CN1247632A - 使阈值电压上升的升压阱 - Google Patents

使阈值电压上升的升压阱 Download PDF

Info

Publication number
CN1247632A
CN1247632A CN97181967A CN97181967A CN1247632A CN 1247632 A CN1247632 A CN 1247632A CN 97181967 A CN97181967 A CN 97181967A CN 97181967 A CN97181967 A CN 97181967A CN 1247632 A CN1247632 A CN 1247632A
Authority
CN
China
Prior art keywords
grid
conduction type
alloy
gate length
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97181967A
Other languages
English (en)
Inventor
S·E·汤普森
P·A·帕坎
T·哈尼
M·斯特特勒
S·S·阿梅德
M·T·波尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN1247632A publication Critical patent/CN1247632A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66492Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a pocket or a lightly doped drain selectively formed at the side of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66537Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Abstract

一种改进的升压阱注入,它可比传统的辉光注入提供更好的特性,特别是对于短沟道装置(例如0.25微米或更小)。事实上,注入物可被分布在整个沟道内,但当器件的栅长度小于临界尺寸时,须使较高的浓度发生在沟道的中央,这时可采用很大的倾斜角(例如30°-50°)、较轻的搀入物品种和比传统的辉光注入大的能量来注入。

Description

使阈值电压上升的升压阱
本发明的背景
1.本发明的领域
本发明涉及金属氧化物半导体(MOS)场效应晶体管的制造。
2.现有技术
各种技术曾被用来注入MOS晶体管的沟道区域以资控制短沟道效应或改变其他一些特性。一个常用的技术为所谓“辉光”注入(haloimplant),其中邻近这些区域注入导电类型与源区域和漏区域所用相反的离子。这些高掺杂的区域提供较高的穿通电阻包括对抗漏极引起的位垒降低的较高电阻。
在现有技术中在辉光区域内注入掺杂物通常是在形成栅后晶片倾斜时进行的。可参阅发表在IEDM 88上从394页开始的Hori和Kurimoto的著作“一个新的半微米P沟道的带有LATIPS的MOSFET”,(LATIPS为LArgc-Tilt-Angle Implanted Punchthrough Sfopper的缩写)。
本发明的综述
下面说明用来制造MOS器件的一种改进方法,该MOS器件具有属于第一导电类型的栅、源区和漏区,它们是在属于第二导电类型的衬底区域上形成的。将属于第二导电类型的掺杂物注入到衬底内,这样在栅长度减短时,来增加属于第二导电类型的掺杂物在某一区域内的掺杂物浓度,这个区域一般在源区和漏区的中间。这点特别有用,因为对给定的临界尺寸,由于栅长度的变化某些器件的栅长度小于临界尺寸。这些器件将具有较高的搀入物浓度从而得到改进的穿通特性。
附图的简要说明
图1为现有技术的几沟道MOS晶体管的横剖面立视图,图中示出辉光注入在源区域和漏区域的邻近。
图2为按照本发明的几沟道MOS晶体管的横剖面立视图。
图3为一横剖面立视图,示出用来获得本发明的升压阱的加工步骤。
图4为一曲线图,分别示出对于现有技术的辉光注入,现有技术的无辉光器件和本发明的升压阱的沟道中的栅长度对闸值电压的关系。
图5为一曲线图,示出本发明的掺杂物浓度在栅长度不同的晶体管的沟道中的情况。
本发明的详细说明
现在说明栅长度较短时如何提供升压阱使阈值电压上升的方法。在下面的说明中列出众多的具体细节,如特定的浓度水平、掺杂物等,为的是使人们对本发明有一透彻的理解。显然对本行业的技术人士来说,不需这些具体细节也可将本发明付诸实施。另外公知的加工步骤不再详细列出以免与本发明混淆。
参阅图1所示的在P型衬底或阱上形成的现有技术的MOS的晶体管的横剖面立视图,栅10用绝缘层17与晶体管的沟道区域绝缘。在栅两侧形成的间隔层11和12被用来限定源区13和漏区14的较浅的延伸部,这是本行业中公知的。用离子注入形成的辉光区域15和16例如是在源区和漏区掺杂之前用较重的P型掺杂物以两个不同的角度注入而形成的,因此掺杂物如图所示那样分布,这样造成以后要形成源区和漏区的区域在初始时被P型掺杂物掺杂。但被n型掺杂物的反掺杂盖上,形成如图1所示的留下辉光区域的n沟道器件。如同在本申请的现有技术部分中所提到的那样,辉光区域15和16被用来改进晶体管的穿通特性。
图2示出按照本发明制造的场效应晶体管。人们将可了解到,当栅20的栅长度约为0.25微米或更小时,本发明的优点可充分体现。在制造图2的晶体管时,栅先用绝缘层27与衬底绝缘。例如,栅的长度可为0.22微米,高度可为0.25微米,用厚度为40A的二氧化硅层与衬底绝缘。现在就可形成本发明的升压阱,这在下面还要论述。然后在多晶硅栅20的两侧设置间隔层21和22。间隔层是用非导电的材料如氮化硅制成的。间隔层如同图1的晶体管那样,被用来限定源区和漏区的较浅的延伸部23和24。然后,源区和漏区被掺杂。接下来再形成金属层,这是公知的,以便完成集成电路。
与图1中的辉光区域不同,按照本发明,区域25被用在图2中的晶体管内。这个P型的区域比图2的晶体管将制造于其中的所用的衬底或阱被较重地掺杂。不是如同图1所示的那样,是在源和漏的延伸部下面的两个分开的辉光区域,就本发明而言,是希望在栅氧化物27之下的沟道的中央部有尽可能多的掺杂。这个较高浓度的搀入物在图2中由区域26示出。可以看到,这正好发生在阀门长度减少的地方,因此在补偿临界尺寸的变化时特别有用。掺杂的区域25代表本发明的升压阱,由于还可提供其他优点,如阈值电压可在较短的沟道内上升,这将结合图4来说明。
现在参阅图3,其中示出图2中区域25的制造。首先,在形成区域25之前,在衬底上形成栅绝缘层如二氧化硅层27。随后,一个通常由多晶硅制成的栅在绝缘层27上形成。栅20是通过掩蔽,然后腐蚀多晶硅层形成的。现在一个光刻胶层33被暴光并显影从而形成开口34,这就是用来进行本发明的升压阱注入和形成源区域和漏区域的延伸部的开口。
就本发明而言,在形成开口34后,对在其上制出栅20的衬底进行离子注入,所注入的离子具有与在其上制出晶体管的区域相同的导电类型。这个区域一般为在CMOS工艺所用体衬底内形成的掺杂的阱。对于n沟道晶体管,P型掺杂物被注入到P阱30内。这个注入是在对法线成很高倾斜角的情况下发生的,并且最好用轻掺杂物品种以较高的能量注入。这样可迫使掺杂物进到栅之下并进入到沟道的中央区域内。
就本发明而言,掺杂物以30°或更大的角度注入,一般在30°和60°之间。在图3中可看到的掺杂物先按角度37注入,注入掺杂物的轨迹用平行线36示出。然后将该角度倒转,掺杂物按角度38注入,掺杂物的轨迹用平行线35示出。这两个角度都约为30°或更大。一般地说,由于晶体管是沿正交线注入的,可用四个注入方向,相互错开90°,而每一个注入的倾斜角约为30°或更多,如图3的角度37和38。
在一注入硼的典型应用中,B11用四个相互相差90°的注入方向注入,而每一次注入对衬底的倾斜约为30°。这四次注入的总剂量为2×1013,所用能量为10-20KEV。这个掺杂物是在源区和漏区被掺杂后被一快速的热退火(例如10秒内退900到1100℃)推进的。
在这种升压阱注入完成后,晶体管的源区和漏区可按标准方式形成。例如,n型掺杂物的较浅的注入可形成源区和漏区的延伸部。随后可用n型掺杂物的注入和推进来制造间隔层,借以限定源区域和漏区域的主要部分。或者,源区和漏区的延伸部可从形成间隔层一部分的掺杂玻璃层扩散而成。
虽然没有示出,在制造P沟道晶体管时,可用n型的掺杂物如砷或磷,以很大的倾斜角和较高的能量注入,来确保沟道区的中央部分具有较大的掺杂物浓度。
现在参阅图4的曲线图,该图示出三种方法的沟道长度(横座标)对阈值电压(纵座标)的曲线关系。首先,曲线42代表一个没有使用辉光注入的晶体管的特性,曲线43说明在使用图1所示的辉光注入时的特性。可以看到,不管是标准的辉光注入,还是没有辉光注入,当栅长度减少时阈值电压都有一个急剧的滑落。曲线41示出按照本发明的升压阱。从该典型可以看到,当栅长度减少时阈值电压可以上升。这一点很重要,因为它允许将器件的沟道制成极短的长度(例如小于0.1微米)并能给临界尺寸的变化提供容差。
事实上除非沟道长度约为0.25微米或更小,是不能得到本发明所能得到的重大收益的。图5中示出在用本发明加工后,相应于数个不同栅长度的沟道中的掺杂物浓度的变化。曲线50示出5微米长栅的掺杂物浓度。如从图上可见,较高的掺杂物浓度并不在沟道的中央而是在沟道的两边。与此类似,曲线51是0.8微米栅长度的,再一次可以看到在沟道的中央掺杂物浓度有一小的下垂。但随着栅长度的减少,在沟道中央的掺杂物浓度也是在增加的。曲线52代表0.3微米长的栅,其浓度就比0.8微米长的栅的沟道中央的浓度高。曲线53指出栅长度为0.22微米时,例如与5微米的栅相比,整个沟道的掺杂物浓度较高。最后,曲线54示出对于长度为0.18微米的栅,沟道内的掺杂物浓度还要高。由此可见,本发明的最佳结果是在栅长度大约为0.25微米或更小时获得的。如同以前曾提出的,沟道中的最高浓度应在沟道的中央而不是在源区和漏区的延伸部上。
本发明的显著优点是,对于一个给定的注入剂量,较高的浓度发生在较短的栅长度上。这样,当临界尺寸为0.22微米(栅长度)时,如果预期会发生变化,其中某些栅长度例如可小到0.18微米。那么从图5可以看到,这些0.18微米的器件的沟道将被更高地掺杂,从而可给临界尺寸的变化提供补偿。但如果沟道在栅形成之前已被注入,那么在较短的栅长度内进行较高的注入将不会发生。
以上我们说明了升压阱方法,该方法能在较短的栅长度上使阈值电压上升。除了能从辉光注入提供更多的传统效果如减少从源到漏的泄漏电流和改善穿通特性外,还已发现,可用本发明的升压阱注入来改善晶体管的高频特性。

Claims (11)

1.用来制造具有栅的MOS器件的一种改进方法,该MOS器件具有属于第一导电类型源区和漏区,它们是在属于第二导电类型的衬底区域上形成的,该改进方法的特征为,将属于第二导电类型的掺杂物注入到衬底内,这样在栅长度减短时,来增加属于第二导电类型的掺杂物在某一区域内的掺杂物浓度,这个区域一般在源区域和漏区域的中间。
2.按照权利要求1的方法,其特征为,注入是在30°或更大的角度下进行的。
3.按照权利要求1的方法,其特征为,注入是按四个步骤进行的,每一步骤都对衬底倾斜约30°或更大。
4.在制造具有标称栅长度1的MOS器件而其中某些器件的栅长度小于1时,改进的特征为,将器件的栅下面的沟道掺杂,使栅长度小于1的那些器件的栅下面的掺杂物浓度比栅长度为1的那些器件的栅下面的掺杂物浓度高。
5.一种在第一导电类型的衬底区内形成晶体管的方法包括下列步骤:
形成与衬底区域绝缘的栅;及
将属于第一导电类型的掺杂物以约为30°或更大的角度注入到衬底内。
6.按照权利要求5的方法,其特征为,注入的第一导电类型的掺杂物包括以约为15KEV或更大的能量注入的B11
7.按照权利要求5的方法,其特征为,注入的第一导电类型的掺杂物包括磷。
8.按照权利要求5的方法,其特征为,注入的第一导电类型的掺杂物包括砷。
9.按照权利要求6的方法,其特征为,栅的长度约为0.25微米或更小。
10.按照权利要求7的方法,其特征为,栅的长度约为0.25微米或更小。
11.按照权利要求8的方法,其特征为,栅的长度约为0.25微米或更小。
CN97181967A 1996-12-30 1997-12-08 使阈值电压上升的升压阱 Pending CN1247632A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/777,552 1996-12-30
US08/777,552 US6020244A (en) 1996-12-30 1996-12-30 Channel dopant implantation with automatic compensation for variations in critical dimension

Publications (1)

Publication Number Publication Date
CN1247632A true CN1247632A (zh) 2000-03-15

Family

ID=25110566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97181967A Pending CN1247632A (zh) 1996-12-30 1997-12-08 使阈值电压上升的升压阱

Country Status (7)

Country Link
US (1) US6020244A (zh)
EP (1) EP0970513A4 (zh)
KR (1) KR20000069811A (zh)
CN (1) CN1247632A (zh)
AU (1) AU7893298A (zh)
TW (1) TW406432B (zh)
WO (1) WO1998029897A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728263B (zh) * 2008-10-24 2011-07-06 中芯国际集成电路制造(上海)有限公司 控制源/漏结电容的方法和pmos晶体管的形成方法
CN101728264B (zh) * 2008-10-24 2011-10-05 中芯国际集成电路制造(上海)有限公司 控制源/漏结电容的方法和pmos晶体管的形成方法
CN102737965A (zh) * 2011-04-12 2012-10-17 中芯国际集成电路制造(上海)有限公司 一种Halo结构的形成方法
US8330232B2 (en) 2005-08-22 2012-12-11 Macronix International Co., Ltd. Nonvolatile memory device and method of forming the same
CN103151267A (zh) * 2013-03-01 2013-06-12 溧阳市虹翔机械制造有限公司 一种nmos管的掺杂方法

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194768B1 (en) * 1998-10-23 2001-02-27 Advanced Micro Devices, Inc. High dielectric constant gate dielectric with an overlying tantalum gate conductor formed on a sidewall surface of a sacrificial structure
US6180464B1 (en) * 1998-11-24 2001-01-30 Advanced Micro Devices, Inc. Metal oxide semiconductor device with localized laterally doped channel
US6624030B2 (en) 2000-12-19 2003-09-23 Advanced Power Devices, Inc. Method of fabricating power rectifier device having a laterally graded P-N junction for a channel region
US6194293B1 (en) * 1999-05-25 2001-02-27 Advanced Micro Devices, Inc. Channel formation after source and drain regions are formed
FR2794898B1 (fr) 1999-06-11 2001-09-14 France Telecom Dispositif semi-conducteur a tension de seuil compensee et procede de fabrication
US6740912B1 (en) 1999-06-24 2004-05-25 Agere Systems Inc. Semiconductor device free of LLD regions
GB2355851B (en) * 1999-06-24 2003-11-19 Lucent Technologies Inc MOS Transistor
US6221703B1 (en) * 1999-07-14 2001-04-24 United Microelectronics Corp. Method of ion implantation for adjusting the threshold voltage of MOS transistors
US6579751B2 (en) 1999-09-01 2003-06-17 Micron Technology, Inc. Semiconductor processing methods of forming integrated circuitry
US7192836B1 (en) * 1999-11-29 2007-03-20 Advanced Micro Devices, Inc. Method and system for providing halo implant to a semiconductor device with minimal impact to the junction capacitance
JP2001284540A (ja) * 2000-04-03 2001-10-12 Nec Corp 半導体装置およびその製造方法
US6372587B1 (en) * 2000-05-10 2002-04-16 Advanced Micro Devices, Inc. Angled halo implant tailoring using implant mask
US6743685B1 (en) * 2001-02-15 2004-06-01 Advanced Micro Devices, Inc. Semiconductor device and method for lowering miller capacitance for high-speed microprocessors
US6617219B1 (en) 2001-02-15 2003-09-09 Advanced Micro Devices, Inc. Semiconductor device and method for lowering miller capacitance by modifying source/drain extensions for high speed microprocessors
KR100418745B1 (ko) * 2001-06-08 2004-02-19 엘지.필립스 엘시디 주식회사 실리콘 결정화방법
US6489223B1 (en) * 2001-07-03 2002-12-03 International Business Machines Corporation Angled implant process
US20030064550A1 (en) * 2001-09-28 2003-04-03 Layman Paul Arthur Method of ion implantation for achieving desired dopant concentration
DE10245608A1 (de) * 2002-09-30 2004-04-15 Advanced Micro Devices, Inc., Sunnyvale Halbleiterelement mit verbesserten Halo-Strukturen und Verfahren zur Herstellung der Halo-Strukturen eines Halbleiterelements
US7164152B2 (en) * 2003-09-16 2007-01-16 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
US7318866B2 (en) * 2003-09-16 2008-01-15 The Trustees Of Columbia University In The City Of New York Systems and methods for inducing crystallization of thin films using multiple optical paths
US7364952B2 (en) * 2003-09-16 2008-04-29 The Trustees Of Columbia University In The City Of New York Systems and methods for processing thin films
US7311778B2 (en) 2003-09-19 2007-12-25 The Trustees Of Columbia University In The City Of New York Single scan irradiation for crystallization of thin films
US7402870B2 (en) * 2004-10-12 2008-07-22 International Business Machines Corporation Ultra shallow junction formation by epitaxial interface limited diffusion
US7645337B2 (en) * 2004-11-18 2010-01-12 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
WO2007022302A2 (en) * 2005-08-16 2007-02-22 The Trustees Of Columbia University In The City Of New York High throughput crystallization of thin films
US8598588B2 (en) * 2005-12-05 2013-12-03 The Trustees Of Columbia University In The City Of New York Systems and methods for processing a film, and thin films
US20070148926A1 (en) * 2005-12-28 2007-06-28 Intel Corporation Dual halo implant for improving short channel effect in three-dimensional tri-gate transistors
US7449373B2 (en) * 2006-03-31 2008-11-11 Intel Corporation Method of ion implanting for tri-gate devices
KR20100074193A (ko) * 2007-09-21 2010-07-01 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 박막 트랜지스터에서 사용되는 측면 결정화된 반도체 섬의 집합
TWI418037B (zh) 2007-09-25 2013-12-01 Univ Columbia 藉由改變形狀、大小或雷射光束在製造於橫向結晶化薄膜上之薄膜電晶體元件中產生高一致性的方法
WO2009067688A1 (en) 2007-11-21 2009-05-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8557040B2 (en) * 2007-11-21 2013-10-15 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
JP5211689B2 (ja) * 2007-12-28 2013-06-12 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US20110108108A1 (en) * 2008-02-29 2011-05-12 The Trustees Of Columbia University In The City Of Flash light annealing for thin films
US20110175099A1 (en) * 2008-02-29 2011-07-21 The Trustees Of Columbia University In The City Of New York Lithographic method of making uniform crystalline si films
US8569155B2 (en) * 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
WO2010056990A1 (en) 2008-11-14 2010-05-20 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US7829939B1 (en) * 2009-04-20 2010-11-09 International Business Machines Corporation MOSFET including epitaxial halo region
US8440581B2 (en) * 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
CN102054699B (zh) * 2009-11-05 2012-07-25 中芯国际集成电路制造(上海)有限公司 改善半导体器件结深特性的方法
WO2011107832A1 (en) * 2010-03-04 2011-09-09 X-Fab Semiconductor Foundries Ag Manufacturing of a semiconductor device and corresponding semiconductor device
US8900954B2 (en) 2011-11-04 2014-12-02 International Business Machines Corporation Blanket short channel roll-up implant with non-angled long channel compensating implant through patterned opening
CN105244260A (zh) * 2015-10-26 2016-01-13 武汉新芯集成电路制造有限公司 一种半导体结构及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04113634A (ja) * 1990-09-03 1992-04-15 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
US5320974A (en) * 1991-07-25 1994-06-14 Matsushita Electric Industrial Co., Ltd. Method for making semiconductor transistor device by implanting punch through stoppers
US5466957A (en) * 1991-10-31 1995-11-14 Sharp Kabushiki Kaisha Transistor having source-to-drain nonuniformly-doped channel and method for fabricating the same
JPH05136403A (ja) * 1991-11-15 1993-06-01 Nippon Steel Corp Mos型半導体装置の製造方法
JPH0637309A (ja) * 1992-07-16 1994-02-10 Toshiba Corp 半導体装置の製造方法
JPH0645600A (ja) * 1992-07-22 1994-02-18 Nec Corp 半導体集積回路装置
JP3220267B2 (ja) * 1993-01-06 2001-10-22 株式会社東芝 半導体装置の製造方法
JP2658810B2 (ja) * 1993-07-30 1997-09-30 日本電気株式会社 不均一チャネルドープmosトランジスタ及びその製造方法
US5543337A (en) * 1994-06-15 1996-08-06 Lsi Logic Corporation Method for fabricating field effect transistor structure using symmetrical high tilt angle punchthrough implants
US5593907A (en) * 1995-03-08 1997-01-14 Advanced Micro Devices Large tilt angle boron implant methodology for reducing subthreshold current in NMOS integrated circuit devices
JPH08335697A (ja) * 1995-06-06 1996-12-17 Sony Corp 半導体装置及び半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8330232B2 (en) 2005-08-22 2012-12-11 Macronix International Co., Ltd. Nonvolatile memory device and method of forming the same
CN101728263B (zh) * 2008-10-24 2011-07-06 中芯国际集成电路制造(上海)有限公司 控制源/漏结电容的方法和pmos晶体管的形成方法
CN101728264B (zh) * 2008-10-24 2011-10-05 中芯国际集成电路制造(上海)有限公司 控制源/漏结电容的方法和pmos晶体管的形成方法
CN102737965A (zh) * 2011-04-12 2012-10-17 中芯国际集成电路制造(上海)有限公司 一种Halo结构的形成方法
CN103151267A (zh) * 2013-03-01 2013-06-12 溧阳市虹翔机械制造有限公司 一种nmos管的掺杂方法
CN103151267B (zh) * 2013-03-01 2015-07-15 溧阳市虹翔机械制造有限公司 一种nmos管的掺杂方法

Also Published As

Publication number Publication date
TW406432B (en) 2000-09-21
KR20000069811A (ko) 2000-11-25
WO1998029897A3 (en) 1998-09-11
EP0970513A2 (en) 2000-01-12
EP0970513A4 (en) 2000-01-12
AU7893298A (en) 1998-07-31
US6020244A (en) 2000-02-01
WO1998029897A2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
CN1247632A (zh) 使阈值电压上升的升压阱
KR100752799B1 (ko) 횡형 박막 soi 디바이스 및 그 제조 방법
KR0181742B1 (ko) 감소된 게이트 및 확산 용량을 가지는 페르미 문턱 계면효과 트랜지스터
US6228719B1 (en) MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US5134447A (en) Neutral impurities to increase lifetime of operation of semiconductor devices
US5625216A (en) MOS transistor having increased gate-drain capacitance
US5097301A (en) Composite inverse T-gate metal oxide semiconductor device and method of fabrication
CN1685517A (zh) 用于mosfet的铟-硼双盐注入
CN1423837A (zh) 用单附加掩模注入操作制造双阈值电压n沟道和p沟道mosfet的方法
CN1144401A (zh) 半导体器件及其制造方法
DE19720215A1 (de) Verfahren zum Herstellen von Halbleiterbauteilen mit einem Graben-Gate mittels Seitenwandimplantation
CN102569394A (zh) 晶体管及其制作方法
CN1176493A (zh) 半导体集成电路装置及其制造方法
US5786252A (en) Method of manufacturing a semiconductor device, and semiconductor device manufactured by such a method
CN85108671A (zh) 半导体集成电路器件及其制造工艺
CN1319880A (zh) 反向短沟道效应的减少
US5877058A (en) Method of forming an insulated-gate field-effect transistor with metal spacers
US6188114B1 (en) Method of forming an insulated-gate field-effect transistor with metal spacers
KR101142104B1 (ko) 단채널 트렌치 mosfet 및 디바이스를 형성하는 공정
CN1167113C (zh) 具有超浅结延伸区的mos装置的制造方法
US5399514A (en) Method for manufacturing improved lightly doped diffusion (LDD) semiconductor device
CN1684237A (zh) 采用两次离子注入的高操作电压双扩散漏极mos器件
CN1136613C (zh) 半导体装置及其制造方法
CN1056471C (zh) 互补型金属氧化物半导体场效应晶体管的制造方法
US6509237B2 (en) Flash memory cell fabrication sequence

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1062179

Country of ref document: HK