抗体或2C3的抗体可操作连接激活药物前体的成分,诸如激活药物前体的酶,它只有在接触抗体时才将药物前体转变成更有活性的形式。这项技术通常称为“ADEPT”,并描述于如WO 95/13095、WO 97/26918、WO 97/24143、美国专利4,975,278和5,658,568(本文特别收入作为参考)。
如本文所用,术语“药物前体”指生物学或制药学活性物质的前体或衍生物形式,与作为基础的亲本药物相比,它对靶细胞(包括肿瘤血管内皮细胞)的毒害细胞的或其它抗细胞的效果下降。优选的是,药物前体或前体形式与“天然”或亲本形式相比毒害细胞的或抗细胞的效果显著降低,或者更优选可以忽略。“药物前体”能够被激活或转变成更有活性的药物亲本形式。
用于制备并使用药物前体的技术属于普通技术人员的技术范围之内。Willman等人(1986)和Stella等人(1985)在本文特别收入作为参考,以补充关于如何制备并使用各种药物前体的描述和传授。可用于本发明的药物前体构建物的范例包括(但不限于)含磷酸的药物前体(美国专利4,975,278)、含硫代磷酸的药物前体、含硫酸的药物前体、基于肽的药物前体(美国专利5,660,829、5,587,161、5,405,990、WO 97/07118)、D-氨基酸修饰的药物前体、糖基化的药物前体(美国专利5,561,119、5,646,298、4,904,768、5,041,424)、含β-内酰胺的药物前体、任选含取代的苯氧基乙酰胺的药物前体(美国专利4,975,278)、任选含取代的苯乙酰胺的药物前体、甚至5-氟胞嘧啶(美国专利4,975,278)和5-氟尿嘧啶药物前体等等(本文特别收入每一项专利作为参考)。
可以以药物前体形式使用的治疗剂或毒性细胞毒性药物的类型事实上是无限的。优选以这种形式投递的细胞毒性剂比凝血剂多,凝血剂较不优选以药物前体的形式使用。在制备药物前体中需要的只是对构建物进行设计,使得药物前体基本上无活性,而“释放的”或激活的药物具有显著活性或者至少足以达到预定目的的活性。
正如WO 95/03830、EP 751,144(蒽环霉素)、WO 97/07097(环丙基吲哚(cyclopropylindole))、和WO 96/20169中公开的,还知道对原始药物前体的多种改进,本文也涵盖其使用。例如,美国专利5,621,002(本文特别收入作为参考)中描述了Km降低的药物前体,可用于本发明的内容。正如WO 96/03151(本文特别收入作为参考)所例示的,还知道在细胞内进行的药物前体疗法,本文可以进行实践。
为了用于ADEPT,将激活或转变药物前体形成更有活性药物的试剂可操作附着于阻断VEGFR2的抗VEGF抗体或2C3样抗体。阻断VEGFR2的抗VEGF抗体或2C3样抗体由此将药物前体转变能力定位于血管发生位点,优选肿瘤血管结构和基质内,从而只在这些区域产生有活性的药物,循环或健康组织中却没有。
可附着于基于阻断VEGFR2的抗VEGF抗体或2C3的抗体从而发挥激活药物前体功能的酶包括(但不限于)与含磷酸的药物前体联合使用的碱性磷酸酶(美国专利4,975,278);与含硫酸的药物前体联合使用的芳香硫酸酶(美国专利5,270,196);与基于肽的药物前体联合使用的肽酶和蛋白酶,诸如沙雷氏菌蛋白酶、嗜热菌蛋白酶、枯草杆菌蛋白酶、羧肽酶(美国专利5,660,829、5,587,161、5,405,990)、和组织蛋白酶(包括组织蛋白酶B和L)、与D-氨基酸修饰的药物前体联合使用的D-丙氨酰羧肽酶;与糖基化的药物前体联合使用的碳水化合物切割酶,诸如β-半乳糖苷酶和神经氨酸酶(美国专利5,561,119和5,646,298);与含β-内酰胺的药物前体联合使用的β-内酰胺酶;与在氨基氮处用苯氧基乙酰胺或苯基乙酰胺基团衍生的药物联合使用的青霉素酰胺酶,诸如青霉素V酰胺酶(美国专利4,975,278)或青霉素G酰胺酶;和与基于5-氟胞嘧啶的药物前体(美国专利4,975,278)联合使用的胞嘧啶脱氨酶(美国专利5,338,678和5,545,548)(本文特别收入每一项专利作为参考)。
具有酶活性的抗体(称为催化性抗体或“抗体酶(abzyme)”)也可用于将药物前体转变成有活性的药物。基于阻断VEGFR2的抗VEGF抗体或2C3样抗体的抗体酶由此构成本发明的另一方面。用于制备抗体酶的技术属于本领域普通技术人员的技术范围之内,例如Massey等人(1987,本文特别收入作为参考)以补充关于抗体酶的传授。正如EP745,673(本文特别收入作为参考)所述,还进一步包括能够催化药物前体在氨基甲酸酯处断裂的催化性抗体。
H.诊断学和成像
本发明还提供了供体外和体内使用的诊断和成像方法。这些方法可用于产生任何血管发生性疾病的诊断、预后、或成像信息,以关节炎、牛皮癣、和实体瘤为例示,但是还包括本文公开的所有血管发生性疾病。除肿瘤诊断和成像领域之外,本发明的这些方面最优选用于体外诊断性检验,优选的情况是以非侵入方式获得样品并在高通量测定法中进行检验,和/或临床诊断不明且需要确认时。
H1.免疫检测方法和试剂盒
在其它实施方案中,本发明涉及用于结合、纯化、除去、量化、或一般性检测VEGF和用于诊断血管发生性疾病的免疫检测方法。本发明阻断VEGFR2的抗VEGF抗体(诸如2C3)可用于在体内对分离的组织样品、活组织样品或swab和/或匀浆组织样品检测VEGF(见下文)。这些免疫检测方法具有明显的诊断效用,而且还可用于非临床样品,诸如抗原样品的滴定等。
诸如Nakamura等人(1987,本文收入作为参考)等科学文献已经描述了各种有用的免疫检测方法的步骤。免疫结合方法通常包括:获得怀疑含有VEGF的样品,并在能够有效形成免疫复合物的条件下使样品接触阻断VEGFR2的抗VEGF抗体(诸如2C3)。在这些方法中,抗体可以连接在固相支持物上,诸如柱基质的形式,并将怀疑含有VEGF的样品应用于固定化的抗体。
免疫结合方法更优选的包括用于检测或量化样品中VEGF的方法,这些方法要求检测或量化结合过程中形成的任何免疫复合物。这时,先获得怀疑含有VEGF的样品,并使该样品接触本文的抗体,然后检测或量化在特定条件下形成的免疫复合物的量。
分析的生物学样品可以是怀疑含有VEGF的任何样品,通常来自怀疑患有血管发生性疾病的动物或患者。样品可以是组织切片或标本、活组织样品、待测样品条或涂片、匀浆组织提取物、或者其分离的或纯化的形式。
在能够形成免疫复合物(初级免疫复合物)的有效条件和足够时间下使选定的生物学样品接触抗体,通常也就是简单的向样品中加入抗体组合物,并且将混合物温育足够长的时间以使抗体能够形成免疫复合物(即结合存在的任何VEGF)。而此后,通常清洗样品-抗体组合物,诸如组织切片、ELISA板、点印渍、或Western印渍,从而除去任何非特异性结合的抗体,使得只能检测到初级免疫复合物中特异性结合的抗体。
本领域众所周知免疫复合物形成的检测,而且可以通过多种方法来实现。这些方法通常基于标志或标记物的检测,诸如本领域已知的放射性、荧光、生物学、或酶学标签或标记。关注这些标记物应用的美国专利包括3,817,837、3,850,752、3,939,350、3,996,345、4,277,437、4,275,149、和4,366,241(本文收入作为参考)。通常优选使用在接触显色底物后产生有色产物的酶。正如本领域知道的,也可以使用第二种结合配体,诸如二抗或生物素/抗生物素蛋白配体结合安排。
在检测中采用的阻断VEGFR2的抗VEGF抗体自身可以连接可检测标记物,然后可以通过简单的检测这种标记物来测定组合物中初级免疫复合物的量。
优选通过使用对本发明抗体具有结合亲和力的第二种结合配体的方法来检测初级免疫复合物。在这些情况中,第二种结合配体可以连接可检测标记物。第二种结合配体自身常常是抗体,因此可以称为“二抗”。在能够形成次级免疫复合物的有效条件和足够时间下,使初级免疫复合物接触经标记的第二种结合配体或抗体。然后通常清洗次级免疫复合物以除去任何非特异性结合的经标记第二种配体或抗体,并检测次级免疫复合物中的剩余标记物。
其它方法包括通过两步法来检测初级免疫复合物。如上所述,使用对一抗具有结合亲和力的第二种结合配体(诸如抗体)来形成次级免疫复合物。清洗后,再次在能够形成免疫复合物(三级免疫复合物)的有效条件和足够时间下,使次级免疫复合物接触对二抗具有结合亲和力的第三种结合配体或抗体。第三种配体或抗体连接了可检测标记物,能够检测由此形成的三级免疫复合物。如果需要,该系统可以提供信号放大。
在对患有血管发生性疾病的患者的临床诊断或监测中,相对于来自正常主体的相应生物学样品,检测到VEGF的存在或VEGF水平的升高指示患者患有血管发生性疾病。
但是,正如本领域技术人员所知道的,不能孤立的根据这种方法来进行临床诊断。本领域技术人员非常熟悉任何区分代表阳性鉴定的生物标记的显著表达与生物标记的低水平或背景表达。事实上,常常将背景表达水平作为“取舍点”(cut-off),比它更多的染色将评为显著或阳性。
H2.成像
本发明的这些方面优选用于肿瘤成像方法和联合肿瘤治疗与成像方法。预计连接了一种或多种可检测试剂的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体可用于成像本身,或者用于在治疗前对肿瘤预先成像形成可靠的影像。这些组合物和方法还可用于任何其它血管发生性疾病或状况的成像和诊断,特别是非恶性肿瘤、动脉粥样硬化、和为了诊断或预后目的或者为了设计治疗而需要内部影像的状况。
基于阻断VEGFR2的抗VEGF抗体或2C3的成像抗体通常包含基于阻断VEGFR2的抗VEGF抗体或2C3的抗体,以及与之有效附着或缀合的可检测标记物。“可检测标记物”指能够根据其特定功能特性或化学特征而进行检测的化合物或元素,其使用使得能够检测所附着的成分,如果需要,还可以进一步量化。在用于体内诊断方案或“成像方法”的抗体缀合物中,要求能够使用非侵入式方法来检测的标记物。
本领域知道许多适当的成像剂,以及将它们附着于抗体或结合配体的方法(参阅如美国专利5,021,236和4,472,509,本文收入作为参考)。某些附着方法涉及使用金属螯合复合物将例如有机螯合剂(诸如DTPA)附着于抗体(美国专利4,472,509)。在存在偶联剂(诸如戊二醛或高碘酸盐)时,也可以使单克隆抗体与酶发生反应。在存在这些偶联剂时,或者通过与异硫氰酸酯的反应,来制备包含荧光素标记物的缀合物。
可检测标记物的范例是顺磁离子。在这种情况中,合适的离子包括铬(III)、锰(II)、铁(III)、铁(II)、钴(II)、镍(II)、铜(II)、钕(III)、钐(III)、镱(III)、钆(III)、钒(II)、铽(III)、镝(III)、钬(III)、和铒(III),特别优选的是钆。
可用于其它内容(诸如X射线成像)的离子包括(但不限于)镧(III)、金(III)、铅(II)、和特别是铋(III)。荧光标记物包括若丹明、荧光素、和肾造影剂。常常经异硫氰酸酯中间介质来连接若丹明和荧光素。
在用于诊断性应用的放射性同位素的情况中,合适的范例包括14碳、51铬、36氯、57钴、58钴、铜67152铕、镓673氢、碘123、碘125、碘131、铟11159铁、32磷、铼186、铼18875硒、35硫、锝99m、和钇90125I常常优选用于某些实施方案,而锝99m和铟111因它们的低能量和对长期检测的适应性也常常是优选的。
可以参照本领域众所周知的方法产生用于本发明的放射性标记的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体。例如,常用于使放射性同位素金属离子结合在抗体上的中介官能基是二乙撑三胺五乙酸(DTPA)和乙二胺四乙酸(EDTA)。
也可以通过接触碘化钠或碘化钾与化学氧化剂(诸如次氯酸钠)或酶氧化剂(诸如乳过氧化物酶)使单克隆抗体碘化。可以通过配体交换方法用锝99m标记本发明的抗体,例如,通过用亚锡溶液还原过锝酸盐,将还原的锝螯合到Sephadex柱上,并将抗体应用于该柱;或者通过直接标记技术,如将过锝酸盐、还原剂(诸如SNCl2)、缓冲液(诸如邻苯二甲酸钠钾溶液)、与抗体一起温育。
任何上述类型的经可检测标记的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体都可用于本发明的成像或联合成像/治疗方面。它们同样适用于体外诊断。用于体内成像方案的剂量通常低于治疗剂量,但是同样取决于患者的年龄和体重。一次剂量应当是足够的。
体内诊断或成像方法通常包括对患者施用诊断有效量的缀合了非侵入式方法可检测的标记物的基于阻断VEGFR2的抗VEGF抗体或2C3的抗体。给予足够时间使抗体-标记物缀合物定位并结合肿瘤内的VEGF。然后将患者暴露于检测装置,以鉴定可检测标记物,由此形成肿瘤影像。
H3.诊断剂盒
在其它实施方案中,本发明提供了用于上述免疫检测和成像方法的诊断剂盒,包括免疫检测和成像试剂盒两种。因此,试剂盒中提供了阻断VEGFR2的抗VEGF抗体,诸如2C3,通常装在合适的容器中。
对于免疫检测,抗体可以结合在固相支持物上,诸如微量滴定板的孔,但是优选抗体溶液或用于重建的粉剂。免疫检测试剂盒优选包含至少一种免疫检测试剂。试剂盒中的免疫检测试剂可以采取多种形式,包括连接或结合了指定抗体的可检测标记物。还包括连接或附着了第二种结合配体的可检测标记物。例示性的第二种配体是对一抗具有结合亲和力的二抗。
适用于本试剂盒的其它免疫检测试剂包括二组分试剂,其中包含对一抗具有结合亲和力的二抗,对二抗具有结合亲和力的三抗,其中三抗连接了可检测标记物。如上所述,本领域已知大量的例示性标记物,而且所有这些标记物都可用于本发明。这些试剂盒可以以完全缀合形式、中间体形式、或分开的部分(由试剂盒使用者进行缀合)提供抗体-标记物缀合物。
成像试剂盒优选包含已附着体内可检测标记物的阻断VEGFR2的抗VEGF抗体,诸如2C3。但是可以分开提供标记物和附着方法。
这两种试剂盒还可以包含对照试剂,诸如适当分装的VEGF组合物,已标记或未标记的均可,可用于绘制检测测定法的标准曲线。可以以水性溶剂或冻干形式包装试剂盒成分。
试剂盒的容器装置通常包括至少一种药水瓶、试管、烧瓶、玻璃瓶、注射器、或其它容器,其中装有抗体或抗原,且优选适当分装。当提供第二种或第三种结合配体或其它成分时,试剂盒通常还包含第二种、第三种、或其它容器,其中装有该配体或成分。试剂盒还可以包含用于诊断任何一种或多种血管发生性疾病的其它诊断剂。优选使用不基于VEGF结合的第二种诊断剂。
本发明的试剂盒通常还包括用于包装抗体的方法和装有任何其它试剂以供出售的密封容器。这些容器可以包括注射或吹制成型的塑料容器,其中装有所需药水瓶。
                         实施例
下列实施例演示了本发明的优选实施方案。本领域技术人员应当认识到,下列实施例中公开的技术代表了发明人发现的技术在本发明的实践中运作良好,由此认为构成了其实践的优选方法。然而,本领域技术人员根据本公开书应当认识到,在公开的特点实施方案中可以进行许多变化而仍获得相同或相似的结果,不偏离本发明的精神和范围。
实施例1.抗VEGF抗体2C3的产生和独特特征
A.材料和方法
1.免疫原
使用达拉斯UT西南医学中心Howard Hughes医学院的生物聚合物设备,合成了对应于人VEGF N端26个氨基酸的肽(huVEGF;SEQ ID NO:10)和对应于豚鼠VEGF N端25个氨基酸的肽(gpVEGF;SEQ ID NO:11)。这两种肽的序列如下(N→C):
APMAEGGGQNHHEVVKFMDVYQRSYC;SEQ ID NO:10;和
APMAEGEQKPREVVKFMDVYKRSYC;SEQ ID NO:11。
经C端半胱氨酸,使用琥珀酰亚胺4-(N-马来酰亚胺甲基)环己酯烷-1-羧酸(SMCC)接头(Pierce,Rockford,IL),将肽与甲状腺球蛋白缀合。还制备了对照缀合物,其包含连接了甲状腺球蛋白的L-半胱氨酸。通过大小排阻层析,将缀合物与游离肽或接头分开。
重组人VEGF也单独作为免疫原使用(由明尼苏达大学的S。Ramakrishnan博士处获得,Minneapolis,MN)。
2.杂交瘤
为了产生生成抗gpVEGF抗体的杂交瘤,用于TiterMax佐剂(CytRX公司,Norcross,GA)中的gpVEGF肽-甲状腺球蛋白缀合物免疫C57/B1-6小鼠。为了产生抗人VEGF抗体,用于TiterMax中的huVEGF肽-甲状腺球蛋白缀合物或重组人VEGF免疫BALB/c小鼠。最后一次加强后3天,将脾细胞与骨髓瘤P3X63AG8.653(美国典型培养物收藏中心,Rockville,MD)细胞进行融合,并如Morrow等人(1990;本文收入作为参考)所述进行培养。
3.抗体纯化
通过硫酸铵沉淀和蛋白A层析(使用Pierce ImmunoPure结合/纯化缓冲系统(Pierce),由此由组织培养液上清纯化IgG抗体(2C3、12D7、3E7)。
通过50%饱和硫酸铵沉淀、将沉淀重悬于PBS(pH7.4)、并对dH2O进行透析以沉淀优球蛋白,由此由组织培养液上清纯化IgM抗体(GV39M、11B5、7G3)。将dH2O沉淀重悬于PBS,并通过大小排阻层析在Sepharose S300层析柱(Pharmacia)上进行分离。IgM部分为85-90%纯(由SDS-PAGE鉴定)。
4.对照抗体
贯穿这些研究使用了多种对照抗体,包括mAb4.6.1(来自Genentech公司的小鼠抗人VEGF)、Ab-3(来自OncogeneScience公司的小鼠抗人VEGF)、A20(来自Santa Cruz Biotechnology公司的兔抗人VEGF)、OX7(小鼠抗大鼠Thy1.1,来自A.F.Williams博士,MRC细胞免疫学部,牛津,英国)、MTSA(具有无关特异性的小鼠骨髓瘤IgM,来自UT西南医学中心的E.S.Vitetta博士,达拉斯,TX)、1A8(小鼠抗小鼠Flk-1,来自Philip E.Thorpe及其同事)、MECA 32(大鼠抗小鼠内皮,来自斯坦福大学的E.Butcher博士,斯坦福,CA)、和TEC 11(小鼠抗人endoglin,美国专利号5,660,827)。
5.初步筛选
对于初步筛选,用250ng VEGF肽或VEGF-Cys-甲状腺球蛋白缀合物包被96孔ELISA平板(Falcon,Franklin Lakes,NJ),并用5%酪蛋白酸性水解物(Sigma,圣路易斯,MO)进行封闭。在抗原包被平板上,通过双重间接技术(Crowther,1995),对来自抗gpVEGF杂交瘤和最初的抗人VEGF杂交瘤的上清液进行筛选。
对显示与VEGF肽-甲状腺球蛋白优先反应、与Cys-甲状腺球蛋白不反应或微弱反应的杂交瘤,通过免疫组织化学(下文所述)在肿瘤组织的冷冻切片上进行进一步的筛选。
6.免疫组织化学
将豚鼠系10肝细胞癌肿瘤细胞(由NIH的Ronald Neuman博士处获得,Bethesda,MD)在豚鼠株2(NCI,Bethesda,MD)中进行培养。将人肿瘤NCI-H358非小细胞肺癌(non-small cell lung carcinoma,NSCLC)、NCI-H460 NSCLC(二者都由UT西南医学中心的Adi Gazdar博士处获得,达拉斯,TX)、HT29结肠腺癌(美国典型培养物收藏中心)、和L540CY Hodgkin氏淋巴瘤(由V.Diehl教授处获得,Cologne,德国)作为异种移植物在CB17 SCID小鼠(Charles River,Wilmington,MA)中进行培养。
将肿瘤在液氮中快速冷冻,并保存于-70℃。来自患者的肿瘤标本的冷冻样品是由国家癌症学会人类组织协作网(National CancerInstitute Cooperative Human Tissue Network)(南方分部,伯明翰,AL)获得的。如Burrows等人(1995)所述,进行免疫组织化学。
7.ELISA分析
通过采用3种不同抗原(人VEGF单用;VEGF:Flk-1/SEAP复合物;和Flk-1/SEAP单用)的差异间接ELISA技术,对来自用VEGF免疫的动物的杂交瘤上清液进行筛选。对于人VEGF单用,用100ng VEGF包被某些ELISA平板。
对于Flk-1/SEAP单用,用500ng Flk-1/SEAP包被其它ELISA平板,Flk-1/SEAP是小鼠VEGF受体的可溶性形式(分泌Flk-1/SEAP的细胞由普林斯顿大学的Ihor Lemischka博士处获得,普林斯顿,NJ)。如Tessler等人(1994)所述,生成并纯化Flk-1/SEAP蛋白质。基本上,在Spodopterafrugiperda(Sf9)细胞中生成Flk-1细胞外结构域(sFlk-1),并通过免疫亲和技术利用单克隆抗Flk-1抗体(1A8)进行纯化。然后将sFlk-1进行生物素化,并结合到抗生物素蛋白包被平板上。
为了制备用VEGF:Flk-1/SEAP复合物包被的平板,将纯化的sFlk-1进行生物素化,并与VEGF于4℃在结合缓冲液(10mM HEPES、150mM NaCl、20μg/ml牛血清清蛋白、和0.1μg/ml肝素)中反应过夜,以促进二聚体的形成,sFlk-1:VEGF摩尔比为2.5∶1。然后将VEGF:sFlk-1复合物在抗生物素蛋白包被的96孔板的孔中进行温育,以产生用与其受体结合的VEGF包被的平板。
然后,在抗生物素蛋白包被平板上用3种抗原在受控研究中测定抗体与单独的VEGF、生物素化的sFlk-1、和VEGF:sFlk-1复合物的反应性。如上文初步筛选所述测定反应性。
还开发了捕获ELISA。在捕获ELISA中,用100ng指定抗体于4℃包被微量滴定板过夜。清洗孔,并如上所述封闭,然后与各种浓度的生物素化VEGF或VEGF:sFlk-1-生物素一起温育。将链霉亲和素与过氧化物酶的缀合物(Kirkegaard & Perry Laboratories,Inc.)以1∶2000稀释,并开发作为第二层使用。
首先用过氧化物酶按照制造商的指示(EZ-Link ActivatedPeroxidase,Pierce)进行竞争性ELISA研究。用于12D7、3E7、2C3、和7G3的竞争性研究的抗原是由ELISA板上的抗生物素蛋白捕获的VEGF-生物素。将大约0.5-2.0μg/ml过氧化物酶标记的待测抗体在平板上在仅存在缓冲液、或存在无关IgG、或过量10-100倍其它抗VEGF竞争性抗体的情况中进行温育。
加入3,3’,5,5’-四甲联苯胺(TMB)底物(Kirkegaard and PerryLaboratories公司)来评价经标记抗体的结合。15分钟后用1M H3PO4终止反应,并于450nm读取分光光度计读数。进行3次测定,经标记抗体与竞争抗体的每种组合至少2次。如果两种抗体之间交叉阻断对方的结合超过了80%,则认为这两种抗体属于相同表位组。
GV39M和11B5在过氧化物酶标记后丧失了结合活性,但是耐受生物素化。对GV39M和11B5进行生物素化,并针对由抗Flk-1抗体(1A8)捕获的或在ELISA板上直接包被的VEGF:sFlk-1进行检验。
8.Western印渍分析
通过还原和非还原条件下的12%SDS-PAGE分离存在5%胎牛血清中的纯化的重组VEGF,并转移至硝酸纤维素膜。使用Sea-BlockPP82-41(East Coat Biologics,Berwick,ME)封闭硝酸纤维素膜,并使用微型印渍装置(Immunetics,剑桥,MA)用一抗(primaryantibody)进行探查。温育后用合适的过氧化物酶缀合的二抗(secondary antibody)通过ECL增强型化学发光法对膜进行显色。
B.结果
1.2C3具有独特的表位特异性
表1概述了关于不同抗VEGF抗体类/亚类、它们在VEGF上识别的表位组、和它们优先结合VEGF或VEGF:受体(VEGF:Flk-1)复合物的信息。在所有情况中,抗体与VEGF121和VEGF165的结合一样好,基本上产生相同结果。下面是VEGF165的结果,除非另有规定。
                    表1.抗VEGF抗体性质的概述
  表位组1 克隆 同种型   VEGF免疫原2 主要活性3
  1122344集中于第89-94位氨基酸附近   GV39M11B53E77G312D72C3A4.6.1   IgM,kIgM,kIgG1,1IgM,kIgG1,kIgG2a,kIgG1   Gp N端Hu N端Hu N端Hu N端Hu N端rHu VEGF   VEGF:Flk-1VEGF:Flk-1VEGF和VEGF:Flk-1VEGF和VEGF:Flk-1VEGFVEGFVEGF
1.表位组是通过竞争ELISA确定的。
2.用对应于人VEGF N端26个氨基酸(11B5、3E7、7G3、和12D7)、豚鼠VEGF N端25个氨基酸(GV39M)、或全长的重组人VEGF(2C3)的合成肽免疫小鼠。
3.在间接和捕获ELISA中对抗体筛选与VEGF或与sFlk-1相连的VEGF(VEGF:Flk-1)的反应性。
4.A4.6.1具有精确确定表位,与2C3识别的第4表位组不同。Kim等人(1992)、Wiesmann等人(1997)、Muller等人(1998)、和Keyt等人(1996)(本文都收入作为参考)报导了A4.6.1研究。
使用生物素化或过氧化物酶标记的待测抗体和10至100倍过量的未标记竞争抗体的竞争结合研究,显示2C3结合唯一表位。这些研究首先揭示了GV39M和11B5相互之间交叉阻断与VEGF:FLK-1的结合,3E7和7G3相互之间交叉阻断对方结合抗生物素蛋白捕获的VEGF-生物素。任意的将GV39M和11B5指定为第1表位组,将3E7和7G3指定为第2表位组。
2C3和剩余抗体12D7不显著干预对方或剩余抗体结合VEGF或VEGF:受体。将12D7指定为第3表位组,将2C3指定为第4表位组(表1)。
如上文列表,2C3与抗体A4.6.1识别不同表位。发明人的竞争研究显示,2C3与A4.6.1没有交叉反应性。由A4.6.1识别的表位也已精确确定,是集中于第89-94位氨基酸附近的连续表位(Kim等人,1992;Wiesmann等人,1997;Muller等人,1998;Keyt等人,1996;本文都收入作为参考)。在2C3与A4.6.1之间还存在大量的已知差异(见下文)。
2.2C3能够结合游离的VEGF
这些抗体结合游离和复合形式的可溶性VEGF的能力存在显著差异(表2)。这些研究提供了2C3独特本质的进一步证据。表2显示了GV39M和11B5强烈偏爱VEGF:受体复合物,与VEGF:Flk-1的最大结合半值分别在5.5和2nM达到,相比之下,与溶液中游离VEGF的最大结合半值分别在400和800nM达到。
正相反,2C3和12D7偏爱游离的VEGF,最大结合半值分别在1和20nM达到,相比之下,与VEGF:Flk-1复合物的最大结合半值分别在150和250nM达到。然而,2C3在注射到体内后定位于肿瘤血管结构和肿瘤基质(见下文)。
3E7结合游离VEGF和VEGF:Flk-1复合物的能力同样好,二者的最大结合半值均在1nM达到。
                    表2.VEGF与VEGF:Flk-1的ELISA捕获
  克隆   达到最大结合50%的浓度(nM)1   VEGF/VEGF:Flk-1的比值2
  VEGF   VEGF:Flk-1
  GV39M11B53E712D72C3mAb 4.6.131A8对照   400*800*0.92010.3NR4NR   5.521250*150500*1.5600*   72.7400.00.90.10.0070.0006
*外推值。
1.用生物素化的VEGF和生物素化的sFlk-1与VEGF的复合物3次滴定用指定抗体包被的孔,然后用过氧化物酶标记的抗生物素蛋白显色,由此测定最大结合半值。
2.大于1.0的比值指示抗体偏爱复合物(VEGF:Flk-1),而小于1.0的比值指示偏爱VEGF。
3.所用对照抗体包括1A8(小鼠抗Flk-1)、mAb 4.6.1(来自Genentech的小鼠抗人VEGF)、和作为阴性对照的无关IgM。
4.NR=没有检测到反应。
3.2C3识别不依赖构象的表位
Western印渍分析显示,在还原和非还原条件下,12D7、2C3、和7G3与变性的VEGF121和VEGF165发生反应。因此这些抗体看来是识别非构象依赖型表位的。
正相反,GV39M、11B5、和3E7不与Western印渍上的VEGF发生反应,可能因为它们识别VEGF N末端上的构象依赖型表位,该表位在变性条件下变形。
进行了抗VEGF抗体的Western印渍分析,即12%凝胶上进行SDS-PAGE分离VEGF165含5%FCS的,并通过标准Western印渍方案使用ECL检测进行分析。将一抗与硝酸纤维素膜一起在多道微型杂交仪中温育。对照抗体包括Ab-3、来自0ncogene Science的VEGF特异性单克隆抗体IgG(1μg/ml)、来自Santa Cruz Biotechnology公司的兔抗VEGF抗体(5μg/ml)、和具有无关特异性的IgG(10μg/ml)。
不同抗体(包括5μg/ml的2C3)的典型Western印渍显示大约42kDa的二聚体VEGF大条带。12D7、7G3、和阳性对照抗体显示大约130kDa的多聚体VEGF。
4.肿瘤免疫组织化学
通过免疫组织化学检验的肿瘤是来自癌症患者的各种类型的人肿瘤、到小鼠中生长的各种类型的可移植人肿瘤异种移植物、在豚鼠中生长的豚鼠系10肿瘤、和小鼠中的小鼠3LL肿瘤(详情见表3的说明)。
测定了3E7、GV39M、和11B5对NCI-H358人NSCLC异种移植物的免疫组织化学反应性,并与对照抗体(具有无关特异性的IgG;A-20,兔抗VEGF抗体;和MECA 32,大鼠抗小鼠内皮细胞抗体)进行比较。使用间接免疫过氧化物酶技术对SCID小鼠中NCI-H358人NSCLC的8μm冷冻切片进行染色,并苏木精进行复染。
测定发现,识别VEGF上表位组1的GV39M和11B5在检验的所有肿瘤中使血管内皮细胞强烈染色,使血管周围结缔组织中度染色。表位组1抗体与肿瘤细胞的反应性是不同的,GV39M与肿瘤细胞只微弱反应,而11B5的反应更强烈。被MECA 32(小鼠)或TEC 11(人)染色的内皮细胞中有大约80%也被GV39M和11B5染色。
识别VEGF表位组2的3E7和7G3在检验的所用肿瘤中显示与血管内皮细胞、结缔组织、和肿瘤细胞有反应性(表3)。内皮细胞的染色强度通常比肿瘤细胞或结缔组织强烈,特别是以低浓度(1-2μg/ml)应用抗体时,对血管内皮的选择性显著增加。
          表3.抗VEGF抗体在肿瘤切片上的免疫组织化学反应性
  组   克隆1   反应性2   内皮细胞染色
  异种移植物3(多种)   人肿瘤4(多种)   豚鼠肿瘤5(系10)   小鼠肿瘤6(3LL)
  112234   GV39M11B53E77G312D72C3   EC>CT>TCEC>CT=TCEC>CT=TCEC>CT=TCNRNR   3-4+3+2+3+--   2-3+3+2+2-3+--   4+3+2+3+--   3+3+1-2+2+--
通过标准免疫组织化学技术在丙酮固定的肿瘤组织冷冻切片上进行免疫组织化学分析。对切片进行显微镜检查,并如下对反应性进行评分:-,阴性;+/-,很微弱;1+,微弱;2+,中等;3+,强烈;4+,很强烈。
1.2C3和12D7以20μg/ml应用;所有其它抗体以5-10μg/ml应用。
2.反应性定义:EC=内皮;CT=结缔组织;TC=肿瘤细胞;NR=没有反应。
3.检验的人肿瘤异种移植物:NCI-H358 NSCLC、NCI-H460 NSCLC、HT29结肠腺癌、L540Hodgkin氏淋巴瘤。
4.检验的人肿瘤:软组织肉瘤、Hodgkin氏淋巴瘤、肾癌、乳房癌、腮腺癌、结肠癌、肺癌、和子宫内膜癌。
5.与系10豚鼠肿瘤切片中豚鼠VEGF的反应性。
6.与小鼠3LL Lewis肺癌肿瘤切片中小鼠VEGF的反应性。
12D7和2C3不使任何肿瘤组织的冷冻切片染色,大概是因为组织的丙酮固定破坏了抗体结合。然而,2C3在注射到体内后定位于肿瘤组织(见下文)。
GV39M、11B5、3E7、和7G3与在豚鼠中生长的豚鼠系10肿瘤和在小鼠中生长的小鼠3LL肿瘤的冷冻切片上的啮齿类血管结构发生反应。GV39M、11B5、和7G3与豚鼠和小鼠肿瘤血管结构的反应性和它们与人肿瘤标本中人血管结构的反应性一样强烈。3E7使小鼠3LL肿瘤的染色强度低于它使豚鼠或人肿瘤切片的染色强度,说明3E7与小鼠VEGF的亲和力较低。这些结果与间接ELISA分析是一致的。在间接ELISA中,除2C3以外的所有抗体均与小鼠VEGF发生反应。
实施例2.2C3抑制内皮细胞迁移
A.材料和方法
内皮细胞生长测定
将成年牛主动脉内皮(adult bovine aortic endothelial,ABAE)细胞以1500细胞/孔的浓度铺在96孔组织培养板中,并在存在0.5nM人VEGF、加入各种样品和对照抗体的情况中进行培养。对照孔接受含或不含VEGF的培养基。
温育4天后,通过MTS(3-(4,5-二甲基噻哇-2-基)-5-(3-羧基甲氧基苯基)-2-(4-磺苯基)-2H-四唑鎓盐,内盐)转变测定法进行量化,其中MTS转变成甲 的量与细胞数目成比例,而且可以通过490nM的吸光率进行追踪(Cell Titer 96 Aqueous One Solution CellProliferation Assay,Promega,Madison,WI)。参照制造商的指示进行测定。
通过减去未加入VEGF培养物的MTS转变来评估细胞生长。结果以相对于只加入VEGF的对照培养物的MTS转变的百分比来表述(Buttke等人,1993)。
B.结果
对VEGF介导的内皮细胞生长的抑制
识别VEGF上表位组1-3的IgG抗体3E7和12D7不抑制VEGF介导的ABAE细胞生长(图1),说明它们是非阻断性的抗VEGF抗体,这类抗体的表位不涉及VEGF:KDR相互作用。同样识别VEGF上表位组1-3的IgM抗体GV39M也不抑制VEGF介导的ABAE细胞生长,也是非阻断性的抗VEGF抗体。
相反的,针对VEGF上表位4的2C3和参考的中和性抗VEGF抗体mAb4.6.1分别在3nM和1nM将VEGF介导的ABAE细胞生长抑制了50%(图1)。这说明2C3能够中和VEGF的促有丝分裂活性。
2C3作为阻断性mAb的定义区别了2C3与GV39M、3E7、和12D7以及其它一系列抗体。已知多种抗VEGF抗体(诸如Ab-3)是非阻断性的单克隆,与2C3明显不同。
IgM抗体之一,11B5,在8nM或更高浓度对ABAE细胞有毒性。细胞在30分钟内分离,并在24小时内摄取锥虫蓝染料。这种效果似乎具有细胞种类特异性,因为甚至当11B5的浓度达到40nM时,HUVEC、猪主动脉内皮细胞、和bEND.3细胞也不受11B5的影响。11B5的有毒效果似乎不依赖生长因子,因为它在不加入VEGF时和存在碱性成纤维细胞生长因子(bFGF)时均发生。
实施例3.2C3在体内特异性定位于肿瘤
A.材料和方法
趋向人肿瘤异种移植物的体内定位
在免疫缺损的小鼠的皮下培养肿瘤(NCI-H358 NSCLC在nu/nu小鼠中,HT29结肠腺癌在SCID小鼠中)直至肿瘤体积达到大约1cm3。经尾静脉给SCID小鼠静脉内注射100μg未标记抗体,给裸鼠静脉内注射100μg生物素化抗体。24小时后,麻醉小鼠,用PBS灌注,收集肿瘤和器官,包括心、肺、肝、肾、肠、和脾,并在液氮中快速冷冻。
在低温恒温器上对来自每只小鼠的肿瘤和器官进行切片,并如上所述对抗体进行免疫组织化学染色,其中不同处是来自裸鼠的切片用过氧化物酶标记的链霉亲和素-生物素复合物(Dako,Carpinteria,CA)进行显色,来自SCID小鼠的切片用两种过氧化物酶缀合的二抗进行显色,其中先用山羊抗小鼠IgG+IgM,随后是兔抗山羊IgG。
B.结果
在携有肿瘤的小鼠中的体内定位
测定了2C3、3E7、和GV39M在人肿瘤异种移植物中的体内定位。将100μg生物素化的2C3或同种型匹配的对照IgG静脉内注射到携有NCI-H358人NSCLC的nu/nu小鼠中。将100μg GV39M和3E7或同种型匹配的对照IgG注射到携有HT29人结肠腺癌的SCID小鼠中。24小时后,处死小鼠,放血,并切下肿瘤和组织。对肿瘤和组织的冷冻切片进行免疫组织化学分析,以测定抗体的结合和分布(表4)。
             表4.抗VEGF抗体在携有肿瘤小鼠中的组织分布
  抗体   免疫组织化学反应性
  心   肺   肝   肾1   肠   脾   肿瘤2
  2C33E7GV39M对照3   ----   ----   ----   --2+-   ----   ----   3+1-2+2+-
在丙酮固定的组织冷冻切片(包括肿瘤)上进行免疫组织化学分析。作为切片来源的携有肿瘤小鼠在静脉内接受100mg指定抗体后24小时处死。对切片进行显微镜检查,并如下对特异反应性进行评分:-,阴性;+/-,很微弱;1+,微弱;2+,中等;3+,强烈;4+,很强烈。
1.GV39M特异性结合肾小球内皮或系膜细胞。
2.3E7和GV39M特异性结合肿瘤血管内皮,而2C3特异性结合肿瘤基质。
3.对照=具有无关特异性的IgM。
3E7特异性定位于肿瘤内的血管内皮。大约70%的MECA 32阳性血管被注射到体内的3E7染色。供给微血管结构的较大血管是3E7阳性的。基质束和肿瘤巢中的小型微血管也都是3E7阳性的。3E7的染色强度在病灶坏死区域内或附近增强。在肿瘤的坏死区域内,血管外抗体是明显的;但是在肿瘤的健康区域内,血管外染色很不明显。在检验的所有正常组织(包括肾)中,血管内皮未被3E7染色。
GV39M也特异性定位于肿瘤的血管内皮。肿瘤中大约80%的MECA32阳性血管被GV39M染色。GV39M阳性血管均匀分布于肿瘤内,包括大型血管和小型毛细血管。与3E7相同的是,GV39M阳性血管的染色强度在肿瘤中的病灶坏死区域内增强。但是,与3E7不同的是,肾小球内皮细胞或系膜细胞也被染色。GV39M对肾小球的染色似乎具有抗原特异性,因为具有无关特异性的对照IgG对肾小球不染色。除肾以外组织中的血管内皮不被GV39M染色。
生物素化的2C3在静脉内注射后使H358人NSCLC肿瘤血管结构周围的结缔组织强烈染色。连接肿瘤细胞巢的大片基质组织被2C3染色,在最大的基质片中观察到最强烈的定位。想要区别这些区域内的血管内皮与周围结缔组织是不可能的。然而,未由基质包围的血管中的内皮细胞是染色的,诸如穿过肿瘤细胞巢本身的血管。在检验的任何正常组织中,没有检测到2C3的染色。
在HT29人肿瘤模型中,2C3还强烈定位于结缔组织,但是在肿瘤的坏死区域内观察到最大染色强度。
实施例4.2C3抑制VEGF结合VEGFR2而非VEGFR1
A.材料和方法
1.细胞系和抗体
由Johannes Waltenberger博士(Ulm,德国)处获得转染了VEGFR1(PAE/FLT)或VEGFR2(PAE/KDR)的猪主动脉内皮(PAE)细胞,如Waltenberger等人(1994,本文特别收入作为参考)所述制备,并在含5%FCS/L-谷氨酰胺/青霉素/链霉素(GPS)的F-12培养基中进行培养。由Werner Risau博士(Bad Nauheim,德国)处获得bEND.3细胞,并在含5%FCS/GPS的DMEM培养基中进行培养。在含10%FCS/GPS的DMEM培养基中培养NCI-H358 NSCLC(由Adi Gazdar博士处获得,CIT-SouthWestern,达拉斯,TX)、A673人横纹肌肉瘤、和HT1080人纤维肉瘤(二者由美国典型培养物保藏中心获得)。
2C3和3E7(抗VEGF单克隆抗体)、1A8(单克隆抗Flk-1抗体)、和T014(多克隆抗Flk-1抗体)如上文实施例1和Brekken等人(1998)和Huang等人(1998)所述(本文特别收入作为参考)。A4.6.1(小鼠抗人VEGF单克隆抗体)由Jin Kim博士(Genentech公司,CA)处获得,且以前已有描述(Kim等人,1992;本文特别收入作为参考)。所用阴性对照抗体是由A.F.Williams处(MRC Cellular Immunology Unit,牛津,英国)处获得的OX7(小鼠抗大鼠Thy1.1抗体)(Bukovsky等人,1983)和由ATCC获得的C44(小鼠抗秋水仙素抗体)(Rouan等人,1990)。
2.ELISA分析
将VEGFR1(Flt-1/Fc,R&D Systems,Minneapolis)细胞外结构域直接包被到微量滴定板的孔上,将VEGFR2(sFlk-1-生物素)细胞外结构域由NeutrAvidin(Pierce,Rockford,IL)包被的孔捕获。在存在或不存在100-1000nM(15-150μg/ml)对照或待测抗体的情况中,在孔中温育浓度为1nM(40ng/ml)的VEGF。然后在孔中温育1μg/ml兔抗VEGF抗体(A-20,Santa Cruz生物技术公司,Santa Cruz,CA)。
通过加入过氧化物酶标记的山羊抗兔抗体(Dako,Carpinteria,CA)和3,3’,5,5’-四甲基联苯胺(TMB)底物(Kirkegaard and PerryLaboratories公司)使反应显色。15分钟后用1M H3PO4终止反应,并用分光光度计读取450nm读数。
还进行了如下实验:用对照或待测IgG包被微量滴定板的孔,与VEGF:Flt-1/Fc或VEGF:sFlk-1-生物素一起温育,然后分别用过氧化物酶标记的山羊抗人Fc(Kirdegaard and Perry Laboratories公司)或过氧化物酶标记的链霉亲和素如上所述进行显色和可视化。
3.共沉淀测定
将40ng VEGF与2C3(20μg)或A4.6.1(10和1μg)的F(ab’)2在结合缓冲液(含1mM CaCl2/1.1mM CuSO4/0.5%胰蛋白胨的DMEM)中预先温育30分钟。然后加入200ng可溶性形式的VEGFR1(Flt/Fc)或VEGFR2(KDR/Fc,R&D Systems,Minneapolis,MN),总体积50μl,并温育2小时。使用蛋白A-Sepharose珠沉淀受体/Fc构建物,并用结合缓冲液将获得的沉淀清洗4次。
向每个反应的上清液和沉淀中加入还原样品缓冲液,将二者在12%SDS-PAGE上进行分析并转移至PVDF膜。然后用小鼠抗VEGF抗体12D7(1.0μg/ml)探查膜,并在与过氧化物酶标记的山羊抗小鼠IgG(Kirkegaard and Perry Laboratories公司)温育后通过超强信号化学发光底物(Pierce,Rockford,IL)进行显色。也使用过氧化物酶缀合的山羊抗人Fc(Kirkegaard and Perry Laboratories公司)检测可溶性受体/Fc构建物。
B.结果
1.2C3在ELISA中阻断VEGF结合VEGFR2而非VEGFR1
抗VEGF抗体2C3在ELISA实验中阻断VEGF结合VEGFR2(KDR/Flk-1),但不阻断VEGF结合VEGFR1(Flt-1)。当2C3摩尔数过量100倍和1000倍时,结合至VEGFR2包被孔的VEGF的量分别降至不存在2C3时结合量的26%和19%(图2)。相反,当2C3摩尔数过量100倍和1000倍时,结合至VEGFR1包被孔的VEGF的量分别为不存在2C3时结合量的92%和105%(图2)。
当非阻断性单克隆抗VEGF抗体3E7或具有无关特异性的对照IgG过量100-1000倍时,结合VEGFR1或VEGFR2的VEGF的量不受影响(图2)。A4.6.1阻断VEGF结合VEGFR2(KDR/Flk-1)和VEGFR1(Flt-1)二者。
2.2C3在溶液中阻断VEGF结合VEGFR2但不阻断结合VEGFR1
在共沉淀测定法中评价2C3阻断VEGF结合溶液中VEGFR1/Fc或VEGFR2/Fc的能力。在存在或不存在2C3或4.6.1的F(ab’)2的情况中,将40ng VEGF与200ng连接Fc部分的VEGFR1细胞外结构域(Flt-1/Fc)或连接Fc部分的VEGFR2(KDR/Fc)一起温育。通过与蛋白A Sepharose珠的温育来沉淀受体/Fc构建物。用还原性样品缓冲液清洗并重悬沉淀,在12%SDS-PAGE上分离,并转移至PVDF。用PP82封闭膜,用小鼠抗VEGF抗体12D7(1μg/ml)探查,并在标准化学发光条件下显色。检测到与F(ab’)2一起的VEGF单体和二聚体。
将与VEGFR1/Fc或VEGFR2/Fc混和的VEGF通过蛋白A Sepharose共沉淀,显示VEGF结合这两种受体。加入的2C3F(ab’)2阻断VEGF结合VEGFR2/Fc,但不阻断结合VEGFR1/Fc。相反,4.6.1F(ab’)2阻断VEGF结合VEGFR2/Fc和VEGFR1/Fc二者。这些结果确认了2C3可抑制VEGF结合VEGFR2但不抑制其结合VEGFR1,而4.6.1抗体抑制VEGF结合VEGFR2和VEGFR1二者。
实施例5.2C3阻断VEGF诱导的VEGFR2磷酸化
A.材料和方法
免疫共沉淀和Western印渍分析
将PAE/KDR、PAE/FLT、和bEND.3细胞在100mm组织培养皿中在含5%血清的培养基中培养至80-90%汇合。然后将细胞在含0.1%血清的培养基中进行24小时的血清过饥。用溶于PBS的100nM原钒酸钠预处理30分钟后,在存在或不存在对照或待测抗体的情况中,将细胞与5nM(200ng/ml)VEGF165、5nM(100ng/ml)bFGF(R&D Systems,Minneapolis,MN)、或A673肿瘤条件培养基再温育15分钟。
然后用含10mM EDTA/2mM氟化钠/2mM原钒酸钠的冰冷PBS清洗细胞,并在裂解缓冲液(50mM Tris/150mM NaCl/1%Nonidet P-40/0.25%脱氧胆酸钠/0.1%CHAPS/5mM EDTA/1.5mM MgCl2/2mM氟化钠/2mM原钒酸钠/10%甘油/蛋白酶抑制剂(完全蛋白酶抑制剂混和片剂,Boehringer Mannheim))中裂解。通过离心澄清裂解物,并将获得的上清液用于免疫沉淀。
通过将细胞裂解物与5μg鸡抗FLT-1N末端抗体(Upstate生物技术公司,Lake Placid,NY)或10μg T014(亲和纯化的抗Flk-1)一起于4℃温育过夜来分别免疫沉淀VEGFR1和VEGFR2。随后将使用鸡抗FLT-1抗体的反应体系与桥接的山羊抗鸡抗体(Kirkegaard and PerryLaboratories公司)一起于4℃温育1小时。然后用蛋白A/G Sepharose来沉淀免疫复合物,用溶于PBS-吐温(0.2%)的10%裂解缓冲液(含蛋白酶抑制剂)清洗多次,并在含100mM β-巯基乙醇/8M尿素的SDS加样缓冲液中煮沸。
然后通过SDS-PAGE分离样品并转移至PVDF膜。将膜用PP81(EastCoast Biologics,Berwick,ME)封闭30-60分钟,并用0.5μg/ml 4G10(Upstate生物技术公司,Lake Placid,NY)于4℃探查磷酸酪氨酸残基过夜。与过氧化物酶标记的兔抗小鼠IgG(Dako,Carpinteria,CA)温育后,通过超强信号化学发光底物(Pierce,Rockford,IL)使PVDF膜显色。然后将PVDF膜用ImmunoPure洗脱缓冲液(Pierce,Rockford,IL)于55℃剥离30分钟,并用0.5μg/ml鸡抗FLT-1抗体或1.0μg/mlT014再次探查受体水平,与合适的过氧化物酶缀合的二抗温育后如上所述进行显色。
B.结果
对VEGF诱导的磷酸化的阻断
在这些研究中,将PAE/KDR细胞用PBS、bGFG(5nM,100ng/ml)、VEGF165(5nM,210ng/ml)、A673条件培养基(CM)、CM与特定抗体(分别与CNTL、2C3、3E7、A4.6.1,100nM,15μg/ml)的联合、或T014(100nM,15μg/ml)刺激15分钟。PAE/FLT细胞也用PBS、VEGF165(5nM,210ng/ml)、A673条件培养基(CM)、CM与特定抗体(分别与2C3、3E7、A4.6.1,100nM,15μg/ml)的联合、或T014(100nM,15μg/ml)刺激15分钟。然后将细胞在裂解缓冲液中温育,免疫沉淀受体,通过还原条件的SDS-PAGE分离,转移至PVDF膜,用小鼠抗磷酸酪氨酸抗体4G10(0.5μg/ml)探查,并在标准化学发光条件下显色。然后将膜剥离并用免疫沉淀IgG再次探查,以测定每条泳道中受体蛋白质的水平。
结果显示,2C3与对照中和性抗VEGF抗体A4.6.1一起阻断PAE/KDR细胞中VEGF诱导的VEGFR2磷酸化。这与以前证明2C3和A4.6.1都阻断VEGF介导的内皮细胞生长的结果(实施例2;Brekken等人,1998)是一致的。对免疫沉淀物中的VEGFR2进行了Western印渍以证明每条泳道中VEGFR2蛋白质的量。识别VEGF氨基末端表位的3E7不阻断VEGF诱导的VEGFR2磷酸化,具有无关特异性的对照IgG也不阻断。
2C3对VEGF诱导的VEGFR1磷酸化的影响还不清楚。正如其他研究人员已经显示的,想要演示PAE/FLT细胞中VEGF诱导的VEGFR1磷酸化是困难的,这可能是因为VEGFR1的内在激酶活性较低(De Vries等人,1992;Waltenberger等人,1994;Davis-Smyth等人,1996;Landgren等人,1998)。
实施例6.2C3抑制VEGF诱导的通透性
A.材料和方法
Miles通透性测定
遵循的方案是由Murohara等人(1998;本文特别收入作为参考)描述的。简而言之,将400-450g雄性IAF无毛豚鼠(Charles River,Wilmington,MA)麻醉,然后经耳静脉静脉内注射0.5ml溶于无菌PBS的0.5%Evan氏蓝色染料。20分钟后,在存在或不存在对照或待测抗体的情况中,真皮内(i.d.)注射20ng VEGF。真皮内注射30分钟后,对豚鼠背部出现的蓝色斑点进行拍照,并用测径器进行测量。
B.结果
2C3阻断VEGF诱导的通透性
为了调查2C3对VEGF诱导的通透性的影响,将体重400-450g的IAF无发豚鼠(Hartley种系)麻醉,并经耳静脉静脉内注射0.5ml溶于无菌PBS的0.5%Evan氏蓝色染料。20分钟后,在存在或不存在对照或待测抗体的情况中,真皮内注射25ng VEGF。真皮内注射30分钟后,对豚鼠背部出现的蓝色斑点进行拍照,并用测径器进行测量。
使用这种Miles通透性测定法发现,阻断VEGF激活VEGFR2的2C3在豚鼠中抑制VEGF诱导的通透性。当2C3摩尔数比VEGF过量10倍、100倍、或1000倍时,这种影响是明显的。阻断VEGF激活VEGFR1和VEGFR2二者的A4.6.1在摩尔数过量10倍时阻断VEGF诱导的通透性(本项研究和Kim等人,1992)。3E7和不阻断VEGF:VEGFR2相互作用的对照IgG在豚鼠的Miles通透性测定法中也不阻断VEGF诱导的通透性。
这些结果说明,由VEGF介导的内皮通透性至少部分是由VEGFR2激活介导的。这些结果与其他研究人员显示的“VEGFR2的酪氨酸激酶活性对于VEGF诱导的通透性是必需的”结果是一致的(Murohara等人,1998;Joukov等人,1998;Ogawa等人,1998)。
实施例7.2C3的抗肿瘤效果
A.材料和方法
1.体内肿瘤生长抑制
在第0天给nu/nu小鼠皮下注射1×107个NCI-H358 NSCLC细胞或5×106个A673横纹肌肉瘤细胞。在第1天和随后每周2次给小鼠腹膜内注射1、10、或100μg 2C3或指定对照。然后每周2次测量肿瘤,携有NCI-H358的小鼠进行大约6周,携有A673的小鼠进行4周。按照公式计算肿瘤体积:体积=L×W×H,其中L=长度,W=宽度,H=高度。
2.体内肿瘤疗法
给皮下携有200-400mm3的NCI-H358肿瘤或HT1080纤维肉瘤的雄性nu/nu小鼠腹膜内注射待测抗体或对照抗体。给携有NCI-H358的小鼠第1周注射3次,第2周和第3周各注射2次,每次注射100μg抗体。然后给小鼠每5天注射1次,每次50μg。给携有HT1080的小鼠在研究期间隔天用100μg指定抗体或生理盐水进行处理。在这两项研究中,在肿瘤达到2500mm3之时或之前(如果肿瘤开始溃烂)处死小鼠。
B.结果
1.新植入的人肿瘤异种移植物的2C3生长抑制
2C3以依赖剂量方式抑制NCI-H358 NSCLC和A673横纹肌肉瘤在nu/nu小鼠中的体内生长(图3A和图3B)。对1天前皮下注射肿瘤细胞的小鼠每周2次腹膜内给药100μg 2C3,可抑制两种人肿瘤的生长。在两种肿瘤系统中,2C3接受者中肿瘤的最后体积为大约150mm3,作为对比,对照接受者为大约1000mm3
每周2次使用10或1μg 2C3进行的治疗对于防止肿瘤生长效果较低。但是,与未处理小鼠相比,这两种较低剂量的2C3确实将A673肿瘤的生长减慢了相似程度。由10μg剂量2C3引起的肿瘤生长迟滞在NCI-H358肿瘤模型中较不显著。这两种肿瘤模型之间及其对2C3抑制VEGFR2活性的应答之间的差异与这两种肿瘤的体内侵入性有关。NCI-H358在体内的生长速度比A673慢得多,显得对低剂量的2C3较不敏感;而A673肿瘤生长得很快,显得对较低剂量的2C3更敏感。
结合VEGF但不阻断其活性的3E7对NCI-H358肿瘤的生长没有影响。然而,每周2次给予100μg 3E7可刺激A673肿瘤的生长(图3B),说明它可增加肿瘤内VEGF信号传导的效率。
2.用2C3治疗成形的人肿瘤异种移植物
给皮下携有长至大约300-450mm3的NCI-H358 NSCLC肿瘤的小鼠腹膜内注射2C3、A4.6.1、3E7、或具有无关特异性的IgG(图4)。剂量为每3-5天50-100μg。A4.6.1作为阳性对照,因为其他研究人员显示它在体内阻断VEGF活性,导致肿瘤生长抑制(Kim等人,1993;Mesiano等人,1998)。除了测量平均肿瘤体积(图4),还对每个治疗组的小鼠进行拍照,以显示肿瘤大小和研究结束时外观的差异。
使用2C3或A4.6.1进行的治疗导致肿瘤在研究期间缓慢退化。研究结束时的平均肿瘤体积为最初平均肿瘤体积的30%(2C3)和35%(4.6.1)(图4)。然而,因为在注射肿瘤细胞后40-60天之间在对照组小鼠中观察到自发的肿瘤生长迟滞,这使得这些结果复杂化。在自发生长迟滞之前的40天,结果是明显的,显示使用2C3和A4.6.1的治疗防止了肿瘤生长。
图5A显示了使用100μg 2C3或3E7在延长疗程中治疗携有NCI-H358小鼠的进一步研究。在这项研究中,自发的退化较不显著。2C3治疗小鼠在治疗开始时的平均肿瘤体积是480mm3,治疗大约14周后平均肿瘤体积降至84mm3,体积缩小了大约80%。3E7治疗小鼠开始治疗时的平均肿瘤体积为428mm3并在大约14周后增加至1326mm3,体积增加了300%。
图5B显示了携有人纤维肉瘤HT1080、隔天给药100μg 2C3、3E7、对照IgG、或盐水的小鼠的肿瘤生长曲线。只要继续治疗,2C3就抑制肿瘤生长。使用3E7、对照IgG、或盐水治疗的小鼠携有的肿瘤日益生长,并在注射肿瘤细胞后不到4周就需要处死小鼠。
实施例8.2C3与A4.6.1不同
2C3与A4.6.1之间存在大量的差异(如表5)。根据ELISA交叉阻断研究(实施例1),这两种抗体识别VEGF上的不同表位。更早的诱变和X射线结晶学研究显示,A4.6.1结合的VEGF上集中于第89-94位氨基酸附近的表位(Muller等人,1998)。
特别感兴趣的的事实是,A4.6.1阻断VEGF结合VEGFR1和VEGFR2二者(Kim等人,1992;Wiesmann等人,1997;Muller等人,1998;Keyt等人,1996),而2C3只阻断VEGF结合VEGFR2(实施例4)。关于A4.6.1抑制VEGF结合VEGFR2和VEGFR1的引人注目的已发表证据来自详细的结晶学和结构研究(Kim等人,1992;Wiesmann等人,1997;Muller等人,1998;Keyt等人,1996;本文收入作为参考)。已发表的资料指出,A4.6.1通过竞争VEGF上对结合VEGFR2重要的表位来抑制VEGF结合VEGFR2,并最可能通过空间位阻来阻断VEGF结合VEGFR1(Muller等人,1998;Keyt等人,1996)。
人化形式的A4.6.1目前正进行临床试验(Brem,1998;Baca等人,1997;Presta等人,1997;本文收入作为参考)。巨噬细胞/单核细胞趋化性和VEGF经VEGFR1介导的其它内源功能很有可能在A4.6.1试验中受损。相反,由于2C3能够特异性阻断VEGFR2介导的效果,所以认为2C3是更好的。由此,2C3是潜在更安全的抗体,特别是对于人的长期施用。使用2C3进行治疗的好处包括,通过使得巨噬细胞能够迁移至肿瘤,同时阻断VEGF诱导的肿瘤血管结构扩张,从而使宿主能够发动更强的抗肿瘤应答。同样不应当忽视维持巨噬细胞的趋化性和由VEGFR1介导的其它效果的许多系统优势。
                    表5.抗VEGF抗体2C3和A4.6.1的特征
特征   2C3   A4.6.1
同种型VEGF上的表位亲和力阻断VEGF结合VEGFR1阻断VEGF结合VEGFR2阻断VEGF诱导的通透性阻断VEGF诱导的增殖冷冻肿瘤切片上的直接IHC模式体内肿瘤定位模式体内正常小鼠组织定位   IgG2a,k未描述,但是与A4.6.1不同21×10-9(M)3否是是是NR与CT有中等-强烈的反应性检测不到   IgG11连续的,集中于第89-94位氨基酸附近8×10-10(M)是是是是与有些BV有微弱反应性4与少数BV有中等反应性,与CT有微弱-无反应性检测不到
所用缩写:IHC,免疫组织化学;NR,无反应性;BV,血管;CT,结缔组织。
1.关于A4.6.1资料的参考文献包括Kim等人,1992;Wiesmann等人,1997;Muller等人,1998;和Keyt等人,1996,本文收入作为参考。
2.2C3在VEGF上识别的表位尚未描述,但是已经由ELISA交叉阻断研究显示与A4.6.1识别的表位不同。
3.2C3与VEGF的亲和力通过ELISA和表面激元共振分析估计。
4.A4.6.1只与略微固定的丙酮固定冷冻切片发生反应。
实施例9.关节炎组织中的VEGF染色
血管发生与疾病之间的联系要超出在血管化肿瘤中所观察到的。例如,在关节炎中清楚的记录了涉及异常血管发生。已经将1组不同的抗VEGF抗体和针对胸苷磷酸化酶的抗体用于使关节炎组织染色并与匹配对照区分开来。使用针对VEGF抗体的研究显示,在类风湿性关节炎血管翳中有惊人表达。
实施例10.2C3-抑内皮素缀合物
A.抑内皮素的克隆和表达
由小鼠肝分离RNA,并在使用下列引物的RT-PCRTM中作为模板:
5’引物aga cca tgg gtc ata ctc atc agg act ttc a(SEQ ID NO:43);
3’引物ctac cat ggc tat ttg gag aaa gag gtc a(SEQ ID NO:44)。
产生的cDNA片段具有DNA序列SEQ ID NO:12和氨基酸序列SEQ IDNO:13。作为参考,人抑内皮素氨基酸序列显示于SEQ ID NO:14。将小鼠cDNA片段克隆到表达载体H6pQE60(Qiagen)中,该载体编码N末端6组氨酸标签。然后在大肠杆菌M15中表达。当大肠杆菌细胞密度在560nm的光密度达到0.6时,加入0.1M异丙基硫代半乳糖苷(IPTG)4小时来诱导6His-抑内皮素表达。通过离心收获细胞,并在裂解缓冲液B-PER细菌蛋白质提取试剂(Pierce,Rockord,IL)中裂解。
通过离心沉淀包含6-His-抑内皮素的包涵体,并溶解于缓冲液A(pH8.0,6M胍-HCl(GuHCl)/100mM NaH2PO4/10mM Tris/10mM咪唑/10mM β-2巯基乙醇)。用过量的5,5’-二硫化-二-(2-硝基苯甲酸)(Ellman氏试剂)(20mM)处理含还原态6-His-抑内皮素的溶液,并上样到Ni-NTA柱上。用清洗缓冲液(6M GuHCl/100mM NaH2PO4/10mMTris/500mM NaCl,pH7.3)清洗柱子,并用溶于清洗缓冲液的0.2M咪唑由柱子洗脱6His-抑内皮素。
用等体积的重新折叠缓冲液(3M尿素/1M Tris pH7.3/0.5M L-精氨酸/0.5M NaCl/0.1M Na2HPO4/1mM还原态谷胱甘肽(GSH))稀释洗脱的不溶性6His-抑内皮素,并于室温温育过夜。将重新折叠的6His-抑内皮素在PBS(pH7.4)中于室温长时间透析。获得的蛋白质6His-抑内皮素是可溶性的,而且根据非还原条件下的SDS-PAGE分析显示是高度纯的,为20kDa的单一条带。
B.抑内皮素的功能活性
除了表达的蛋白质是完全可溶的事实,表明大肠杆菌表达的6His-抑内皮素具有生物学活性的其它证据包括与内皮细胞的结合。制备生物素化的6His-抑内皮素,并与3种不同的内皮细胞(Bend3小鼠内皮细胞;ABAE,牛主动脉内皮细胞;和HUVEC,人脐静脉内皮细胞)一起在体外温育。使用链霉亲和素-过氧化物酶与邻亚苯基二胺(OPD)检测结合,并读取490nm的吸光率。
直接结合研究显示,(生物素化的6His-)抑内皮素以可饱和方式在体外结合这3种不同内皮细胞。同样,表达的抑内皮素(无标记)显示可与生物素化的抑内皮素竞争与Bend3内皮细胞的结合。
C.抑内皮素与2C3经SMPT和2-IT的缀合
向2C3IgG中以摩尔比5∶1(SMPT:2C3)加入溶于N,N’-二甲基甲酰胺(DMF)的4-琥珀酰亚胺基氧羰基-α-甲基-α-(2-吡啶基二硫代)甲苯(SMPT),并在含5mM EDTA的PBS(PBSE)中于室温温育1小时。通过在PBSE中进行G25大小排阻层析除去游离的SMPT。同时将小鼠6His-抑内皮素与2-亚氨基硫戊环(2-IT,Traut氏试剂)以摩尔比1∶5(抑内皮素:2-IT)一起于室温温育1小时。通过在PBSE中进行G25大小排阻层析除去游离的2-IT。
将SMPT修饰的2C3与2-IT修饰的6His-抑内皮素混和,浓缩至3-5ml,并于室温温育24小时,轻微摇动。通过SDS-PAGE分析反应。通过肝素亲和层析由缀合物除去未缀合的2C3-SMPT,由此提供2C3-抑内皮素。
D.抑内皮素与2C3经SMCC和SATA的缀合
将N-琥珀酰亚胺S-乙酰硫代乙酸酯(SATA)与6His-抑内皮素以摩尔比6∶1(SATA:抑内皮素)一起于室温温育30分钟。通过在PBSE中进行的G25大小排阻层析除去游离的SATA。将溶于PBSE的SATA修饰的6His-抑内皮素浓缩至4.0ml,并加入0.4ml脱乙酰化溶液(0.1M羟胺)。将混和物于室温温育2小时。同时将2C3IgG与琥珀酰亚胺基4-(N-马来酰亚胺基甲基)环己烷-1-羧酸酯(SMCC)以摩尔比1∶5(2C3:SMCC)一起在PBSE中温育。通过在PBSE中进行的G25大小排阻层析除去游离的SMCC。
然后将脱乙酰化SATA修饰的抑内皮素与SMCC修饰的2C3一起温育,在氮气中将总蛋白质浓缩至大约5mg/ml,并于室温温育过夜,轻微摇动。通过SDS-PAGE分析反应。通过在PBSE中进行的肝素亲和层析由2C3-抑内皮素缀合物除去未缀合的2C3-MCC,由此提供2C3-抑内皮素。使用2-亚氨基硫戊环而非SATA作为硫化试剂也能实现成功的缀合。
E.2C3与抑内皮素的融合蛋白
由于可以获得(且本文提供)小鼠和人抑内皮素以及2C3的DNA序列,因此可以容易的制备2C3-抑内皮素融合蛋白质。如上所述,抑内皮素的表达和重新折叠显示这一分子的重组表达完全可能成功。
2C3-抑内皮素融合蛋白质的制备形式可以是抑内皮素存在于2C3重链的C末端,或者连接至2C3scFv片段。在这些情况中,重组技术能够容易的改变连接,而且特别希望使用选择性可切割序列来连接两个功能部分。目前优选纤溶酶或MMP可切割的序列。
选择性可切割序列的有效性和重组技术的适应性还提供了抑内皮素替代2C3构建物中另一点的2C3-抑内皮素融合蛋白质。抑内皮素将保持包埋在2C3内,直至接触了作用于选择性可切割序列的酶,在该点由融合蛋白质释放功能性抑内皮素。
实施例11.2C3-Ang-2缀合物
A.Ang-2的表达
为了构建2C3-Ang-2缀合物,优选使用重组形式的Ang-2,可以使用杆状病毒表达系统在昆虫细胞中进行生产。目前优选用于Ang-2表达和纯化的方案包括由小鼠胎盘RNA通过RT-PCRTM克隆Ang-2cDNA并将Ang-2cDNA克隆到pFastBac1表达载体中。用重组质粒转化DH10Bac大肠杆菌感受态细胞。
抗生素选择后,挑取包含重组杆粒(Bacmid)的大肠杆菌菌落,培养,并纯化重组杆粒DNA。用重组杆粒DNA使用Cellfectin试剂转染昆虫细胞SF9。由经转染SF9细胞的上清液收获重组杆状病毒。扩增重组杆装病毒,并用于感染SF9细胞,被感染的SF9细胞将表达Ang-2。由这些经感染SF9细胞的上清液通过亲和纯化来纯化Ang-2。
B.Ang-2与2C3的缀合
使用化学接头SMPT,通常如上所述使纯化的2C3缀合重组Ang-2。以5∶1的摩尔比(SMPT:2C3)向2C3IgG中加入溶于N’,N-二甲基甲酰胺(DMF)的SMPT,并在含5mM EDTA的PBS(PBSE)中于室温温育1小时。通过在PBSE中进行的G25大小排阻层析除去游离的SMPT。同时,将重组Ang-2与2-IT于室温一起温育。通过在PBSE中进行的G25大小排阻层析除去游离的2-IT。
将SMPT修饰的2C3与2-IT修饰的Ang-2混和,浓缩,并于室温温育24小时,轻微摇动。通过SDS-PAGE分析反应。通过凝胶过滤层析由缀合物除去未缀合的2C3-SMPT,由此提供2C3-抑内皮素。
实施例12.2C3-组织因子缀合物
如上文实施例所述,用SMPT修饰2C3。如上所述通过G25层析除去游离的SMPT,不同之处是在氮气中收集洗脱峰(2C3-SMPT)。取600μl 2C3-SMPT,在加入二硫苏糖醇(DTT)至50mM后,对硫代吡啶基(thiopyridyl)进行定量。平均每个IgG中导入了3个MPT基团。用5mMβ2-ME还原在N末端导入了一个半胱氨酸残基的人截短的组织因子(tTF)。通过G25层析除去β2-ME。
将还原的N-Cys-tTF与2C3-SMPT以2.5∶1(tTF∶IgG)的摩尔比合并,并于室温温育24小时。使用装备了截留分子量(MWCO)50,000的膜的Amicon,将反应体系浓缩至1-2ml。通过Superdex 200大小排阻层析将未缀合的tTF和IgG与缀合物分开,因此提供2C3-tTF。
实施例13.2C3-CRM107缀合物
用SMPT修饰2C3。如上文实施例所述,用2-IT修饰细胞毒性剂CRM107(来自Jerry Fulton博士,Inland Laboratories,DeSoto,TX)。将SMPT修饰的2C3与2-IT修饰的CRM107以1∶5(IgG∶CRM107)的摩尔比率于室温温育24小时,轻微摇动。通过Superdex 200大小排阻层折将缀合的2C3与游离反应物分开,由此提供2C3-CRM107。
实施例14.2C3药物前体研究
A.β-葡糖醛酸糖苷酶(GUS)的克隆和表达
包含大肠杆菌GUS基因的质拉(pBacgus-1)是由Novagen公司获得的。将质粒在PCR中作为模板用于将GUS基因克隆到H6pQE60表达载体中,该表达载体编码N末端6×组氨酸标签。培养携带该质粒的大肠杆菌M15细胞直至细胞密度在560nm的光密度达到0.6。加入0.1mM异丙基硫代半乳糖苷(IPTG)来诱导6His-GUS的表达。4小时后,通过离心收获细胞。
将大肠杆菌沉淀在细胞裂解缓冲液(B-PER细菌蛋白质提取试剂(Pierce,Rockford,IL))中进行裂解。将溶液上样到Ni-NTA柱上,用清洗缓冲液(6M CuHCL/100mM NaH2PO4/10mM Tris/500mM NaCl,pH7.3)清洗柱子,并用溶于相同缓冲液的0.2M咪唑洗脱结合的6His-GUS。
根据SDS-PAGE,6His-GUS是纯的,显示为75kDa的单一条带。在凝胶过滤柱上,6His-GUS显示为大约300kDa的四聚体。根据6His-GUS切割底物对-硝基苯基-β-D-葡糖苷酸(PNPG)的能力判断它具有酶活性。
B.2C3与β-葡糖醛酸糖苷酶(GUS)的缀合
将N-琥珀酰亚胺S-乙酰硫代乙酸酯(SATA)与GUS以摩尔比6∶1(SATA∶GUS)一起于室温温育30分钟。通过在PBSE中进行的G25大小排阻层析除去游离的SATA。将PBSE中SATA修饰的GUS浓缩至4.0ml,并加入0.4ml脱乙酰化溶液(0.1M羟胺)。将混和物于室温温育2小时。同时将2C3IgG与琥珀酰亚胺基4-(N-马来酰亚胺基甲基)环己烷-1-羧酸酯(SMCC)以摩尔比1∶5(2C3∶SMCC)一起在PBSE中温育。通过在PBSE中进行的G25大小排阻层析除去游离的SMCC。
然后将脱乙酰化的SATA修饰的GUS与SMCC修饰的2C3一起于室温温育过夜,并轻微搅拌。通过Q-Sepharose的离子交换层析除去游离的GUS,而游离的2C3和2C3-GUS缀合物在溶于PBS的0.5M NaCl中洗脱下来。通过Superdex 200大小排阻层析分离获得的溶液,产生纯度90%的2C3-GUS。
C.2C3-GUS缀合物的生物学活性
确认了2C3-GUS缀合物中每种成分的生物学活性。根据HRP标记的抗小鼠IgG(二抗)和OPD的检测结果,2C3-GUS在适当控制的ELISA中特异结合VEGF包被的孔。在0.1nM观察到最大结合半值。由此,2C3的结合部分功能发挥正常。GUS部分也保留了酶活性。
125I标记2C3-GUS,比活5×106cpm/μg。静脉内注射到小鼠体内后,放射性碘化的2C3-GUS由血液清除的速率为:t1/2α大约6小时,t1/2β大约25小时。
D.GUS可切割药物前体
基本上如美国专利5,561,119(本文特别收入作为参考)所述制备β-葡糖苷酸的药物前体,诸如羟基红比霉素-β-葡糖苷酸和卡西霉素-β-葡糖苷酸。这些药物前体被设计成只有在受到糖苷酶(诸如GUS)降解时才释放细胞毒性成分,诸如羟基红比霉素或卡西霉素。通过将GUS附着于2C3,从而将GUS特异性靶向肿瘤血管结构和基质,由此提供对药物前体的特异性切割并在肿瘤位点内特异性释放细胞毒性成分。
E.2C3-GUS缀合物的生物学活性
2C3-GUS在静脉内注射到皮下携有人NCI-H358 NSCLC肿瘤的SCID小鼠体内后特异性定位于肿瘤血管结构和周围肿瘤基质。通过使用HRP标记的抗小鼠IgG或使用HRP标记的抗GUS的免疫组织化学,在肿瘤冷冻切片上检测到2C3-GUS的存在。在注射2C3-GUS后24-48小时后观察到最大定位。正常组织未被染色。2C3-GUS趋向肿瘤血管结构和周围肿瘤基质的特异性定位使得能够系统施用药物前体,诸如羟基红比霉素-葡糖苷酸或卡西霉素-葡糖苷酸,并将只有在肿瘤内被激活。
本文所述杂交瘤细胞系已经依照布达佩斯条约的规定保藏于美国典型培养物收藏中心(American Type Culture Collection,ATCC),Manassas,VA,美国;编号ATCC No.PTA 1595。本文描述和要求的发明不限于所保藏的PTA 1595细胞系的范围,因为所保藏的实施方案只是本发明的一个方面的例示,产生功能上等同的单克隆抗体的任何等同的杂交瘤细胞系都属于本发明的范围。事实上,无需过多实验,根据本公开书即可以生成和执行本文公开和要求的所有组合物和方法。
在以优选实施方案的形式描述了本发明的组合物和方法之后,对于本领域技术人员显而易见的是,可以在本文所述的组合物、方法、和方法的步骤或一系列步骤中采用变异,而不偏离本发明的概念、精神、和范围。更具体的说,显而易见的是,可以用涉及化学和物理学的某些试剂替代本文所述的试剂而仍获得相同或相似的结果。对于本领域技术人员而言显而易见的所有这些相似替代和修饰,被认为是属于由所附权利要求书定义的本发明的精神、范围和概念。
                         参考文献
本文特别收入下列参考文献作为参考,它们提供了例示性方案或其它细节作为本说明书的补充。
Abrams和Oldham,在《人类癌症的单克隆抗体疗法》(MonoclonalAntibody Therapy of Human Cancer)中,Foon和Morgan编,Martinus Nijhoff出版社,波士顿,第103-120页,1985。
Aiello、Pierce、Foley、Takagi、Chen、Riddle、Ferrara、King、Smith,“使用可溶性VEGF受体嵌合蛋白质抑制血管内皮生长因子(VEGF)从而在体内抑制视网膜新血管形成”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)92:10457-10461,1995。
Akuzawa、Kurabayashi、Ohyama、Arai、Nagai,“在THP-1细胞中诱导巨噬细胞分化时锌指转录因子Egr-1激活Flt-1基因表达”,动脉硬化、血栓、和血管生物学(Arteriosclerosis,Thrombosis,and Vascular Biology)20(2):377-84,2000。
Alon、Hemo、Itin、Pe’er、Stone、Keshet,“血管内皮生长因子担当新形成的视网膜血管的存活因子并指示早熟性视网膜病变”,自然医学(Nature Med.)1:1024-1028,1995。
《抗体:实验室手册》(Antibodies:A Laboratory Manual),冷泉港实验室,1988。
Anthony、Wheeler、Elcock、Pickett、Thomas,“简短报告:人胎盘和培养胎盘成纤维细胞中血管内皮生长因子mRNA表达的特殊模式的鉴定”,胎盘(Placenta)15:557-61,1994。
Asahara等人,“血管发生的推断起源内皮细胞的分离”,科学(Science)275(5302):964-967,1997。
Asahara、Chen、Takahashi、Fujikawa、Kearney、Magner、Yancopoulos、Isner,“Tie2受体配体、促血管生成素-1、和促血管生成素-2调控VEGF诱导的出生后新血管形成”,循环研究(Circ.Res.)83(3):233-40,1998。
Asano、Yukita、Matsumoto、Kondo、Suzuki,“针对人血管内皮生长因子/血管通透因子的免疫中和性单克隆抗体对肿瘤生长和转移的抑制”,癌症研究(Cancer Res.)55:5296-5301,1995。
Asano、Yukita、Matsumoto、Hanatani、Suzuki,“抗人VEGF单克隆抗体MV833在体内展示有效的抗肿瘤活性”,杂交瘤(Hybridoma)17:185,190,1998。
Baca等人,“使用单价噬菌体展示的抗体人化”,生物化学杂志(J.Biol.Chem.)272(16):10678-84,1997。
Barbas、Kang、Lerner、和Benkovic,“组合型抗体库在噬菌体表面的装配:基因3位点”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)88(18):7978-7982,1991。
Baxter和Jain,“流体和高分子在肿瘤中的运输”,微血管研究(Micro.Res.)41:5-23,1991。
Benjamin、Golijanin、Itin、Pode、和Keshet,“血管内皮生长因子停药后成形人肿瘤中未成熟血管的选择性剥离”,临床调查杂志(J.Clin.Invest.)103(2):159-165,1999。
Berman、Mellis、Pollock、Smith、Suh、Heinke、Kowal、Surti、Chess、Cantor等人,“人Ig VH基因座的内容和组织:3种新的VH家族的确定及与Ig CH基因座的关联”,欧洲分子生物学杂志(EMBOJ.)7(3):727-738,1988。
Borgstrom、Hillan、Sriramarao、Ferrara,“抗血管内皮生长因子中和性抗体对微肿瘤的血管发生和生长的完全抑制:来自活体显微镜检查的血管抑制疗法的新概念”,癌症研究(CancerRes.)56(17):4032-1439,1996。
Borgstrom、Bourdon、Hillan、Sriramarao、Ferrara,“中和性抗血管内皮生长因子抗体在体内完全抑制人前列腺癌微肿瘤的血管发生和生长”,前列腺(Prostate)35(1):1-10,1998。
Borgstrom、Gold、Hillan、Ferrara,“VEGF在体内对于乳癌血管发生的重要性:来自抗VEGF中和性单克隆抗体与阿霉素的联合治疗的活体显微镜检查的含义”,抗癌研究(AnticancerResearch)19(5B):4203-11,1999。
Bornstein,“血栓粘合素:结构和表达调控”,FASEB J.6(14):3290-3299,1992。
Borrebaeck和Moller,“体外免疫。生长和分化因子对针对自身抗原和弱免疫原的抗原特异B细胞激活和单克隆抗体生成的影响”,免疫学杂志(J.Immunol.)136(10):3710-3715,1986。
Brekken、Huang、King、Thorpe,“血管内皮生长因子作为肿瘤内皮标记物”,癌症研究(Cancer Res.)58(9):1952-1959,1998。
Brem,“血管发生拮抗剂:现行临床试验”,血管发生(Angiogenesis)2:9-20,1998。
Bukovsky、Presl、Zidovsky、Mancal,“Thy-1.1、MRC OX 2、和Ia抗原在大鼠卵巢和输卵管中的定位”,免疫学(Immunology)48(3):587-596,1983。
Burke等人,“通过人造染色体载体方法将大片段外源DNA克隆到酵母中”,科学(Science)236:806-812,1987。
Burke、Lehmann-Bruinsma、Powell,“血管内皮生长因子在血管受损后引起内皮增殖”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Comm.)207:348-354,1995。
Burrows和Thorpe,“血管靶向:实体瘤治疗的新方法”,药理学和疗法(Pharmacol.Ther.)64:155-174,1994a。
Burrows和Thorpe,“用针对肿瘤血管结构的免疫毒素根治小鼠大型实体瘤”,美国国家科学院进展(Pr0c.Natl.Acad.Sci.USA)90:8996-9000,1994b。
Burrows、Watanabe、Thorpe,“针对实体瘤血管内皮细胞的靶向抗体的鼠模型”,癌症研究(Cancer Res.)52:5954-5962,1992。Burrows、Derbyshire、Tazzari、Amlot、Gazdar、King、Letarte、Vitetta、Thorpe,“Endoglin是在肿瘤血管结构中上调的内皮细胞增殖标记物”,临床癌症研究(Clin.Cancer Res.)1:1623-1634,1995。
Buttke、McCabrey、Owen,免疫学方法杂志(J.Immunol.Methods)157:233-240,1993。
Campbell,在《单克隆抗体技术,生物化学和分子生物学中的实验室技术》(Monoclonal Antibody Technology,LaboratoryTechniques in Biochemistry and Molecular Biology)中,第13卷,Burden和Von Knippenberg编,Elseview,阿姆斯特丹,第75-83页,1984。
Carmeliet、Ferreira、Breier、Pollefeyt、Kieckens、Gertsenstein、Fahrig、Vandenhoeck、Harpal、Eberhardt、Declercq、Pawling、Moons、Collen、Risau、Nagy,“缺乏一个VEGF等位基因的胚胎中异常血管的发育和致死性”,自然(Nature)380(6573):435-439,1996。
Champe等人,生物化学杂志(J.Biol.Chem.)270:1388-1394,1995。
Cheng、Huang、Nagane、Ji、Wang、Shih、Arap、Huang、Cavenee,“通过抑制血管内皮生长因子的内源表达来抑制成神经胶质细胞瘤的血管发生和肿瘤发生”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)93:8502-8507,1996。
Claffey、Brown、del Aguila、Tognazzi、Yeo、Manseau、Dvorak,“黑素瘤细胞中血管通透因子/血管内皮生长因子的表达促进了肿瘤生长、血管发生、和实验性转移”,癌症研究(Cancer Res.)56:172-181,1996。
Clapp等人,“人催乳素的16kD N末端片段是血管发生的有效抑制剂”,内分泌学(Endocrinology)133(3):1292-1299,1993。
Clauss等人,“血管内皮细胞生长因子受体Flt-1介导生物学活性”,生物化学杂志(J.Biol.Chem.)271(30):17629-17634,1996。
Connolly、Heuvelman、Nelson、Olander、Eppley、Delfino、Siegel、Leimgruber、Feder,“肿瘤血管通透因子刺激内皮细胞生长和血管发生”,临床调查杂志(J.Clin.Invest.)84:1470-1478,1989。
Coughlin等人,“白介素-12和白介素-18协同诱导鼠肿瘤退化,这涉及血管发生的抑制”,临床调查杂志(J.Clin.Invest.)101(6):1441-1452,1998。
Couper、Bryant、E1drup-Jorgensen、Bredenberg、Lindner,“血管内皮生长因子在体内经fms样酪氨酸激酶-1的表达增加了血管平滑肌细胞中针对成纤维细胞生长因子-2的促有丝分裂应答”,循环研究(Circ.Res.)81(6):932-939,1997。
Crowther,在《ELISA理论和实践》(ELISA Theory and Practice)中,Totowa:Humana出版社,1995。
D’Amato等人,“沙利度胺是血管发生的抑制剂”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)91(9):4082-4085,1994。
D’Amato等人,“毛细血管内皮细胞中的血管内皮生长因子和碱性成纤维细胞生长因子对丝裂素激活的蛋白质激酶的激活受到催乳素抗血管发生因子16kD N末端片段的抑制”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)92(14):6374-6378,1995。
Davis和Yancopoulos,“促血管生成素:血管发生中的阴和阳”,微生物学和免疫学的现行观点(Curr.Top.Microbiol.Immunol.)237:173-85,1999。
Davis-Smyth、Chen、Park、Presta、Ferrara,“VEGF酪氨酸激酶受体Flt-1的第二个免疫球蛋白样结构域决定配体结合,而且可能启动信号转导级联反应”,欧洲分子生物学杂志(EMBO J.)15(18):4919-4927,1996。
Detmar、Brown、Claffey、Yeo、Kocher、Jackman、Berse、Dvorak,“血管通透因子/血管内皮生长因子及其受体在牛皮癣中的过度表达”,实验医学杂志(J.Exp.Med.)180:1141-1146,1994。
DeVore等人,“抗新血管形成药物CM101的I期研究”,临床癌症研究(Clin.Cancer Res.)3(3):365-372,1997。
deVries、Escobedo、Ueno、Houck、Ferrara、Williams,“fms样酪氨酸激酶,血管内皮生长因子的受体”,科学(Science)255(5047):989-991,1992。
Dvorak、Nagy、Dvorak,“实体瘤及其血管结构的结构:单克隆抗体疗法的含义”,癌细胞(Cancer Cells)3:77-85,1991a。
Dvorak、Sioussat、Brown、Berse、Nagy、Sotrel、Manseau、Vandewater、Senger,“血管通透因子(血管内皮生长因子)在肿瘤中的分布-肿瘤血管中的浓度”,实验医学杂志(J.Exp.Med.)174:1275-1278,1991b。
Ferrara,“血管内皮生长因子在病理性血管发生中的作用”,乳癌治疗(Cancer Res.Treat.)36:127-137,1995。
Ferrara、Clapp、Weiner,“催乳素的16K片段特异性抑制基础的或成纤维细胞生长因子刺激的毛细血管内皮细胞的生长”,内分泌学(Endocrinology)129(2):896-900,1991。
Ferrara、Houck、Jakeman、Winer、Leung,“血管内皮生长因子多肽家族”,细胞生物化学杂志(J.Cell.Biochem.)47:211-218,1991。
Ferrara、Carver-Moore、Chen、Dowd、Lu、O’Shea、Powell-Braxton、Hillan、Moore,“由VEGF基因的靶向灭活诱导的杂合子胚胎致死性”,自然(Nature)380(6573):439-442,1996。
Fidler和Ellis,“血管发生对于癌症转移生物学和疗法的含义[评论]”,细胞(Cell)79(2):185-188,1994。
Fidler、Kumar、Bielenberg、Ellis,“癌症转移中的血管发生的分子决定”,Cancer J.Sci.Am.4增刊1:S58-66,1998。
Folkman和Shing,“血管发生”,生物化学杂志(J.Biol.Chem.)267:10931-10934,1992。
Folkman等人,“在存在可的松的情况中由肝素或肝素片段引起的血管发生抑制和肿瘤退化”,科学(Science)221:719-725,1983。
Fong、Rossant、Gertsenstein、Breitman,“Flt-1受体酪氨酸激酶在调控血管内皮装配中的作用”,自然(Nature)376:66-70,1995。
Forsythe、Jiang、Iyer、Agani、Leung、Koos、Semenza,“缺氧可诱导因子1对血管内皮生长因子基因转录的激活”,分子和细胞生物学(Mol.Cell.Biol.)16:4604-4613,1996。
Fotsis等人,“内源雌激素代谢物2-甲氧基雌二醇抑制血管发生并抑制肿瘤生长”,自然(Nature)368(6468):237-239,1994。
Frank、Hubner、Breier、Longaker、Greenhalgh、Werner,“在培养的角质细胞中血管内皮生长因子表达的调控。正常和受损创伤愈合的含义”,生物化学杂志(J.Biol.Chem.)270:12607-12613,1995。
Frater-Schroder等人,“作为体外内皮细胞生长的有效抑制剂的α型肿瘤坏死因子在体内是促血管发生的”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)84(15):5277-5281,1987。
Frazier,“血栓粘合素”,细胞生物学现行观点(Curr.Opin.CellBiol.)3(5):792-799,1991。
Fujii等人,“NO、前列腺素、和酪氨酸激酶在血管内皮生长因子诱导的小鼠皮肤血管通透性增加中的作用”,Naunyn Schmiedebergs药理学档案(Naunyn Schmiedebergs Arch Pharmacol)356(4):475-480,1997。
Gagliardi和Collins,“抗雌激素对血管发生的抑制”,癌症研究(Cancer Res.)53(3):533-535,1993。
Gagliardi、Hadd、Collins,“苏拉明对血管发生的抑制”,癌症研究(Cancer Res.)52(18):5073-5075,1992。
Gagliardi等人,“苏拉明类似物的抗血管发生和抗增殖活性”,癌症化学疗法和药理学(Cancer Chemother.Pharmacol.)41(2):117124,1998。
Gefter等人,“用聚乙二醇促进小鼠骨髓瘤细胞杂交的简单方法”,体细胞细胞遗传学(Somatic Cell Genet.)3:231-236,1977。
Gerber、Condorelli、Park、Ferrara,“两种血管内皮生长因子受体基因的差异转录调控”,生物化学杂志(J.Biol.Chem.)272:23659-23667,1997。
Gerber、Vu、Ryan、Kowalski、Werb、Ferrara,“VEGF在软骨内骨形成过程中偶联肥大软骨改型、骨化、与血管发生”,自然医学(Nature Medicine)5(6):623-8,1999。
Glennie等人,“含硫醚连接的Fab’γ片段的双特异性F(ab’γ)2抗体的制备和性能”,免疫学杂志(J.Immunol.)139:2367-2375,1987。
Goding,在《单克隆抗体:原理和实践》(Monoclonal Antibodies:Principles andPractice)中,第2版,Academic出版社,Orlando,Fl.,第60-61、65-66、71-74页,1986。
Good等人,“依赖肿瘤抑制子的血管发生抑制剂与血栓粘合素在免疫学上和功能上没有差别”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)87(17):6624-6628,1990。
Grant等人,“纤连蛋白片段调控人视网膜毛细血管细胞的增殖和迁移”,糖尿病(Diabetes)47(8):1335-1340,1998。
Guo、Jia、Song、Warren、Donner,“血管内皮生长因子受体促进含SH2结构域的信号转导介体的酪氨酸磷酸化”,生物化学杂志(J.Biol.Chem.)270:6729-6733,1995。
Hanahan和Folkman,“肿瘤发生过程中血管发生转换的模式和显现机制”,细胞(Cell)86(3):353-364,1996。
Harada、Mitsuyama、Yoshida、Sakisaka、Taniguchi、Kawaguchi、Ariyoshi、Saiki、Sakamoto、Nagata、Sata、Matsuo、Tanikawa,“风湿性关节炎患者中的血管内皮生长因子”,斯堪的纳维亚风湿病学杂志(Scandinavian J.Rheumatol.)27(5):377-80,1998。
Haran等人,“他莫昔芬在植入的MCF7乳癌中通过抑制内皮生长来增强细胞死亡”,癌症研究(Cancer Res.)54(21):5511-5514,1994。
Hasselaar和Sage,“SPARC拮抗碱性成纤维细胞生长因子对牛主动脉内皮细胞迁移的影响”,细胞生物化学杂志(J.CellBiochem.)49(3):272-283,1992。
Hellerqvist等人,“GBS毒素的抗肿瘤效果:来自B类β-溶血性链球菌的多糖外毒素”,癌症研究和临床肿瘤学杂志(J.Cancer Res.Clin.Oncol.)120(1-2):63-70,1993。
Hiratsuka、Minowa、Kuno、Noda、Shibuya,“缺乏酪氨酸激酶结构域的Flt-1足以在小鼠中进行正常的发育和血管发生”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)95(16):9349-9354,1998。
Hiscox和Jiang,“白介素-12,浮现的抗肿瘤细胞因子”,体内(InVivo)11(2):125-132,1997。
Holash等人,“由促血管生成素和VEGF介导的肿瘤中的血管共选择、退化、和生长”,科学(Science)284:1994-1998,1999。
Hong、Nagy、Senger、Dvorak、Dvorak,“血管通透因子/血管内皮生长因子(VPF/VEGF)在肿瘤微血管内皮的质膜内面和囊泡细胞器中的超微结构定位”,组织化学和细胞化学杂志(J.Histochem.Cytochem.)43:381-389,1995.
Hood和Granger,“蛋白激酶G在人内皮细胞中介导血管内皮生长因子诱导的Raf-1激活和增殖”,生物化学杂志(J.Biol.Chem.)273(36):23504-23508,1998。
Hood、Meininger、Ziche、Granger,“VEGF在人内皮细胞中上调ecNOS讯息、蛋白质、和NO生成”,美国生理学杂志(Am.J.Physiol.)274(3 Pt 2):H1054-1058,1998。
Hori等人,“血管抑制性类固醇和地塞米松对大鼠海绵体植入物中血管发生和细胞因子水平的差异影响”,英国药理学杂志(Br.J.Pharmacol.)118(7):1584-1591,1996。
Houck、Ferrara、Winer、Cachianes、Li、Leung,“血管内皮生长因子家族:第四类分子的鉴定和RNA侯选剪接的分析”,分子内分泌学(Molec.Endo.)5(12):1806-1814,1991。
Huang、Molema、King、Watkins、Edgington、Thorpe,“通过抗体使组织因子靶向肿瘤血管而发生的小鼠中肿瘤梗死”,科学(Science)275:547-550,1997。
Huang、Gottstein、Brekken、Thorpe,“可溶性VEGFR2的表达和结合表面激元共振分析”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Commun.)252(3):643-648,1998。
Huse、Sastry、Iverson、Kang、Alting-Mees、Burton、Benkovic、和Lerner,科学(Science)246(4935):1275-1281,1989。
Ingber等人,“血管抑制素:抑制血管发生并抑制肿瘤生长的夫马菌素的合成类似物”,自然(Nature)48:555-557,1990。
Inoue、Itoh、Ueda、Naruko、Kojima、Komatsu、Doi、Ogawa、Tamura、Takaya、Igaki、Yamashita、Chun、Masatsugu、Becker、Nakao,“人冠状动脉粥样硬化病变中的血管内皮生长因子(VEGF)表达:VEGF在动脉粥样硬化进展中的可能的病理生理学意义”,循环(Circulation)98(20):2108-16,1998。
Iwamoto等人,“多聚体形式的层粘连蛋白序列Tyr-Ile-Gly-Ser-Arg(YIGSR)对人纤维肉瘤细胞HT1080的血管发生、肿瘤生长、和实验性转移的抑制”,英国癌症杂志(Br.J.Cancer)73(5):589-595,1996。
Jackson等人,“胎盘多育曲菌素和多育曲菌素相关蛋白质对血管发生的刺激和抑制”,科学(Science)266(5190):1581-1584,1994。
Jendraschak和Sage,“SPARC和制管张素对血管发生的调控:肿瘤细胞生物学的含义”,癌症生物学学术讨论会(Semin.CancerBiol.)7(3):139-146,1996。
Joukov、Kumar、Sorsa、Arighi、Weich、Saksela、Alitalo,“丧失了血管内皮生长因子受体-2结合、激活、和血管通透性活性的重组突变型血管内皮生长因子-C”,生物化学杂志(J.Biol.Chem.)273(12):6599-6602,1998。
Kabat等人,《免疫学感兴趣的蛋白质的序列》(Sequences of Proteinsof Immunological Interest),第5版,公共卫生服务部(PublicHealth Service),国家卫生研究所(National Institutes ofHealth),Bethesda,MD,1991,特别是第647-669页。
Kang、Barbas、Janda、Benkovic、和Lerner,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)88(10):4363-4366,1991.
Keck、Hauser、Krivi、Sanzo、Warren、Feder、Connolly,“血管通透因子,涉及PDGF的内皮细胞丝裂素”,科学(Science)246:1309-1312,1989。
Kendall和Thomas,“内源编码的可溶性受体对血管内皮细胞生长因子活性的抑制”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)90:10705-10709,1993。
Kenyon、Browne、D’Amato,“沙利度胺和相关代谢物在新血管形成的小鼠角膜模型中的作用”,实验性眼研究(Exp.Eye Res.)64(6):971-978,1997。
Kerbel、Viloria-Petit、Okada、Rak,“在癌基因与肿瘤血管发生之间建立联系”,分子医学(Mol.Med.)4(5):286-295,1998。
Keyt等人,“用于结合KDR和FLT-1受体的血管内皮生长因子决定簇的鉴定。通过定点诱变产生受体选择性VEGF”,生物化学杂志(J.Biol.Chem.)271(10):5638-46,1996。
Kim、Li、Houck、Winer、Ferrara,“血管内皮生长因子蛋白质:通过中和性单克隆抗体鉴定生物学相关区域”,生长因子(GrowthFactor)7:53-64,1992。
Kim、Li、Winer、Armanini、Gillett、Phillips,“在体内对血管内皮生长因子诱导的血管发生的抑制抑制肿瘤生长”,自然(Nature)362:841-844,1993。
Kim、Kwak、Ahn、So、Liu、Koh、Koh,“新的促血管生成素家族蛋白质促血管生成素-3的分子克隆和分析”,FEBS信函(FEBSLett.)443(3):353-6,1999。
Kleinman等人,“层粘连蛋白:在细胞分化和肿瘤转移中重要的基底膜糖蛋白家族”,维生素和激素(Vitam.Horm.)47:161-186,1993。
Kohler和Milstein,“分泌预先确定特异性抗体的融合细胞的连续培养”,自然(Nature)256:495-497,1975。
Kohler和Milstein,“通过细胞融合衍生产生特异性抗体的组织培养物和肿瘤系”,欧洲免疫学杂志(Eur.J.Immunol.)6:511-519,1976。
Konieczny、Bobrzecka、Laidler、和Rybarska,“通过链间二硫化物的受控形成来联合IgM亚基与蛋白分解性IgG片段”,血液学(Haematologia)(意大利)14(1):95-99,1981。
Kondo、Asano、Suzuki,“血管内皮生长因子/血管通透因子对实体瘤生长的意义,及其受到的抗体抑制”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Commun.)194:1234-1241,1993。
Korpelainen和Alitalo,“血管发生和淋巴管发生信号”,细胞生物学现行观点(Curr.Opin.Cell Biol.)10(2):159-164,1998。
Kremer、Breier、Risau、Plate,“在脑切片培养物系统中flk-1/血管内皮生长因子受体2受其配体上调”,癌症研究(CancerRes.)57:3852-3859,1997。
Kroll和Waltenberger,“在猪主动脉内皮细胞中血管内皮生长因子受体KDR激活多种信号转导途径”,生物化学杂志(J.Biol.Chem.)272:32521-7,1997。
Kroll和Waltenberger,“VEGF-A在内皮细胞中经VEGF受体-2(KDR)诱导eNOS和iNOS表达”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Commun.)252(3):743-746,1998。
Kupprion、Motamed、Sage,“SPARC(BM-40,骨连接素)抑制血管内皮生长因子对微血管内皮细胞的促有丝分裂影响”,生物化学杂志(J.Biol.Chem.)273(45):29635-29640,1998。
Kyte和Doolittle,“用于展示蛋白质疏水/亲水性质的简单方法”,分子生物学杂志(J.Mol.Biol.)157(1):105-132,1982。
Landgren、Schiller、Cao、Claesson-Welsh,“胎盘生长因子刺激MAP激酶和有丝分裂而非磷脂酶C-γ和表达Flt-1的内皮细胞的迁移”,癌基因(Oncogene)16(3):359-367,1998。
Lane、Iruela-Arispe、Sage,“在体外SPARC在血管发生过程中调控基因表达。纤连蛋白、血栓粘合素-1、和纤溶酶原激活剂抑制剂-1中的变化”,生物化学杂志(J.Biol.Chem.)267(23):16736-16745,1992。
Lee等人,“抗血管发生因子16K催乳素抑制尿激酶活性:纤溶酶原激活剂抑制剂-1表达的激活”,内分泌学(Endocrinology)139(9):3696-3703,1998。
Lin、Sankar、Shan、Dewhirst、Polverini、Quinn、Peters,“使用可溶性血管内皮生长因子受体通过靶向肿瘤内皮来抑制肿瘤生长”,细胞生长和分化(Cell Growth Differ.)9:49-58,1998。
Lin、Buxton、Acheson、Radziejewski、Maisonpierre、Yancopoulos、Channon、Hale、Dewhirst、George、Peter,“靶向内皮特异性受体酪氨酸激酶Tie2的抗血管发生基因治疗”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)95(15):8829-34,1998。
Lin、Nguyen、Mendoza、Escandon、Fei、Meng、Modi,“针对血管内皮生长因子的人化单克隆抗体的临床前药物动力学、种间缩放比例、和组织分布”,药理学和实验疗法杂志(J.Pharmacol.Exp.Therap.)288(1):371-8,1999。
Lindner和Borden,“他莫昔芬和β-干扰素或其联合对肿瘤诱导的血管发生的影响”,国际癌症杂志(Int.J.Cancer)71(3):456-461,1997。
Lingen、Polverini、Bouck,“视黄酸和α-干扰素协同担当针对人头部和颈部鳞状细胞癌的抗血管发生和抗肿瘤试剂”,癌症研究(Cancer Res.)58(23):5551-5558,1998。
Lingen、Ploverini、Bouck,“视黄酸与内皮细胞的直接相互作用抑制鳞状细胞癌血管发生”,实验室调查(Lab.Invest.)74(2):476-483,1996。
Lin-Ke、Hong-Qu、Nagy、Eckelhoefer、Masse、Dvorak、Dvorak,“用针对血管内皮细胞生长因子的抗体靶向实体和腹水肿瘤的血管”,欧洲癌症杂志(Eur.J.Cancer)32A(14):2467-2473,1996。
Luo、Toyoda、Shibuya,“针对内皮生长因子/通透因子的抗血管发生中和性抗体在两个小鼠腹水肿瘤中对流体积累和肿瘤生长的差异抑制”,癌症研究(Cancer Res.)58(12):2594-2600,1998a。
Luo、Yamaguchi、Shinkai、Shitara、Shibuya,“血管内皮生长因子/血管通透因子在小鼠腹水肿瘤中的显著表达”,癌症研究(CancerRes.)58(12):2652-2660,1998b。
Majewski等人,“维生素D3是肿瘤细胞诱导的血管发生的有效抑制剂”,研究性皮肤病学论坛进展记录(J.Investig.Dermatol.Symp.Proc.)1(1):97-101,1996。
Malecaze、Clamens、Simorre-Pinatel、Mathis、Chollet、Favard、Bayard、Plouet,增殖性糖尿病性视网膜病变中血管内皮生长因子mRNA和血管内皮生长因子样活性的检测”,眼科学档案(Arch.Ophthalmol.)112:1476-1482,1994。
Mandriota和Pepper,“细胞因子和缺氧对牛微血管内皮细胞中促血管生成素-2mRNA水平的调控”,循环研究(Circ.Res.)83(8):852-9,1998。
Manetti等人,“抑制人碱性成纤维细胞生长因子的苏拉明的杂环类似物的合成和结合模式”,生物有机和医学的化学(Bioorg.Med.Chem.)6(7):947-958,1998。
Massey等人,自然(Nature)328:457-458,1987。
Mazure、Chen、Yeh、Laderoute、Giaccia,“癌基因转化和缺氧协同调控血管内皮生长因子表达”,癌症研究(Cancer Res.)56:3436-3440,1996。
McNamara、Harmey、Walsh、Redmond、Bouchier-Hayes,“血管发生在癌症治疗中的意义[勘误表见英国外科学杂志1998年10月第85(10)期第1449页]”,英国外科学杂志(Br.J.Surg.)85(8):1044-1055,1998。
Mesiano、Ferrara、Jaffe,“血管内皮生长因子在卵巢癌中的作用:通过免疫中和抑制腹水形成”,美国病理学杂志)Am.J.Pathol.)153(4):1249-1256,1998。
Meyer、Clauss、Lepple-Wienhues、Waltenberger、Augustin、Ziche、Lanz、Buttner、Rziha、Dehio,“由Orf病毒编码的新的血管内皮生长因子VEGF-E经VEGFR-2(KDR)而非VEGFR-1(Flt-1)受体酪氨酸激酶信号介导血管发生”,欧洲分子生物学杂志(EMBOJ.)18:363-74,1999。
Millauer、Longhi、Plate、Shawver、Risau、Ullrich、Strawn,“在体内Flk-1的显性负抑制遏制许多肿瘤类型的生长”,癌症研究(Cancer Res.)56:1615-1620,1996。
Mills、Brooker、和Camerini-Otero,“人免疫球蛋白转换区的序列:重组和转录的含义”,核酸研究(Nucl.Acids Res.)18:7305-7316,1990。
Moore等人,“肿瘤血管发生受CXC化学因子的调控”,实验室和临床医学杂志(J.Lab.Clin.Med.)132(2):97-103,1998。
Mordenti、Thomsen、Licko、Chen、Meng、Ferrara,“鼠抗VEGF单克隆抗体在肿瘤小鼠中的功效和浓度应答并外推至人”,毒物学病理学(Toxicologic Pathology)27(1):14-21,1999。
Morrison、Johnson、Herzenberg、和Oi,“嵌合人抗体分子:小鼠抗原结合结构域与人恒定区结构域”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)81(21):6851-6855,1984。
Morrison、Wims、Kobrin、和0i,“通过基因转染产生新的免疫球蛋白分子”,Mt.Sinai医学杂志(Mt.Sinai J.Med.)53(3):175,1986。
Morrow、Unuvar、King、Mleczko,“用于生产单克隆和多克隆抗体的技术”,在《胶体金:原理、方法、和应用》(Colloidal Gold:Principles,Methods and Applications)中,M.A.Hayat编,奥兰多,Academic出版社,第31-57页,1990。
Muller,Li、Christinger、Wells、Cunningha、De Vos,“血管内皮生长因子:激酶结构域受体结合位点的晶体结构和功能定位”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)94:7192-7197,1997。
Muller、Chen、Christinger、li、Cunningham、Lowman、de Vos,“VEGF和人化中和性抗体的Fab片段:复合物的2.4解析度晶体结构和接触面的突变分析”,结构(Structure)6(9):1153-67,1998。
Murohara、Horowitz、Silver、Tsurumi、Chen、Sullivan、Isner,“血管内皮生长因子/血管通透因子经NO和环前列腺素增强血管通透性”,循环(Circulation)97(1):99-107,1998。
Mustonen和Alitalo,“涉及血管发生的内皮受体酪氨酸激酶”,细胞生物学杂志(J.Cell Biol.)129:895-898,1995。
Nagashima、Yoshino、Aono、Takai、Sasano,“在培养的类风湿滑膜细胞中抗风湿病药物对血管内皮生长因子的抑制性效果”,临床和实验免疫学(Clin.Exp.Immunol.)116(2):360-5,1999。
Nagler、Feferman、Shoshan,“linomide在体内降低碱性成纤维细胞生长因子介导的血管发生”,结缔组织研究(Connect TissueRes.)37(1-2):61-68,1998。
Nakamura等人,《酶免疫测定:异种和同种系统》(Enzyme Immunoassays:Heterogeneous and Homogeneous),第27章。
Neufeld、Cohen、Gengrinovitch、Poltorak,“血管内皮生长因子(VEGF)及其受体”,FASEB J.13(1):9-22,1999。
Niida、Kaku、Amano、Yoshida、Kataoka、Nishikawa、Tanne、Maeda、Nishikawa、Kodama,“血管内皮生长因子能够替代巨噬细胞集落刺激因子而支持破骨性吸收”,实验医学杂志(J.Exp.Med.)190(2):293-8,1999。
Ogawa、Oku、Sawano、Yamaguchi、Yazaki、Shibuya,“不含肝素结合结构域的新型血管内皮生长因子VEGF-E(NZ-7VEGF)优先利用KDR/Flk-1受体并具有有效的促有丝分裂活性”,生物化学杂志(J.Biol.Chem.)273(47):31273-31282,1998。
Oikawa等人,“类维生素A高度有效的抗血管发生活性”,癌症信函(Cancer Lett.)48(2):157-162,1989。
Olander、Connolly、DeLarco,“血管通透因子特异性结合内皮细胞”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Comm.)175:68-76,1991。
O’Reilly等人,“制管张素:新的血管发生抑制剂介导对Lewis肺癌转移的抑制”,细胞(Cell)79:315-328,1994。
O’Reilly等人,“抑内皮素:血管发生和肿瘤生长的内源抑制剂”,细胞(Cell)88(2):277-285,1997。
Papapetropoulos、Garcia-Cardena、Dengler、Maisonpierre、Yancopoulos、Sessa,“促血管生成素-1对人内皮的直接作用:网络稳定、细胞存活、和与其它血管发生生长因子的相互作用的证据”,实验室调查(Lab.Invest.)79(2):213-23,1999。
Parenti等人,“NO在毛细血管后内皮中是血管内皮生长因子诱导的细胞外信号调控的激酶1/2激活的上游信号”,生物化学杂志(J.Biol.Chem.)273(7):4220-4226,1988。
Parmley和Smith,“可选择抗体的丝状fd噬菌体载体:靶基因的亲和纯化”,基因(Gene)73(2):305-318,1988。
Pepper等人,“白血病抑制因子(LIF)在体外抑制血管发生”,细胞科学杂志(J.Cell Sci.)108(Pt 1):73-83,1995。
Plate、Breier、Weich、Mennel、Risau,“血管内皮生长因子和神经胶质瘤血管发生:VEGF受体的对等诱导、VEGF蛋白质的分布、和可能的体内调控机制”,国际癌症杂志(Int.J.Cancer)59:520-529,1994。
Potgens、Westphal、DeWaal、Ruiter,“血管通透因子和碱性成纤维细胞生长因子在肿瘤血管发生中的作用”,在《肿瘤血管发生中的生长因子》(Growth Factors in Tumor Angiogenesis)中,柏林,Walter de Gruyer&Co.,第57-70页,1995。
Presta、Chen、O’Connor、Chisholm、Meng、Krummen、Winkler、Ferrara,“抗血管内皮生长因子单克隆抗体的人化以用于实体瘤和其它疾病的治疗”,癌症研究(Cancer Res.)57:4593-4599,1997。
Quinn等人,“多糖抗肿瘤试剂CM101在鼠模型中不抑制创伤愈合”,癌症研究和临床肿瘤学研究(J.Cancer Res.Clin.Oncol.)121(4):253-256,1995。
Ray、Chaudhury、和D’Amore,“通过转化生长因子-β来调控内皮细胞”,细胞生物化学杂志(J.Cell Biochem.)47(3):224-229,1991。
Richer和Lo,“通过注射解离的人染色体片段将人DNA导入小鼠卵细胞”,科学(Science)245:175-177,1989。
Riechmann、Clark、Waldmann、和Winter,“改造人抗体用于治疗”,自然(Nature)332(6162):323-327,1988。
Rouan、Otterness、Cunningham、Holden、Rhodes,“用秋水仙素特异性单克隆抗体反转中国仓鼠细胞中秋水仙素诱导的有丝分裂停滞”,美国病理性杂志(Am.J.Pathol.)137(4):779-787,1990。
Ryan、Eppler、Hagler、Bruner、Thomford、Hall、Shopp、O’Neill,“抗血管发生性人化单克隆抗体rhuMAbVEGF的临床前安全性评价”,毒物学病理性(Toxicologic Pathology)27(1):78-86,1999。
Sakamoto等人,“肝素加上醋酸可的松通过阻碍内皮细胞增殖而抑制肿瘤生长”,癌症杂志(Canc.J.)1:55-58,1986。
Saleh、Stacker、Wilks,“通过表达血管内皮生长因子反义序列而在体内抑制C6神经胶质瘤细胞的生长”,癌症研究(Cancer Res.)56:393-401,1996。
Sambrook、Fritsch、和Maniatis,《分子克隆:实验室手册》(MolecularCloning:A Laboratory Manual),第2版,冷泉港出版社,冷泉港,纽约,1989。
Sang,“基质金属蛋白酶在血管发生中的复杂作用”,细胞研究(CellRes.)8(3):171-177,1998.
Sawano、Takahashi、Yamaguchi、Aonuma、Shibuya,“Flt-1而非KDR/Flk-1酪氨酸激酶是涉及血管内皮生长因子的胎盘生长因子的受体”,细胞生长和分化(Cell Growth Differ.)7(2):213-221,1996。
Senger、Galli、Dvorak、Perruzzi、Harvey、Dvorak,“肿瘤细胞分泌促进腹水积累的血管通透因子”,科学(Science)219:983-985,1983。
Senger、Perruzzi、Feder、Dvorak,“由多种人和啮齿类动物肿瘤细胞系分泌的高度保守的血管通透因子”,癌症研究(CancerRes.)46:5629-5632,1986。
Senger、Connolly、Vandewater、Feder、Dvorak,“豚鼠肿瘤分泌的血管通透因子的纯化和氨基末端氨基酸序列”,癌症研究(Cancer Res.)50:1774-1778,1990。
Shalaby、Rossant、Yamaguchi、Gertsenstein、Wu、Breitman、Schuh,“Flk-1缺陷型小鼠中血岛形成和血管发生的失败”,自然(Nature)376:62-66,1995。
Sheibani和Frazier,“经转化内皮细胞中的血栓粘合素-1表达恢复了正常表型并遏制其肿瘤发生”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)92(15):6788-6792,1995。
Sheu等人,“体外和体内对血管发生的抑制:triflavin、含Arg-Gly-Asp的肽、和抗α(v)β3integrin单克隆抗体的相对活性比较”,生物化学和生物物理学学报(Biochim.Biophys.Acta)1336(3):445-454,1997。
Shyu、Manor、Magner、Yancopoulos、Isner,“在兔缺血后肢中直接肌肉内注射编码促血管生成素-1而非促血管生成素-2的质粒DNA提高了血管再形成”,循环(Circulation)98(19):2081-7,1998。
Sideras、Mizuta、Kanamori、Suzuki、Okamoto、Kuze、Ohno、Doi、Fukuhara、Hassan等人,“Cγ基因的无菌转录本在由产生IgG转换成产生IgM的人瘤B细胞系中的生成”,国际免疫学(Intl.Immunol)1(6):631-642,1989。
Siemeister、Martiny-Baron、Marme,“VEGF在肿瘤血管发生中的关键作用:分子证据和治疗机会”,癌症和转移回顾(CancerMetastasis Rev.)17(2):241-248,1998。
Sioussat、Dvorak、Brock、Senger,“用抗肽抗体抑制血管通透因子(血管内皮生长因子)”,生物化学和生物物理学档案(Arch.Biochem.Biophys.)301:15-20,1993。
Sipos等人,“对肿瘤血管发生的抑制、纽约科学院年鉴(Ann.NY Acad.Sci.)732:263-272,1994。
Skobe、Rockwell、Goldstein、Vosseler、Fusenig,“血管发生的中断遏制了癌细胞的侵入”,自然医学(Nat.Med.)3:1222-7,1997。
Soff等人,“由人前列腺癌细胞表达的1型纤溶酶原激活剂抑制剂在无胸腺小鼠模型中抑制了原发性肿瘤的生长、肿瘤相关血管发生、和转移至肺和肝”,临床调查杂志(J.Clin.Invest.)96(6):2593-2600,1995。
Soker、Takashima、Miao、Neufeld、Klagsbrun,“内皮和肿瘤细胞表达neuropilin-1作为血管内皮生长因子的异构体特异性受体”,细胞(Cell)92(6):735-745,1998。
Springer、Chen、Kraft、Bednarski、Blau,“针对肌肉的VEGF基因投递:血管发生在成人中的潜在作用”,分子和细胞(Mol.Cell)2(5):549-558,1998。
Stella等人,“药物前体:靶向药物投递的化学方法”,《导向药物投递》(Directed Drug Delivery),Borchardt等人编,Human出版社,1985,第247-267页。
Stratmann、Risau、Plate,“促血管生成素-1和促血管生成素-2的细胞类型特异性表达说明在成神经胶质细胞瘤血管发生中的作用”,美国病理学杂志(Am.J.Pathol.)153(5):1333-9,1998。
Tada等人,“通过与软骨细胞共培养和转化β-生长因子来抑制人微血管内皮细胞的管状形态发生:人软骨无血管模型”,生物化学和生物物理学学报(Biochim.Biophys.Acta)1201(2):135-142,1994。
Takahashi、Shirasawa、Miyake、Yahagi、Maruyama、Kasahara、Kawamura、Matsumura、Mitarai、Sakai,“在肾小球和培养的肾小球细胞中表达的蛋白质酪氨酸激酶:肾小球系膜细胞中的Flt-1和VEGF表达”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Comm.)209:218-226,1995。
Takano等人,“抗癌和遏制血管试剂苏拉明抑制内皮细胞结合进行成纤维细胞生长因子、迁移、增殖、并诱导尿激酶型纤溶酶原激活剂”,癌症研究(Cancer Res.)54(10):2654-2660,1994。
Tanaka、Mori、Sakamoto、Makuuchi、Sugimachi、Wands,“人肝细胞癌中的促血管生成素-2表达的生物学意义”,临床调查杂志(J.Clin.Invest.)103(3):341-5,1999。
Tanaka等人,“病毒载体介导的经修饰血小板因子4cDNA的转导抑制血管发生和肿瘤生长”,自然医学(Nat.Med.)3(4):437-442,1997。
Terman、Dougher-Vermazen、Carrion、Dimitrov、Armellino、Gospodarowicz、Bohlen,“作为血管内皮细胞生长因子受体的KDR酪氨酸激酶的鉴定”,生物化学和生物物理学研究通讯(Biochem.Biophys.Res.Comm.)187:1579-1586,1992。
Terman、Khandke、Dougher-Vermazan、Maglione、Lassam、Gospodarowicz、Persico、Bohlen、Eisinger,“VEGF受体亚型KDR和FLT1对肝素和胎盘生长因子显示不同的敏感性”,生长因子(Growth Factors)11(3):187-195,1994。
Tessler、Rockwell、Hicklin、Cohen、Levi、Witte、Lemischka、Neufeld,“肝素调控VEGF 165与可溶性和细胞关联的flk-1受体的相互作用”,生物化学杂志(J.Biol.Chem.)269:12456-12461,1994。
Thomas,“血管内皮生长因子,有效的和选择性的血管发生试剂”,生物化学杂志(J.Biol.Chem.)271:603-606,1996。
Thorpe等人,“肝素-类固醇缀合物:在小鼠中具有抗肿瘤活性的新的血管发生抑制剂”,癌症研究(Cancer Res.)53:3000-3007,1993。
Tischer、Mitchell、Hartman、Silva、Gospodarowicz、Fiddes、Abraham,“血管内皮生长因子的人类基因”,生物化学杂志(J.Biol.Chem.)266:11947-11954,1991。
Tolsma等人,“由基质蛋白质血栓粘合素-1两个分开的结构域衍生的肽基因抗血管发生活性”,细胞生物学杂志(J.CellBiol.)122(2):497-511,1993。
Tryggvason,“层粘连蛋白家族”,细胞生物学现行观点(Curr.Opin.Cell Biol.)5(5):877-882,1993。
Valenzuela、Griffiths、Rojas、Aldrich、Jones、Zhou、McClain、Copeland、Gilbert、Jenkins、Huang、Papadopoulos、Maisonpierre、Davis、Yancopoulos,“促血管生成素3和4:小鼠和人中的分歧基因对应物”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)96(5):1904-9,1999。
van Dijk、Warnaar、van Eendenburg、Thienpont、Braakman、Boot、Fleuren、和Bolhuis,“识别肾细胞癌和CD3抗原的双特异性单克隆抗体诱导肿瘤细胞裂解”,国际癌症杂志(Int.J.Cancer)43:344-349,1989。
Volpert、Lawler、Bouck,“人纤维肉瘤经血栓粘合素-1抑制全身血管发生和实验性转移的生长”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)95(11):6343-6348,1998。
Vukanovic等人,“喹啉-3-carboxamide linomide的抗血管发生作用”,癌症研究(Cancer Res.)53(8):1833-1837,1993。
Waltenberger、Claesson-Welsh、Siegbahn、Shibuya、Heldin,“KDR和Flt1,血管内皮生长因子的两种受体的不同信号转导特性”,生物化学杂志(J.Biol.Chem.)269(43):26988-26995,1994。
Waltenberger、Mayr、Pentz、Hombach,“缺氧对血管内皮生长因子受体KDR的功能上调”,循环(Circulation)94:1647-1654,1996。
Walternberger等人,“苏拉明是血管内皮生长因子的有效抑制剂。对其抗血管发生作用的分子基础的贡献”,分子和细胞心脏病学杂志(J.Mol.Cell Cardiol.)28(7):1523-1529,1996。
Wamil等人,“癌症患者中的可溶性E-选择蛋白作为CM101(抑制肿瘤的抗新血管发生试剂)的治疗性功效的标记物,I期临床试验评价”,癌症研究和临床肿瘤学杂志(J.Cancer Res.Clin.Oncol.)123(3):173-179,1997。
Wells,“将癌症饿至投降”,化学和生物学(Chem.Biol.)5(4):R87-88,1998。
Wiesmann、Fuh、Christinger、Eigenbrot、Wells、de Vos,“VEGF在与Flt-1受体结构域2的复合物中的1.7解析度晶体结构”,细胞(Cell)91(5):695-704,1997。
Willman等人,“癌症治疗中的药物前体”,生化学会学报(Biochem.Soc.Trans.)14:375-382,1988。
Winter和Milstein,“人造抗体”,自然(Nature)349:293-299,1991。
Wolff等人,“地塞米松抑制神经胶质瘤诱导毛细血管样结构的形成(体外)和血管发生(体内)”,临床儿科学(Klin.Padiatr.)(德国)209(4):275-277,1997。
Yoon等人,“韩国槲寄生(Viscum album coloratum)提取物对小鼠中造血和非造血肿瘤细胞的肿瘤血管发生和转移的抑制性效果”,癌症信函(Cancer Lett.)97(1):83-91,1995。
Yoshida等人,“夫马菌素衍生物TNP470对肝癌生长和血管发生的抑制:可能涉及NO合酶”,癌症研究(Cancer Res.)58(16):3751-3756,1998。
Yuan、Chen、Dellian、Safabakhsh、Ferrara、Jain,“成形人肿瘤异种移植物中由抗血管内皮生长因子/血管通透因子抗体诱导的依赖时间的血管退化和通透性变化”,美国国家科学院进展(Proc.Natl.Acad.Sci.USA)93:14765-14770,1996。
Yamamura等人,“matrigel和层粘连蛋白肽YIGSR对肿瘤生长和转移的影响”,癌症生物学学术讨论会(Semin.Cancer Biol.)4(4):259-265,1993。
Zachary,“血管内皮生长因子:它是如何传送其信号的”,实验肾病学(Exp.Nephrol.)6(6):480-487,1998。
Zapata等人,蛋白质工程(Protein Eng.)8(10):1057-1062,1995。
Ziche等人,“亚油酰胺阻碍了乳癌血管内皮生长因子转染体的血管发生”,英国癌症杂志(Br.J.Cancer)77(7):1123-1129,1998。
                            序列表
<110>BOARD OF REGENTS,THE UNIVERSITY OF TEXAS SYSTEM
<120>用于通过选择性抑制VEGF来治疗癌症的组合物和方法
<130>3999.002510
<140>PCT/US00/11367
<141>2000-04-28
<150>60/131,432
<151>1999-04-28
<160>44
<170>PatentIn Ver.2.0
<210>1
<211>2149
<212>DNA
<213>人
<400>1
cagctgactc aggcaggctc catgctgaac ggtcacacag agaggaaaca ataaatctca 60
gctactatgc aataaatatc tcaagtttta acgaagaaaa acatcattgc agtgaaataa 120
aaaattttaa aattttagaa caaagctaac aaatggctag ttttctatga ttcttcttca 180
aacgctttct ttgaggggga aagagtcaaa caaacaagca gttttacctg aaataaagaa 240
ctagttttag aggtcagaag aaaggagcaa gttttgcgag aggcacggaa ggagtgtgct 300
ggcagtacaa tgacagtttt cctttccttt gctttcctcg ctgccattct gactcacata 360
gggtgcagca atcagcgccg aagtccagaa aacagtggga gaagatataa ccggattcaa 420
catgggcaat gtgcctacac tttcattctt ccagaacacg atggcaactg tcgtgagagt 480
acgacagacc agtacaacac aaacgctctg cagagagatg ctccacacgt ggaaccggat 540
ttctcttccc agaaacttca acatctggaa catgtgatgg aaaattatac tcagtggctg 600
caaaaacttg agaattacat tgtggaaaac atgaagtcgg agatggccca gatacagcag 660
aatgcagttc agaaccacac ggctaccatg ctggagatag gaaccagcct cctctctcag 720
actgcagagc agaccagaaa gctgacagat gttgagaccc aggtactaaa tcaaacttct 780
cgacttgaga tacagctgct ggagaattca ttatccacct acaagctaga gaagcaactt 840
cttcaacaga caaatgaaat cttgaagatc catgaaaaaa acagtttatt agaacataaa 900
atcttagaaa tggaaggaaa acacaaggaa gagttggaca ccttaaagga agagaaagag 960
aaccttcaag gcttggttac tcgtcaaaca tatataatcc aggagctgga aaagcaatta 1020
aacagagcta ccaccaacaa cagtgtcctt cagaagcagc aactggagct gatggacaca 1080
gtccacaacc ttgtcaatct ttgcactaaa gaaggtgttt tactaaaggg aggaaaaaga 1140
gaggaagaga aaccatttag agactgtgca gatgtatatc aagctggttt taataaaagt 1200
ggaatctaca ctatttatat taataatatg ccagaaccca aaaaggtgtt ttgcaatatg 1260
gatgtcaatg ggggaggttg gactgtaata caacatcgtg aagatggaag tctagatttc 1320
caaagaggct ggaaggaata taaaatgggt tttggaaatc cctccggtga atattggctg 1380
gggaatgagt ttatttttgc cattaccagt cagaggcagt acatgctaag aattgagtta 1440
atggactggg aagggaaccg agcctattca cagtatgaca gattccacat aggaaatgaa 1500
aagcaaaact ataggttgta tttaaaaggt cacactggga cagcaggaaa acagagcagc 1560
ctgatcttac acggtgctga tttcagcact aaagatgctg ataatgacaa ctgtatgtgc 1620
aaatgtgccc tcatgttaac aggaggatgg tggtttgatg cttgtggccc ctccaatcta 1680
aatggaatgt tctatactgc gggacaaaac catggaaaac tgaatgggat aaagtggcac 1740
tacttcaaag ggcccagtta ctccttacgt tccacaacta tgatgattcg acctttagat 1800
ttttgaaagc gcaatgtcag aagcgattat gaaagcaaca aagaaatccg gagaagctgc 1860
caggtgagaa actgtttgaa aacttcagaa gcaaacaata ttgtctccct tccagcaata 1920
agtggtagtt atgtgaagtc accaaggttc ttgaccgtga atctggagcc gtttgagttc 1980
acaagagtct ctacttgggg tgacagtgct cacgtggctc gactatagaa aactccactg 2040
actgtcgggc tttaaaaagg gaagaaactg ctgagcttgc tgtgcttcaa actactactg 2100
gaccttattt tggaactatg gtagccagat gataaatatg gttaatttc             2149
<210>2
<211>498
<212>PRT
<213>人
<400>2
Met Thr Val Phe Leu Ser Phe Ala Phe Leu Ala Ala Ile Leu Thr His
  1               5                  10                  15
Ile Gly Cys Ser Asn Gln Arg Arg Ser Pro Glu Asn Ser Gly Arg Arg
             20                  25                  30
Tyr Asn Arg Ile Gln His Gly Gln Cys Ala Tyr Thr Phe Ile Leu Pro
         35                  40                  45
Glu His Asp Gly Asn Cys Arg Glu Ser Thr Thr Asp Gln Tyr Asn Thr
     50                  55                  60
Asn Ala Leu Gln Arg Asp Ala Pro His Val Glu Pro Asp Phe Ser Ser
 65                  70                  75                  80
Gln Lys Leu Gln His Leu Glu His Val Met Glu Asn Tyr Thr Gln Trp
                 85                  90                  95
Leu Gln Lys Leu Glu Asn Tyr Ile Val Glu Asn Met Lys Ser Glu Met
            100                 105                 110
Ala Gln Ile Gln Gln Asn Ala Val Gln Asn His Thr Ala Thr Met Leu
        115                 120                 125
Glu Ile Gly Thr Ser Leu Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys
    130                 135                 140
Leu Thr Asp Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu
145                 150                 155                 160
Ile Gln Leu Leu Glu Asn Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln
                165                 170                 175
Leu Leu Gln Gln Thr Asn Glu Ile Leu Lys Ile His Glu Lys Asn Ser
            180                 185                 190
Leu Leu Glu His Lys Ile Leu Glu Met Glu Gly Lys His Lys Glu Glu
        195                 200                 205
Leu Asp Thr Leu Lys Glu Glu Lys Glu Asn Leu Gln Gly Leu Val Thr
    210                 215                 220
Arg Gln Thr Tyr Ile Ile Gln Glu Leu Glu Lys Gln Leu Asn Arg Ala
225                 230                 235                 240
Thr Thr Asn Asn Ser Val Leu Gln Lys Gln Gln Leu Glu Leu Met Asp
                245                 250                 255
Thr Val His Asn Leu Val Asn Leu Cys Thr Lys Glu Gly Val Leu Leu
            260                 265                 270
Lys Gly Gly Lys Arg Glu Glu Glu Lys Pro Phe Arg Asp Cys Ala Asp
        275                 280                 285
Val Tyr Gln Ala Gly Phe Asn Lys Ser Gly Ile Tyr Thr Ile Tyr Ile
    290                 295                 300
Asn Asn Met Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn
305                 310                 315                 320
Gly Gly Gly Trp Thr Val Ile Gln His Arg Glu Asp Gly Ser Leu Asp
                325                 330                 335
Phe Gln Arg Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Agn Pro Ser
            340                 345                 350
Gly Glu Tyr Trp Leu Gly Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln
        355                 360                 365
Arg Gln Tyr Met Leu Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg
    370                 375                 380
Ala Tyr Ser Gln Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn
385                 390                 395                 400
Tyr Arg Leu Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser
                405                 410                 415
Ser Leu Ile Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn
            420                 425                 430
Asp Asn Cys Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp
        435                 440                 445
Phe Asp Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala
    450                 455                 460
Gly Gln Asn His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys
465                 470                 475                 480
Gly Pro Ser Tyr Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu
                485                 490                 495
Asp Phe
<210>3
<211>2269
<212>DNA
<213>人
<400>3
tgggttggtg tttatctcct cccagccttg agggagggaa caacactgta ggatctgggg 60
agagaggaac aaaggaccgt gaaagctgct ctgtaaaagc tgacacagcc ctcccaagtg 120
agcaggactg ttcttcccac tgcaatctga cagtttactg catgcctgga gagaacacag 180
cagtaaaaac caggtttgct actggaaaaa gaggaaagag aagactttca ttgacggacc 240
cagccatggc agcgtagcag ccctgcgttt cagacggcag cagctcggga ctctggacgt 300
gtgtttgccc tcaagtttgc taagctgctg gtttattact gaagaaagaa tgtggcagat 360
tgttttcttt actctgagct gtgatcttgt cttggccgca gcctataaca actttcggaa 420
gagcatggac agcataggaa agaagcaata tcaggtccag catgggtcct gcagctacac 480
tttcctcctg ccagagatgg acaactgccg ctcttcctcc agcccctacg tgtccaatgc 540
tgtgcagagg gacgcgccgc tcgaatacga tgactcggtg cagaggctgc aagtgctgga 600
gaacatcatg gaaaacaaca ctcagtggct aatgaagctt gagaattata tccaggacaa 660
catgaagaaa gaaatggtag agatacagca gaatgcagta cagaaccaga cggctgtgat 720
gatagaaata gggacaaacc tgttgaacca aacagctgag caaacgcgga agttaactga 780
tgtggaagcc caagtattaa atcagaccac gagacttgaa cttcagctct tggaacactc 840
cctctcgaca aacaaattgg aaaaacagat tttggaccag accagtgaaa taaacaaatt 900
gcaagataag aacagtttcc tagaaaagaa ggtgctagct atggaagaca agcacatcat 960
ccaactacag tcaataaaag aagagaaaga tcagctacag gtgttagtat ccaagcaaaa 1020
ttccatcatt gaagaactag aaaaaaaaat agtgactgcc acggtgaata attcagttct 1080
tcaaaagcag caacatgatc tcatggagac agttaataac ttactgacta tgatgtccac 1140
atcaaactca gctaaggacc ccactgttgc taaagaagaa caaatcagct tcagagactg 1200
tgctgaagta ttcaaatcag gacacaccac aaatggcatc tacacgttaa cattccctaa 1260
ttctacagaa gagatcaagg cctactgtga catggaagct ggaggaggcg ggtggacaat 1320
tattcagcga cgtgaggatg gcagcgttga ttttcagagg acttggaaag aatataaagt 1380
gggatttggt aacccttcag gagaatattg gctgggaaat gagtttgttt cgcaactgac 1440
taatcagcaa cgctatgtgc ttaaaataca ccttaaagac tgggaaggga atgaggctta 1500
ctcattgtat gaacatttct atctctcaag tgaagaactc aattatagga ttcaccttaa 1560
aggacttaca gggacagccg gcaaaataag cagcatcagc caaccaggaa atgattttag 1620
cacaaaggat ggagacaacg acaaatgtat ttgcaaatgt tcacaaatgc taacaggagg 1680
ctggtggttt gatgcatgtg gtccttccaa cttgaacgga atgtactatc cacagaggca 1740
gaacacaaat aagttcaacg gcattaaatg gtactactgg aaaggctcag gctattcgct 1800
caaggccaca accatgatga tccgaccagc agatttctaa acatcccagt ccacctgagg 1860
aactgtctcg aactattttc aaagacttaa gcccagtgca ctgaaagtca cggctgcgca 1920
ctgtgtcctc ttccaccaca gagggcgtgt gctcggtgct gacgggaccc acatgctcca 1980
gattagagcc tgtaaacttt atcacttaaa cttgcatcac ttaacggacc aaagcaagac 2040
cctaaacatc cataattgtg attagacaga acacctatgc aaagatgaac ccgaggctga 2100
gaatcagact gacagtttac agacgctgct gtcacaacca agaatgttat gtgcaagttt 2160
atcagtaaat aactggaaaa cagaacactt atgttataca atacagatca tcttggaact 2220
gcattcttct gagcactgtt tatacactgt gtaaataccc atatgtcct             2269
<210>4
<211>496
<212>PRT
<213>人
<400>4
Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala
  1               5                  10                  15
Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys
             20                  25                  30
Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro
         35                  40                  45
Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala
     50                  55                  60
Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Asp Ser Val Gln Arg Leu
 65                  70                  75                  80
Gln Val Leu Glu Asn Ile Met Glu Asn Asn Thr Gln Trp Leu Met Lys
                 85                  90                  95
Leu Glu Asn Tyr Ile Gln Asp Asn Met Lys Lys Glu Met Val Glu Ile
            100                 105                 110
Gln Gln Asn Ala Val Gln Asn Gln Thr Ala Val Met Ile Glu Ile Gly
        115                 120                 125
Thr Asn Leu Leu Asn Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
    130                 135                 140
Val Glu Ala Gln Val Leu Asn Gln Thr Thr Arg Leu Glu Leu Gln Leu
145                 150                 155                 160
Leu Glu His Ser Leu Ser Thr Asn Lys Leu Glu Lys Gln Ile Leu Asp
                165                 170                 175
Gln Thr Ser Glu Ile Asn Lys Leu Gln Asp Lys Asn Ser Phe Leu Glu
            180                 185                 190
Lys Lys Val Leu Ala Met Glu Asp Lys His Ile Ile Gln Leu Gln Ser
        195                 200                 205
Ile Lys Glu Glu Lys Asp Gln Leu Gln Val Leu Val Ser Lys Gln Asn
    210                 215                 220
Ser Ile Ile Glu Glu Leu Glu Lys Lys Ile Val Thr Ala Thr Val Asn
225                 230                 235                 240
Asn Ser Val Leu Gln Lys Gln Gln His Asp Leu Met Glu Thr Val Asn
                245                 250                 255
Asn Leu Leu Thr Met Met Ser Thr Ser Asn Ser Ala Lys Asp Pro Thr
            260                 265                 270
Val Ala Lys Glu Glu Gln Ile Ser Phe Arg Asp Cys Ala Glu Val Phe
        275                 280                 285
Lys Ser Gly His Thr Thr Asn Gly Ile Tyr Thr Leu Thr Phe Pro Asn
    290                 295                 300
Ser Thr Glu Glu Ile Lys Ala Tyr Cys Asp Met Glu Ala Gly Gly Gly
305                 310                 315                 320
Gly Trp Thr Ile Ile Gln Arg Arg Glu Asp Gly Ser Val Asp Phe Gln
                325                 330                 335
Arg Thr Trp Lys Glu Tyr Lys Val Gly Phe Gly Asn Pro Ser Gly Glu
            340                 345                 350
Tyr Trp Leu Gly Asn Glu Phe Val Ser Gln Leu Thr Asn Gln Gln Arg
        355                 360                 365
Tyr Val Leu Lys Ile His Leu Lys Asp Trp Glu Gly Asn Glu Ala Tyr
    370                 375                 380
Ser Leu Tyr Glu His Phe Tyr Leu Ser Ser Glu Glu Leu Asn Tyr Arg
385                 390                 395                 400
Ile His Leu Lys Gly Leu Thr Gly Thr Ala Gly Lys Ile Ser Ser Ile
                405                 410                 415
Ser Gln Pro Gly Asn Asp Phe Ser Thr Lys Asp Gly Asp Asn Asp Lys
            420                 425                 430
Cys Ile Cys Lys Cys Ser Gln Met Leu Thr Gly Gly Trp Trp Phe Asp
        435                 440                 445
Ala Cys Gly Pro Ser Asn Leu Asn Gly Met Tyr Tyr Pro Gln Arg Gln
    450                 455                 460
Asn Thr Asn Lys Phe Asn Gly Ile Lys Trp Tyr Tyr Trp Lys Gly Ser
465                 470                 475                 480
Gly Tyr Ser Leu Lys Ala Thr Thr Met Met Ile Arg Pro Ala Asp Phe
                485                 490                 495
<210>5
<211>495
<212>PRT
<213>人
<400>5
Met Trp Gln Ile Val Phe Phe Thr Leu Ser Cys Asp Leu Val Leu Ala
  1               5                  10                 15
Ala Ala Tyr Asn Asn Phe Arg Lys Ser Met Asp Ser Ile Gly Lys Lys
             20                  25                  30
Gln Tyr Gln Val Gln His Gly Ser Cys Ser Tyr Thr Phe Leu Leu Pro
         35                  40                  45
Glu Met Asp Asn Cys Arg Ser Ser Ser Ser Pro Tyr Val Ser Asn Ala
     50                  55                  60
Val Gln Arg Asp Ala Pro Leu Glu Tyr Asp Phe Ser Ser Gln Lys Leu
 65                  70                  75                  80
Gln His Leu Glu His Val Met Glu Asn Tyr Thr Gln Trp Leu Gln Lys
                 85                  90                  95
Leu Glu Asn Tyr Ile Val Glu Asn Met Lys Ser Glu Met Ala Gln Ile
            100                 105                 110
Gln Gln Asn Ala Val Gln Asn His Thr Ala Thr Met Leu Glu Ile Gly
        115                 120                 125
Thr Ser Leu Leu Ser Gln Thr Ala Glu Gln Thr Arg Lys Leu Thr Asp
    130                 135                 140
Val Glu Thr Gln Val Leu Asn Gln Thr Ser Arg Leu Glu Ile Gln Leu
145                 150                 155                 160
Leu Glu Asn Ser Leu Ser Thr Tyr Lys Leu Glu Lys Gln Leu Leu Gln
                165                 170                 175
Gln Thr Asn Glu Ile Leu Lys Ile His Glu Lys Asn Ser Leu Leu Glu
            180                 185                 190
His Lys Ile Leu Glu Met Glu Gly Lys His Lys Glu Glu Leu Asp Thr
        195                 200                 205
Leu Lys Glu Glu Lys Glu Asn Leu Gln Gly Leu Val Thr Arg Gln Thr
    210                 215                 220
Tyr Ile Ile Gln Glu Leu Glu Lys Gln Leu Asn Arg Ala Thr Thr Asn
225                 230                 235                 240
Asn Ser Val Leu Gln Lys Gln Gln Leu Glu Leu Met Asp Thr Val His
                245                 250                 255
Asn Leu Val Asn Leu Ser Thr Lys Glu Gly Val Leu Leu Lys Gly Gly
            260                 265                 270
Lys Arg Glu Glu Glu Lys Pro Phe Arg Asp Cys Ala Asp Val Tyr Gln
        275                 280                 285
Ala Gly Phe Asn Lys Ser Gly Ile Tyr Thr Ile Tyr Ile Asn Asn Met
    290                 295                 300
Pro Glu Pro Lys Lys Val Phe Cys Asn Met Asp Val Asn Gly Gly Gly
305                 310                 315                 320
Trp Thr Val Ile Gln His Arg Glu Asp Gly Ser Leu Asp Phe Gln Arg
                325                 330                 335
Gly Trp Lys Glu Tyr Lys Met Gly Phe Gly Asn Pro Ser Gly Glu Tyr
            340                 345                 350
Trp Leu Gly Asn Glu Phe Ile Phe Ala Ile Thr Ser Gln Arg Gln Lyr
        355                 360                 365
Met Leu Arg Ile Glu Leu Met Asp Trp Glu Gly Asn Arg Ala Tyr Ser
    370                 375                 380
Gln Tyr Asp Arg Phe His Ile Gly Asn Glu Lys Gln Asn Tyr Arg Leu
385                 390                 395                 400
Tyr Leu Lys Gly His Thr Gly Thr Ala Gly Lys Gln Ser Ser Leu Ile
                405                 410                 415
Leu His Gly Ala Asp Phe Ser Thr Lys Asp Ala Asp Asn Asp Asn Cys
            420                 425                 430
Met Cys Lys Cys Ala Leu Met Leu Thr Gly Gly Trp Trp Phe Asp Ala
        435                 440                 445
Cys Gly Pro Ser Asn Leu Asn Gly Met Phe Tyr Thr Ala Gly Gln Asn
    450                 455                 460
His Gly Lys Leu Asn Gly Ile Lys Trp His Tyr Phe Lys Gly Pro Ser
465                 470                 475                 480
Tyr Ser Leu Arg Ser Thr Thr Met Met Ile Arg Pro Leu Asp Phe
                485                 490                 495
<210>6
<211>381
<212>DNA
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>6
aagcttcagg tgcaactgca ggagtctgga cctgagctgg taaagcctgg ggcttcagtg 60
aagatgtcct gcaaggcttc tggatacaca ttcactagct atgttttcca ctgggtgaag 120
cagaaacctg ggcagggcct tgagtggatt ggatatatta atccttacaa tgatgttact 180
aagtacaatg agaagttcaa aggcaaggcc acactgactt cagacaaatc ctccagcaca 240
gcctacatgg agctcagcag cctgacctct gaggactctg cggtctatta ctgtgcaagc 300
tactacggta gtagttacgg atactatgct atggacgact ggggccaagg gaccacggtc 360
accgtttcct ctggcggtgg c                                           381
<210>7
<211>127
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>7
Lys Leu Gln Val Gln Leu Gln Glu Ser Gly Pro Glu Leu Val Lys Pro
  1               5                  10                  15
Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr
             20                  25                  30
Ser Tyr Val Phe His Trp Val Lys Gln Lys Pro Gly Gln Gly Leu Glu
         35                  40                  45
Trp Ile Gly Tyr Ile Asn Pro Tyr Asn Asp Val Thr Lys Tyr Asn Glu
     50                  55                  60
Lys Phe Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr
 65                  70                  75                  80
Ala Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
                 85                  90                  95
Tyr Cys Ala Ser Tyr Tyr Gly Ser Ser Tyr Gly Tyr Tyr Ala Met Asp
            100                 105                 110
Asp Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
        115                 120                 125
<210>8
<211>347
<212>DNA
<213>人工序列
<220>
<223>人工序列描述:合成寡核苷酸
<400>8
gacatccagc tgacgcagtc tccagcatcc ctgagtgtgt cagcaggaga gaaggtcact 60
atgagctgca agtccagtca gagtctgtta aacagtggaa atcaaaagaa ctacttggcc 120
tggtatcagc agaaaccagg gcagcctcct aaactgttga tccacggggc atccactagg 180
gaatctgggg tccctgatcg cttcacaggc agtggatctg gaaccgattt cactcttacc 240
atcagcagtg tgcaggctga agacctggca gtttattact gtcagaatga ttatagttat 300
cctctcacgt tcggtgctgg caccaagctg gaactgaaac gtctaga               347
<210>9
<211>115
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>9
Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ser Val Ser Ala Gly
  1               5                  10                  15
Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
             20                  25                  30
Gly Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
         35                  40                  45
Pro Pro Lys Leu Leu Ile His Gly Ala Ser Thr Arg Glu Ser Gly Val
     50                  55                  60
Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65                  70                  75                  80
Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn
                 85                  90                  95
Asp Tyr Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
            100                 105                 110
Lys Arg Leu
    115
<210>10
<211>26
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>10
Ala Pro Met Ala Glu Gly Gly Gly Gln Asn His His Glu Val Val Lys
  1               5                  10                  15
Phe Met Asp Val Tyr Gln Arg Ser Tyr Cys
             20                  25
<210>11
<211>25
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>11
Ala Pro Met Ala Glu Gly Glu Gln Lys Pro Arg Glu Val Val Lys Phe
  1                  5                  10                  15
Met Asp Val Tyr Lys Arg Ser Tyr Cys
             20                  25
<210>12
<211>573
<212>DNA
<213>人工序列
<220>
<223>人工序列描述:合成寡核苷酸
<220>
<221>CDS
<222>(1)..(573)
<400>12
atg cat cac cat cac cat cac cat act cat cag gac ttt cag cca gtg    48
Met His His His His His His His Thr His Gln Asp Phe Gln Pro Val
  1               5                  10                  15
ctc cac ctg gtg gca ctg aac acc ccc ctg tct gga ggc atg cgt ggt    96
Leu His Leu Val Ala Leu Asn Thr Pro Leu Ser Gly Gly Met Arg Gly
             20                  25                  30
atc cgt gga gca gat ttc cag tgc ttc cag caa gcc cga gcc gtg ggg    144
Ile Arg Gly Ala Asp Phe Gln Cys Phe Gln Gln Ala Arg Ala Val Gly
         35                  40                  45
ctg tcg ggc acc ttc cgg gct ttc ctg tcc tct agg ctg cag gat ctc    192
Leu Ser Gly Thr Phe Arg Ala Phe Leu Ser Ser Arg Leu Gln Asp Leu
     50                  55                  60
tat agc atc gtg cgc cgt gct gac cgg ggg tct gtg ccc atc gtc aac    240
Tyr Ser Ile Val Arg Arg Ala Asp Arg Gly Ser Val Pro Ile Val Asn
 65                  70                  75                  80
ctg aag gac gag gtg cta tct ccc agc tgg gac tcc ctg ttt tct ggc    288
Leu Lys Asp Glu Val Leu Ser Pro Ser Trp Asp Ser Leu Phe Ser Gly
                 85                  90                  95
tcc cag ggt caa ctg caa ccc ggg gcc cgc atc ttt tct ttt gac ggc    336
Ser Gln Gly Gln Leu Gln Pro Gly Ala Arg Ile Phe Ser Phe Asp Gly
            100                 105                 110
aga gat gtc ctg aga cac cca gcc tgg ccg cag aag agc gta tgg cac    384
Arg Asp Val Leu Arg His Pro Ala Trp Pro Gln Lys Ser Val Trp His
        115                 120                 125
ggc tcg gac ccc agt ggg cgg agg ctg atg gag agt tac tgt gag aca    432
Gly Ser Asp Pro Ser Gly Arg Arg Leu Met Glu Ser Tyr Cys Glu Thr
    130                 135                 140
tgg cga act gaa act act ggg gct aca ggt cag gcc tcc tcc ctg ctg    480
Trp Arg Thr Glu Thr Thr Gly Ala Thr Gly Gln Ala Ser Ser Leu Leu
145                 150                 155                 160
tca ggc agg ctc ctg gaa cag aaa gct gcg agc tgc cac aac agc tac    528
Ser Gly Arg Leu Leu Glu Gln Lys Ala Ala Ser Cys His Asn Ser Tyr
                165                 170                 175
atc gtc ctg tgc att gag aat agc ttc atg acc tct ttc tcc aaa        573
Ile Val Leu Cys Ile Glu Asn Ser Phe Met Thr Ser Phe Ser Lys
            180                 185                 190
<210>13
<211>191
<212>PRT
<213>人工序列
<223>人工序列描述:合成肽
<400>13
Met His His His His His His His Thr His Gln Asp Phe Gln Pro Val
  1               5                  10                  15
Leu His Leu Val Ala Leu Asn Thr Pro Leu Ser Gly Gly Met Arg Gly
             20                  25                  30
Ile Arg Gly Ala Asp Phe Gln Cys Phe Gln Gln Ala Arg Ala Val Gly
         35                  40                  45
Leu Ser Gly Thr Phe Arg Ala Phe Leu Ser Ser Arg Leu Gln Asp Leu
     50                  55                  60
Tyr Ser Ile Val Arg Arg Ala Asp Arg Gly Ser Val Pro Ile Val Asn
 65                  70                  75                  80
Leu Lys Asp Glu Val Leu Ser Pro Ser Trp Asp Ser Leu Phe Ser Gly
                 85                  90                  95
Ser Gln Gly Gln Leu Gln Pro Gly Ala Arg Ile Phe Ser Phe Asp Gly
            100                 105                 110
Arg Asp Val Leu Arg His Pro Ala Trp Pro Gln Lys Ser Val Trp His
        115                 120                 125
Gly Ser Asp Pro Ser Gly Arg Arg Leu Met Glu Ser Tyr Cys Glu Thr
    130                 135                 140
Trp Arg Thr Glu Thr Thr Gly Ala Thr Gly Gln Ala Ser Ser Leu Leu
145                 150                 155                 160
Ser Gly Arg Leu Leu Glu Gln Lys Ala Ala Ser Cys His Asn Ser Tyr
                165                 170                 175
Ile Val Leu Cys Ile Glu Asn Ser Phe Met Thr Ser Phe Ser Lys
            180                 185                 190
<210>14
<211>182
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>14
His Ser His Arg Asp Phe Gln Pro Val Leu His Leu Val Ala Leu Asn
  1               5                  10                  15
Ser Pro Leu Ser Gly Gly Met Arg Gly Ile Arg Gly Ala Asp Phe Gln
             20                  25                  30
Cys Phe Gln Gln Ala Arg Ala Val Gly Leu Ala Gly Thr Phe Arg Ala
         35                  40                  45
Phe Leu Ser Ser Arg Leu Gln Asp Leu Tyr Ser Ile Val Arg Arg Ala
     50                  55                  60
Asp Arg Ala Ala Val Pro Ile Val Asn Leu Lys Asp Glu Leu Leu Phe
 65                  70                  75                  80
Pro Ser Trp Glu Ala Leu Phe Ser Gly Ser Glu Gly Pro Leu Lys Pro
                 85                  90                  95
Gly Ala Arg Ile Phe Ser Phe Asp Gly Lys Asp Val Leu Arg His Pro
            100                 105                 110
Thr Trp Pro Gln Lys Ser Val Trp His Gly Ser Asp Pro Asn Gly Arg
        115                 120                 125
Arg Leu Thr Glu Ser Tyr Cys Glu Thr Trp Arg Thr Glu Ala Pro Ser
    130                 135                 140
Ala Thr Gly Gln Ala Ser Ser Leu Leu Gly Gly Arg Leu Leu Gly Gln
145                 150                 155                 160
Ser Ala Ala Ser Cys His His Ala Tyr Ile Val Leu Cys Ile Glu Asn
                165                 170                 175
Ser Phe Met Thr Ala Ser
            180
<210>15
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>15
Pro Arg Phe Lys Ile Ile Gly Gly
  1               5
<210>16
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>16
Pro Arg Phe Arg Ile Ile Gly Gly
  1               5
<210>17
<211>9
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>17
Ser Ser Arg His Arg Arg Ala Leu Asp
  1               5
<210>18
<211>14
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>18
Arg Lys Ser Ser Ile Ile Ile Arg Met Arg Asp Val Val Leu
  1               5                  10
<210>19
<211>15
<212>pRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>19
Ser Ser Ser Phe Asp Lys Gly Lys Tyr Lys Lys Gly Asp Asp Ala
  1               5                  10                  15
<210>20
<211>15
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>20
Ser Ser Ser Phe Asp Lys Gly Lys Tyr Lys Arg Gly Asp Asp Ala
  1               5                  10                  15
<210>21
<211>4
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>21
Ile Glu Gly Arg
  1
<210>22
<211>4
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>22
Ile Asp Gly Arg
  1
<210>23
<211>7
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>23
Gly Gly Ser Ile Asp Gly Arg
  1               5
<210>24
<211>6
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>24
Pro Leu Gly Leu Trp Ala
  1               5
<210>25
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>25
Gly Pro Gln Gly Ile Ala Gly Gln
  1               5
<210>26
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>26
Gly Pro Gln Gly Leu Leu Gly Ala
  1               5
<210>27
<211>5
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>27
Gly Ile Ala Gly Gln
  1               5
<210>28
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>28
Gly Pro Leu Gly Ile Ala Gly Ile
  1               5
<210>29
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>29
Gly Pro Glu Gly Leu Arg Val Gly
  1               5
<210>30
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>30
Tyr Gly Ala Gly Leu Gly Val Val
  1               5
<210>31
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>31
Ala Gly Leu Gly Val Val Glu Arg
  1               5
<210>32
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>32
Ala Gly Leu Gly Ile Ser Ser Thr
  1               5
<210>33
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>33
Glu Pro Gln Ala Leu Ala Met Ser
  1               5
<210>34
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>34
Gln Ala Leu Ala Met Ser Ala Ile
  1               5
<210>35
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>35
Ala Ala Tyr His Leu Val Ser Gln
  1               5
<210>36
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>36
Met Asp Ala Phe Leu Glu Ser Ser
  1               5
<210>37
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>37
Glu Ser Leu Pro Val Val Ala Val
  1               5
<210>38
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>38
Ser Ala Pro Ala Val Glu Ser Glu
  1               5
<210>39
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>39
Asp Val Ala Gln Phe Val Leu Thr
  1               5
<210>40
<211>8
<212>PRT
<213>人序列
<220>
<223>人工序列描述:合成肽
<400>40
Val Ala Gln Phe Val Leu Thr Glu
  1               5
<210>41
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>41
Ala Gln Phe Val Leu Thr Glu Gly
  1               5
<210>42
<211>8
<212>PRT
<213>人工序列
<220>
<223>人工序列描述:合成肽
<400>42
Pro Val Gln Pro Ile Gly Pro Gln
  1               5
<210>43
<211>31
<212>DNA
<213>人工序列
<220>
<223>人工序列描述:合成寡核苷酸
<400>43
agaccatggg tcatactcat caggactttc a                                31
<210>44
<211>29
<212>DNA
<213>人工序列
<220>
<223>人工序列描述:合成寡核苷酸
<400>44
ctaccatggc tatttggaga aagaggtca                                   29

Claims (79)

1.包含生物学有效量的纯化抗VEGF抗体或其抗原结合片段的组合物,该抗体或其抗原结合片段结合的表位与单克隆抗体ATCC PTA1595基本上相同,并显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)。
2.权利要求1的组合物,其中所述抗体是单克隆抗体或其抗原结合片段。
3.权利要求1或2的组合物,其中所述抗体是IgG抗体或IgM抗体。
4.权利要求1或2的组合物,其中所述抗体是抗体的scFv、Fv、Fab′、Fab、diabody、线性抗体、或F(ab′)2抗原结合片段。
5.权利要求1或2的组合物,其中所述抗体是该抗体或其抗原结合片段的二聚体、三聚体、或多聚体。
6.权利要求1或2的组合物,其中所述抗体是人、人化、或部分人抗体或其抗原结合片段。
7.权利要求6的组合物,其中所述抗体包含可操作附着于人抗体框架或恒定区的该抗体抗原结合区。
8.权利要求1或2的组合物,其中所述抗体是嵌合抗体。
9.权利要求1或2的组合物,其中所述抗体是重组抗体。
10.权利要求1或2的组合物,其中所述抗体包含至少第一可变区,所述可变区包含具有氨基酸序列SEQ ID NO:7或SEQ ID NO:9的氨基酸序列区。
11.权利要求1或2的组合物,其中所述抗体是单克隆抗体ATCCPTA 1595。
12.权利要求1或2的组合物,其中所述抗体可操作附着至少第一生物学试剂。
13.权利要求12的组合物,其中所述抗体可操作附着至少第一试剂,该试剂可切割基本上无活性的药物前体而释放基本上有活性的药物。
14.权利要求13的组合物,其中所述抗体可操作附着碱性磷酸酶,该酶可切割基本上无活性的磷酸-药物前体而释放基本上有活性的药物。
15.权利要求12的组合物,其中所述抗体可操作附着至少第一治疗剂或诊断剂。
16.权利要求15的组合物,其中所述抗体可操作附着至少第一治疗剂。
17.权利要求16的组合物,其中所述抗体可操作附着至少第一和第二治疗剂。
18.权利要求16的组合物,其中所述抗体可操作附着至少第一化疗剂、放疗剂、抗血管发生试剂、诱导凋亡试剂、类固醇、抗代谢物、蒽环霉素、长春花生物碱、抗微管蛋白药物、抗生素、细胞因子、烷化剂、或凝血剂。
19.权利要求18的组合物,其中所述抗体可操作附着能够杀死内皮细胞或抑制内皮细胞生长或细胞分裂的毒害细胞、抑制细胞、或抗细胞的试剂。
20.权利要求19的组合物,其中所述抗体可操作附着由植物、真菌、或细菌衍生的毒素。
21.权利要求20的组合物,其中所述抗体可操作附着A链毒素、核糖体灭活蛋白、α-帚曲菌素、gelonin、曲霉菌素、局限曲菌素、核糖核酸酶、表鬼臼毒素、白喉毒素、或假单胞菌外毒素。
22.权利要求21的组合物,其中所述抗体可操作附着蓖麻毒蛋白A链或脱糖基化蓖麻毒蛋白A链。
23.权利要求18的组合物,其中所述抗体可操作附着抗血管发生试剂。
24.权利要求23的组合物,其中所述抗体可操作附着促血管生成素。
25.权利要求24的组合物,其中所述抗体可操作附着促血管生成素-2或促血管生成素-1。
26.权利要求23的组合物,其中所述抗体可操作附着制管张素、抑血管素、制霉菌素、或maspin。
27.权利要求23的组合物,其中所述抗体可操作附着抑内皮素。
28.权利要求18的组合物,其中所述抗体可操作附着抗微管蛋白药物。
29.权利要求28的组合物,其中所述抗体可操作附着选自下组的抗微管蛋白药物:秋水仙素、紫杉醇、长春花碱、长春花新碱、长春碱酰胺、和考布他汀。
30.权利要求18的组合物,其中所述抗体可操作附着凝血剂。
31.权利要求30的组合物,其中所述抗体可操作附着选自下组的凝血剂:因子II/IIa、因子VII/VIIa、因子IX/IXa、因子X/Xa、缺乏Gla修饰的依赖维生素K的凝血因子、Russell蝰蛇毒因子X激活剂、血栓烷A2、血栓烷A2合酶、和α2-抗纤溶酶。
32.权利要求30的组合物,其中所述抗体可操作附着组织因子、人组织因子、激活因子VII能力缺陷的突变型组织因子、截短的组织因子,或者二聚体、三聚体、或多聚体形式的组织因子或组织因子衍生物。
33.权利要求32的组合物,其中所述抗体可操作附着截短的组织因子。
34.权利要求15的组合物,其中所述抗体可操作附着诊断性、成像性、或检测性试剂。
35.权利要求34的组合物,其中所述抗体可操作附着X射线可检测化合物、放射性离子、或核磁旋转共振同位素。
36.权利要求34的组合物,其中所述抗体可操作附着生物素、亲和素、或在接触显色底物后产生有色产物的酶。
37.权利要求12的组合物,其中所述抗体可操作附着所述生物学试剂,作为融合蛋白质,通过在相同读码框中包含编码所述抗体的DNA片段及与之可操作连接的编码所述生物学试剂的DNA片段的重组载体的表达来制备。
38.权利要求12的组合物,其中所述抗体经生物学可释放键或选择性可切割接头而可操作附着所述生物学试剂。
39.权利要求38的组合物,其中所述抗体经肽接头可操作附着所述生物学试剂,该肽接头包含尿激酶、尿激酶原、纤溶酶、纤溶酶原、TGFβ、链激酶、凝血酶、因子IXa、因子Xa、金属蛋白酶、间质胶原酶、明胶酶、或溶基质素的切割位点。
40.权利要求12的组合物,其中所述抗体直接附着所述生物学试剂。
41.权利要求15的组合物,其中所述抗体附着可结合所述治疗剂或诊断剂的第二种抗体或其抗原结合区。
42.权利要求1或2的组合物,其中所述组合物是制药学可接受的组合物。
43.权利要求42的组合物,其中所述制药学可接受的组合物配制用于胃肠外施用。
44.权利要求42的组合物,其中所述制药学可接受的组合物是脂质体制剂。
45.权利要求1或2的组合物,其中所述组合物还包含第二治疗剂。
46.权利要求45的组合物,其中所述第二治疗剂是第二抗癌试剂。
47.权利要求46的组合物,其中所述第二抗癌试剂是化疗剂、放疗剂、抗血管发生试剂、诱导凋亡试剂、抗微管蛋白药物;或者靶向肿瘤的化疗剂、放疗剂、抗血管发生试剂、诱导凋亡试剂、或抗微管蛋白药物。
48.权利要求47的组合物,其中所述第二抗癌试剂是促血管生成素或靶向肿瘤的促血管生成素。
49.权利要求48的组合物,其中所述第二抗癌试剂是靶向肿瘤的促血管生成素-1。
50.权利要求47的组合物,其中所述第二抗癌试剂是抑内皮素或靶向肿瘤的抑内皮素。
51.权利要求47的组合物,其中所述第二抗癌试剂是抗微管蛋白药物或靶向肿瘤的抗微管蛋白药物。
52.权利要求47的组合物,其中所述第二抗癌剂是包含治疗剂及与之可操作连接的第二抗体或其抗原结合片段的抗体-治疗剂构建物,该第二抗体或其抗原结合片段可结合肿瘤细胞、肿瘤血管结构、或肿瘤基质的表面表达的、表面可接近的、或表面定位的成分。
53.权利要求1或2的组合物,用于治疗。
54.权利要求1或2的组合物,用于诊断。
55.权利要求1或2的组合物,用于对动物施用后抑制血管发生。
56.权利要求55的组合物,用于对患有眼部新血管性疾病或黄斑变性的动物施用后在所述动物中抑制血管发生。
57.权利要求12的组合物,用于对患有血管化肿瘤的动物施用后向血管化肿瘤投递生物学试剂。
58.权利要求1或2的组合物,用于治疗癌症。
59.权利要求1-11或23-29任一项的组合物在用于通过抑制血管发生来治疗疾病的药物制备中的应用。
60.权利要求59的应用,其中所述药物意欲用于通过抑制血管发生来治疗眼部新血管性疾病或黄斑变性。
61.权利要求12-41任一项的组合物在通过向血管化肿瘤投递生物学试剂来治疗癌症的药物制备中的应用。
62.权利要求1-58任一项的组合物在用于治疗癌症的药物制备中的应用。
63.包含生物学有效量的抗VEGF抗体或其抗原结合片段的组合物,用于治疗中而基本上不抑制巨噬细胞、破骨细胞、或破软骨细胞,该抗体或其抗原结合片段结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同。
64.包含生物学有效量的抗VEGF抗体或其抗原结合片段的组合物在用于通过抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)来治疗癌症的药物制备中的应用,该抗体或其抗原结合片段结合的表位与单克隆抗体2C3(ATCC PTA1595)基本上相同。
65.包含权利要求1-58任一项的至少第一组合物的试剂盒。
66.包含权利要求13或14的至少第一组合物和含基本上无活性的药物前体的至少第二组合物的试剂盒,该药物前体可由附着于所述第一组合物中的抗体的生物学试剂切割而释放基本上有活性的药物。
67.包含权利要求14的至少第一组合物和含考布他汀磷酸盐(酯)的至少第二组合物的试剂盒。
68.产生抗VEGF单克隆抗体的杂交瘤,所述单克隆抗体结合的表位与单克隆抗体ATCC PTA 1595基本上相同,并显著抑制VEGF结合VEGF受体VEGFR2(KDR/Flk-1)而不显著抑制VEGF结合VEGF受体VEGFR1(Flt-1)。
69.单克隆抗体ATCC PTA 1595。
70.一种免疫缀合物,其中包含与至少第一生物学试剂可操作附着的单克隆抗体ATCC PTA 1595。
71.用于制备抗VEGF抗体的方法,该抗体结合的表位与单克隆抗体ATCC PTA 1595基本上相同,该方法包括:用包含至少第一免疫原性VEGF成分的免疫组合物免疫非人动物,并由经免疫动物选择与单克隆抗体ATCC PTA 1595充分发生交叉反应的抗体。
72.权利要求71的方法,其中所述非人动物是包含人抗体文库的转基因小鼠。
73.权利要求71或72的方法,包括:获得编码所述抗VEGF抗体的核酸,并表达所述核酸以获得重组抗VEGF抗体。
74.权利要求71或72的方法,包括:
a)对非人动物施用免疫有效量的包含至少第一免疫原性VEGF成分的组合物;
b)制备组合型免疫球蛋白噬菌粒文库,该文库表达由经免疫动物的脾分离的RNA;
c)由该噬菌粒文库选择表达抗VEGF抗体的克隆,该抗体与单克隆抗体2C3(ATCC PTA 1595)充分发生交叉反应;并
d)表达来自所述选定克隆的抗VEGF抗体编码核酸以提供重组抗VEGF抗体。
75.用于检测VEGF的方法,包括:在能够有效形成VEGF/抗体复合物的条件下,使怀疑含有VEGF的组合物接触权利要求1-58任一项的组合物,并检测由此形成的复合物。
76.用于体外抑制VEGF结合VEGF受体VEGFR2而不显著抑制VEGF结合VEGF受体VEGFR1的方法,包括:使表达VEGFR2(KDR/Flk-1)和VEGFR1(Flt-1)的同种或异种体外细胞群接触生物学有效量的权利要求1-58任一项的组合物。
77.用于体外特异性抑制VEGF诱导的内皮细胞增殖的方法,包括:使内皮细胞群体外接触生物学有效量的权利要求1-58任一项的组合物。
78.用于体外抑制VEGF诱导的内皮细胞增殖而不显著抑制VEGF诱导的巨噬细胞、破骨细胞、或破软骨细胞功能的方法,包括:使包含内皮细胞以及巨噬细胞、破骨细胞、和破软骨细胞三者中至少一种的组织样品体外接触生物学有效量的权利要求1-58任一项的组合物。
79.用于体外抑制血管发生的方法,包括在体外使血管群接触包含生物学有效量的权利要求1-58任一项的组合物的抗血管发生组合物。
CNB008094179A 1999-04-28 2000-04-28 用于通过选择性抑制vegf来治疗癌症的组合物和方法 Expired - Fee Related CN1308347C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13143299P 1999-04-28 1999-04-28
US60/131,432 1999-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA2007100967289A Division CN101073668A (zh) 1999-04-28 2000-04-28 用于通过选择性抑制vegf来治疗癌症的组合物和方法

Publications (2)

Publication Number Publication Date
CN1358197A CN1358197A (zh) 2002-07-10
CN1308347C true CN1308347C (zh) 2007-04-04

Family

ID=22449437

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB008094179A Expired - Fee Related CN1308347C (zh) 1999-04-28 2000-04-28 用于通过选择性抑制vegf来治疗癌症的组合物和方法
CNA2007100967289A Pending CN101073668A (zh) 1999-04-28 2000-04-28 用于通过选择性抑制vegf来治疗癌症的组合物和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2007100967289A Pending CN101073668A (zh) 1999-04-28 2000-04-28 用于通过选择性抑制vegf来治疗癌症的组合物和方法

Country Status (17)

Country Link
US (7) US6342221B1 (zh)
EP (2) EP1185559A2 (zh)
JP (2) JP4926320B2 (zh)
KR (1) KR100816572B1 (zh)
CN (2) CN1308347C (zh)
AT (1) ATE269357T1 (zh)
AU (1) AU763954B2 (zh)
BR (1) BR0010017A (zh)
CA (1) CA2372053C (zh)
DE (1) DE60011612T2 (zh)
ES (1) ES2223705T3 (zh)
HK (1) HK1045700B (zh)
IL (1) IL145941A (zh)
MX (1) MXPA01010891A (zh)
NZ (1) NZ514918A (zh)
WO (1) WO2000064946A2 (zh)
ZA (2) ZA200108612B (zh)

Families Citing this family (521)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367057A (en) * 1991-04-02 1994-11-22 The Trustees Of Princeton University Tyrosine kinase receptor flk-2 and fragments thereof
US6448077B1 (en) * 1994-02-10 2002-09-10 Imclone Systems, Inc. Chimeric and humanized monoclonal antibodies specific to VEGF receptors
US20030108545A1 (en) * 1994-02-10 2003-06-12 Patricia Rockwell Combination methods of inhibiting tumor growth with a vascular endothelial growth factor receptor antagonist
US6136311A (en) 1996-05-06 2000-10-24 Cornell Research Foundation, Inc. Treatment and diagnosis of cancer
AU2469299A (en) * 1998-01-23 1999-08-09 Cornell Research Foundation Inc. Purified populations of stem cells
WO2000018885A1 (en) * 1998-09-29 2000-04-06 Gamida Cell Ltd. Methods of controlling proliferation and differentiation of stem and progenitor cells
US6537520B1 (en) * 1998-03-31 2003-03-25 Bristol-Myers Squibb Pharma Company Pharmaceuticals for the imaging of angiogenic disorders
US20030176663A1 (en) * 1998-05-11 2003-09-18 Eidgenossische Technische Hochscule Specific binding molecules for scintigraphy
DK1086223T3 (da) * 1998-06-01 2009-11-30 Agensys Inc Nye serpentintransmembranantigener udtrykt i humane cancerformer og anvendelser deraf
US6962702B2 (en) 1998-06-22 2005-11-08 Immunomedics Inc. Production and use of novel peptide-based agents for use with bi-specific antibodies
ATE322909T1 (de) * 1998-12-21 2006-04-15 Ludwig Inst Cancer Res Antikörper gegen verkürzten vegf-d und deren verwendungen
IT1312077B1 (it) * 1999-04-15 2002-04-04 Univ Degli Studi Milano Polipeptidi ad attivita' antiangiogenica.
US6703020B1 (en) 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
EP1185559A2 (en) 1999-04-28 2002-03-13 Board Of Regents, The University Of Texas System Compositions and methods for cancer treatment by selectively inhibiting vegf
US6924359B1 (en) 1999-07-01 2005-08-02 Yale University Neovascular-targeted immunoconjugates
US7303749B1 (en) 1999-10-01 2007-12-04 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
EP1229934B1 (en) 1999-10-01 2014-03-05 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
EP1239877B1 (en) * 1999-10-06 2008-01-09 Abbott GmbH & Co. KG Composition comprising a tnf-alpha inhibitor and an integrin alphavbeta3 receptor antagonist
US7740841B1 (en) * 2000-01-28 2010-06-22 Sunnybrook Health Science Center Therapeutic method for reducing angiogenesis
ES2311507T3 (es) * 2000-02-10 2009-02-16 MASSACHUSETTS EYE &amp; EAR INFIRMARY Terapia fotodinamica para tratamiento de afecciones oftalmicas.
JP2003524018A (ja) * 2000-02-24 2003-08-12 アイトゲネーシシェ テクニシェ ホッホシューレ チューリッヒ フィブロネクチンのed‐bドメインに特異的な抗体、前記抗体を含む複合体、および血管形成を検出および治療するためのその使用
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
JP2003528632A (ja) 2000-03-31 2003-09-30 インスティティ・パスツール 血管内皮成長因子(vegf)−媒介性脈管形成を阻害するペプチド、該ペプチドをエンコードするポリヌクレオチド及びその使用方法
US7355019B2 (en) * 2000-06-06 2008-04-08 Sibtech, Inc. Cysteine-containing peptide tag for site-specific conjugation of proteins
US7163681B2 (en) * 2000-08-07 2007-01-16 Centocor, Inc. Anti-integrin antibodies, compositions, methods and uses
US7288390B2 (en) * 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
FR2813606B1 (fr) * 2000-09-01 2004-04-30 Inst Nat Sante Rech Med Proteine bard1 tronquee, et ses applications diagnostiques et therapeutiques
EP1581615B1 (en) * 2000-09-05 2010-04-28 Biosight Ltd Peptide conjugated anti-cancer prodrugs
US8314060B2 (en) * 2000-09-05 2012-11-20 Biosight Ltd. Peptide conjugated anti-cancer prodrugs
US20020197700A1 (en) * 2000-09-07 2002-12-26 Schering Ag Receptor of the EDb-fibronectin domains
US20020091082A1 (en) * 2000-09-13 2002-07-11 Aiello Lloyd P. Methods of modulating symptoms of hypertension
EP1777218B1 (en) * 2000-10-20 2008-12-31 Eisai R&D Management Co., Ltd. Process for the preparation of 4-phenoxy quinoline derivatives
US7273722B2 (en) * 2000-11-29 2007-09-25 Allergan, Inc. Neurotoxins with enhanced target specificity
US20050209310A1 (en) * 2000-12-22 2005-09-22 Chaplin David J Methods for modulating tumor growth and metastasis
US7037906B1 (en) * 2000-12-22 2006-05-02 Oxigene, Inc. Methods for modulating tumor growth and metastasis
AU2002327164A1 (en) * 2001-01-29 2002-12-09 Idec Pharmaceuticals Corporation Engineered tetravalent antibodies and methods of use
CN1494553A (zh) * 2001-01-29 2004-05-05 IDECҩ�﹫˾ 改变的抗体及其使用方法
US20030077826A1 (en) * 2001-02-02 2003-04-24 Lena Edelman Chimeric molecules containing a module able to target specific cells and a module regulating the apoptogenic function of the permeability transition pore complex (PTPC)
US7601825B2 (en) * 2001-03-05 2009-10-13 Agensys, Inc. Nucleic acid and corresponding protein entitled 121P1F1 useful in treatment and detection of cancer
US6924358B2 (en) 2001-03-05 2005-08-02 Agensys, Inc. 121P1F1: a tissue specific protein highly expressed in various cancers
JP2005505242A (ja) * 2001-03-07 2005-02-24 マンカインド コーポレイション 癌用抗新生血管系調製物
CA2441953A1 (en) * 2001-03-23 2002-10-03 The Board Of Regents Of The University Of Texas System Methods for inhibition of angiogenesis, tumor growth and metastasis by fully human anti-il8 and anti-muc18 in diverse types of tumors
US20040198960A1 (en) * 2001-03-29 2004-10-07 Janoff Edward N Human monoclonal antibodies against capsular polysaccharides of streptococcus pneumoniae
JP4398644B2 (ja) 2001-04-06 2010-01-13 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア ErbB界面ペプチド擬態およびその使用方法
US20030191073A1 (en) * 2001-11-07 2003-10-09 Challita-Eid Pia M. Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer
CA2444632A1 (en) * 2001-04-13 2002-10-24 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
AU2002256172A1 (en) * 2001-04-13 2002-10-28 Human Genome Sciences, Inc. Vascular endothelial growth factor 2
US7256257B2 (en) 2001-04-30 2007-08-14 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
US6884869B2 (en) * 2001-04-30 2005-04-26 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
EP1401875A4 (en) * 2001-05-04 2005-01-26 Univ Utah Res Found HYALURONIC ACID-CONTAINING BIOKON JUGATES: TARGETED DELIVERY OF ANTIBODIES TO CANCER CELLS
US7456146B2 (en) * 2001-05-09 2008-11-25 Ghc Research Development Corporation Lytic peptide prodrugs
US7361341B2 (en) * 2001-05-25 2008-04-22 Human Genome Sciences, Inc. Methods of treating cancer using antibodies that immunospecifically bind to trail receptors
US20090226429A1 (en) * 2001-05-25 2009-09-10 Human Genome Sciences, Inc. Antibodies That Immunospecifically Bind to TRAIL Receptors
US20030007974A1 (en) * 2001-05-30 2003-01-09 Nanus David M. Endopeptidase/anti-PSMA antibody fusion proteins for treatment of cancer
US7666414B2 (en) * 2001-06-01 2010-02-23 Cornell Research Foundation, Inc. Methods for treating prostate cancer using modified antibodies to prostate-specific membrane antigen
US7045605B2 (en) * 2001-06-01 2006-05-16 Cornell Research Foundation, Inc. Modified antibodies to prostate-specific membrane antigen and uses thereof
US7514078B2 (en) * 2001-06-01 2009-04-07 Cornell Research Foundation, Inc. Methods of treating prostate cancer with anti-prostate specific membrane antigen antibodies
AU2002312410A1 (en) * 2001-06-08 2002-12-23 Target Protein Technologies, Inc. Tissue-specific endothelial membrane proteins
US20040247597A1 (en) * 2001-06-20 2004-12-09 Peter Carmeliet Method of treating atherosclerosis and other inflammatory diseases
WO2002102854A2 (en) * 2001-06-20 2002-12-27 Morphosys Ag Antibodies that block receptor protein tyrosine kinase activation, methods of screening for and uses thereof
US20050271663A1 (en) * 2001-06-28 2005-12-08 Domantis Limited Compositions and methods for treating inflammatory disorders
WO2004058821A2 (en) * 2002-12-27 2004-07-15 Domantis Limited Dual specific single domain antibodies specific for a ligand and for the receptor of the ligand
US20060073141A1 (en) * 2001-06-28 2006-04-06 Domantis Limited Compositions and methods for treating inflammatory disorders
WO2003002609A2 (en) * 2001-06-28 2003-01-09 Domantis Limited Dual-specific ligand and its use
JP2005515967A (ja) * 2001-07-13 2005-06-02 イムクローン システムズ インコーポレイティド 乳癌を治療するためのvegfr−1抗体
WO2003012072A2 (en) * 2001-08-03 2003-02-13 The Trustees Of The University Of Pennsylvania Monoclonal antibodies to activated erbb family members and methods of use thereof
EP1423012B1 (en) * 2001-08-10 2007-11-14 Imclone Systems, Inc. Medical use of stem cells expressing vegfr-1
US7494646B2 (en) 2001-09-06 2009-02-24 Agensys, Inc. Antibodies and molecules derived therefrom that bind to STEAP-1 proteins
EP2287186B1 (en) * 2001-09-06 2014-12-31 Agensys, Inc. Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer
US7192586B2 (en) * 2001-09-20 2007-03-20 Cornell Research Foundation, Inc. Methods and compositions for treating or preventing skin disorders using binding agents specific for prostate specific membrane antigen
EP1432447A2 (en) * 2001-09-27 2004-06-30 The Board Of Regents, The University Of Texas System Combined compositions and methods for tumor vasculature coagulation and treatment
JP2005507659A (ja) * 2001-10-15 2005-03-24 イミューノメディクス、インコーポレイテッド 直接ターゲッティング結合タンパク質
JP4200100B2 (ja) * 2001-11-07 2008-12-24 アジェンシス,インコーポレイテッド 癌の処置および検出において有用な161p2f10bと称される、核酸および対応タンパク質
GB0126879D0 (en) * 2001-11-08 2002-01-02 Astrazeneca Ab Combination therapy
EP1453546A2 (en) * 2001-12-04 2004-09-08 Nanospectra Biosciences, Inc. Treatment of angiogenesis disorders using targeted nanoparticles
DE60226499D1 (de) 2001-12-28 2008-06-19 Amgen Fremont Inc Verwendung von antikörpern gegen das muc18-antigen
US20030194421A1 (en) * 2001-12-28 2003-10-16 Angiotech Pharmaceuticals, Inc. Treatment of uveitis
JP2005516965A (ja) * 2001-12-28 2005-06-09 アブジェニックス・インコーポレーテッド 抗muc18抗体を使用する方法
WO2003057160A2 (en) * 2002-01-02 2003-07-17 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
IL162201A0 (en) * 2002-01-03 2005-11-20 Schering Ag New methods for diagnosis and treatment of tumours
JP4242590B2 (ja) * 2002-01-11 2009-03-25 俊一 塩澤 慢性関節リウマチの疾患感受性遺伝子、及びその利用
US20050069549A1 (en) 2002-01-14 2005-03-31 William Herman Targeted ligands
US20080193445A1 (en) * 2002-01-18 2008-08-14 Liliane Goetsch Novel anti-IGF-IR antibodies and uses thereof
US20080063639A1 (en) * 2002-01-18 2008-03-13 Pierre Fabre Medicament Method for the treatment of psoriasis comprising novel anti-IGF-IR antibodies
US7241444B2 (en) * 2002-01-18 2007-07-10 Pierre Fabre Medicament Anti-IGF-IR antibodies and uses thereof
CA2472578A1 (en) * 2002-01-24 2003-07-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Anti-cancer combination and use thereof
IL152904A0 (en) * 2002-01-24 2003-06-24 Gamida Cell Ltd Utilization of retinoid and vitamin d receptor antagonists for expansion of renewable stem cell populations
WO2003062404A1 (en) * 2002-01-25 2003-07-31 Gamida-Cell Ltd. Methods of expanding stem and progenitor cells and expanded cell populations obtained thereby
US6992176B2 (en) * 2002-02-13 2006-01-31 Technion Research & Development Foundation Ltd. Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease
US7071311B2 (en) * 2002-02-13 2006-07-04 Sirna Therapeutics, Inc. Antibodies having specificity for 2′-C-allyl nucleic acids
US20050042632A1 (en) * 2002-02-13 2005-02-24 Sirna Therapeutics, Inc. Antibodies having specificity for nucleic acids
AU2003216341A1 (en) * 2002-02-20 2003-09-09 Dyax Corporation Mhc-peptide complex binding ligands
US8435529B2 (en) * 2002-06-14 2013-05-07 Immunomedics, Inc. Combining radioimmunotherapy and antibody-drug conjugates for improved cancer therapy
US8491896B2 (en) * 2002-06-14 2013-07-23 Immunomedics, Inc. Anti-pancreatic cancer antibodies
PT1487856E (pt) * 2002-03-04 2010-09-29 Imclone Llc Anticorpos humanos específicos para kdr e usos destes
SG108837A1 (en) * 2002-03-11 2005-02-28 Pi Eta Consulting Co Pte Ltd An enterprise knowledge and information acquisition, management and communications system with intelligent user interfaces
AU2003218194A1 (en) * 2002-03-15 2003-09-29 Attenuon, Llc Cell surface tropomyosin as a target of angiogenesis inhibition
AU2003276825A1 (en) * 2002-03-15 2004-01-23 The Regents Of The University Of California Method of immunotherapy
US20070178065A1 (en) * 2002-05-03 2007-08-02 Lattime Edmund C Neutralizing factors as vaccine adjuvants
US20050169883A1 (en) * 2002-05-06 2005-08-04 Prestwich Glenn D. Preblocking with non-ha gags increases effectiveness of ha conjugated anticancer agents
WO2003097609A1 (en) * 2002-05-15 2003-11-27 Janssen Pharmaceutica N.V. N-substituted tricyclic 3-aminopyrazoles as pdfg receptor inhibitors
AU2003233662B2 (en) 2002-05-23 2010-04-01 Trustees Of The University Of Pennsylvania Fas peptide mimetics and uses thereof
AU2003241024A1 (en) * 2002-05-29 2003-12-19 Immunomedics, Inc. Methods and compositions for radioimmunotherapy of brain and cns tumors
JP4511108B2 (ja) * 2002-05-31 2010-07-28 オンコリクス インコーポレイテッド ヒトプロラクチン拮抗剤−血管新生阻害剤融合蛋白質
US20040022726A1 (en) * 2002-06-03 2004-02-05 Goldenberg David M. Methods and compositions for intravesical therapy of bladder cancer
US9599619B2 (en) 2002-06-14 2017-03-21 Immunomedics, Inc. Anti-pancreatic cancer antibodies
WO2003106497A1 (en) * 2002-06-14 2003-12-24 Immunomedics, Inc. Monoclonal antibody pam4 and its use for diagnosis and therapy of pancreatic cancer
MXPA04012656A (es) 2002-06-14 2005-08-15 Immunomedics Inc Anticuerpo hpam4 monoclonal humanizado.
US8821868B2 (en) 2002-06-14 2014-09-02 Immunomedics, Inc. Anti-pancreatic cancer antibodies
US9321832B2 (en) * 2002-06-28 2016-04-26 Domantis Limited Ligand
CN1678634A (zh) * 2002-06-28 2005-10-05 多曼蒂斯有限公司 免疫球蛋白单个变体抗原结合区及其特异性构建体
US7696320B2 (en) 2004-08-24 2010-04-13 Domantis Limited Ligands that have binding specificity for VEGF and/or EGFR and methods of use therefor
US20040175378A1 (en) 2002-07-15 2004-09-09 Board Of Regents, The University Of Texas System Selected antibody compositions and methods for binding to aminophospholipids
SI2256108T1 (sl) 2002-07-18 2016-05-31 Janssen Pharmaceutica N.V. Substituirani triazinski kinazni inhibitorji
NZ520321A (en) * 2002-07-19 2005-03-24 Auckland Uniservices Ltd Use of an agent adapted to inhibit HIF in use together with an antiangiogenic agent for treating tumours in a non- human animal
PT1545613E (pt) 2002-07-31 2011-09-27 Seattle Genetics Inc Conjugados de auristatina e sua utilização para tratamento do cancro, de uma doença autoimune ou de uma doença infecciosa
US20040224986A1 (en) 2002-08-16 2004-11-11 Bart De Corte Piperidinyl targeting compounds that selectively bind integrins
ATE489378T1 (de) * 2002-08-16 2010-12-15 Janssen Pharmaceutica Nv Piperidinylverbindungen, die selektiv an integrine binden
US7226755B1 (en) * 2002-09-25 2007-06-05 The Procter & Gamble Company HPTPbeta as a target in treatment of angiogenesis mediated disorders
US7507568B2 (en) * 2002-09-25 2009-03-24 The Proctor & Gamble Company Three dimensional coordinates of HPTPbeta
PL374586A1 (en) * 2002-10-10 2005-10-31 Merck Patent Gmbh Bispecific anti-erb-b antibodies and their use in tumor therapy
US9701754B1 (en) 2002-10-23 2017-07-11 City Of Hope Covalent disulfide-linked diabodies and uses thereof
ES2346205T3 (es) * 2002-12-17 2010-10-13 Merck Patent Gmbh Anticuerpo humanizado (h14.18) del anticurpo 14.18 de raton que se enlaza con gd2 y su fusion con la il-2.
US20050026826A1 (en) * 2003-01-17 2005-02-03 Margarethe Hoenig Feline proinsulin, insulin and constituent peptides
US20060039858A1 (en) * 2003-02-11 2006-02-23 Ekaterina Dadachova Radiolabeled antibodies and peptides for treatment of tumors
US7402385B2 (en) * 2003-02-11 2008-07-22 Albert Einstein College Of Medicine Of Yeshiva University Radiolabeled antibodies for treatment of tumors
EP2289559B1 (en) 2003-02-20 2014-02-12 Seattle Genetics, Inc. Anit-CD70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
US20080025989A1 (en) 2003-02-20 2008-01-31 Seattle Genetics, Inc. Anti-cd70 antibody-drug conjugates and their use for the treatment of cancer and immune disorders
US7759468B1 (en) * 2003-03-05 2010-07-20 University Of Kentucky Research Foundation Bioactive peptide-based probes
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
ATE442861T1 (de) * 2003-03-07 2009-10-15 Univ Texas Gegen antikörper gerichtete photodynamische therapie
ATE508747T1 (de) * 2003-03-10 2011-05-15 Eisai R&D Man Co Ltd C-kit kinase-hemmer
ATE354592T1 (de) * 2003-03-28 2007-03-15 Regeneron Pharma Vegf-antagonisten zur behandlung von diabetes
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
EP1628679A2 (en) * 2003-05-23 2006-03-01 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumors of glial origin
CN1829741A (zh) * 2003-05-30 2006-09-06 健泰科生物技术公司 利用抗-vegf抗体的治疗
US9708410B2 (en) 2003-05-30 2017-07-18 Janssen Biotech, Inc. Anti-tissue factor antibodies and compositions
US7605235B2 (en) * 2003-05-30 2009-10-20 Centocor, Inc. Anti-tissue factor antibodies and compositions
WO2005021710A2 (en) * 2003-06-02 2005-03-10 University Of Miami Chimeric molecules and methods of use
WO2005000223A2 (en) * 2003-06-04 2005-01-06 Children's Medical Center Corporation Method of treating retinopathies and disorders associated with blood vessel loss
US7178491B2 (en) * 2003-06-05 2007-02-20 Caterpillar Inc Control system and method for engine valve actuator
US9005613B2 (en) 2003-06-16 2015-04-14 Immunomedics, Inc. Anti-mucin antibodies for early detection and treatment of pancreatic cancer
WO2004112825A2 (en) 2003-06-17 2004-12-29 Mannkind Corporation Combinations of tumor-associated antigens for the treatment of various types of cancers
CA2527054C (en) 2003-06-25 2013-01-08 Peregrine Pharmaceuticals, Inc. Methods and apparatus for continuous large-scale radiolabeling of proteins
KR101531400B1 (ko) * 2003-06-27 2015-06-26 암젠 프레몬트 인코포레이티드 상피 성장 인자 수용체의 결실 돌연변이체 지향 항체 및 그용도
CN1930187B (zh) * 2003-06-27 2015-08-19 艾默根佛蒙特有限公司 针对表皮生长因子受体的缺失突变体的抗体及其使用
WO2005000086A2 (en) * 2003-06-30 2005-01-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem FRAGMENTS OF NKp44 AND NKp46 FOR TARGETING VIRAL-INFECTED AND TUMOR CELLS
BRPI0412138B8 (pt) * 2003-07-02 2021-05-25 Innate Pharma método de selecionar um anticorpo monoclonal, método de selecionar um anticorpo monoclonal ou seu fragmento de ligação em antígeno, método de detectar a presença de células nk, e, método de purificar de uma amostra células nk
US20090191213A9 (en) * 2003-07-02 2009-07-30 Novo Nordisk A/S Compositions and methods for regulating NK cell activity
AR046510A1 (es) * 2003-07-25 2005-12-14 Regeneron Pharma Composicion de un antagonista de vegf y un agente anti-proliferativo
CA2533878A1 (en) * 2003-07-29 2005-09-22 Immunomedics, Inc. Fluorinated carbohydrate conjugates
US7902338B2 (en) 2003-07-31 2011-03-08 Immunomedics, Inc. Anti-CD19 antibodies
AP2012006644A0 (en) * 2003-08-01 2012-12-31 Genentech Inc Anti-VEGF antibodies
US7758859B2 (en) * 2003-08-01 2010-07-20 Genentech, Inc. Anti-VEGF antibodies
WO2005044853A2 (en) * 2003-11-01 2005-05-19 Genentech, Inc. Anti-vegf antibodies
AU2012201667B2 (en) * 2003-08-01 2014-11-27 Genentech, Inc. Anti-VEGF antibodies
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
WO2005016369A1 (en) * 2003-08-06 2005-02-24 Regeneron Pharmaceuticals, Inc. Use of a vegf antagonist in combination with radiation therapy
WO2005014618A2 (en) * 2003-08-08 2005-02-17 Immunomedics, Inc. Bispecific antibodies for inducing apoptosis of tumor and diseased cells
US7547518B2 (en) * 2003-08-19 2009-06-16 Becton, Dickinson And Company Method of screening endothelial cells for angiogenic capability
EP3168304A1 (en) * 2003-08-27 2017-05-17 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
WO2005074417A2 (en) * 2003-09-03 2005-08-18 Salk Institute For Biological Studies Multiple antigen detection assays and reagents
BR122018071808B8 (pt) 2003-11-06 2020-06-30 Seattle Genetics Inc conjugado
WO2005044788A1 (ja) * 2003-11-11 2005-05-19 Eisai Co., Ltd. ウレア誘導体およびその製造方法
US7649084B2 (en) * 2003-11-12 2010-01-19 University Of Georgia Research Foundation, Inc. Recombinant glycoproteins related to feline thyrotropin
CN1914179A (zh) * 2003-11-13 2007-02-14 詹森药业有限公司 用于生物分子靶标识别的固定的n-取代的三环3-氨基吡唑类
US7572443B2 (en) * 2003-11-13 2009-08-11 California Pacific Medical Center Anti-PECAM therapy for metastasis suppression
KR20060129246A (ko) 2003-12-05 2006-12-15 컴파운드 쎄라퓨틱스, 인크. 타입 2 혈관 내피 성장 인자 수용체의 억제제
US20080220049A1 (en) * 2003-12-05 2008-09-11 Adnexus, A Bristol-Myers Squibb R&D Company Compositions and methods for intraocular delivery of fibronectin scaffold domain proteins
US7799327B2 (en) * 2003-12-24 2010-09-21 Henry John Smith Autoantibodies utilized as carrier agents for pharmaceutical compounds used in cancer treatment
US20090155266A1 (en) * 2004-01-16 2009-06-18 Yale University Methods and Compositions Relating to Vascular Endothelial Growth Factor and TH2 Mediated Inflammatory Diseases
WO2005072340A2 (en) * 2004-01-27 2005-08-11 Compugen Ltd. Novel polynucleotides encoding polypeptides and methods using same
US20110020273A1 (en) * 2005-04-06 2011-01-27 Ibc Pharmaceuticals, Inc. Bispecific Immunocytokine Dock-and-Lock (DNL) Complexes and Therapeutic Use Thereof
WO2005084329A2 (en) * 2004-03-02 2005-09-15 Ludwig Institute For Cancer Research Method for inhibiting tumor formation and growth
AU2005219413A1 (en) * 2004-03-02 2005-09-15 Massachusetts Institute Of Technology Nanocell drug delivery system
EP1610818A4 (en) * 2004-03-03 2007-09-19 Millennium Pharm Inc MODIFIED ANTIBODIES AGAINST A PROSTATE-SPECIFIC MEMBRANE-ANTIGEN AND USE THEREOF
WO2005087808A2 (en) * 2004-03-05 2005-09-22 Ludwig Institute For Cancer Research Growth factor binding constructs materials and methods
JP2007527539A (ja) * 2004-03-05 2007-09-27 ザ スクリプス リサーチ インスティテュート ハイスループットグリカンマイクロアレイ
CA2559144C (en) * 2004-03-10 2014-01-21 Creighton University Estrogen receptor alpha splice variant er-.alpha.36
AU2012265582B2 (en) * 2004-03-26 2015-04-16 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
WO2005115477A2 (en) 2004-04-13 2005-12-08 Quintessence Biosciences, Inc. Non-natural ribonuclease conjugates as cytotoxic agents
CN101258166B (zh) 2004-04-22 2013-01-30 阿根西斯公司 与steap-1蛋白结合的抗体及其衍生的分子
US20060182783A1 (en) * 2004-04-30 2006-08-17 Allergan, Inc. Sustained release intraocular drug delivery systems
CN1304427C (zh) * 2004-06-08 2007-03-14 成都康弘生物科技有限公司 抑制血管新生的融合蛋白质及其用途
US20060008468A1 (en) * 2004-06-17 2006-01-12 Chih-Sheng Chiang Combinations of tumor-associated antigens in diagnostics for various types of cancers
US20060159689A1 (en) * 2004-06-17 2006-07-20 Chih-Sheng Chiang Combinations of tumor-associated antigens in diagnostics for various types of cancers
AU2005265048B2 (en) * 2004-06-18 2011-06-16 Elamleh, David R. Intravascular imaging device and uses thereof
US20060008415A1 (en) * 2004-06-25 2006-01-12 Protein Design Labs, Inc. Stable liquid and lyophilized formulation of proteins
DK2287195T3 (da) 2004-07-01 2019-08-19 Innate Pharma Pan-kir2dl nk-receptor-antistoffer og anvendelse heraf i diagnostik og terapi
EP1763509B1 (en) * 2004-07-02 2018-02-21 The Walter And Eliza Hall Institute Of Medical Research Alpha-helical mimetics
CN1997386B (zh) * 2004-07-30 2012-05-30 瑞泽恩制药公司 通过阻断vegf介导的活性来治疗i型糖尿病的方法
NZ582466A (en) 2004-07-30 2011-09-30 Adeza Biomedical Corp Oncofetal fibronectin as a marker for disease and other conditions and methods for detection of oncofetal fibronectin
ATE548389T1 (de) 2004-08-03 2012-03-15 Innate Pharma Therapeutische und diagnostische verfahren und zusammensetzungen zum targeting von 4ig-b7-h3 und dem entsprechenden nk-zellen-rezeptor
US20070003943A1 (en) * 2004-08-09 2007-01-04 Northwestern University Tumor angiogenesis inhibitor alpha 1-antitrypsin
CN1316249C (zh) * 2004-08-25 2007-05-16 北京健平九星生物医药科技有限公司 一种酶联检测试剂盒及制备方法
WO2006024092A1 (en) * 2004-08-31 2006-03-09 Newsouth Innovations Pty Limited Vegf inhibition
AU2005285152A1 (en) * 2004-09-10 2006-03-23 Wyeth Humanized anti-5T4 antibodies and anti-5T4 antibody / calicheamicin conjugates
WO2006030941A1 (ja) 2004-09-13 2006-03-23 Eisai R & D Management Co., Ltd. スルホンアミド含有化合物の血管新生阻害物質との併用
US8772269B2 (en) * 2004-09-13 2014-07-08 Eisai R&D Management Co., Ltd. Use of sulfonamide-including compounds in combination with angiogenesis inhibitors
WO2006030442A2 (en) * 2004-09-16 2006-03-23 Gamida-Cell Ltd. Methods of ex vivo progenitor and stem cell expansion by co-culture with mesenchymal cells
US8969379B2 (en) * 2004-09-17 2015-03-03 Eisai R&D Management Co., Ltd. Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7=methoxy-6-quinolinecarboxide
US8697139B2 (en) 2004-09-21 2014-04-15 Frank M. Phillips Method of intervertebral disc treatment using articular chondrocyte cells
WO2006041805A1 (en) * 2004-10-04 2006-04-20 Cellgate, Inc. Polyamine analogs as therapeutic agents for ocular diseases
CN101068561A (zh) * 2004-10-06 2007-11-07 蒂尔坦制药有限公司 用于加强抗血管生成疗法的方法和组合物
US7641903B2 (en) * 2004-10-15 2010-01-05 Seattle Genetics, Inc. Anti-CD70 antibody and its use for the treatment and prevention of cancer and immune disorders
CA2583208C (en) * 2004-10-15 2015-08-25 Seattle Genetics, Inc. Anti-cd70 antibody and its use for the treatment and prevention of cancer and immune disorders
US8337838B2 (en) * 2004-10-15 2012-12-25 Seattle Genetics, Inc. Anti-CD70 antibody and its use for the treatment and prevention of cancer and immune disorders
DK1802334T3 (da) * 2004-10-21 2012-10-15 Genentech Inc Fremgangsmåde til behandling af intraokulære, neovaskulære sygdomme
ES2325344B1 (es) * 2004-11-02 2010-06-09 Univ Madrid Autonoma Inhibidores de angiogenesis multifuncionales y multivalentes.
US7595149B1 (en) 2004-11-08 2009-09-29 University Of Kentucky Research Foundation Methods for cancer detection
MX2007006057A (es) 2004-11-18 2007-12-10 Imclone Systems Inc Anticuerpos contra receptor de factor de crecimiento endotelial vascular-1.
WO2006068758A2 (en) * 2004-11-19 2006-06-29 The Scripps Research Institute Detection, prevention and treatment of breast cancer
SG158089A1 (en) * 2004-12-17 2010-01-29 Genentech Inc Antiangiogenesis therapy of autoimmune disease in patients who have failed prior therapy
AU2005319382B2 (en) 2004-12-21 2011-04-07 Astrazeneca Ab Antibodies directed to angiopoietin-2 and uses thereof
PT2730277T (pt) 2004-12-22 2020-04-21 Nitto Denko Corp Veículo de fármaco e kit de veículo de fármaco para a inibição da fibrose
US20120269886A1 (en) 2004-12-22 2012-10-25 Nitto Denko Corporation Therapeutic agent for pulmonary fibrosis
ES2557587T3 (es) 2004-12-28 2016-01-27 Innate Pharma Anticuerpos monoclonales contra NKG2A
US20060165711A1 (en) * 2004-12-29 2006-07-27 Bot Adrian I Methods to elicit, enhance and sustain immune responses against MHC class I-restricted epitopes, for prophylactic or therapeutic purposes
PL1833506T3 (pl) * 2004-12-29 2016-01-29 Mannkind Corp Zastosowanie kompozycji zawierających różne antygeny związane z nowotworem jako szczepionek przeciwnowotworowych
EP1835929B8 (en) 2005-01-06 2016-07-27 Novo Nordisk A/S Anti-kir combination treatments and methods
EP1836225B1 (en) * 2005-01-06 2011-11-02 Novo Nordisk A/S Kir-binding agents and methods of use thereof
EP1835937B1 (en) 2005-01-06 2012-04-11 Novo Nordisk A/S Compositions and methods for treating viral infection
WO2006084054A2 (en) * 2005-02-02 2006-08-10 Children's Medical Center Corporation Method of treating angiogenic diseases
EP2946810A1 (en) 2005-02-03 2015-11-25 TopoTarget UK Limited Combination therapy using an HDAC inhibitor and Vincristine for treating cancer
PL1871805T3 (pl) 2005-02-07 2020-03-31 Roche Glycart Ag Cząsteczki wiążące antygen, które wiążą egfr, wektory kodujące te cząsteczki oraz ich zastosowania
US20060188508A1 (en) * 2005-02-17 2006-08-24 Cohen Stanley N Methods and compositions for modulating angiogenesis
CN101252936A (zh) * 2005-03-02 2008-08-27 奈森特医药公司 眼用组合物的药学可接受的载体
CA2598452A1 (en) * 2005-03-11 2006-09-21 Regeneron Pharmaceuticals, Inc. Treating anemia by inhibition of vegf
US20060217311A1 (en) 2005-03-25 2006-09-28 Daniel Dix VEGF antagonist formulations
US8350009B2 (en) * 2005-03-31 2013-01-08 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
US20060222595A1 (en) * 2005-03-31 2006-10-05 Priyabrata Mukherjee Nanoparticles for therapeutic and diagnostic applications
RU2413735C2 (ru) 2005-03-31 2011-03-10 Эдженсис, Инк. Антитела и родственные молекулы, связывающиеся с белками 161p2f10b
EP1712241A1 (en) * 2005-04-15 2006-10-18 Centre National De La Recherche Scientifique (Cnrs) Composition for treating cancer adapted for intra-tumoral administration and uses thereof
AU2006236225C1 (en) 2005-04-19 2013-05-02 Seagen Inc. Humanized anti-CD70 binding agents and uses thereof
KR101329437B1 (ko) 2005-05-13 2013-11-14 토포타겟 유케이 리미티드 Hdac 억제제의 약학 제형
US7767710B2 (en) * 2005-05-25 2010-08-03 Calosyn Pharma, Inc. Method for treating osteoarthritis
US20060269579A1 (en) * 2005-05-25 2006-11-30 Musculoskeletal Research Llc Compositions for treating osteoarthritis
WO2006130673A1 (en) * 2005-05-31 2006-12-07 Janssen Pharmaceutica, N.V. 3-benzoimidazolyl-pyrazolopyridines useful in treating kinase disorders
US7825244B2 (en) * 2005-06-10 2010-11-02 Janssen Pharmaceutica Nv Intermediates useful in the synthesis of alkylquinoline and alkylquinazoline kinase modulators, and related methods of synthesis
US8071768B2 (en) * 2005-06-10 2011-12-06 Janssen Pharmaceutica, N.V. Alkylquinoline and alkylquinazoline kinase modulators
US20060281788A1 (en) * 2005-06-10 2006-12-14 Baumann Christian A Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor
US20060281768A1 (en) * 2005-06-10 2006-12-14 Gaul Michael D Thienopyrimidine and thienopyridine kinase modulators
ES2413079T3 (es) 2005-06-17 2013-07-15 Mannkind Corporation Métodos y composiciones para desencadenar respuestas inmunitarias multivalentes contra epítopos dominantes y subdominantes expresados en células cancerosas y estroma tumoral
EP1748050A1 (en) * 2005-07-28 2007-01-31 Rijksuniversiteit Groningen Targeting-enhanced activation of galectins
WO2007015569A1 (ja) * 2005-08-01 2007-02-08 Eisai R & D Management Co., Ltd. 血管新生阻害物質の効果を予測する方法
US9006240B2 (en) 2005-08-02 2015-04-14 Eisai R&D Management Co., Ltd. Method for assay on the effect of vascularization inhibitor
ES2363758T3 (es) 2005-08-15 2011-08-16 Vegenics Pty Ltd Vegf y pdgf modificados con propiedades angiogénicas mejoradas.
EP1938842A4 (en) * 2005-09-01 2013-01-09 Eisai R&D Man Co Ltd METHOD FOR PRODUCING A PHARMACEUTICAL COMPOSITION COMPRISING IMPROVED CRASHING CHARACTERISTICS
JP5376948B2 (ja) * 2005-09-13 2013-12-25 ナショナル リサーチ カウンシル オブ カナダ 腫瘍細胞活性を調節する方法及び組成物
GB0519398D0 (en) * 2005-09-23 2005-11-02 Antisoma Plc Biological materials and uses thereof
US20070071756A1 (en) * 2005-09-26 2007-03-29 Peyman Gholam A Delivery of an agent to ameliorate inflammation
AU2006294663B2 (en) * 2005-09-26 2012-03-22 Medarex, Inc. Human monoclonal antibodies to CD70
CN101300272B (zh) 2005-10-14 2013-09-18 依奈特制药公司 用于治疗增生性病症的组合物和方法
WO2007048088A2 (en) 2005-10-18 2007-04-26 Janssen Pharmaceutica N.V. Method of inhibiting flt3 kinase
CN101534865A (zh) * 2005-10-19 2009-09-16 Ibc药品公司 生物活性装配体的制备方法及其用途
WO2007050415A2 (en) * 2005-10-21 2007-05-03 Medivas, Llc Poly(ester urea) polymers and methods of use
WO2007056113A2 (en) * 2005-11-02 2007-05-18 Cylene Pharmaceuticals, Inc. Methods for targeting quadruplex sequences
CN101316590B (zh) * 2005-11-07 2011-08-03 卫材R&D管理有限公司 血管生成抑制剂和c-kit激酶抑制剂的组合使用
US8828392B2 (en) * 2005-11-10 2014-09-09 Topotarget Uk Limited Histone deacetylase (HDAC) inhibitors (PXD101) for the treatment of cancer alone or in combination with chemotherapeutic agent
US20110125203A1 (en) * 2009-03-20 2011-05-26 ElectroCore, LLC. Magnetic Stimulation Devices and Methods of Therapy
US7725188B2 (en) * 2006-02-10 2010-05-25 Electrocore Llc Electrical stimulation treatment of hypotension
US7747324B2 (en) * 2005-11-10 2010-06-29 Electrocore Llc Electrical stimulation treatment of bronchial constriction
US8041428B2 (en) 2006-02-10 2011-10-18 Electrocore Llc Electrical stimulation treatment of hypotension
US9037247B2 (en) 2005-11-10 2015-05-19 ElectroCore, LLC Non-invasive treatment of bronchial constriction
US8812112B2 (en) * 2005-11-10 2014-08-19 ElectroCore, LLC Electrical treatment of bronchial constriction
WO2007061127A1 (ja) * 2005-11-22 2007-05-31 Eisai R & D Management Co., Ltd. 多発性骨髄腫に対する抗腫瘍剤
US8846393B2 (en) 2005-11-29 2014-09-30 Gamida-Cell Ltd. Methods of improving stem cell homing and engraftment
AU2006321364B2 (en) * 2005-12-01 2011-11-10 Domantis Limited Noncompetitive domain antibody formats that bind Interleukin 1 Receptor type 1
WO2007070671A2 (en) 2005-12-16 2007-06-21 Regeneron Pharmaceuticals, Inc. Therapeutic methods for inhibiting tumor growth with dll4 antagonists
ES2612377T3 (es) * 2005-12-21 2017-05-16 Janssen Pharmaceutica N.V. Triazolopiridazinas como moduladores de tirosina cinasas
US9572886B2 (en) 2005-12-22 2017-02-21 Nitto Denko Corporation Agent for treating myelofibrosis
AU2006350220A1 (en) * 2005-12-23 2008-05-08 Board Of Regents Of The University Of Texas System Anti-hyperproliferative therapies targeting HDGF
US20090317475A1 (en) * 2006-01-03 2009-12-24 Beardsley Robert A Combination antitumor therapies
WO2007129223A2 (en) * 2006-01-23 2007-11-15 Ad Group Systems and methods for distributing emergency messages
US20070175313A1 (en) * 2006-01-31 2007-08-02 Kevin Vandervliet MP3 player holder assembly
CN101400402A (zh) * 2006-02-10 2009-04-01 电子核心公司 低血压的电刺激治疗
WO2007101202A1 (en) * 2006-02-27 2007-09-07 Research Development Foundation Cell-targeted ikb and methods for the use thereof
JP2009531324A (ja) * 2006-03-20 2009-09-03 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 癌標的化のための操作された抗前立腺幹細胞抗原(psca)抗体
TW200812615A (en) * 2006-03-22 2008-03-16 Hoffmann La Roche Tumor therapy with an antibody for vascular endothelial growth factor and an antibody for human epithelial growth factor receptor type 2
TWI390034B (zh) 2006-04-06 2013-03-21 Kyowa Hakko Kirin Co Ltd Novel anti-CD98 antibody
SMP200800060B (it) * 2006-04-07 2009-07-14 Procter & Gamble Anticorpi che legano la proteina umana tirosina fosfatasi beta (hptbeta) e loro usi
US20100241188A1 (en) * 2009-03-20 2010-09-23 Electrocore, Inc. Percutaneous Electrical Treatment Of Tissue
EP2021335B1 (en) 2006-04-20 2011-05-25 Janssen Pharmaceutica N.V. Heterocyclic compounds as inhibitors of c-fms kinase
EA016611B1 (ru) 2006-04-20 2012-06-29 Янссен Фармацевтика Н.В. Способ лечения мастоцитоза
US8697716B2 (en) * 2006-04-20 2014-04-15 Janssen Pharmaceutica Nv Method of inhibiting C-KIT kinase
WO2007124321A1 (en) * 2006-04-20 2007-11-01 Janssen Pharmaceutica N.V. Inhibitors of c-fms kinase
US20070253960A1 (en) * 2006-04-28 2007-11-01 Josee Roy Pharmaceutical removal of vascular extensions from a degenerating disc
MX2008014136A (es) * 2006-05-04 2009-03-31 Fovea Pharmaceuticals Sa Combinacion que comprende un inhibidor de factor de crecimiento endotelial vascular y serina proteasa para tratar enfermedades neovasculares.
US20070258976A1 (en) * 2006-05-04 2007-11-08 Ward Keith W Combination Therapy for Diseases Involving Angiogenesis
US20070265170A1 (en) * 2006-05-15 2007-11-15 Ola Blixt Detection, prevention and treatment of ovarian cancer
RU2448708C3 (ru) * 2006-05-18 2017-09-28 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. Противоопухолевое средство против рака щитовидной железы
BRPI0712716A2 (pt) * 2006-05-19 2012-05-22 Teva Pharma proteìna de fusão, composição, construção de ácido nucleico, vetor, célula transformada, preparação isolada de corpos de inclusão bacterialmente expressados, processo para produzir uma proteìna de fusão, e, métodos para matar seletivamente uma célula de tumor e para tratar uma célula de tumor que expressa mesotelina em sua superfìcie
US20100196336A1 (en) 2006-05-23 2010-08-05 Dongsu Park Modified dendritic cells having enhanced survival and immunogenicity and related compositions and methods
WO2007144893A2 (en) * 2006-06-15 2007-12-21 Fibron Ltd. Antibodies blocking fibroblast growth factor receptor activation and methods of use thereof
CA2655411A1 (en) * 2006-06-15 2007-12-21 Biogen Idec Ma Inc. Combination therapy employing lymphotoxin beta receptor binding molecules in combination with second agents
LT2944306T (lt) 2006-06-16 2021-02-25 Regeneron Pharmaceuticals, Inc. Vfgf antagonisto kompozicijos, tinkamos įvedimui intravitrealiniu būdu
JP2009541333A (ja) * 2006-06-23 2009-11-26 クインテセンス バイオサイエンシーズ インコーポレーティッド 修飾リボヌクレアーゼ
US7622593B2 (en) 2006-06-27 2009-11-24 The Procter & Gamble Company Human protein tyrosine phosphatase inhibitors and methods of use
US7795444B2 (en) * 2006-06-27 2010-09-14 Warner Chilcott Company Human protein tyrosine phosphatase inhibitors and methods of use
US7589212B2 (en) 2006-06-27 2009-09-15 Procter & Gamble Company Human protein tyrosine phosphatase inhibitors and methods of use
US8846685B2 (en) 2006-06-27 2014-09-30 Aerpio Therapeutics Inc. Human protein tyrosine phosphatase inhibitors and methods of use
US20090203693A1 (en) * 2006-06-29 2009-08-13 Eisai R & D Management Co., Ltd. Therapeutic agent for liver fibrosis
US20100021379A1 (en) * 2006-06-29 2010-01-28 The Regents Of The University Of California Chemical Antibodies for Immunotherapy and Imaging
EP2049151A4 (en) 2006-07-17 2010-03-24 Quintessence Biosciences Inc METHOD AND COMPOSITIONS FOR THE TREATMENT OF CANCER
BRPI0714981A2 (pt) * 2006-07-28 2013-08-13 Sanofi Aventis composiÇço, mÉtodo para fazer a mesma a qual compreende um inibidor que inibe a atividade de uma proteÍna do complexo iii, um veÍculo e um membro da superfamÍlia da fator de necrose de tumor, mÉtodo para conduzir um ensaio para determinar se um composto É um inibidor de atividade de supressço de tnf de uma proteÍna do complexo iii e uso de um composto
AR062223A1 (es) * 2006-08-09 2008-10-22 Glycart Biotechnology Ag Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas
JP5368096B2 (ja) * 2006-08-28 2013-12-18 エーザイ・アール・アンド・ディー・マネジメント株式会社 未分化型胃癌に対する抗腫瘍剤
US20080070855A1 (en) * 2006-09-20 2008-03-20 James Pitzer Gills Treatment with anti-VEGF agents to prevent postoperative inflammation and angiogenesis in normal and diseased eyes
SI2066694T1 (sl) 2006-09-29 2016-02-29 Oncomed Pharmaceuticals, Inc. Sestavki in postopki za diagnosticiranje in zdravljenje raka
MX2009004070A (es) * 2006-10-17 2009-04-27 Dyax Corp Terapia de combinacion consecutiva.
US8975374B2 (en) * 2006-10-20 2015-03-10 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition comprising anti-HB-EGF antibody as active ingredient
US20100061933A1 (en) * 2006-10-20 2010-03-11 Naoki Kimura Pharmaceutical composition comprising anti-hb-egf antibody as active ingredient
EP2093237B1 (en) 2006-10-20 2015-12-30 Chugai Seiyaku Kabushiki Kaisha Anti-cancer agent comprising anti-hb-egf antibody as active ingredient
WO2008055072A2 (en) * 2006-10-27 2008-05-08 Lpath, Inc. Compositions and methods for treating ocular diseases and conditions
PT2087002E (pt) * 2006-10-27 2014-11-26 Lpath Inc Composições e métodos para a ligação de esfingosina-1- fosfato
KR101541550B1 (ko) 2006-10-27 2015-08-04 제넨테크, 인크. 항체 및 면역접합체 및 이들의 용도
US20100029674A1 (en) 2006-11-17 2010-02-04 Innate Pharma, S.A. Methods of Using Phosphoantigen for the Treatment of Cancer
KR20090110295A (ko) 2006-11-22 2009-10-21 에드넥서스, 어 브리스톨-마이어스 스퀴브 알&디 컴파니 Igf-ir을 포함하는 티로신 키나제 수용체에 대한 공학처리된 단백질에 기반한 표적화 치료제
WO2008064336A2 (en) 2006-11-22 2008-05-29 Inivitrogen Corporation Autoimmune disease biomarkers
KR20090088946A (ko) * 2006-12-14 2009-08-20 메다렉스, 인코포레이티드 씨디70에 결합하는 인간 항체 및 이의 용도
CA2671734A1 (en) 2006-12-19 2008-06-26 Genentech, Inc. Vegf-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors
WO2008074853A1 (en) * 2006-12-21 2008-06-26 Novartis Ag Ophthalmic rebamipide solution
JP5618172B2 (ja) * 2007-01-05 2014-11-05 国立大学法人東京大学 抗prg−3抗体を用いる癌の診断および治療
WO2008089070A2 (en) * 2007-01-12 2008-07-24 Dyax Corp. Combination therapy for the treatment of cancer
KR101445892B1 (ko) * 2007-01-29 2014-09-29 에자이 알앤드디 매니지먼트 가부시키가이샤 미분화형 위암 치료용 조성물
US7816390B2 (en) * 2007-01-31 2010-10-19 Janssen Pharmaceutica Nv N-substituted tricyclic 3-aminopyrazoles as anti-mitotic tubulin polymerization inhibitors
WO2008093246A2 (en) * 2007-02-02 2008-08-07 Vegenics Limited Vegf receptor antagonist for treating organ transplant alloimmunity and arteriosclerosis
WO2008097497A2 (en) 2007-02-02 2008-08-14 Adnexus, A Bristol-Myers Squibb R & D Company Vegf pathway blockade
TWI407971B (zh) 2007-03-30 2013-09-11 Nitto Denko Corp Cancer cells and tumor-related fibroblasts
US20080286337A1 (en) * 2007-05-15 2008-11-20 Boston Foundation For Sight Method of treating a disease in an eye using a scleral lens
EA200901301A1 (ru) * 2007-06-06 2010-06-30 Домантис Лимитед Полипептиды, вариабельные домены антител и антагонисты
KR100883430B1 (ko) * 2007-06-13 2009-02-12 한국생명공학연구원 혈관내피성장인자 수용체를 중화하는 인간 단클론항체 및그 용도
PE20090368A1 (es) * 2007-06-19 2009-04-28 Boehringer Ingelheim Int Anticuerpos anti-igf
US20090047689A1 (en) * 2007-06-20 2009-02-19 John Kolman Autoantigen biomarkers for early diagnosis of lung adenocarcinoma
US8097422B2 (en) 2007-06-20 2012-01-17 Salk Institute For Biological Studies Kir channel modulators
US8629144B2 (en) * 2007-06-21 2014-01-14 Janssen Pharmaceutica Nv Polymorphic and hydrate forms, salts and process for preparing 6-{difluoro[6-(1-methyl-1H-pyrazol-4-yl)[1,2,4]triazolo[4,3-b]pyridazin-3-yl]methyl}quinoline
US8334239B2 (en) 2007-07-10 2012-12-18 The Board Of Regents Of The University Of Texas System High affinity VEGF-receptor antagonists
SG183044A1 (en) 2007-07-16 2012-08-30 Genentech Inc Humanized anti-cd79b antibodies and immunoconjugatesand methods of use
ES2381788T3 (es) 2007-07-16 2012-05-31 Genentech, Inc. Anticuerpos anti-CD79b e inmunoconjugados y métodos de uso
EP2197476A2 (en) * 2007-08-20 2010-06-23 Bristol-Myers Squibb Company Use of vegfr-2 inhibitors for treating metastatic cancer
AU2008289441A1 (en) * 2007-08-22 2009-02-26 Cytomx Therapeutics, Inc. Activatable binding polypeptides and methods of identification and use thereof
WO2009032949A2 (en) * 2007-09-04 2009-03-12 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
JP2010539245A (ja) 2007-09-14 2010-12-16 日東電工株式会社 薬物担体
CA2700173C (en) * 2007-09-25 2016-10-11 Topotarget Uk Limited Methods of synthesis of certain hydroxamic acid compounds
WO2009042854A1 (en) * 2007-09-26 2009-04-02 Musculoskeletal Research Llc Ion-channel regulator compositions and methods of using same
EP3714906A1 (en) * 2007-10-03 2020-09-30 Cornell University Treatment of proliferative disorders using radiolabelled antibodies to psma
JP2010540681A (ja) * 2007-10-08 2010-12-24 クインテッセンス バイオサイエンシズ,インコーポレーテッド リボヌクレアーゼに基づく治療のための組成物及び方法
JO3240B1 (ar) * 2007-10-17 2018-03-08 Janssen Pharmaceutica Nv c-fms مثبطات كيناز
US8361465B2 (en) * 2007-10-26 2013-01-29 Lpath, Inc. Use of anti-sphingosine-1-phosphate antibodies in combination with chemotherapeutic agents
US20090170770A1 (en) * 2007-11-06 2009-07-02 Ali Hafezi-Moghadam Methods and compositions for treating conditions associated with angiogenesis using a vascular adhesion protein-1 (vap 1) inhibitor
WO2009062174A1 (en) * 2007-11-08 2009-05-14 University Of Utah Research Foundation Use of angiogenesis antagonists in conditions of abnormal venous proliferation
JP5809415B2 (ja) 2007-11-09 2015-11-10 ペレグリン ファーマシューティカルズ,インコーポレーテッド 抗vegf抗体の組成物および方法
AU2013205269B2 (en) * 2007-11-09 2016-05-19 Affitech Research As Anti-VEGF antibody compositions and methods
KR101513326B1 (ko) 2007-11-09 2015-04-17 에자이 알앤드디 매니지먼트 가부시키가이샤 혈관 신생 저해 물질과 항종양성 백금 착물의 병용
TWI580694B (zh) * 2007-11-30 2017-05-01 建南德克公司 抗-vegf抗體
US20110112291A1 (en) * 2007-11-30 2011-05-12 Eva Hoess Stabilization of conjugates comprising a thiourea linker
EP2240156A2 (en) * 2007-12-28 2010-10-20 BioInvent International AB Antibody-containing formulation for the use for treating cardiovascular diseases associated with atherosclerosis
US8253725B2 (en) * 2007-12-28 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and system for generating surface models of geometric structures
EP2244738B1 (en) * 2008-01-25 2020-03-04 Gavish-Galilee Bio Applications Ltd Targeting of innate immune response to tumour site
KR101506062B1 (ko) * 2008-01-29 2015-03-25 에자이 알앤드디 매니지먼트 가부시키가이샤 혈관 저해 물질과 탁산의 병용
UA106586C2 (uk) 2008-01-31 2014-09-25 Дженентек, Інк. Анти-cd79b антитіла, і імунокон'югати та способи їх застосування
AU2009213141A1 (en) 2008-02-14 2009-08-20 Bristol-Myers Squibb Company Targeted therapeutics based on engineered proteins that bind EGFR
MX2010009642A (es) * 2008-03-07 2010-09-22 Topotarget As Metodos de tratamiento utilizando infusion continua prolongada de belinostat.
NZ709293A (en) 2008-03-18 2017-01-27 Genentech Inc Combinations of an anti-her2 antibody-drug conjugate and chemotherapeutic agents, and methods of use
AU2014202474B2 (en) * 2008-03-26 2016-07-28 Epitomics, Inc. Anti-VEGF antibody
EP2259795B1 (en) * 2008-03-26 2016-04-06 Epitomics, Inc. Anti-vegf antibody
KR100998569B1 (ko) * 2008-03-31 2010-12-07 한국원자력연구원 암 또는 전이암 진단 및 치료용 방사면역접합체,및 이를이용한 암 또는 전이암 억제제 개발
EP2280731A1 (en) * 2008-04-09 2011-02-09 Technion Research and Development Foundation, Ltd. Anti human immunodeficiency antibodies and uses thereof
EP2508325A3 (en) * 2008-04-10 2013-05-22 Objet Ltd. System and method for three dimensional model printing
PT2274331E (pt) 2008-05-02 2014-02-27 Novartis Ag Moléculas de ligação baseadas em fibronectina melhoradas e suas utilizações
EP2282773B1 (en) 2008-05-02 2014-01-15 Seattle Genetics, Inc. Methods and compositions for making antibodies and antibody derivatives with reduced core fucosylation
ES2338400B1 (es) * 2008-05-06 2011-09-14 David Benet Ferrus Conjunto de moleculas antiangiogenicas y su uso.
US8082730B2 (en) * 2008-05-20 2011-12-27 Caterpillar Inc. Engine system having particulate reduction device and method
PE20091931A1 (es) 2008-05-22 2009-12-31 Bristol Myers Squibb Co Proteinas de dominio de armazon basadas en fibronectina multivalentes
US20090298088A1 (en) * 2008-05-30 2009-12-03 Belyaev Alexander S Cleavable catalytic binding and detection system
RU2531523C3 (ru) 2008-06-25 2022-05-04 Новартис Аг Стабильные и растворимые антитела, ингибирующие vegf
US20100069616A1 (en) * 2008-08-06 2010-03-18 The Regents Of The University Of California Engineered antibody-nanoparticle conjugates
JP2012504423A (ja) 2008-10-01 2012-02-23 クインテッセンス バイオサイエンシズ,インコーポレーテッド 治療用リボヌクレアーゼ
WO2010042638A2 (en) * 2008-10-07 2010-04-15 Young Bok Lee Hpma - docetaxel or gemcitabine conjugates and uses therefore
US8871202B2 (en) 2008-10-24 2014-10-28 Lpath, Inc. Prevention and treatment of pain using antibodies to sphingosine-1-phosphate
LT2842573T (lt) 2008-11-07 2017-12-11 Galaxy Biotech, Llc Monokloniniai antikūnai prieš fibroblastų augimo faktoriaus receptorių-2
PA8849001A1 (es) 2008-11-21 2010-06-28 Lilly Co Eli Anticuerpos de c-met
TWI496582B (zh) 2008-11-24 2015-08-21 必治妥美雅史谷比公司 雙重專一性之egfr/igfir結合分子
KR101093717B1 (ko) 2008-11-26 2011-12-19 한국생명공학연구원 Vegf―특이적인 인간항체
EP2376116B1 (en) 2008-12-12 2015-12-09 Boehringer Ingelheim International GmbH Anti-igf antibodies
CN106995495A (zh) 2009-01-12 2017-08-01 希托马克斯医疗有限责任公司 修饰抗体组合物及其制备和使用方法
GB0900555D0 (en) * 2009-01-14 2009-02-11 Topotarget As New methods
EP2391714B2 (en) 2009-01-30 2019-07-24 Whitehead Institute for Biomedical Research Methods for ligation and uses thereof
US9186336B2 (en) * 2009-02-06 2015-11-17 The General Hospital Corporation Methods of treating vascular lesions
EP3939617A1 (en) 2009-02-13 2022-01-19 Immunomedics, Inc. Conjugates with an intracellularly-cleavable linkage
WO2010096486A1 (en) * 2009-02-17 2010-08-26 Cornell Research Foundation, Inc. Methods and kits for diagnosis of cancer and prediction of therapeutic value
RU2011138951A (ru) 2009-02-23 2013-03-27 Сайтомкс Терапьютикс, Инк. Пропротеины и способы их применения
KR101224468B1 (ko) * 2009-05-20 2013-01-23 주식회사 파멥신 신규한 형태의 이중표적항체 및 그 용도
WO2010138550A1 (en) * 2009-05-27 2010-12-02 Northeastern University Conjugated nanodelivery vehicles
GB0909906D0 (en) 2009-06-09 2009-07-22 Affitech As Antibodies
US8883832B2 (en) 2009-07-06 2014-11-11 Aerpio Therapeutics Inc. Compounds, compositions, and methods for preventing metastasis of cancer cells
CN105412094A (zh) 2009-07-06 2016-03-23 爱尔皮奥治疗有限公司 用于防止癌细胞转移的化合物、组合物和方法
US8956600B2 (en) * 2009-08-10 2015-02-17 Taiwan Liposome Co. Ltd. Ophthalmic drug delivery system containing phospholipid and cholesterol
CN102002104A (zh) * 2009-08-28 2011-04-06 江苏先声药物研究有限公司 一种抗vegf的单克隆抗体及含有该抗体的药物组合物
US8178307B2 (en) * 2009-09-02 2012-05-15 National Tsing Hua University Methods and compositions for detection of lethal cell and uses thereof
US8642515B2 (en) 2009-09-04 2014-02-04 University Of Louisville Research Foundation, Inc. Genetic determinants of prostate cancer risk
EP2293071A1 (en) * 2009-09-07 2011-03-09 Universität Zu Köln Biomarker for colorectal cancer
CA2774260C (en) 2009-09-16 2018-10-09 Immunomedics, Inc. Class i anti-cea antibodies and uses thereof
KR20150058554A (ko) 2009-10-13 2015-05-28 렉산 파마슈티컬스, 인코포레이티드 항암제의 전달을 위한 폴리머 시스템
DK2488204T3 (en) 2009-10-16 2016-06-06 Oncomed Pharm Inc Therapeutic combination and use of DLL4 antagonist antibodies and blood pressure lowering agents
AU2010324506B2 (en) 2009-11-24 2015-02-26 Alethia Biotherapeutics Inc. Anti-clusterin antibodies and antigen binding fragments and their use to reduce tumor volume
RU2673908C2 (ru) 2009-12-02 2018-12-03 Имэджинэб, Инк. Мини-антитела j591 и цис-диатела для направленной доставки простата-специфичного мембранного антигена (psma) человека и способы их применения
IN2012DN03354A (zh) 2009-12-02 2015-10-23 Immunomedics Inc
CN102713623A (zh) 2010-01-22 2012-10-03 免疫医疗公司 早期胰腺腺癌的检测
TWI504410B (zh) * 2010-02-08 2015-10-21 Agensys Inc 結合至161p2f10b蛋白之抗體藥物結合物(adc)
GB201002238D0 (en) 2010-02-10 2010-03-31 Affitech As Antibodies
EP2550001B1 (en) 2010-03-24 2019-05-22 Phio Pharmaceuticals Corp. Rna interference in ocular indications
WO2011119852A1 (en) 2010-03-24 2011-09-29 Rxi Pharmaceuticals Corporation Reduced size self-delivering rnai compounds
TW201138808A (en) 2010-05-03 2011-11-16 Bristol Myers Squibb Co Serum albumin binding molecules
EP2566973A4 (en) 2010-05-04 2013-11-27 Medimmune Llc OPTIMIZED DIAGNOSIS AND TREATMENT OF MUSCLE DISTORTIONS
WO2011150133A2 (en) 2010-05-26 2011-12-01 Bristol-Myers Squibb Company Fibronectin based scaffold proteins having improved stability
MX2012014776A (es) 2010-06-25 2013-01-29 Eisai R&D Man Co Ltd Agente antitumoral que emplea compuestos con efecto inhibidor de cinasas combinados.
BR112013000341A2 (pt) * 2010-07-07 2017-09-26 Tubitak estruturas de anticorpos recombinantes ligando-se e bloqueando o crescimento da atividade vascular endotelial de fator 2 (vegfr-2/kdr)
CN101942022B (zh) * 2010-07-29 2013-07-24 华东理工大学 抗人表皮生长因子受体单链抗体-铁蛋白重链亚基蛋白、构建方法及其用途
US8551479B2 (en) 2010-09-10 2013-10-08 Oncomed Pharmaceuticals, Inc. Methods for treating melanoma
CN103429263A (zh) 2011-02-15 2013-12-04 免疫医疗公司 用于胰腺癌早期检测和治疗的抗粘蛋白抗体
US8722044B2 (en) 2011-03-15 2014-05-13 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof
WO2012142174A1 (en) 2011-04-12 2012-10-18 Electronic Biosciences Inc. Site specific chemically modified nanopore devices
KR101762999B1 (ko) 2011-04-18 2017-07-28 에자이 알앤드디 매니지먼트 가부시키가이샤 종양 치료제
JO3283B1 (ar) 2011-04-26 2018-09-16 Sanofi Sa تركيب يتضمن أفليبيرسيبت, حمض فولينيك, 5- فلورويوراسيل (5- Fu) وإرينوسيتان (FOLFIRI)
CN107115526A (zh) 2011-05-02 2017-09-01 免疫医疗公司 用于小体积施用的同种异型选择的抗体的超滤浓缩
ES2705950T3 (es) 2011-06-03 2019-03-27 Eisai R&D Man Co Ltd Biomarcadores para predecir y valorar la capacidad de respuesta de sujetos con cáncer de tiroides y de riñón a compuestos de lenvatinib
CA2840143A1 (en) * 2011-06-30 2013-01-03 Gene Signal International Sa Composition comprising inhibitors of irs-1 and of vegf
US9682144B2 (en) 2011-06-30 2017-06-20 Gene Signal International, Sa Composition comprising inhibitors of IRS-1 and of VEGF
EP2540828A1 (en) * 2011-06-30 2013-01-02 Gene Signal International SA Composition comprising inhibitors of IRS-1 and of VEGF
US8921533B2 (en) 2011-07-25 2014-12-30 Chromatin Technologies Glycosylated valproic acid analogs and uses thereof
AU2013201095C1 (en) 2011-09-23 2019-12-05 Oncomed Pharmaceuticals, Inc. VEGF/DLL4 binding agents and uses thereof
CN102492038B (zh) * 2011-12-09 2014-05-28 中国人民解放军军事医学科学院基础医学研究所 抗人Tim-3的中和性单克隆抗体L3D及其用途
SG10201601349XA (en) 2011-12-13 2016-03-30 Engeneic Molecular Delivery Pty Ltd Bacterially derived, intact minicells for delivery of therapeutic agents to brain tumors
WO2013121426A1 (en) 2012-02-13 2013-08-22 Gamida-Cell Ltd. Culturing of mesenchymal stem cells
EA201491568A1 (ru) 2012-02-22 2014-11-28 Алетиа Байотерапьютикс Инк. Совместное применение ингибитора кластерина и ингибитора egfr для лечения рака
EP2823311B1 (en) 2012-03-06 2016-04-27 Life Technologies Corporation Biomarkers for systemic lupus erythematosus
EP2830663B1 (en) 2012-03-30 2019-02-06 Sorrento Therapeutics Inc. Fully human antibodies that bind to vegfr2
EP2861998B1 (en) 2012-06-18 2020-07-22 Electronic Biosciences Inc. Cell-free assay device and methods of use
US9567569B2 (en) 2012-07-23 2017-02-14 Gamida Cell Ltd. Methods of culturing and expanding mesenchymal stem cells
US9175266B2 (en) 2012-07-23 2015-11-03 Gamida Cell Ltd. Enhancement of natural killer (NK) cell proliferation and activity
WO2014025675A1 (en) 2012-08-07 2014-02-13 Janssen Pharmaceutica Nv Process for the preparation of heterocyclic ester derivatives
JOP20180012A1 (ar) 2012-08-07 2019-01-30 Janssen Pharmaceutica Nv عملية السلفنة باستخدام نونافلوروبوتانيسولفونيل فلوريد
US9382329B2 (en) 2012-08-14 2016-07-05 Ibc Pharmaceuticals, Inc. Disease therapy by inducing immune response to Trop-2 expressing cells
CA2874864C (en) 2012-08-14 2023-02-21 Ibc Pharmaceuticals, Inc. T-cell redirecting bispecific antibodies for treatment of disease
WO2014071018A1 (en) 2012-10-31 2014-05-08 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a dll4 antagonist
JP6133431B2 (ja) 2012-11-24 2017-05-24 ハンジョウ ディーエーシー バイオテック シーオー.,エルティディ.Hangzhou Dac Biotech Co.,Ltd. 親水性連結体及び薬物分子と細胞結合分子との共役反応における親水性連結体の使用
CA2884313C (en) 2012-12-13 2023-01-03 Immunomedics, Inc. Dosages of immunoconjugates of antibodies and sn-38 for improved efficacy and decreased toxicity
CN104755463A (zh) 2012-12-21 2015-07-01 卫材R&D管理有限公司 非晶态形式的喹啉衍生物及其生产方法
EP2943190B1 (en) 2013-01-11 2019-01-02 Massachusetts Eye & Ear Infirmary Cyp450 lipid metabolites reduce inflammation and angiogenesis
PT2956476T (pt) 2013-02-18 2020-02-21 Vegenics Pty Ltd Moléculas de ligação e usos destas
US20140255413A1 (en) 2013-03-07 2014-09-11 Boehringer Ingelheim International Gmbh Combination therapy for neoplasia treatment
KR102049990B1 (ko) 2013-03-28 2019-12-03 삼성전자주식회사 c-Met 항체 및 VEGF 결합 단편이 연결된 융합 단백질
US9452228B2 (en) 2013-04-01 2016-09-27 Immunomedics, Inc. Antibodies reactive with an epitope located in the N-terminal region of MUC5AC comprising cysteine-rich subdomain 2 (Cys2)
EP2994758B1 (en) * 2013-05-08 2017-12-20 Opthea Limited Biomarkers for age-related macular degeneration (amd)
KR102204279B1 (ko) 2013-05-14 2021-01-15 에자이 알앤드디 매니지먼트 가부시키가이샤 자궁내막암 대상의 렌바티닙 화합물에 대한 반응성을 예측 및 평가하기 위한 생체표지
KR101541478B1 (ko) 2013-05-31 2015-08-05 동아쏘시오홀딩스 주식회사 항-vegf 항체 및 이를 포함하는 암 또는 신생혈관형성관련 질환의 예방, 진단 또는 치료용 약학 조성물
MX2016000364A (es) 2013-07-12 2016-05-09 Ophthotech Corp Metodos para tratar o prevenir afecciones oftalmologicas.
PT3708583T (pt) 2013-08-01 2022-05-13 Five Prime Therapeutics Inc Anticorpos anti-fgfr2iiib afucosilados
CN106061488B (zh) 2013-12-02 2021-04-09 菲奥医药公司 癌症的免疫治疗
US9914769B2 (en) * 2014-07-15 2018-03-13 Kymab Limited Precision medicine for cholesterol treatment
MX2016010683A (es) 2014-02-21 2017-05-11 Ibc Pharmaceuticals Inc Terapia para tratar enfermedades mediante la induccion de respuesta inmune de las células que expresan trop-2.
CA2935748A1 (en) 2014-02-25 2015-09-03 Immunomedics, Inc. Humanized rfb4 anti-cd22 antibody
PT3122757T (pt) 2014-02-28 2023-11-03 Hangzhou Dac Biotech Co Ltd Ligantes carregados e as suas utilizações em conjugação
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
KR102472862B1 (ko) 2014-03-20 2022-12-05 브리스톨-마이어스 스큅 컴퍼니 혈청 알부민-결합 피브로넥틴 유형 iii 도메인
WO2015164541A1 (en) * 2014-04-22 2015-10-29 Presage Biosciences, Inc. Methods and devices for evaluating drug candidates
CA2953567C (en) 2014-06-24 2023-09-05 Immunomedics, Inc. Anti-histone therapy for vascular necrosis in severe glomerulonephritis
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
PL3170005T3 (pl) 2014-07-18 2019-10-31 Sanofi Sa Sposób przewidywania wyniku leczenia afliberceptem u pacjenta podejrzewanego o chorobę nowotworową
MX2017001980A (es) 2014-08-28 2017-05-04 Eisai R&D Man Co Ltd Derivado de quinolina muy puro y metodo para su produccion.
EP3689910A3 (en) 2014-09-23 2020-12-02 F. Hoffmann-La Roche AG Method of using anti-cd79b immunoconjugates
CN106999517A (zh) 2014-10-07 2017-08-01 免疫医疗公司 抗体‑药物缀合物的新辅助剂用途
JP6827415B2 (ja) 2014-10-31 2021-02-10 メレオ バイオファーマ 5 インコーポレイテッド 疾患の処置のための併用療法
TWI695837B (zh) 2014-12-04 2020-06-11 比利時商健生藥品公司 作為激酶調節劑之三唑並嗒
ES2833530T3 (es) * 2015-01-06 2021-06-15 Zhuhai Essex Bio Pharmaceutical Co Ltd Anticuerpo anti-VEGF
AR103477A1 (es) 2015-01-28 2017-05-10 Lilly Co Eli Compuestos de vegfa / ang2
LT3263106T (lt) 2015-02-25 2024-01-10 Eisai R&D Management Co., Ltd. Chinolino darinių kartumo sumažinimo būdas
EP3265059A4 (en) 2015-03-03 2018-08-29 Cureport Inc. Combination liposomal pharmaceutical formulations
WO2016141161A1 (en) 2015-03-03 2016-09-09 Cureport, Inc. Dual loaded liposomal pharmaceutical formulations
AU2015384801B2 (en) 2015-03-04 2022-01-06 Eisai R&D Management Co., Ltd. Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer
CN107428837A (zh) 2015-04-22 2017-12-01 免疫医疗公司 循环trop‑2阳性癌细胞的分离、检测、诊断和/或鉴定
CN107801379B (zh) 2015-06-16 2021-05-25 卫材R&D管理有限公司 抗癌剂
PL3313443T3 (pl) 2015-06-25 2023-11-06 Immunomedics, Inc. Łączenie przeciwciał anty-hla-dr lub anty-trop-2 z inhibitorami mikrotubuli, inhibitorami parp, 5 inhibitorami kinazy brutona lub inhibitorami 3-kinazy fosfoinozytydu istotnie poprawia wynik terapeutyczny nowotworu
EP3316885B1 (en) 2015-07-01 2021-06-23 Immunomedics, Inc. Antibody-sn-38 immunoconjugates with a cl2a linker
CN113350518A (zh) 2015-07-12 2021-09-07 杭州多禧生物科技有限公司 与细胞结合分子的共轭偶联的桥连接体
US9839687B2 (en) 2015-07-15 2017-12-12 Suzhou M-Conj Biotech Co., Ltd. Acetylenedicarboxyl linkers and their uses in specific conjugation of a cell-binding molecule
AU2016304764C1 (en) 2015-08-07 2023-06-01 Imaginab, Inc. Antigen binding constructs to target molecules
CA2999160A1 (en) 2015-09-23 2017-03-30 Oncomed Pharmaceuticals, Inc. Methods and compositions for treatment of cancer
PE20181363A1 (es) 2015-09-23 2018-08-27 Genentech Inc Variantes optimizadas de anticuerpos anti-vegf
JP6893504B2 (ja) 2015-09-23 2021-06-23 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company 速い解離速度を有する血清アルブミン結合フィブロネクチンタイプiiiドメイン
AU2016343860A1 (en) * 2015-10-30 2018-05-10 The Jackson Laboratory Compositions and methods relating to tumor analysis
TWI791422B (zh) 2015-11-23 2023-02-11 美商戊瑞治療有限公司 用於癌症治療之單獨fgfr2抑制劑或與免疫刺激劑組合
PL3384049T3 (pl) 2015-12-03 2024-01-22 Regeneron Pharmaceuticals, Inc. Sposoby powiązania wariantów genetycznych z wynikiem klinicznym u pacjentów cierpiących na zwyrodnienie plamki związane z wiekiem, leczonych anty-vegf
RU2744860C2 (ru) 2015-12-30 2021-03-16 Кодиак Сайенсиз Инк. Антитела и их конъюгаты
CN108779172B (zh) * 2016-01-06 2022-02-08 定制药品研究株式会社 抑制vegf与nrp1结合的抗体
WO2017119435A1 (ja) 2016-01-06 2017-07-13 株式会社オーダーメードメディカルリサーチ 高親和性抗vegf抗体
SG11201809959PA (en) * 2016-05-10 2018-12-28 Genentech Inc Methods of decreasing trisulfide bonds during recombinant production of polypeptides
KR102433648B1 (ko) 2016-05-30 2022-08-17 에이껜 가가꾸 가부시끼가이샤 항인간 헤모글로빈 모노클로날 항체 또는 항체 키트, 항인간 헤모글로빈 모노클로날 항체 고정화 불용성 담체 입자, 및 이들을 이용한 측정 시약 또는 측정 방법
GB2551979A (en) 2016-06-30 2018-01-10 Rs Arastirma Egitim Danismanlik Llac Sanayi Ticaret Ltd Cleavable polymer drug conjugates
CA3037461A1 (en) * 2016-09-27 2018-04-05 The University Of The Highlands And Islands Antigen biomarkers
CN109789209A (zh) * 2016-10-14 2019-05-21 诺华股份有限公司 使用csf-1r抑制剂治疗眼部疾病的方法
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
CN116143678A (zh) 2016-11-14 2023-05-23 杭州多禧生物科技有限公司 偶联连接体,含有此连接体的细胞结合分子-药物偶联物及其制备和应用
GB2556055B (en) 2016-11-16 2022-03-23 Rs Arastirma Egitim Danismanlik Ilac Sanayi Ticaret Ltd Sti Self-assembled diblock copolymers composed of pegmema and drug bearing polymeric segments
US11266745B2 (en) 2017-02-08 2022-03-08 Imaginab, Inc. Extension sequences for diabodies
CA3055132A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Antibodies binding to steap-1
EP3620471A4 (en) * 2017-05-02 2021-01-06 National Cancer Center Japan ANTIBODY-ANTI-FIBRIN DRUG CONJUGATE INSOLUBLE, POSSIBLE TO BE CLIVID BY PLASMINE
JP7299842B2 (ja) 2017-05-16 2023-06-28 ファイヴ プライム セラピューティクス インク がん治療における化学療法剤と組み合わせた抗fgfr2抗体
US10543231B2 (en) 2017-05-19 2020-01-28 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
US10894019B2 (en) 2017-08-15 2021-01-19 University Of South Carolina Drug delivery system and method for targeting cancer stem cells
WO2019129679A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Method for improving vegf-receptor blocking selectivity of an anti-vegf antibody
EP3770172A4 (en) * 2018-03-19 2022-08-31 Pharmabcine Inc. ANTI-VEGFR-2 ANTIBODIES
WO2019211492A1 (en) 2018-05-04 2019-11-07 Tollys Tlr3 ligands that activate both epithelial and myeloid cells
US11672767B2 (en) 2019-05-13 2023-06-13 University Of South Carolina Enzymatically cleavable self-assembled nanoparticles for morphogen delivery
JP2022545181A (ja) 2019-08-30 2022-10-26 ユニバーシティ オブ ロチェスター がん治療のためのセプチン阻害剤
CA3157509A1 (en) 2019-10-10 2021-04-15 Kodiak Sciences Inc. Methods of treating an eye disorder
TW202138388A (zh) 2019-12-30 2021-10-16 美商西根公司 以非海藻糖苷化抗-cd70抗體治療癌症之方法
EP4263600A1 (en) 2020-12-18 2023-10-25 Century Therapeutics, Inc. Chimeric antigen receptor systems with adaptable receptor specificity
EP4342497A1 (en) 2021-05-10 2024-03-27 Kawasaki Institute of Industrial Promotion Antibody having reduced binding affinity for antigen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855866A (en) * 1992-03-05 1999-01-05 Board Of Regenis, The University Of Texas System Methods for treating the vasculature of solid tumors
US5877289A (en) * 1992-03-05 1999-03-02 The Scripps Research Institute Tissue factor compositions and ligands for the specific coagulation of vasculature

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456550A (en) 1982-11-22 1984-06-26 President And Fellows Of Harvard College Vascular permeability factor
US4925922A (en) 1983-02-22 1990-05-15 Xoma Corporation Potentiation of cytotoxic conjugates
FR2566271B1 (fr) 1984-06-20 1986-11-07 Sanofi Sa Nouveaux conjugues cytotoxiques utilisables en therapeutique et procede d'obtention
CA1289880C (en) 1985-12-06 1991-10-01 Jeffrey L. Winkelhake Anti-human ovarian cancer immunotoxins and methods of use thereof
FR2601679B1 (fr) 1986-07-15 1990-05-25 Sanofi Sa Immunotoxines, procede de preparation et compositions pharmaceutiques en contenant
CA1338645C (en) 1987-01-06 1996-10-15 George R. Pettit Isolation, structural elucidation and synthesis of novel antineoplastic substances denominated "combretastatins"
US4975278A (en) 1988-02-26 1990-12-04 Bristol-Myers Company Antibody-enzyme conjugates in combination with prodrugs for the delivery of cytotoxic agents to tumor cells
US5008196A (en) 1987-08-21 1991-04-16 Monsanto Company Stimulation of endothelial cell growth
US5036003A (en) 1987-08-21 1991-07-30 Monsanto Company Antibodies to VPF
US5720937A (en) 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
US5024834A (en) 1988-07-12 1991-06-18 Cetus Corporation Thioether linked immunotoxin conjugates
US6007817A (en) 1988-10-11 1999-12-28 University Of Southern California Vasopermeability enhancing immunoconjugates
US5240848A (en) 1988-11-21 1993-08-31 Monsanto Company Dna sequences encoding human vascular permeability factor having 189 amino acids
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US4940726A (en) 1989-04-26 1990-07-10 Arizona Board Of Regents Cell growth inhibitory macrocyclic lactones denominated Combretastatin D-1 and Combretastatin D-2
US5332671A (en) 1989-05-12 1994-07-26 Genetech, Inc. Production of vascular endothelial cell growth factor and DNA encoding same
US6020145A (en) 1989-06-30 2000-02-01 Bristol-Myers Squibb Company Methods for determining the presence of carcinoma using the antigen binding region of monoclonal antibody BR96
US5194596A (en) 1989-07-27 1993-03-16 California Biotechnology Inc. Production of vascular endothelial cell growth factor
US5165923A (en) 1989-11-20 1992-11-24 Imperial Cancer Research Technology Methods and compositions for the treatment of hodgkin's disease
ES2180535T3 (es) 1991-02-22 2003-02-16 American Cyanamid Co Identificacion de un nuevo gen de tirosina quinasa receptora humana.
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
US20020032313A1 (en) 1991-03-29 2002-03-14 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US20030206899A1 (en) 1991-03-29 2003-11-06 Genentech, Inc. Vascular endothelial cell growth factor antagonists
US6022541A (en) 1991-10-18 2000-02-08 Beth Israel Deaconess Medical Center Immunological preparation for concurrent specific binding to spatially exposed regions of vascular permeability factor bound in-vivo to a tumor associated blood vessel
AU2861692A (en) 1991-10-18 1993-05-21 Beth Israel Hospital Association, The Vascular permeability factor targeted compounds
US5234955A (en) 1991-12-20 1993-08-10 Eli Lilly And Company Antitumor compositions and methods of treatment
US6036955A (en) 1992-03-05 2000-03-14 The Scripps Research Institute Kits and methods for the specific coagulation of vasculature
US6004555A (en) 1992-03-05 1999-12-21 Board Of Regents, The University Of Texas System Methods for the specific coagulation of vasculature
US6093399A (en) 1992-03-05 2000-07-25 Board Of Regents, The University Of Texas System Methods and compositions for the specific coagulation of vasculature
US5965132A (en) 1992-03-05 1999-10-12 Board Of Regents, The University Of Texas System Methods and compositions for targeting the vasculature of solid tumors
US5660827A (en) 1992-03-05 1997-08-26 Board Of Regents, The University Of Texas System Antibodies that bind to endoglin
US5281700A (en) 1992-08-11 1994-01-25 The Regents Of The University Of California Method of recovering endothelial membrane from tissue and applications thereof
HU225646B1 (en) 1992-10-28 2007-05-29 Genentech Inc Hvegf receptors as vascular endothelial cell growth factor antagonists
ATE250138T1 (de) 1992-10-29 2003-10-15 Univ Australian Angiogenese-inhibierende antikörper
CN1701814A (zh) 1992-11-13 2005-11-30 马克斯普朗克科学促进协会 作为血管内皮生长因子受体的f1k-1
US5879672A (en) 1994-10-07 1999-03-09 Regeneron Pharmaceuticals, Inc. Tie-2 ligand 1
US5643755A (en) 1994-10-07 1997-07-01 Regeneron Pharmaceuticals Inc. Nucleic acid encoding tie-2 ligand
US5840301A (en) 1994-02-10 1998-11-24 Imclone Systems Incorporated Methods of use of chimerized, humanized, and single chain antibodies specific to VEGF receptors
GB9410533D0 (en) 1994-05-26 1994-07-13 Lynxvale Ltd In situ hybridisation and immuno-Chemical localisation of a growth factor
US5786344A (en) * 1994-07-05 1998-07-28 Arch Development Corporation Camptothecin drug combinations and methods with reduced side effects
NZ288883A (en) 1994-07-11 1998-12-23 Univ Texas Conjugates comprising coagulation factors
US5814464A (en) 1994-10-07 1998-09-29 Regeneron Pharma Nucleic acids encoding TIE-2 ligand-2
US5650490A (en) 1994-10-07 1997-07-22 Regeneron Pharmaceuticals, Inc. Tie-2 ligand 2
US5561122A (en) * 1994-12-22 1996-10-01 Arizona Board Of Regents Acting On Behalf Of Arizona State University Combretastatin A-4 prodrug
US5730977A (en) 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US6020473A (en) 1995-08-25 2000-02-01 Genentech, Inc. Nucleic acids encoding variants of vascular endothelial cell growth factor
US5854205A (en) 1995-10-23 1998-12-29 The Children's Medical Center Corporation Therapeutic antiangiogenic compositions and methods
JPH09124697A (ja) 1995-11-01 1997-05-13 Toagosei Co Ltd ペプチド及びモノクローナル抗体
US5942385A (en) 1996-03-21 1999-08-24 Sugen, Inc. Method for molecular diagnosis of tumor angiogenesis and metastasis
US5851797A (en) 1996-06-19 1998-12-22 Regeneron Pharmaceuticals, Inc. Tie ligand-3, methods of making and uses thereof
US6008319A (en) 1996-12-23 1999-12-28 University Of Southern California Vasopermeability enhancing peptide of human interleukin-2 and immunoconjugates thereof
US6291667B1 (en) 1997-01-31 2001-09-18 Parkash S. Gill Method and composition for treatment of kaposi's sarcoma
WO1998045331A2 (en) 1997-04-07 1998-10-15 Genentech, Inc. Anti-vegf antibodies
IL132239A0 (en) 1997-04-07 2001-03-19 Genentech Inc Humanized antibodies and methods for forming humanized antibodies
US20020032315A1 (en) 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
DE69832798T2 (de) * 1997-06-03 2006-09-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Regulatorische sequenzen für die in-vivo-expression einer heterologen dns-sequenz in endothelzellen und ihre verwendungen.
US6057435A (en) 1997-09-19 2000-05-02 Genentech, Inc. Tie ligand homologues
US5972338A (en) 1997-09-19 1999-10-26 Genentech, Inc. Tie ligands homologues
US6030831A (en) 1997-09-19 2000-02-29 Genetech, Inc. Tie ligand homologues
AU2299099A (en) 1998-02-04 1999-08-23 Kyowa Hakko Kogyo Co. Ltd. Antibodies against human vegf receptor kdr
WO2000034337A1 (en) 1998-12-10 2000-06-15 Tsukuba Research Laboratory, Toagosei Co., Ltd. Humanized monoclonal antibodies against vascular endothelial cell growth factor
WO2000037502A2 (en) 1998-12-22 2000-06-29 Genentech, Inc. Vascular endothelial cell growth factor antagonists and uses thereof
EP1185559A2 (en) 1999-04-28 2002-03-13 Board Of Regents, The University Of Texas System Compositions and methods for cancer treatment by selectively inhibiting vegf
US6703020B1 (en) 1999-04-28 2004-03-09 Board Of Regents, The University Of Texas System Antibody conjugate methods for selectively inhibiting VEGF
US7740841B1 (en) 2000-01-28 2010-06-22 Sunnybrook Health Science Center Therapeutic method for reducing angiogenesis
CA2454048C (en) 2001-07-17 2011-05-03 Research Development Foundation Therapeutic agents comprising pro-apoptotic proteins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855866A (en) * 1992-03-05 1999-01-05 Board Of Regenis, The University Of Texas System Methods for treating the vasculature of solid tumors
US5877289A (en) * 1992-03-05 1999-03-02 The Scripps Research Institute Tissue factor compositions and ligands for the specific coagulation of vasculature

Also Published As

Publication number Publication date
US6676941B2 (en) 2004-01-13
EP1179541B1 (en) 2004-06-16
HK1045700A1 (en) 2002-12-06
JP4926320B2 (ja) 2012-05-09
EP1185559A2 (en) 2002-03-13
ATE269357T1 (de) 2004-07-15
NZ514918A (en) 2003-11-28
MXPA01010891A (es) 2002-11-07
ZA200108285B (en) 2002-08-28
JP2002543093A (ja) 2002-12-17
WO2000064946A2 (en) 2000-11-02
DE60011612T2 (de) 2005-07-07
DE60011612D1 (de) 2004-07-22
IL145941A0 (en) 2002-07-25
US20020119153A1 (en) 2002-08-29
EP1179541A1 (en) 2002-02-13
ES2223705T3 (es) 2005-03-01
US6342221B1 (en) 2002-01-29
JP2011046720A (ja) 2011-03-10
KR100816572B1 (ko) 2008-03-24
US7056509B2 (en) 2006-06-06
WO2000064946A3 (en) 2001-02-15
CN1358197A (zh) 2002-07-10
US6524583B1 (en) 2003-02-25
KR20020019905A (ko) 2002-03-13
CN101073668A (zh) 2007-11-21
US6416758B1 (en) 2002-07-09
CA2372053C (en) 2008-09-02
BR0010017A (pt) 2002-06-11
AU763954B2 (en) 2003-08-07
US6887468B1 (en) 2005-05-03
HK1045700B (zh) 2007-07-27
US6342219B1 (en) 2002-01-29
ZA200108612B (en) 2002-06-07
AU4804900A (en) 2000-11-10
IL145941A (en) 2007-08-19
US20030175276A1 (en) 2003-09-18
CA2372053A1 (en) 2000-11-02

Similar Documents

Publication Publication Date Title
CN1308347C (zh) 用于通过选择性抑制vegf来治疗癌症的组合物和方法
US6703020B1 (en) Antibody conjugate methods for selectively inhibiting VEGF
JP5809415B2 (ja) 抗vegf抗体の組成物および方法
CN1668644A (zh) 与阴离子磷脂和氮基磷脂结合的选定抗体和耐久霉素肽以及它们在治疗病毒感染和癌症中的用途
AU2013205269B2 (en) Anti-VEGF antibody compositions and methods
AU774287B2 (en) Immunoconjugate compositions and methods for cancer treatment by selectively inhibiting VEGF

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1045700

Country of ref document: HK

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070404

Termination date: 20180428

CF01 Termination of patent right due to non-payment of annual fee