Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberCN1207150 C
Publication typeGrant
Application numberCN 00803282
PCT numberPCT/GB2000/000173
Publication date22 Jun 2005
Filing date24 Jan 2000
Priority date1 Feb 1999
Also published asCA2360922A1, CN1338993A, DE60002981D1, DE60002981T2, EP1148994A1, EP1148994B1, US6619788, US20020071007, WO2000044565A1
Publication number00803282.3, CN 00803282, CN 1207150 C, CN 1207150C, CN-C-1207150, CN00803282, CN00803282.3, CN1207150 C, CN1207150C, PCT/2000/173, PCT/GB/0/000173, PCT/GB/0/00173, PCT/GB/2000/000173, PCT/GB/2000/00173, PCT/GB0/000173, PCT/GB0/00173, PCT/GB0000173, PCT/GB000173, PCT/GB2000/000173, PCT/GB2000/00173, PCT/GB2000000173, PCT/GB200000173
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Droplet deposition apparatus
CN 1207150 C
Abstract  translated from Chinese
在压电打印头中使用一种受体掺杂的“硬”压电换能材料代替传统的“软”给体掺杂材料。 Use an acceptor-doped "hard" piezoelectric transducer materials instead of the traditional "soft" donor doping material in the piezoelectric printheads. 该打印头以V形侧边喷射结构为佳,并在高分辨灰度打印时具有优越性。 The print head to the side injection V-shaped structure is better, and the superiority of grayscale printing at high resolution.
Claims(7)  translated from Chinese
1.一种微滴沉积装置,所述装置包括液滴喷嘴以及与所述喷嘴相通并输送喷射微滴的液体给所述喷嘴的压力腔,该压力腔的侧壁设置了可根据应用的电信号而变形使喷嘴喷射出微滴的受体掺杂压电材料。 A droplet deposition apparatus, said apparatus comprising a nozzle and a droplet of the ejection nozzle communicating and transporting droplets to the nozzle liquid pressure chamber, the side walls of the pressure chamber is provided according to the application of electrical signal distortion of the nozzle sprayed droplets receptor doped piezoelectric material.
2.根据权利要求1所述的装置,其特征在于,在施加的电信号电压下,所述材料的滞后耗损正切(tanδ)基本上不大于0.05。 2. The apparatus according to claim 1, characterized in that the voltage in the electrical signal applied, the hysteresis loss tangent of the material (tanδ) is substantially not greater than 0.05.
3.根据权利要求1或2所述的装置,其特征在于,所述材料的品质因数在15到30之间,最好为约25。 1 or 3. The apparatus according to claim 2, characterized in that the material of merit between 15-30, preferably about 25.
4.根据权利要求1所述的装置,其特征在于,除了所述的侧壁之外,所述压力腔包括另一侧壁,其中设置有所述喷嘴,其位于所述压力腔的中间端部。 4. The apparatus according to claim 1, characterized in that, in addition to said side walls, said pressure chamber further comprises a side wall, wherein said nozzle is provided, which is located in the intermediate pressure chamber side section.
5.根据权利要求1所述的装置,其特征在于,施加的电信号使所述压电材料以剪切模式变形,并在所述压力腔中形成声压波,从而喷出所述微滴。 5. The apparatus according to claim 1, characterized in that the electrical signal applied to the piezoelectric material causes deformation in shear mode, and the sound pressure waves are formed in the pressure chamber, thereby discharging the droplets .
6.根据权利要求5所述的装置,其特征在于,在所述外壁上的所述压电材料有两个并排延伸的区域,所述区域具有极性,从其横截面上看,施加的电信号可使所述区域变形成V形。 6. The apparatus according to claim 5, characterized in that the outer wall of the piezoelectric material has two parallel extending region, the region has a polarity, see its cross section, applied The electrical signal can deformed into the V-shaped region.
7.根据权利要求1所述的装置,其特征在于,所述压电材料为压电换能材料。 7. The apparatus according to claim 1, wherein said piezoelectric material is a piezoelectric transducer material.
Description  translated from Chinese
一种微滴沉积装置 A micro droplet deposition apparatus

技术领域 Technical Field

本发明涉及一种微滴沉积装置。 The present invention relates to a droplet deposition apparatus.

具体地说,本发明涉及打印机或其他由电信号产生声压波并从腔体内喷射液体(如油墨)的微滴沉积装置。 More specifically, the present invention relates to a printer or other droplet deposition apparatus electrical signal generated by the sound pressure wave and ejected from the cavity of liquid (such as ink). 所述装置可以只有一个这样的腔体,但更为典型的是带有一排各带一个喷嘴的此种腔体的打印头,所述打印头接受携带数据的电信号,电信号为腔体根据命令喷出微滴提供所需能量。 The device may have only one such chamber, but more typically has a print head with a nozzle row of each such cavity, said print head receiving data-carrying electrical signal, an electrical signal according to the cavity Command spray droplets provide the energy needed. 这个或每个腔体以压电元件为边界,而电信号可造成该压电元件偏转,从而产生了喷射微滴的声压波。 Or each cavity with a piezoelectric element as a boundary, but an electrical signal can cause deflection of the piezoelectric element, resulting in the ejection of droplets of sound pressure waves. 参考我们已公开的专利EP 0277703、US 4887100、WO91/17051可以进一步得到典型结构的细节。 Refer to our published patent EP 0277703, US 4887100, WO91 / 17051 can be further details typical structure.

背景技术 Background

在此种装置中,喷射微滴所要求的电信号电压通常要尽可能地小;电压低就能简化驱动电路和/或降低成本。 In such an apparatus, a droplet ejection electrical voltage is usually required to be as small as possible; low voltage drive circuit can be simplified and / or lower costs. 而且,在打印头工作时产生的热量,在打印头内和驱动电路内都与电压的平方成正比,也要减至最小。 Moreover, the heat generated when the printhead is working in inner printhead and the drive circuit are proportional to the square of the voltage, but also minimized. 过多的产热量应该予以避免,因为热量影响油墨的流体物性,使得打印不精确,尤其是在打印头不同腔体间存在明显的温度差异时。 Excessive heat production should be avoided, because the heat affect the ink fluid properties, enables the printing imprecise, especially if there is a significant difference in temperature between the print head when different cavity. 当一个腔体的工作次数显著地比另一个要多的时候,这样的差异就会出现,比如说一个腔体在打印一个图象的密度大区域,而另一个在打印密度小得多的区域。 When the number of work a cavity significantly more than the other, when such differences occur, for example, a cavity in printing an image density area, and the other in a much smaller area of the print density . 所以,优选的压电材料往往是一种软(给体掺杂)锆钛酸铅压电换能材料。 Therefore, the preferred piezoelectric material is often a soft (donor doping) of lead zirconate titanate piezoelectric transducer material. 软的压电换能器(PZT)具有很高的压电活性;也就是说,对于给定的电压,此材料的物理变形相对大些,这一点对于从腔体中喷出液体微滴特别有用。 Soft piezoelectric transducer (PZT) having a high piezoelectric activity; that is, for a given voltage, the physical deformation of this material is relatively larger, which is for discharging liquid droplets from the chamber in particular it works.

如同我们的专利EP-A-277703中的“尾部喷射”(“end-shooter”)打印头部分所述,将压电材料排列成“V”字形可以进一步降低驱动电压。 As noted in our patent EP-A-277703 in the "tail injection" ("end-shooter") section of the print head, the piezoelectric material arranged in a "V" shape may further reduce the driving voltage. 其他或另外的方法,如专利WO91/17051中所述,可将打印头制成“侧边喷射”(“side shooter”)。 Other or additional methods, as described in Patent WO91 / 17051 described, the print head can be made "side injection" ("side shooter"). 相对于采用单片压电元件的“尾部喷射”方案,对于一定的微滴喷射性能,这两种方案都能将驱动电压减半;同时采用这两种方式,能将驱动电压减低到四分之一。 With respect to the use of single piezoelectric element "tail jet" program, for a given droplet ejection performance, these two programs will drive voltage can be halved; at the same time using these two methods, the drive voltage can be reduced to a quarter one.

“尾部喷射”是指一种结构,在该结构中,喷嘴位于细长腔体的尾部,压电材料分布在腔体的侧面上。 "Tail jet" refers to a structure, in this structure, the nozzle is located in the tail of the elongate cavity, the piezoelectric material distributed on the side surface of the cavity. 而在侧边喷射结构中,喷嘴置于腔体的没有分布压电材料的较长侧面上。 The structure of the side injection nozzle is placed on the side of the cavity is no longer distributed piezoelectric material. 在“V形”方案中,腔体的纵向侧面受到沿腔体纵向延伸的压电材料的限制,其中压电材料有极性相反的区域,因此在施加电信号时,材料的两个区域朝同一个方向变形,从横截面方向看去,形成V字形。 In the "V-shaped" embodiment, the longitudinal sides of the cavity is limited longitudinally extending along the cavity of the piezoelectric material, wherein the piezoelectric material has a polarity opposite to that region, so when an electric signal is applied, the two regions of the material toward the deformed in the same direction, as viewed from the cross-sectional direction, forming a V-shape.

尽管上述方法被认为是驱动电压低且热效应小,但也存在很大的缺点,即与单片尾部喷射的方案相比,从驱动电路上可以看出,这两种方案中的腔体壁的电容几乎成倍地增加。 Although the above approach is considered a low driving voltage and small thermal effects, but there is a big drawback, namely monolithic tail injection solutions, the drive circuit can be seen from these two scenarios body wall cavity capacitance increases almost exponentially. 因此,V形侧边喷射方案中的电容为可进行比较的单片尾部喷射的四倍。 Thus, V-shaped side injection scheme can be compared capacitance monolithic tail of spray four times. 高电容有两种后果,首先是电容热效应,这一点的不利之处业经讨论;第二点是高电容量增大了装置的时间常数(RC)。 There are two consequences of high-capacitance, first capacitor thermal effects, this disadvantage already discussed; the second is a high power capacity increases with a time constant (RC) device. 驱动电信号的波形最好尽可能地近似方波,以便最大化声压波的锐度。 Drive waveform signals best possible approximation of a square wave to maximize the sharpness of the sound pressure waves. 大的时间常数会增大电路响应阶越变化的上升时间,因而其产生有效的高频方波的能力有所减弱。 Capacity will increase the time constant circuit in response to the changes in the rise time of the order, and thus its produce an effective high frequency square wave has weakened. 因此驱动信号的频率受到限制,从而也降低了打印机的工作速度。 Therefore, the frequency of the drive signal is limited, thus reducing the operating speed of the printer. 在可变密度(灰度)打印机中这一点尤其重要,在这种打印机中,每一沉积微滴都是由极高频率的数量可以控制的更小的次微滴组成。 In the variable density (grayscale) This is particularly important in the printer, in such a printer, each droplet is deposited by a number of high frequency can be controlled by a smaller secondary droplets components.


本发明的优选实施例就着眼于解决这个问题。 A preferred embodiment of the present invention will focus on solving this problem.

本发明提供一种微滴沉积装置,该装置包括液体微滴喷嘴以及与喷嘴相通并输送用于喷射微滴的液体给喷嘴的压力腔,该压力腔的外壁设置可根据应用的电信号而变形使喷嘴喷射微滴的受体掺杂压电材料。 The present invention provides a droplet deposition apparatus comprising a liquid droplet and a nozzle communicating with the nozzle and the delivery pressure chamber for ejecting droplets of liquid to the nozzle, and the outer wall of the pressure chamber can be set according to the application of an electrical signal deforms the nozzle spray droplet receptor doped piezoelectric material.

在施加的电信号电压下,该材料最好有一个基本上不大于0.05的滞后耗损(tanδ)。 In the electrical voltage applied, the material preferably has a substantially hysteresis loss of not more than 0.05 (tanδ).

滞后耗损正切由以下给出tanδ=ε″/ε′其中,ε″为介电常数的虚部,ε′为实部。 Hysteresis loss tangent is given by the following tanδ = ε "/ ε 'where, ε" is the imaginary part of the dielectric constant, ε' is the real part.

该材料的品质因素(如此处所定义的)以15到30之间为佳,最好大约为25。 Quality factor of the material (as defined herein) is preferably in between 15-30, preferably about 25.

此处的品质因素是指量d15/(S55ε0)1/2tanδ=ε″/ε′其中,d15=剪应变/电场压电常数S55=电剪切柔量ε0=自由空间的介电常数对一系列的PZT材料所作的试验表明有这样的大趋势,即高品质因数与高损耗角正切和高相对介电常数有关系。 Quality factor here is the amount of d15 / (S55 ε0) 1 / 2tanδ = ε "/ ε 'where, d15 = shear strain / S55 = electric field of the piezoelectric constant shear compliance ε0 = permittivity of free space The test series showed that PZT materials have made such a big trend, namely high quality factor and high loss tangent and high relative permittivity of a relationship.

如同所述的,本发明特别适用于所含压电材料以剪切模式变形的装置,以及具有“侧边喷射”或“V形”结构中一种或最好两种结构都有的装置。 As said, the present invention is particularly applicable to devices contained in the piezoelectric material in shear mode deformation, as well as having a "side injection" or "V-shaped" structure has one or preferably two structural means.

用于本发明的优选压电材料为受主掺杂PZT,如摩根摩确克(Morgan Matroc)销售的PC4D。 Preferably the piezoelectric material used in the present invention is an acceptor-doped PZT, as indeed grams Mount Morgan (Morgan Matroc) sold PC4D.

附图说明 Brief Description

现在参考附图,仅通过示例的方式来对本发明进行说明。 Referring now to the drawings, merely by way of example to illustrate the present invention. 在附图中,图1为现有技术的单片尾部喷射打印头的透视图(为清楚起见,去掉了一些部件),该图与US 4887100专利中的图1相似;图2为尾部喷射的V形打印头的部分剖视图,与US 4887100专利中的图2相似;图3是根据本发明的侧边喷射的V形打印头的纵向剖视图; In the drawings, FIG. 1 is a prior art monolithic rear perspective view of the print head jet (for clarity, some components removed), the drawing and the patent US 4887100 similar to FIG. 1; FIG. 2 is a rear injection V-shaped cross-sectional view of a portion of the print head, similar to the US 4887100 patent in Figure 2; Figure 3 is a longitudinal cross-sectional view of the side of the present invention, the V-shaped jet printhead;

图4显示了不同材料随驱动电压的变化其滞后耗损发生的变化;图5显示了不同材料随波形变化滞后耗损发生的变化;图6显示了打印头使用不同的材料产热量的变化;以及图7显示了不同PZT材料产热量的变化。 Figure 4 shows the different materials with the drive voltage changes in their hysteresis loss changes occurring; Figure 5 shows the waveform changes with different material hysteresis loss changes occurring; Figure 6 shows the change of the print head using different materials heat production; and Figures 7 shows the different PZT materials change heat production.

为了适当地说明本发明,首先对不同类型的微滴沉积设备进行说明。 In order to properly illustrate the present invention, the first of the different types of droplet deposition apparatus will be described. 在附图中,相同的部件给予相同的数字标号。 In the drawings, like parts are given the same reference numbers.


首先参见图1,平面阵列按需滴落式喷墨打印机包括打印头10,该打印头10由若干个平行墨腔或沟槽2组成,只示出了其中九个,这些沟槽2的纵向轴线都处于一个平面。 Referring first to FIG. 1, a planar array of drop on demand type ink jet printer includes a print head 10, the printing head 10 by a plurality of parallel grooves 2 or the composition of the ink chamber, only nine of which is shown, these longitudinal grooves 2 axes are in a plane. 沟槽2被沿整个打印头上表面延伸的顶盖(未示出)封闭。 2 is a groove along the surface of the cover extending across the print head (not shown) closed.

沟槽2含有油墨4,为尾部喷射结构,并终止在各沟槽相应末端的喷嘴板5处,在喷嘴板5上开有喷嘴6,一个沟槽有一个喷嘴。 Ink 4 containing the groove 2, as the tail ejection structure, and terminate at respective ends of each of the groove 5 of the nozzle plate, the nozzle plate 5 having a nozzle opening 6, a groove having a nozzle. 油墨微滴7根据要求从沟槽2中喷出并沉积在打印表面9上的打印线8上,打印表面9和打印头10之间有垂直于沟槽轴线平面的相对运动。 7 in accordance with the requirements of ink droplets ejected from the grooves (2) and deposition 8, there is relative motion perpendicular to the plane of the trench axis between the printing surface 9 and the print head 10 on the printing surface 9 print line.

在打印头10上有平面的基部20,沟槽2就是在其上切割出来或由软PZT压电材料形成,并自喷嘴板5向后平行地延伸。 In the print head 10 has a base plane 20, on which the groove 2 is cut out or formed of a soft PZT piezoelectric material, and rearwardly from the nozzle plate 5 extending parallel. 沟槽2长且窄,横截面为矩形,其相对的侧壁11沿整个沟槽长度延伸。 2 long and narrow groove, rectangular in cross-section, opposite side walls 11 which extend along the entire length of the groove. 侧壁11设有沿沟槽长度延伸的电极(未示出),因此,侧壁11可相对于沟槽轴线沿几乎整个沟槽长度以剪切模式作横向偏转运动,结果造成沟槽里的油墨压力产生变化,从而影响微滴从喷嘴的喷射。 Side wall 11 is provided with electrodes extending along the length of the groove (not shown), and therefore, the groove side wall 11 relative to the axis along substantially the entire length of the groove laterally shear mode deflection movement, resulting in the trench ink pressure generating change, thus affecting the droplet ejection from the nozzle. 沟槽2在远离喷嘴的末端处连接,形成横向沟槽(未示出),该横向沟槽又通过管14与墨盒相通。 Groove 2 at the end remote from the nozzle connected to form lateral grooves (not shown), the transverse grooves in turn connected through a pipe 14 and the ink cartridge. 促动沟槽侧壁11的电路连线(未示出)接在基部20上的大规模集成电路(LSI)芯片16上。 Actuating circuit wiring trench sidewalls (not shown) connected to the base portion 20 of large scale integrated circuit (LSI) chip 16 (11).

如图中所示,沟槽侧壁与基部20是单一体的,实际上以悬臂方式连接,并且是由单片压电材料切割而成。 As shown, the trench sidewalls and the base portion 20 is a single one, in fact, connected in a cantilever manner, and is made of a piezoelectric material cut from a single piece.

图2显示了图1中打印头的改进型,在该打印头中,沟槽侧壁11具有极性相反的区域,因此施加其上的电场会将其偏转成V形。 Figure 2 shows a modification of the printhead 1, the printhead 11 having trench sidewalls opposite polarity region, thus applying an electric field which will deflect on its V-shaped. 在图2中,该阵列包括以剪切模式变形的促动件15、17、19、21、23的形式构成的可偏转侧壁11,这些促动件夹在底壁25和顶壁27之间,并且每个都由上半壁29和下半壁31组成,如箭头33和35所示,上半壁29和下半壁30的极性在垂直于包含沟槽轴线的平面的方向上相反。 In Figure 2, the array comprising a deflectable actuator sidewall member in shear mode deformation 15,17,19,21,23 form constituted 11, which actuating member 25 sandwiched between the bottom wall and the top wall 27 of the rooms, and each by the half wall 29 and the lower half wall 31 composed, as indicated by arrows 33 and 35, the polarity of the half wall 29 and the lower half wall 30 in a direction perpendicular to the axis of the plane containing the trenches opposite. 电极37、39、41、43和45分别覆盖各个沟槽2的内壁。 Electrode 37,39,41,43 and 45 respectively cover the inner wall of each trench 2. 因此,当某个沟槽上加上电压,比如说在以剪切模式变形的促动件19和21中间的沟槽2的电极41上加上电压,将电极41两边的沟槽2的电极39和43接地,从而就会有电场以相反的方向施加在促动件19和21上。 Therefore, when a voltage is applied on a groove, for example, a voltage in the middle of the trenches 19 and 21 actuating member shear deformation of the electrode 2 pattern 41, the electrode 41 on both sides of the trench electrode 2 39 and 43 to ground, so that there will be an electric field is applied in the opposite direction on the actuating member 19 and 21. 由于每个促动件的上半壁29和下半壁31的极性相反,这些促动件以剪切模式中间的沟槽偏转并形成如虚线47和49所示的V形。 Since the polarity of each of the actuating member 29 and the lower half wall half wall 31. Instead, these actuating member in shear mode deflection in the middle of the trench and the formation of V-shaped as shown in dashed lines 47 and 49. 从而就有一个脉冲施加到促动件19和21中间的沟槽2内的油墨4上,并产生声压波顺着该沟槽的长度传播,将油墨微滴7从中喷出。 Thus there is a pulse is applied to the actuating member 19 and 21 in the middle of the trench within the ink 4 on 2, and produce sound pressure waves propagate along the length of the trench, the ink droplets ejected from 7.

图3为侧边喷射打印头的纵向剖视图。 Figure 3 is a longitudinal sectional view of the side of the jet printhead. 在形成沟槽顶壁的盖子27上设有喷嘴6,喷嘴6与沟槽2相通,沟槽2的侧面以形式为剪切模式变形促动件的PZT材料形成的侧壁所限定,其中一个促动件用数字21来指代。 Trench is formed in the lid top wall 27 is provided with a nozzle 6, the nozzle 6 communicates with the groove 2, the side grooves (2) in the form of shear mode deformation of the side wall PZT material formed on the actuating member is defined, one actuating member 21 with the number to refer to. 如图2所示,每个剪切促动件都有极性相反的区域29和31,当由电极41、43形成的电场在其纵向表面作用时,区域29和31偏移并形成V形。 2, each cutting member has a polarity opposite to the actuator region 29 and 31, when the electric field generated by the electrodes 41, 43 formed at its longitudinal surface effect, and the offset regions 29 and 31 form a V-shaped . 端子34将电极连接到大规模集成电路(LSI)芯片16上。 The electrode terminal 34 is connected to the large scale integrated circuit (LSI) chip 16. 横向沟槽13在每一沟槽2的末端处将沟槽2与墨盒连通起来。 Transverse grooves 13 in each trench 2 at the end of the grooves (2) and communicate with each cartridge. 除了喷嘴6的位置,打印头沿剖面2-2剖开的横截面与图2相似。 In addition to the position of the nozzle 6, 2-2 printhead taken along section similar to the cross-section of FIG.

除了本实施例创造性地选择使用下面将作说明的压电材料,以及使用了V形剪切模式促动件,尽管根据本发明的侧边喷射打印头中可以替代使用单向极性的单片促动件,该打印头与专利WO91/17051的图1(d)中的打印头还是很相似。 In addition to this example, choose to use creatively implemented the following explanation will be made of piezoelectric material, and the use of the V-shaped shear mode actuator member, although jet print head according to the present invention, the sides may be used instead of monolithic unidirectional polar actuating member, the print head and the patent WO91 / 17051 Figure 1 (d) of the print head is still very similar.

PZT材料有两种基本类型,“软”或施主掺杂型以及“硬”或受主掺杂型。 There are two basic types of PZT material, "soft" or donor doping type and "hard" or acceptor doping type. AJ摩尔森(AJMoulson)所著的“电子陶瓷“一文(切普曼及霍尔(Chapman & Hall)出版社,1990版)中讲到,施主掺杂(用其离子电荷比要取代的离子高的离子进行掺杂)降低了起稳定畴作用的缺陷对的浓度,从而降低了老化率。 AJ Molsen (AJMoulson) book "Electronic Ceramics" article (Chapman and Hall (Chapman & amp; Hall) Press, 1990 edition) mentioned, donor-doped (with its ionic charge ratio of ions to replace high ion doping) reduces the effect from the concentration of stable defects domains, thereby reducing the aging rate. 结果,这种畴壁迁移率的增长增大了该材料的介电常数、滞后损耗(tanδ)、弹性柔度以及耦合系数。 As a result, such an increase in domain wall mobility increases the dielectric constant of the material, the hysteresis loss (tanδ), elastic compliance and coupling coefficients. 机械品质因数和矫顽性都得以降低。 Mechanical quality factor and coercivity are reduced. 其相应的压电活性使得这种软PZT成为压电打印头选择的传统材料。 The corresponding soft PZT piezoelectric activity makes this a tradition material Piezo print head selected.

相反,受主掺杂类型的PZT阻止了畴壁迁移,结果其介电常数、滞后损耗(tanδ)、弹性柔度以及耦合系数都减小,而矫顽性增加。 On the contrary, by type doped PZT primary domain wall prevents the migration, the results of its dielectric constant, hysteresis loss (tanδ), elastic compliance and the coupling coefficient is reduced, and the coercivity increases. 因此此材料显示出较弱的压电活性,因此迄今也没有用在压电打印头中。 Therefore, this material exhibits weak piezoelectric activity, so far to no avail in the piezoelectric printheads.

我们分析了大量PZT材料的性能,发现了一个令人吃惊的结果,即在某些情况下,相比于软材料,该硬材料是更为合适的选择。 We analyzed a large number of properties of PZT material, we found a surprising result that in some cases, compared to the soft material, the hard material is a more appropriate choice.

我们选择了四种样品的PZT材料用来分析,也就是摩托罗拉(Motorola)HD 3202、住友(Sumitomo)H5E、摩托罗拉(Motorola)HD 3195和摩根摩确克(Morgan Matroc)PC4D。 We chose the PZT material is used to analyze four samples, which is Motorola (Motorola) HD 3202, Sumitomo (Sumitomo) H5E, Motorola (Motorola) HD 3195 and indeed grams Mount Morgan (Morgan Matroc) PC4D. 选择这四种材料是因为它们涵盖了已有的促动材料的范围,并且在剪切模式压电活性指标上均匀间隔。 These four materials selection because they cover a range of conventional actuation material, and evenly spaced in the shear mode piezoelectric activity indicator. 剪切模式压电活性指标以无量纲的品质因数d15/(S55ε0)1/2为表征,该品质因数相当于转化的单位电压和体积的机电能。 Shear mode piezoelectric activity indicators dimensionless quality factor d15 / (S55 ε0) 1/2 for the characterization of the quality factor corresponds to a conversion of the unit voltage and volume of electromechanical energy. 按照压电活性,这些材料的排序为HD 3202>H5E>HD 3195>PC4D,而测得的低信号品质因数分别为48.2,37.4,31.5,25.7。 In accordance with the piezoelectric active, ordering these materials is HD 3202> H5E> HD 3195> PC4D, and the measured low signal quality factor were 48.2,37.4,31.5,25.7.

用这四种PZT材料做出了四种128线打印头晶片,并在典型的工况下对其进行了电容量和滞后耗损的测量,各工况值如下:驱动电压: 10到50伏。 PZT material made with these four lines, four 128 printhead wafer and typical operating conditions and its electrical capacitance measurement of hysteresis loss, the value of each of the following conditions: Drive voltage: 10-50 volts.

驱动频率: 20、50、100及200千赫工作波形: 基本上为方波(峰值电压占循环时间的75%)打印头温度: 18℃,40℃,50℃(在短脉冲情况下进行测量,并假定打印头的温度不会明显升高)滞后损耗(tanδ)的测量根据由D A霍尔(D A Hall)、PJ斯蒂闻森(PJ Stevenson)和TR穆林斯(T R Mullins)所著的“硬压电陶瓷中的电介质非线性”论文中所述的方法进行(Vol.57Brit.Cer.Proc.p197-211)。 Drive frequency: 20, 50 and 200 kHz operating waveforms: Basically, a square wave (the peak voltage of 75% of the cycle time) head temperature: 18 ℃, 40 ℃, 50 ℃ (in the case of short pulse measurements and assumes the print head temperature will not significantly increased) Hysteresis loss (tanδ) is measured according to the DA Hall (DA Hall), PJ Stephen Wen Sen (PJ Stevenson) and TR Mullins (TR Mullins) book The method of "hard piezoelectric ceramic dielectric non-linear" in the paper were (Vol.57Brit.Cer.Proc.p197-211).

这些测量结果表明,对于给定材料,电容量和滞后耗损不随频率变化,不过这二者都随驱动电压的增长而发生明显的增长。 These measurements show that for a given material, electric capacity and hysteresis loss does not vary with frequency, but this is both significant growth occurred with the drive voltage is increased.

图4中显示了对这四种PZT材料在频率为200千赫的驱动电压下的tanδ变化的比较。 Figure 4 shows a comparison of these four PZT material tanδ at a frequency of 200 kHz driving voltage variations. 图4还给出了制造商引用的各种材料的低场编目数据。 Figure 4 also shows the low-field cataloging data referenced by the manufacturer of a variety of materials. 结果表明,三种“软一些”的PZT材料具有相似的特性,tanδ随着驱动电压显著增长。 The results showed that three "softer" the PZT material with similar properties, tanδ significant growth as the driving voltage. 并且引用的“目录”、低场tanδ和打印头工作所要求的驱动电压(25伏左右)之间的相应数据存在着很大的差异。 And refers to the "directory", the corresponding data field tanδ and low driving voltage required for operation of the print head (25 volts) between there are significant differences. 与此相反,”最硬“的PZT材料PC4D显示出低得多的tanδ,以及tanδ随着驱动电压增长的变化也要小。 In contrast, the "most hard" PZT materials PC4D exhibit much lower tanδ, as well as changes in driving voltage tanδ growth should be small.

图4还给出了HD 3203在相当于打印头驱动电压25伏下的滞后耗损,PZT材料活性越低,其所需要的驱动电压越高。 Figure 4 also shows the HD 3203 at the equivalent of the head drive voltage 25 volts hysteresis loss, the lower the PZT material activity, the higher the driving voltage they need. 这些表明,在同等的打印头工况下,HD 3203、H5E和HD 3195的滞后耗损相似,PC4D的预计滞后耗损低得多,不超过0.05,而其他材料的预计滞后耗损为此值的四到五倍。 These show that the same print head condition, similar to the HD 3203, H5E hysteresis loss and HD 3195's, PC4D expected a much lower hysteresis loss, not more than 0.05, and this value is expected to lag other materials consumption four to five.

可以利用每种PZT材料的相对品质因数M来计算该材料的等效驱动电压V,例如VH5E=VHD3203MHD3203/MH5E还进行了固定频率和驱动电压下的不同波形的测试。 PZT materials can be used for each quality factor M calculated relative to the material equivalent to the driving voltage V, e.g. VH5E = VHD3203MHD3203 / MH5E also tested different fixed frequency and a driving waveform voltages. 图5就显示了在不变驱动电压(30伏)和200千赫的固定驱动频率下的三角波(峰值电压占0%)和方波(峰值电压的理论值占100%,但实际上作不到)的变化效果。 Figure 5 is displayed at the same driving voltage (30 V) and the driving frequency of the triangular wave 200 kHz fixed under (0% peak voltage) and a square wave (the peak voltage of the theoretical value 100%, but in fact does not make to) the change effect. 和驱动频率不同,波形类型对tanδ有很大的影响,比如说,当从三角波改变到峰值电压占循环时间的87.5%的波形后,HD3203的tanδ增长了85%。 And driving frequency different waveform types have great influence on tanδ, for example, when changing from a triangular wave to the peak voltage representing 87.5% of the cycle time of the waveform, HD3203 of tanδ increased by 85%. 这与打印头由方波驱动,PZT产热增加是一致的。 This print head from the square wave drive, PZT heat production increase is consistent.

滞后耗损与驱动电压的关系用来计算不同设计方案打印头的产热量。 Relations driving voltage hysteresis loss and heat production used to calculate the different designs of the printhead. 四种PZT材料的打印头内产热量以及PZT材料内产热量都作了计算。 Four Internal PZT material printhead heat production and heat production within the PZT materials have been calculated. 这种测试又对三种打印头结构类型进行:传统的单片悬臂式尾部喷射型,V形尾部喷射型和V形侧边喷射型。 This test again three print head configuration types: the traditional monolithic cantilever tail jet type, V-shaped tail and a V-shaped side spray type jet type. 与单片悬臂式型相比,后两种类型的驱动电压分别被假定为前者的1/2或1/4,相反,它们的电容量分别被假定为前者的2倍或4倍。 Compared with monolithic cantilever type, the latter two types of drive voltage is assumed to be respectively 1/2 or 1/4 of the former, on the contrary, their capacity is assumed to be the former two times or four times, respectively. 用一个电子制表模型来计算这些不同工况下的配置。 Use a spreadsheet model to calculate these different conditions of configuration. 计算基于以下假定:1.每次充/放电驱动电路所产生的热量=21/2 CV2(两侧壁,每个侧壁的电容为C,每次喷射微滴都被促动一次);2.每个沟槽的PZT材料所消耗的热量=πCV2tanδ/2;3.驱动电路的上升时间(10-90%)=6.6RC(适用于电容为C、平行连接、充电和放电的阻抗都为R的侧壁);4.油墨类物质的最大温升=产热量/比热容墨滴体积(假定PZT产生的所有的热量都被喷射出的墨滴带走)。 Calculated based on the following assumptions: 1 per charge / discharge heat = 2 1/2 CV2 generated by the driving circuit (side walls, each side wall of the capacitor is C, each droplet ejection have been actuated once) ; 2 calories per trench PZT material consumed = πCV2tanδ / 2;.. 3 rise time of the drive circuit (10-90%) = 6.6RC (applicable to capacitance C, connected in parallel, the impedance of the charging and discharging The side walls are R); 4. maximum temperature rise of ink substances = heat production / heat capacity droplet volume (PZT assumed all the heat generated by the ink droplets are ejected away).

以下的一组参数假定适用于典型的灰度工况:驱动电压(伏)=25伏(适用于单片悬臂式HD 3203,其他材料按上面讨论的取一比例计算)侧壁电容(C)=200微微法灰度等级(L)=8级动作次序:三组合循环(即沟槽分为三个交叉间隔组动作)波形类型:DRR(拉,放,加强,在专利WO95/25011中图4c显示)。 The following set of parameters assumed for typical gray conditions: a drive voltage (V) = 25 volts (for monolithic cantilever HD 3203, take a proportion of the other materials discussed by the above calculations) sidewall capacitance (C) = 200 pF gradation (L) = 8 sequence of movements: three combined cycle (ie, three cross grooves spaced set of actions) waveform types: DRR (pull, release, strengthen, in patent WO95 / 25011 in FIG. 4c shows).

行频(F)=6.19千赫(微滴频率=130千赫)满密度墨滴体积=55微微升以上计算了每个驱动电路片(也即每64行)的发热总量,对每一结构也计算出了相对于基本例子(HD 3203,单片悬臂式)的比值。 The total amount of heat line frequency (F) = 6.19 kHz (droplet frequency = 130 kHz) full density = 55 picoliter drop volume calculated above each driver circuit chip (ie 64 lines each), and for each structure is calculated with respect to the basic example (HD 3203, Monolithic cantilever) ratio. 每种情况的结果总结在图6和图7中。 The results in each case are summarized in Figures 6 and 7. 前者显示了驱动电路随着计算的上升时间的发热总量,后者显示了单独的PZT材料随着油墨温度上升的发热量。 The former shows a driver circuit with the calculated amount of heat rise time, which shows the individual PZT material with heat ink temperature rises.

从图7可以看出,在采用PC4D材料时,打印头的发热最少,虽说其驱动电压较高。 As can be seen from Figure 7, when using PC4D material, the minimum thermal head, although the driving voltage is high. 从图6可以很清楚地看出,当把驱动电路片的发热量也计入时,采用传统的HD 3203的打印头的发热总量最小,不过PC4D打印头比其次最好的H5E打印头差不到哪儿去。 Can be clearly seen from Fig. 6, when the heat driving circuit chip is also included, the total amount of heat using conventional print head HD 3203 minimum, but PC4D print head worse than the next best H5E printhead not much. PC4D要求的驱动电压要高一些,但对于同样的打印头结构,其上升时间一律比HD 3203的上升时间要小一半。 PC4D required drive voltage is higher, but for the same printhead structure, the rise time than the HD 3203 will be the rise time is smaller by half. 完全用术语来说,V形尾部喷射结构所产生的热量要比单片尾部喷射结构所产生的热量少一半以上,而V形侧边喷射结构所产生的热量一般地又减少同样的比例。 Entirely terms, the V-shaped rear heat generated by the ejection structure than the heat generated by the monolithic structure of the rear ejection less than half, and the V-shaped sides of the heat generated by the ejection structure and generally reduced by the same proportion. 不过,V形尾部喷射结构和V形侧边喷射结构的上升时间较之单片尾部喷射结构的上升时间要高出同样的倍数。 However, the rise time of V-shaped tail jet structure and V-shaped side jet structure of the tail than the rise time of the monolithic structure of higher jet equally.

尽管这些结果初步表明了HD 3203材料仍为最合适的材料,但实际上,也有违反直觉选择PC4D并带来益处的情况。 Although these preliminary results indicate that the HD 3203 is still the most suitable material material, but in fact, there are cases counterintuitive choice PC4D and bring benefits.

因此,如果需要快速的上升时间、高驱动电压并且允许热量产生,在单片尾部喷射结构中使用PC4D很明显是最好的(145毫秒,而HD3203为316毫秒)。 So, if you need a fast rise time, high drive voltage and allow the heat generated, use PC4D monolithic tail jet structure is clearly the best (145 ms, 316 ms HD3203).

如果较之于HD 3203要求有改进的上升时间并有同样减少的发热量,建议采用使用PC4D的V形尾部喷射结构。 If compared to HD 3203 requires improved rise time and have also reduced the amount of heat, it is recommended to use the V-shaped tail PC4D jet structure. 其上升时间从356毫秒降低到251毫秒发热量也降低40%。 Rise time from 356 milliseconds to 251 milliseconds to reduce the amount of heat is also reduced by 40%. 如果采用使用PC4D的单片侧边喷射结构,结果相似。 If you are using PC4D monolithic structure side injection, with similar results.

如果要求合理的上升时间(相较于单片尾部喷射结构的356毫秒为456毫秒),再加上非常低的发热量(只有基本例子的30%)和低驱动电压(对应于25伏的12伏),应该采用使用PC4D的V形侧边喷射结构。 If you require a reasonable rise time (compared to the monolithic structure of the tail jet 356 milliseconds, 456 milliseconds), plus a very low heat (only 30% of the basic example) and low driving voltage (corresponding to a 25 volt 12 V) should be adopted using the V-shaped side PC4D jet structure. 在这样的打印头中,油墨的温升为可忽略的0.5℃,而使用HD 3203的单片尾部喷射结构的温升为21℃。 In such a print head, the ink is negligible temperature rise 0.5 ℃, and the use of HD monolithic tail of the jet structure of the 3203 rise was 21 ℃. V形侧边喷射结构的PC4D打印头非常适合于高分辨的灰度打印机,因为即便存在因热引起的打印密度导致的微滴速率的变化,这个变化也很小。 PC4D V-shaped side jet printhead configuration is well suited for high-resolution gray-scale printer, because even if there is a change due to the printing density caused by thermally induced droplet rate, this change is also very small.

尽管本发明以PC4D材料为对象进行说明,但其他的受体掺杂压电材料也可能有同样的特性和优点。 Although the present invention to be described PC4D material objects, but other acceptor-doped piezoelectric material may also have the same characteristics and advantages.

本说明(包括权利要求)公布的和/或插图中显示的每项特征都可独立于其他公布和/或图示的特征而被包含到本发明中。 The description (including the claims) published and / or shown in the illustration for each feature can be independent of the features of other published and / or illustrated are included in the present invention.

本说明书中的“本发明的目的“涉及到本发明的一些优选实施例,但并不必涉及权利要求书中所涵盖的本发明的所有实施例。 Some of the term "object of the present invention" relates to a preferred embodiment of the present invention, but are not necessarily related to the present invention of claim book covers all embodiments.

在压电打印头中使用了一种受体掺杂的“硬”压电换能材料代替传统的“软”给体掺杂材料。 Use an acceptor-doped "hard" piezo transducers piezo printhead materials instead of the traditional "soft" donor dopant material. 该打印头以V形侧边喷射结构为佳,并在高分辨灰度打印时具有优越性。 The print head to the side injection V-shaped structure is better, and the superiority of grayscale printing at high resolution.

International ClassificationB41J2/055, B41J2/015, B41J2/14, H01L41/09, B41J2/045
Cooperative ClassificationB41J2/14209
European ClassificationB41J2/14D1
Legal Events
6 Mar 2002C06Publication
27 Mar 2002C10Entry into substantive examination
22 Jun 2005C14Grant of patent or utility model
16 Mar 2016EXPYTermination of patent right or utility model