CN1195884C - 用于热喷涂的纳米结构的进料 - Google Patents

用于热喷涂的纳米结构的进料 Download PDF

Info

Publication number
CN1195884C
CN1195884C CNB961914092A CN96191409A CN1195884C CN 1195884 C CN1195884 C CN 1195884C CN B961914092 A CNB961914092 A CN B961914092A CN 96191409 A CN96191409 A CN 96191409A CN 1195884 C CN1195884 C CN 1195884C
Authority
CN
China
Prior art keywords
nanostructure
particle
coating
agglomerant
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB961914092A
Other languages
English (en)
Other versions
CN1175984A (zh
Inventor
P·R·斯特拉特
B·H·基尔
R·F·保兰特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Connecticut
Rutgers State University of New Jersey
Original Assignee
University of Connecticut
Rutgers State University of New Jersey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Connecticut, Rutgers State University of New Jersey filed Critical University of Connecticut
Publication of CN1175984A publication Critical patent/CN1175984A/zh
Application granted granted Critical
Publication of CN1195884C publication Critical patent/CN1195884C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0687After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition

Abstract

本发明涉及将经过再加工的纳米颗粒粉末进料,纳米颗粒悬浮液,及有机金属液体应用在传统的热喷涂沉积上,以制造高质量的纳米结构的涂层的方法。在本发明中例举了三种实施方案。在这些不同的方法中,都是用超声波方法分解合成的颗粒附聚物,分散在液体介质中的纳米颗粒以及雾化液体前体。

Description

用于热喷涂的纳米结构的进料
本发明一般涉及纳米结构材料领域,特别是涉及纳米结构的进料应用于通过热喷涂工艺沉积高品位的纳米结构涂层。
有关超细微观结构的材料在工艺上所展现的引人注意的特性,很早就为大家所注意。在过去的几年中,一类新型的亚微粒结构的材料已出现了,它是超微粒子或颗粒组成的。这种新材料,一般称为“纳米结构材料”(Nanostructured Materials)。纳米结构材料的的特征在于在颗粒的晶界面上依附有大量的材料的原子。例如,若一个晶粒的直径为5纳米,大约有一半的原子,以纳米晶体或纳米相固体依附在颗粒的晶界面上。
虽然在纳米结构材料领域的研究中,目前是关注于纳米结构疏松材料的的合成和加工上,但对纳米结构涂层,正在日益增长兴趣,它包括热屏阻涂层,硬及超硬度涂层。这种具有预定目的的多功能涂层的纳米结构疏松材料,对于其材料的性质的发展以及在结构的应用方面的广泛的性能,会为今后创造极大的机会。
从1980年代后期开始,Rutgers大学及康奈狄克州立大学就主要从事纳米结构材料的研究,在合成技术的进展上包括:(1)用有机溶液反应(OSR)和水溶液反应(ASR)法制成的纳米结构金属粉末,(2)用喷雾转化加工(SCP)法制成纳米结构的陶瓷金属粉末,及(3)用气体凝缩加工(GCP)法制成的纳米结构粉末。通过固态及液态烧结方法(对疏松材料),在保持合乎需要的纳米结构前提下固结纳米结构粉末的研究上,也取得了很大进展。
目前有三个不同的工艺用于纳米结构粉末的合成上,这些工艺包括:
(1)用有机溶液反应(OSR)及水溶液反应(ASR)方法以合成纳米结构的金属粉末。如:纳米结构的Cr3C2/Ni粉末;
(2)喷雾转化加工(SCP)法以合成纳米结构的金属陶瓷粉末。如:碳化钨/钴及Fe3Mo3C/Fe粉末;及
(3)气体凝缩加工(GCP)法以合成纳米结构陶瓷粉末,如:TiO2,ZrO2,及硅/碳/氮(Silicon/Carbon/Nitrogen)。
用OSR及ASR方法制备纳米结构金属及合金有三个步骤:
(1)制备一混合的金属氯化物的有机或水溶液;
(2)用金属氢化物将起始溶液进行还原分解,以制得含有金属成分的胶体溶液;及
(3)过滤,冲洗,及干燥,接着在控制的碳和氧活性(carbon andoxygen activity)条件下,通过气相碳化,俾在金属基体相上形成所要的碳化相的纳米分散体。
采用以上步骤,合成各种纳米结构的金属/碳化物粉末,包括纳米结构的Cr3C2/NiCr粉末,它可应用在热喷涂防腐硬涂层方面。在最后冲洗时,可加少量有机钝化剂,如己烷中的石蜡溶液,以保护具有大表面积的粉末使其在干燥及与空气接触时,不会自燃。经此法合成的粉末,是松散附聚的,这里所用的术语“附聚的”,它也包括被集结在一起的许多纳米颗粒。
用SCP方法合成纳米结构的金属陶瓷(Cermet)的复合粉末时,包括三个连续步骤:
(1)制备含有各种构成成份的盐混合物的含水溶液;
(2)将起始溶液喷雾干燥,以形成均匀的前体粉末;及
(3)将前体粉末经流化床转化(还原及碳化),以得到所需要的纳米结构金属陶瓷粉末。
SCP法已用于制备纳米结构的WC/Co,纳米结构的Fe3Mo3C/Fe,及类似的金属陶瓷材料,该颗粒可能是中空的球状外壳的形式,为避免在曝露于大气中时,起过度的氧化作用,粉末在合成后,常经钝化处理。
GCP法是当今具有最多种用途的合成法,此法可制成实验室份量的、具纳米结构的金属陶瓷粉末,此工艺的特点是它能产生在相对低温下,可烧结的松散的附聚的纳米结构的粉末。
在GCP法中如采用惰性气体凝结(IGC)办法,就是用高温蒸发源去产生粉末颗粒,对流传送到冷却的基底上而收集之。由于热的蒸气物质和较冷的惰性气体原子(通常在1-20mbar压力下)在反应室内的交互作用使在蒸发源上的热化区逐渐产生纳米颗粒。生产陶瓷粉末,通常有两个步骤:首先是把金属源蒸发,或最好蒸发有高蒸气压的金属低氧化物,然后慢慢氧化以逐渐产生所需要的纳米结构陶瓷粉末颗粒。
在GCP法中,如采用化学蒸气凝结方法(CVC),用热壁管状反应器去分解前体/载气以形成从反应器管内流出的连续的簇状物或纳米颗粒的气流。此CVC加工法的成功关键是:(1)载气中的前体是低浓度的;(2)经过均匀加热的管状反应器时,气流应是快速扩散的;(3)急速骤冷从反应管出来的气态的有核的簇状物或纳米颗粒;及(4)反应室的压力要低。
正如IGC方法一样,所得到的纳米结构陶瓷粉末颗粒是松散附聚的,且具有低温的烧结性,这和传统的用常压燃烧火焰及电弧等离子粉末加工法所制造出的超微粒粉末不同,后者所生产的凝结的聚集体只有在高温烧结下固结。因此用CVC方法可合成各种陶瓷材料纳米结构粉末,该种粉末是难以用IGC方法生产的。例如,纳米结构的SiCxNy粉末,它有多种适合的有机金属前体,如六甲基二硅氨烷(Hexamethyldisilazane,HMDS),其所得粉末的真正组成会强烈地受到所选择的载气影响。因此HMDS/H2O,HMDS/H2,及HMDS/NH3,会产生纳米结构的陶瓷粉末分别接近SiO2,SiC及Si3N4的组成。
在当前工业的应用上,通过热喷涂或等离子沉积的方法用以沉积金属、陶瓷或复合涂层所用粉末,其颗粒直径大约在5-50微米之间。
当粉末在火焰或等离子体中短暂停留时,使其颗粒快速加热,形成部分或完全熔化的液滴喷雾,这些被熔化的小滴喷在基底的表面时,由于高的冲击力,使颗粒和基底产生很强的粘着作用并形成几乎任何所需的材料的致密的涂层,其厚度可以从25微米到几个毫米并能有相对高的沉积率。
一般而言,用于热喷涂涂层的传统粉末生产,经过几个步骤,它包括球磨,机械混合,高温反应以及有时使用粘合剂的喷雾干燥。在热喷涂工艺中的粉末输送系统,是为用于从5-25微米粒度的粉末附聚物而设计的,传统粉末的构成粒子的最小粒度是在1-0.5微米之间,反之,纳米结构的材料,其构成粒子或颗粒的粒度可在1-100纳米的范围。因此合成的纳米颗粒粉末,不适合于一般传统热喷涂涂层,它必需经过再加工处理,才能满足传统喷涂工艺的粒度要求。因此,为使合成的粉末能适宜于为传统的工业喷雾沉积采用,就必需有对合成纳米粉末的再处理工艺。换言之,为达到可再现的高质量的纳米结构的涂层的沉积,必需要能使,可靠价廉高生产率的合成粉末或用于原地合成颗粒的化学前体能直接注入热喷涂器械内。
传统喷涂工艺的以上所谈的和其他问题与缺陷,本发明均把它克服了或减少了。本发明的一个特色,就是它首先能产生适合使用传统的热喷涂工艺的纳米颗粒进料。
因此,本发明的实施方案之一,就是提供再加工合成纳米颗粒粉末的方法,使形成聚集体的形式以适用于传统的喷涂方法沉积纳米结构涂层,它是首先将合成的粉末藉超声波方法分散在液体介质中,然后喷雾干燥,此喷雾干燥的附聚的纳米结构粉末,是呈球状,具有在10-50微米的理想的较窄粒径分布范围内。在热喷涂上,该粉末有很好的供喂性能,在燃烧火焰或等离子体中,并具有均匀的熔化性质。因此,其涂层呈现有均匀的纳米结构,几乎没有孔隙,与基底的粘合性好,更具有很好的抗磨性能。与用球磨或机械混合的传统粉末相比,例如,本发明之方法,其材料的各种构成成份之混合可以达到分子级水平。
本发明的另一实施方案是它提供了一种方法,该方法能使合成的纳米颗粒直接注入传统的热喷涂沉积装置的燃烧火焰或等离子体内,其中合成粉末首先藉超声波方法分散在液体介质中。这种直接注入法,可以再现高质量的纳米结构涂层的沉积,而不需要经过一个中间的再加工步骤。其非常短的扩散矩离,使得纳米颗粒和气流中的蒸气物质之间,发生快速反应,例如,炭化、氮化和硼化反应。本实施方案同时也能使给定材料的成份,在分子水平上混合。
本发明还有一实施方案,就是它提供能生产纳米结构涂层的方法,它是用超声波方法,产生有机金属气溶胶进料,该方法,将纳米颗粒的合成、熔化及骤冷等均在一个操作程序中完成。
本发明还有一实施方案,它是一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料,其中该纳米结构的材料包括小于约100纳米的颗粒;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒,其中附聚体的颗粒大小小于约50微米;以及
(d)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
本发明还有一实施方案,它是一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料,其中该纳米结构的材料包括小于约100纳米的颗粒;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒,其中附聚体的颗粒大小小于约50微米;
(d)在有效的温度下加热处理所述的附聚的纳米结构的颗粒,以除去剩余水分、排除吸附的和化学吸收的氧气、促进部分烧结,或达到这些目的的组合;以及
(e)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
由下面的附图及其详细描述,本领域的普通的技术人员,对以上所谈的有关本发明的特性及优点,将会有深刻的认识与理解。
以下附图中,在几个附图中的相似的各部分均以类似的数字表示。
图1是用于热喷涂的附聚的纳米结构粉末的合成的实施例的流程图,此图包括本发明对合成粉末的再加工过程。
图2是本发明合成的纳米结构粉末再加工方法的详细流程图。
图3是本发明方法再加工得到的WC/Co纳米结构粉末的扫描电子显微图。
图4A与4B是传统的陶瓷金属粉末颗粒与本发明的附聚的陶瓷金属粉末颗粒的热喷涂的比较图。
图5是指本发明用超声波方法产生的有机金属气溶胶原料制造纳米结构涂料方法的描述。
图1与图2是本发明的的一种实施方案的描述,它提供了一种方法,使纳米颗粒粉末加工成附聚的形式以适合对纳米结构涂层的热喷涂沉积。按此方法将合成的纳米结构粉末10,12,及14用超声波法分解并分散在液体介质中,然后喷雾干燥,以形成球状的纳米颗粒附聚物16,俾适合热喷涂沉积之用。原有粉末,通常小于50微米。可降低至亚微米级的尺寸。在几分钟内形成一种粘稠的淤浆或胶状悬浮物,通过溶液反应法(OSR或ASR)合成的纳米颗粒10,SCP法合成的纳米颗粒12,或者是CVC法合成的纳米颗粒14,均可用本发明的方法加工处理。换言之,任何方法合成的纳米颗粒,均可适用于本发明。此外,附聚的纳米颗粒粉末,除特别适合热喷涂沉积外,此项技术对其它需要附聚的纳米颗粒的技术也有其应用价值。
在这个及其混合物实施方案的方法的实践中,此合成粉末包括颗粒10,12,14及其混合物,首先将其悬浮在液体介质中,以形成悬浮液18,按所需的最终的附聚的粉末的性质而定,液体介质可以是水-基的,也可以是有机-基的。合适的有机溶剂,包括甲苯,煤油,甲醇,乙醇,异丙醇及丙酮等,但并不限于这些。
然后将介质以超声波处理以分散纳米结构材料使形成分散液20。在超声波发生端24的顶部的空穴作用区22,超声波的分散作用最为显著。纳米结构的粉末,可以只是在溶液中分散,也可能在数分钟内,形成一种胶体悬浮液。
也可将一种粘合剂加入溶液中,以形成一种混合物26,在有机-基的液体介质中,粘合剂含5-15wt%,优选约10wt%的石蜡,溶解在合适的有机溶剂中。合适的有机溶剂包括己烷,戊烷,甲苯等,但并不限于这些。在水-基的液体介质中,粘合剂包括市面上可以买到的聚乙烯醇(PVA),聚乙烯吡咯烷酮(PVP),羧甲基纤维素(CMC)或某些其他溶于去离子水中的水可溶的聚合物的乳液。此粘合剂以溶液总重量计占约0.5-5wt%之间,最好是在1-10wt%之间,优选的粘合剂是CMC。
经过机械混合,如还需要,在进一步超声波处理之后,在液体介质中的纳米结构粉末的悬浮液26,在热空气中喷雾干燥而形成附聚的颗粒16。虽然任何适合的非反应气体或其混合气体均可使用,但还是热氮气,或热氩气较佳,因为不需要从水-基液体介质的喷雾干燥操作中处理废气,当其可能时,这是优选的。
喷雾以后,将粉末16在低温(<250℃)加热处理以除去剩余水分,使有机成分(聚合物或石蜡)作为粘合剂相。若有必要,可加入在高温进一步加热处理步骤,以有效地排除吸附的和化学吸收的氧气,以及促进部分烧结。例如,用600℃的热处理是有效的,然后将所得的粉末用于传统的热喷雾沉积方法中。以下非限制性的实施例,说明用超声波分散技术对合成纳米结构粉末的再加工的方法。
例1
制备纳米结构碳化钨/钴WC/Co粉末附聚物的典型加工条件如下:即将以现有技术公知方法制备的纳米结构的碳化钨/钴WC/Co,在去离子及脱氧的水中制成约50Wt%的溶液,在频率20,000赫兹及电力300-400瓦特之下,用超声波仪将纳米结构的WC/Co分散以形成低粘度的淤浆。输入此能源后,原来合成的中空球形壳的颗粒,直径约10-50微米就会迅速在液体介质中离解及分散,而形成颗粒大小约为100毫微米的分散相。接着将5-10Wt%的碳黑及2-3Wt%PVP在去离子及脱氧的水中的溶液加到悬浮液中,任选地添加碳黑的目的在于补偿由于燃烧中或等离子高度反应中WC颗粒的碳的损失。CMC也适合用于WC/Co材料。
经过混合,及进一步超声波处理,该淤浆即在一个可商购的装置中喷雾干燥而形成为图3所示的约平均直径为5-20微米的固态球状颗粒的粉末。最后经过附聚作用处理以后粉末最好在减压之下,通过低温脱气处理以清洁粉末,然后再回填以干燥氮气。此粉末即可长期储藏在氮气中而不会分解。
由于纳米结构的WC/Co粉末附聚物的高表面积,由于在氧或富氧物质存在下在附聚物内有原地脱碳的可能。为解决此问题,最好进行钝化处理,即在粉末加工的某些阶段,使用适当的无氧化合物如石蜡。石蜡被化学吸收在高表面积的纳米颗粒上,最好是将石蜡溶于已烷溶液中(浓度为5-10Wt%)加入。
由于相对较低的火焰温度,及短暂的颗粒运行时间,它可减少在火焰中的不良反应,所以高速的含氧燃料“HOVF”方法,用以沉积纳米结构金属陶瓷的涂层,是很理想的。
用本发明的方法,在应用纳米结构金属陶瓷粉末如再加工的WC/Co时,它的一个主要特性,就是在热喷涂时其基体(粘合剂)相的均匀熔化形成半固体或“软泥状”颗粒。由图4A及4B可看出,传统粉末颗粒40包含一硬颗粒相42其周围围绕着固态基体相44。在喷涂设备的热区中,此固态基体相44,即变为一个熔化的基体相46。因此,在传统的金属陶瓷粉末颗粒40,大的碳化物颗粒(直径为5-25微米)42,在热区中,其粒度大小,几乎没有改变,因为在喷枪嘴到接触基底之间的运行时间,只有1毫秒的有限的热转移时间。这样的颗粒形成的涂层48,可能会有很多空隙。
反之,本发明的附聚的金属陶瓷粉末颗粒50包含在基体相54内的硬颗粒52,粒度大小约为5-50毫微米之间,通过粘合剂56而附聚。在热喷涂过程中此已附聚的的纳米结构颗粒50中的各碳化物小粒52,使得颗粒很快地溶解在熔化的基体58中而产生泥状的金属陶瓷颗粒60。此泥状颗粒60很快就流射在基底上而形成高度粘结的致密的而具低空隙度的涂层62。藉选择高于喷出颗粒的低共低熔点的过热程度,可以控制此冲击颗粒的流动性程度。除此以外,这种泥状纳米结构的金属陶瓷颗粒的高的冲击速度有利于促进分散以及与基底表面的粘结作用。
例2
用ASR和OSR方法所产生的纳米结构的Cr3C2/NiCr粉末都是呈松散附聚物的形式,有不同粒度及形态。按以上一般步骤,这些粉末可以在含水或有机液体介质中,加入聚合物或石蜡粘合剂等,藉超声波分散,然后喷雾干燥以形成约2-25微米直径大小的均匀粒度的球形附聚物。而且在热喷涂时,当这些纳米复合粉末碰撞在基底表面时,会遭受到部分熔化和形成薄片而骤冷,这种现象和上述纳米结构碳化钨/钴,WC/Co,粉末所述情况一样。
例3
用商业上的一种火焰燃烧合成方法,可以制造出纳米结构的SiO2粉末,这种合成的粉末,有很大的表面积(>400m2/gm),它是一种已知的称为“凝结的聚集体”(cemented aggregates)的硬的附聚物的形式。每个聚集体有高达10-100纳米颗粒。此粉末由于它特有的亲水性能,它可以很快地分散在水溶液中,其产生的胶态悬浮物,含有PVA,PVP或CMC等作为粘合剂。然后通过如前所述的喷雾干燥可以转化成球形的附聚物,但它在热喷涂时其现象是不一样的,因为SiO2颗粒,只是变软而非熔化的缘故。
以上两例中所述的喷雾干燥的附聚的纳米结构粉末是球状的,具有最佳的10-15微米之间的窄的粒度分布。这样,它们在热喷涂中具有优良的进料特性,在燃烧火焰中或等离子喷涂时,它有均匀的熔化现象,从该方法形成的的涂层,显示均匀的纳米结构,极低的空隙率,有极佳的的其底粘着性及极佳的耐磨性能。特别是由本方法的从金属陶瓷材料,如WC/Co,Cr3C2/Ni,Fe3Mo3C/Fe形成的涂层均具有新的纳米结构,此结构是由坚硬碳化物相的纳米分散体分布在非晶态或纳米结晶富含金属的基体相所组成。从而显示极佳硬度和耐磨性。
在本发明的另一实施方案中,纳米结构粉末的进料,在超声波分散之后,直接注入热喷涂系统,就本发明的实际应用而言,合成的纳米结构粉末,不论是用GCP物理方法,或IGC及CVC的化学方法合成的均可适用。这些粉末都是单分散的和松散地附聚的。通过小心调节技术上已知的某些关键的加工参数,即可很容易地将颗粒大小控制在3-30纳米之间。这些松散地附聚的粉末,在去离子水、各种醇类或液态烃中,利用超声波的搅拌可以很容易地分散而成胶态悬浮物或淤泥状物。此纳米颗粒的悬浮液或淤泥状物,配以液态煤油燃料,通过液体进料可直接注入HVOF装置的燃烧仓中。除此以外,此悬浮液或淤泥状物也可以气溶胶的形式,注入等离子或“HVOF”喷枪的气体进料中。
此实施方案的特征在于颗粒在离枪嘴短距离内即被很快地被加热使立即赶上达到超声波范围的喷枪气流的速度,有时候,此纳米颗粒,在冷却的基底上凝结以前,就可能气化。在此情况下,此方法变成高速的CVD方法。
当应用一种单一的成份,用此法直接将纳米颗粒注入,有几个好处。第一、它不需要对粉末进行再加工处理。第二、两个或两个以上的纳米颗粒供料系统,不论是连续地操作,或是顺序地操作,可产生出多个纳米涂层,或调整过的组成结构甚至少到纳米级的尺寸。第三、用作为热喷涂装置的燃料的同样液体,如煤油,也可用于制取分散体。最后,因为只有很短的扩散距离,在纳米颗粒与气流中的蒸气物质之间,会发生非常迅速的反应(如炭化,氮化,及硼化等)。
其它纳米结构金属陶瓷的细丝,中空壳及其它颗粒状物等均可用此直接注入方法掺入到纳米复合涂层中。市面上可以买到中空的陶瓷微球(直径为1-5微米之间)。一般而言,用不同的相和颗粒形态的混合物差不多可产生出所企盼的各种涂层结构,包括细丝增强的和叠层的纳米复合物。
这种将纳米颗粒直接注入之法,是既简单,又变化多样,而且又具规模化的生产能力。因此它为开发新类型的纳米热喷涂的结构涂层的创造了机会。更有甚者,即此直接注入技术,可以直接应用在现存的热喷涂系统的热喷涂设备上,成本也合算。以下所举的非限制性的例子,可进一步说明在超声波分散后,将合成的纳米结构粉末直接注入的本发明的实施方案的方法。
例4
如用CVC方法制成的纳米结构的ZrO2,Al2O3,SiO2及SiCxNy粉末等,或用OSR方法制成的纳米结构粉末Cr3C2/NiCr,由于它们的超细颗粒尺寸,所以很快在有机液体介质中形成胶状悬浮物。因此这些纳米材料是很理想的,将其纳米颗粒直接注入传统热喷枪的液流中,从纳米结构的SiO2及纳米结构的Cr3C2/NiCr粉末,可分别制造出高密度的非晶态及部分非晶态结构的涂层。
例5
若是连续地用机械搅拌,经过超音波处理后,则亚微米的纳米结构WC/Co颗粒也可在液相中保持高度分散状态,因此,没有必要一定要形成纳米结构的WC/Co粉末的完全稳定的胶态悬浮液。这种直接注入热喷枪燃烧仓办法所得的涂层和以粉末附聚物作为进料材料的方法而得的涂层是一样的。
例6
在预先被氧化的金属-Cr AlY基底上,用直接注入法去喷涂沉积纳米结构的钇稳定化的氧化锆(YSZ)涂层。为增强在热循环条件下的抗分裂性质,涂层最好是按成份逐渐变化的,以减少热膨胀失配应力是必要的。
例7
一种新型的“热屏阻涂层”(TBC)可以通过在金属-CrAlY结合层支持的纳米结构的YSZ覆盖层之中再加入空心的陶瓷微球来制备。换言之,此陶瓷微球可以加入到金属-CrAlY结合层中。在此情形下,需要高体积分数的微球以保证涂层的高热抗阻性。
例8
当陶瓷的纳米颗粒和空心微球所组成的泥状混合物导入到燃烧火焰或等离子中,很可能只有纳米颗粒被熔化而此微球体仍保持非熔状态。因此而发展出一种复合涂层,其中空心陶瓷微球通过一个致密的纳米颗粒陶瓷涂层结合到基底上。
纳米结构的YSZ的“热屏阻涂层”,可通过再加工的方法,也可通过直接注入方法制造。但不论是那种方法主要看在沉积涂层时颗粒沉积率及温度梯度之不同,其最后涂层不是由各方等大的颗粒,就是由园柱状颗粒构成。
在本发明的另一实施方案中,就是作为热喷涂加工的供喂原料,是经过超音波喷嘴,而产生的有机金属前体气溶胶。它最大优点,是将纳米的合成,融化,及骤冷结合为单一的操作过程。如图5,前体液体80导入到超声波的喷嘴82。当等离子气体经电极时88,产生等离子火焰86,此喷嘴将所得到的气溶胶84喷在火焰上,而产生纳米颗粒90,它然后在基底上急速冷却。例如,有机金属前体,六甲基二硅氨烷(HMDS)在空气中经超声波的处理而雾化并送至DC等离子喷枪的出口处,此前体化合物的快速热解而形成纳米结构的SiCxNy的簇状物或纳米颗粒,它可以高速的气体束从喷枪上喷出,当这些热的颗粒撞击及结合在基底表面上时,就形成了涂层。
本发明方法所形成的纳米结构涂料,有广泛而实际的应用价值,特别是用羟基磷灰石(hydroxyapatite),或维塔利姆耐热合金(vitallium)所制成的纳米结构涂料,它应用在医疗设备上。本涂料有规范一致的纳米结构,低空隙率,优良的基底粘结性及抗耗磨性能。例如,不像传统的粉末,是用球磨和机械搅拌混合,而本发明的方法,是让材料的组成要素在分子的水平上进行混合,例如,在直接注入实施方案中,非常短的扩散距离使得纳米颗粒与在气流中的蒸气物质之间可以发生快速反应,例如炭化,氮化,及硼化作用。
以上只是对本发明的优选的实施方案作了简单描述而已,在本发明的精神实质及范围之内,还可以做很多修改及替换,基于此,这里只是对现有发明做了陈述,而非限制其在其他领域的应用。

Claims (33)

1.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒;以及
(d)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
2.按照权利要求1的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
3.按照权利要求1的方法,其中纳米结构的材料选自陶瓷、金属陶瓷和金属材料。
4.按照权利要求3的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2
5.按照权利要求1的方法,所述附聚的纳米结构的颗粒小于约50微米。
6.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料,其中该纳米结构的材料包括小于约100纳米的颗粒;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒,其中附聚体的颗粒大小小于约50微米;以及
(d)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
7.按照权利要求6的方法,其中纳米结构的材料选自陶瓷、金属陶瓷和金属材料。
8.按照权利要求7的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2
9.按照权利要求6的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
10.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2的纳米结构的材料;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒;以及
(d)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
11.按照权利要求10的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
12.按照权利要求10的方法,所述附聚的纳米结构的颗粒小于约50微米。
13.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒;
(d)在有效的温度下加热处理所述的附聚的纳米结构的颗粒,以除去剩余水分、排除吸附的和化学吸收的氧气、促进部分烧结,或达到这些目的的组合;以及
(e)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
14.按照权利要求13的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
15.按照权利要求13的方法,其中纳米结构的材料选自陶瓷、金属陶瓷和金属材料。
16.按照权利要求13的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2
17.按照权利要求13的方法,所述附聚的纳米结构的颗粒小于约50微米。
18.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散纳米结构的材料,其中该纳米结构的材料包括小于约100纳米的颗粒;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒,其中附聚体的颗粒大小小于约50微米;
(d)在有效的温度下加热处理所述的附聚的纳米结构的颗粒,以除去剩余水分、排除吸附的和化学吸收的氧气、促进部分烧结,或达到这些目的的组合;以及
(e)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
19.按照权利要求18的方法,其中纳米结构的材料选自陶瓷、金属陶瓷和金属材料。
20.按照权利要求19的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2
21.按照权利要求18的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
22.一种制造纳米结构涂层的方法,其中包括:
(a)用超声波方法,在液体介质中分散选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、SiC、Si3N4、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金和MnO2的纳米结构的材料;
(b)向所述介质中,加入一种有机粘合剂,以产生溶液;
(c)将溶液喷雾干燥,以形成附聚的纳米结构的颗粒,其中附聚体的颗粒大小小于约50微米;
(d)在有效的温度下加热处理所述的附聚的纳米结构的颗粒,以除去剩余水分、排除吸附的和化学吸收的氧气、促进部分烧结,或达到这些目的的组合;以及
(e)将附聚的纳米结构的颗粒喷涂在物件上,以形成纳米结构的涂层。
23.按照权利要求22的方法,其中在喷涂中的使用了在低共熔点之上的过热有效量的纳米结构的颗粒,以形成泥状颗粒,这些颗粒即很快冲击在所要喷涂的物件上。
24.一种形成纳米结构涂层的方法,其中包括:
用超声波方法,在液体介质中分散纳米结构材料,以形成一种分散有颗粒大小在3-30纳米内的纳米结构的颗粒的溶液;
将所述溶液直接注入热喷涂装置的进料中;以及
将所述溶液喷涂在物件上,以形成纳米结构的涂层。
25.按照权利要求24的方法,其中纳米结构的材料选自陶瓷、金属陶瓷和金属材料。
26.按照权利要求24的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、ZrO2、Al2O3、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金、SiC、SiCxNy、Si3N4、Cr3C2/NiCr和MnO2
27.按照权利要求24的方法,其中纳米结构材料选自WC/Co、Cr3C2/Ni、ZrO2、Al2O3、SiC、SiCxNy、Cr3C2/NiCr和钇稳定化的二氧化锆。
28.按照权利要求24、25、26或27的方法,其中所述分散的溶液还含有陶瓷细丝、陶瓷空心壳、金属陶瓷细丝、金属陶瓷空心壳、碳黑,或其组合。
29.一种形成纳米结构涂层的方法,该涂层至少具有第一和第二层,该方法包括:
用超声波方法,在液体介质中分散第一纳米结构材料,以形成一种分散有颗粒大小在3-30纳米内的纳米结构的颗粒的第一溶液;将所述第一溶液直接注入热喷涂装置的进料中;以及将所述溶液喷涂在物件上,以形成第一纳米结构的涂层;以及
用超声波方法,在液体介质中分散第二纳米结构材料,以形成一种分散有颗粒大小在3-30纳米内的纳米结构的颗粒的第二溶液;将所述第二溶液直接注入热喷涂装置的进料中;以及将所述第二溶液喷涂在第一层上,以形成第二纳米结构的涂层。
30.按照权利要求29的方法,其中所述第一和第二纳米结构的材料是相同或不同的,并选自陶瓷、金属陶瓷和金属材料。
31.按照权利要求29的方法,其中所述第一和第二纳米结构的材料是相同或不同的,并选自WC/Co、Cr3C2/Ni、Fe3Mo3C/Fe、ZrO2、Al2O3、钇稳定化的二氧化锆、羟基磷灰石、维塔利姆耐热合金、SiC、SiCxNy、Si3N4、Cr3C2/NiCr和MnO2
32.按照权利要求29的方法,其中所述第一和第二纳米结构的材料是相同或不同的,并选自WC/Co、Cr3C2/Ni、ZrO2、Al2O3、SiC、SiCxNy、Cr3C2/NiCr和钇稳定化的二氧化锆。
33.按照权利要求29、30、31或32的方法,其中所述所述第一、第二,或该两种分散的溶液还含有陶瓷细丝、陶瓷空心壳、金属陶瓷细丝、金属陶瓷空心壳、碳黑,或其组合。
CNB961914092A 1995-11-13 1996-11-13 用于热喷涂的纳米结构的进料 Expired - Fee Related CN1195884C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US55813395A 1995-11-13 1995-11-13
US08/558,133 1995-11-13

Publications (2)

Publication Number Publication Date
CN1175984A CN1175984A (zh) 1998-03-11
CN1195884C true CN1195884C (zh) 2005-04-06

Family

ID=24228350

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB961914092A Expired - Fee Related CN1195884C (zh) 1995-11-13 1996-11-13 用于热喷涂的纳米结构的进料

Country Status (6)

Country Link
US (3) US6025034A (zh)
EP (1) EP0866885A4 (zh)
CN (1) CN1195884C (zh)
CA (1) CA2237588A1 (zh)
RU (1) RU2196846C2 (zh)
WO (1) WO1997018341A1 (zh)

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6433154B1 (en) * 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
US20080311306A1 (en) * 1997-08-22 2008-12-18 Inframat Corporation Superfine ceramic thermal spray feedstock comprising ceramic oxide grain growth inhibitor and methods of making
US6287714B1 (en) * 1997-08-22 2001-09-11 Inframat Corporation Grain growth inhibitor for nanostructured materials
US20030032057A1 (en) * 1997-08-26 2003-02-13 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO1999064641A1 (en) * 1998-06-10 1999-12-16 Us Nanocorp, Inc. Thermal sprayed electrodes
US6653519B2 (en) * 1998-09-15 2003-11-25 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
US6926997B2 (en) 1998-11-02 2005-08-09 Sandia Corporation Energy storage and conversion devices using thermal sprayed electrodes
US6689453B2 (en) * 1998-11-24 2004-02-10 Research Foundation Of State University Of New York Articles with nanocomposite coatings
US6258417B1 (en) 1998-11-24 2001-07-10 Research Foundation Of State University Of New York Method of producing nanocomposite coatings
US6524744B1 (en) * 1998-12-07 2003-02-25 T/J Technologies, Inc. Multi-phase material and electrodes made therefrom
US6235351B1 (en) * 1999-01-22 2001-05-22 Northrop Grumman Corporation Method for producing a self decontaminating surface
US6881604B2 (en) * 1999-05-25 2005-04-19 Forskarpatent I Uppsala Ab Method for manufacturing nanostructured thin film electrodes
US6689424B1 (en) 1999-05-28 2004-02-10 Inframat Corporation Solid lubricant coatings produced by thermal spray methods
US6723387B1 (en) 1999-08-16 2004-04-20 Rutgers University Multimodal structured hardcoatings made from micro-nanocomposite materials
WO2001012431A1 (en) * 1999-08-16 2001-02-22 Rutgers, The State University Multimodal structured hardcoatings made from micro-nanocomposite materials
US20070044513A1 (en) * 1999-08-18 2007-03-01 Kear Bernard H Shrouded-plasma process and apparatus for the production of metastable nanostructured materials
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
DE19958474A1 (de) * 1999-12-04 2001-06-21 Bosch Gmbh Robert Verfahren zur Erzeugung von Funktionsschichten mit einer Plasmastrahlquelle
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
US6794086B2 (en) 2000-02-28 2004-09-21 Sandia Corporation Thermally protective salt material for thermal spraying of electrode materials
US6359325B1 (en) * 2000-03-14 2002-03-19 International Business Machines Corporation Method of forming nano-scale structures from polycrystalline materials and nano-scale structures formed thereby
EP1134302A1 (en) * 2000-03-17 2001-09-19 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS)
JP2004500975A (ja) * 2000-05-16 2004-01-15 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 複数のノズルスプレー操作を用いた高処理量の粒子生成装置及び粒子生成方法
US6494932B1 (en) * 2000-06-06 2002-12-17 Birch Mountain Resources, Ltd. Recovery of natural nanoclusters and the nanoclusters isolated thereby
WO2002002320A1 (en) * 2000-06-30 2002-01-10 Microcoating Technologies, Inc. Polymer coatings
US6638575B1 (en) * 2000-07-24 2003-10-28 Praxair Technology, Inc. Plasma sprayed oxygen transport membrane coatings
US6674047B1 (en) 2000-11-13 2004-01-06 Concept Alloys, L.L.C. Wire electrode with core of multiplex composite powder, its method of manufacture and use
US6513728B1 (en) 2000-11-13 2003-02-04 Concept Alloys, L.L.C. Thermal spray apparatus and method having a wire electrode with core of multiplex composite powder its method of manufacture and use
US6428596B1 (en) 2000-11-13 2002-08-06 Concept Alloys, L.L.C. Multiplex composite powder used in a core for thermal spraying and welding, its method of manufacture and use
DE10057953A1 (de) * 2000-11-22 2002-06-20 Eduard Kern Keramische Verbundschichten mit verbesserten Eigenschaften
CA2431310C (en) * 2000-12-08 2009-11-24 Sulzer Metco (Us) Inc. Pre-alloyed stabilized zirconia powder and improved thermal barrier coating
DE10061749C2 (de) * 2000-12-12 2003-08-07 Federal Mogul Burscheid Gmbh Kolbenring für Brennkraftmaschinen
US7066977B2 (en) * 2001-05-02 2006-06-27 Fu-Kuo Huang Flame synthesis and non-vacuum physical evaporation
US7247338B2 (en) * 2001-05-16 2007-07-24 Regents Of The University Of Minnesota Coating medical devices
JP3812368B2 (ja) * 2001-06-06 2006-08-23 豊田合成株式会社 Iii族窒化物系化合物半導体素子及びその製造方法
US7201940B1 (en) * 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US6974640B2 (en) * 2001-07-09 2005-12-13 The University Of Connecticut Duplex coatings and bulk materials, and methods of manufacture thereof
US6630207B1 (en) * 2001-07-17 2003-10-07 Science Applications International Corporation Method and apparatus for low-pressure pulsed coating
AU2002356516A1 (en) * 2001-09-12 2003-03-24 F.W. Gartner Thermal Spraying Company Nanostructured titania coated titanium
US6730616B2 (en) * 2001-09-24 2004-05-04 Texas Instruments Incorporated Versatile plasma processing system for producing oxidation resistant barriers
US6936181B2 (en) * 2001-10-11 2005-08-30 Kovio, Inc. Methods for patterning using liquid embossing
AU2002246036A1 (en) * 2002-01-15 2003-07-30 Consorzio Interuniversitario Per Lo Sviluppo Dei Sistemi A Grande Interfase C.S.G.I. Basic suspension, its preparation and process for paper deacidification
US7416108B2 (en) 2002-01-24 2008-08-26 Siemens Power Generation, Inc. High strength diffusion brazing utilizing nano-powders
WO2003075383A2 (en) * 2002-02-28 2003-09-12 Us Nanocorp, Inc. Solid oxide fuel cell components and method of manufacture thereof
US6787194B2 (en) * 2002-04-17 2004-09-07 Science Applications International Corporation Method and apparatus for pulsed detonation coating of internal surfaces of small diameter tubes and the like
US6755886B2 (en) * 2002-04-18 2004-06-29 The Regents Of The University Of California Method for producing metallic microparticles
US20040012124A1 (en) * 2002-07-10 2004-01-22 Xiaochun Li Apparatus and method of fabricating small-scale devices
US7316748B2 (en) * 2002-04-24 2008-01-08 Wisconsin Alumni Research Foundation Apparatus and method of dispensing small-scale powders
WO2003090937A1 (en) * 2002-04-24 2003-11-06 Wisconsin Alumni Research Foundation Apparatus and method of fabricating small-scale devices
US7160577B2 (en) * 2002-05-02 2007-01-09 Micron Technology, Inc. Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US7279129B2 (en) * 2002-05-14 2007-10-09 Nanoscale Corporation Method and apparatus for control of chemical or biological warfare agents
US20030219544A1 (en) * 2002-05-22 2003-11-27 Smith William C. Thermal spray coating process with nano-sized materials
US20070134432A1 (en) * 2002-07-09 2007-06-14 Maurice Gell Methods of making duplex coating and bulk materials
FR2842750B1 (fr) * 2002-07-26 2004-10-08 Toulouse Inst Nat Polytech Procede permettant de recouvrir a basse temperature des surfaces par des phosphates apatitiques nanocristallins, a partir d'une suspension aqueuse de phosphate amorphe
US6957608B1 (en) 2002-08-02 2005-10-25 Kovio, Inc. Contact print methods
US6878184B1 (en) 2002-08-09 2005-04-12 Kovio, Inc. Nanoparticle synthesis and the formation of inks therefrom
GB2393452B (en) * 2002-08-28 2005-12-28 C A Technology Ltd Improvements to powder production and spraying
US7258934B2 (en) * 2002-09-25 2007-08-21 Volvo Aero Corporation Thermal barrier coating and a method of applying such a coating
US6924249B2 (en) * 2002-10-02 2005-08-02 Delphi Technologies, Inc. Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere
EP1422308B1 (de) * 2002-11-22 2008-03-26 Sulzer Metco (US) Inc. Spritzpulver für die Herstellung einer bei hohen Temperaturen beständigen Wärmedämmschicht mittels einem thermischen Spritzverfahren
ES2302907T3 (es) * 2002-11-22 2008-08-01 Sulzer Metco (Us) Inc. Polvo de proyeccion para la produccion por proyeccion termica de una capa termoaislante resistente a elevadas temperaturas.
US7078276B1 (en) * 2003-01-08 2006-07-18 Kovio, Inc. Nanoparticles and method for making the same
US7563503B2 (en) * 2003-01-10 2009-07-21 The University Of Connecticut Coatings, materials, articles, and methods of making thereof
US7112758B2 (en) * 2003-01-10 2006-09-26 The University Of Connecticut Apparatus and method for solution plasma spraying
AU2004207590A1 (en) * 2003-01-28 2004-08-12 Enviroscrub Technologies Corporation Oxides of manganese processed in continuous flow reactors
US6942897B2 (en) * 2003-02-19 2005-09-13 The Board Of Trustees Of Western Michigan University Nanoparticle barrier-coated substrate and method for making the same
US20040202789A1 (en) * 2003-03-31 2004-10-14 Council Of Scientific And Industrila Research Process for preparing thin film solids
US7488464B2 (en) * 2003-07-31 2009-02-10 Enviroscrub Technologies Corporation Metal oxide processing methods and systems
US8083907B1 (en) 2003-09-26 2011-12-27 University Of South Florida Hydrogen storage nano-foil and method of manufacture
EP1670970A1 (en) * 2003-09-29 2006-06-21 General Electric Company, (a New York Corporation) Nano-structured coating systems
DE10357535A1 (de) * 2003-12-10 2005-07-07 Mtu Aero Engines Gmbh Keramisches Material und Verfahren zum Reparieren von Wärmedämmschichten mit lokalen Beschädigungen
KR100743188B1 (ko) 2003-12-26 2007-07-27 재단법인 포항산업과학연구원 나노 조직의 고 경도 WC-Co 코팅 제조 방법
US20080260952A1 (en) * 2004-01-22 2008-10-23 The University Of Manchester Ceramic Coating
EP1745161A1 (en) * 2004-01-22 2007-01-24 The University of Manchester Ceramic coating
US7635515B1 (en) * 2004-04-08 2009-12-22 Powdermet, Inc Heterogeneous composite bodies with isolated lenticular shaped cermet regions
US7509735B2 (en) * 2004-04-22 2009-03-31 Siemens Energy, Inc. In-frame repairing system of gas turbine components
US8334079B2 (en) * 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
US20050282032A1 (en) * 2004-06-18 2005-12-22 General Electric Company Smooth outer coating for combustor components and coating method therefor
DE102004030523A1 (de) * 2004-06-18 2006-01-12 Siemens Ag Transportsystem für Nanopartikel und Verfahren zu dessen Betrieb
US7384879B2 (en) * 2004-09-27 2008-06-10 Auburn University Selection and deposition of nanoparticles using CO2-expanded liquids
FR2877015B1 (fr) * 2004-10-21 2007-10-26 Commissariat Energie Atomique Revetement nanostructure et procede de revetement.
US20060251821A1 (en) * 2004-10-22 2006-11-09 Science Applications International Corporation Multi-sectioned pulsed detonation coating apparatus and method of using same
DE102004053221B3 (de) * 2004-11-04 2006-02-02 Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken Flüssigkeit und deren Verwendung zur Aufbereitung von Hartmetallen
KR100601096B1 (ko) * 2004-11-08 2006-07-19 재단법인 포항산업과학연구원 용사코팅용 나노구조 텅스텐 카바이드-코발트계 분말의 제조 방법
EP2282198A1 (en) * 2004-11-24 2011-02-09 Sensirion Holding AG Method for applying a layer to a substrate
US7402347B2 (en) * 2004-12-02 2008-07-22 Siemens Power Generation, Inc. In-situ formed thermal barrier coating for a ceramic component
AU2006200043B2 (en) * 2005-01-07 2011-11-17 Inframat Corporation Coated medical devices and methods of making and using
US20060172141A1 (en) * 2005-01-27 2006-08-03 Xinyu Huang Joints and methods of making and using
CA2499202A1 (en) * 2005-03-01 2006-09-01 National Research Council Of Canada Biocompatible titania thermal spray coating made from a nanostructured feedstock
JP4518410B2 (ja) 2005-03-09 2010-08-04 エボニック デグサ ゲーエムベーハー プラズマ溶射された酸化アルミニウム層
EP1700926A1 (de) * 2005-03-09 2006-09-13 Degussa AG Plasmagespritzte Schichten aus Aluminiumoxid
EP1707651A1 (de) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Schichtsystem und Verfahren zur Herstellung eines Schichtsystems
US20060222777A1 (en) * 2005-04-05 2006-10-05 General Electric Company Method for applying a plasma sprayed coating using liquid injection
US8058188B2 (en) * 2005-04-13 2011-11-15 Albany International Corp Thermally sprayed protective coating for industrial and engineered fabrics
US8629371B2 (en) * 2005-05-02 2014-01-14 National Research Council Of Canada Method and apparatus for fine particle liquid suspension feed for thermal spray system and coatings formed therefrom
KR100684275B1 (ko) * 2005-05-11 2007-02-20 한국과학기술원 정전분무 화염증착법을 이용한 박막 제조장치
DE102006019137A1 (de) * 2005-05-17 2007-10-31 Wolfgang Dr.-Ing. Beck Beschichtungsstoff für In-Mould-Coating (IMC) auf der Basis eines aminofunktionellen Reaktionspartners für Isocyanate und Verfahren zur Herstellung
DE102005025054A1 (de) * 2005-05-30 2006-12-07 Forschungszentrum Jülich GmbH Verfahren zur Herstellung gasdichter Schichten und Schichtsysteme mittels thermischem Spritzen
US20060275542A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Deposition of uniform layer of desired material
GB0512666D0 (en) * 2005-06-22 2005-07-27 Univ Loughborough Method for concentrating nanosuspensions
EP1741826A1 (en) 2005-07-08 2007-01-10 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method for depositing a polymer layer containing nanomaterial on a substrate material and apparatus
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
DE102005036309A1 (de) * 2005-08-02 2007-02-08 Linde Ag Einbringen von Nanopartikeln
DE102005038453B4 (de) * 2005-08-03 2011-06-09 TTI-Technologie-Transfer-Initiative GmbH an der Universität Stuttgart Verfahren und Vorrichtung zum thermischen Spritzen von Suspensionen
US7575978B2 (en) * 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US7989290B2 (en) * 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
WO2007030752A2 (en) * 2005-09-09 2007-03-15 University Of Arkansas At Little Rock System and method for tissue generation and bone regeneration
US8936805B2 (en) 2005-09-09 2015-01-20 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US9763788B2 (en) 2005-09-09 2017-09-19 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
EP1940556A4 (en) * 2005-10-17 2014-09-10 Nat Res Council Canada FORMATION OF COATINGS AND POWDERS BY REACTIVE SPRAYING
US20070099014A1 (en) * 2005-11-03 2007-05-03 Sulzer Metco (Us), Inc. Method for applying a low coefficient of friction coating
CN1962155A (zh) * 2005-11-10 2007-05-16 鸿富锦精密工业(深圳)有限公司 一种二氧化碳激光焊接装置
US20090004296A1 (en) * 2006-01-04 2009-01-01 Do-Coop Technologies Ltd. Antiseptic Compositions and Methods of Using Same
US7579087B2 (en) * 2006-01-10 2009-08-25 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
WO2007089881A2 (en) * 2006-01-31 2007-08-09 Regents Of The University Of Minnesota Electrospray coating of objects
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
CA2641117C (en) * 2006-01-31 2018-01-02 Nanocopoeia, Inc. Nanoparticle coating of surfaces
DE102006005775A1 (de) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermisches Spritzverfahren mit kolloidaler Suspension
IL175045A0 (en) * 2006-04-20 2006-09-05 Joma Int As A coating formed by thermal spraying and methods for the formation thereof
FR2900351B1 (fr) * 2006-04-26 2008-06-13 Commissariat Energie Atomique Procede de preparation d'une couche nanoporeuse de nanoparticules et couche ainsi obtenue
FI118211B (fi) * 2006-05-19 2007-08-31 Metso Paper Inc Staattinen vedenpoistoelin rainanmuodostuskonetta varten sekä menetelmä rainanmuodostuskonetta varten olevan staattisen vedenpoistoelimen pinnoittamiseksi
CN101588826A (zh) * 2006-08-02 2009-11-25 英孚拉玛特公司 腔支撑装置及其制造及使用方法
WO2008016712A2 (en) * 2006-08-02 2008-02-07 Inframat Corporation Medical devices and methods of making and using
EP1895818B1 (en) 2006-08-30 2015-03-11 Sulzer Metco AG Plasma spraying device and a method for introducing a liquid precursor into a plasma gas system
ES2534215T3 (es) * 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Dispositivo de pulverización de plasma y un método para la introducción de un precursor líquido en un sistema de gas de plasma
US20080072790A1 (en) * 2006-09-22 2008-03-27 Inframat Corporation Methods of making finely structured thermally sprayed coatings
DE102006047101B4 (de) * 2006-09-28 2010-04-01 Siemens Ag Verfahren zum Einspeisen von Partikeln eines Schichtmaterials in einen Kaltgasspritzvorgang
US9149750B2 (en) 2006-09-29 2015-10-06 Mott Corporation Sinter bonded porous metallic coatings
US20080081007A1 (en) * 2006-09-29 2008-04-03 Mott Corporation, A Corporation Of The State Of Connecticut Sinter bonded porous metallic coatings
EP1911858B1 (de) * 2006-10-02 2012-07-11 Sulzer Metco AG Verfahren zur Herstellung einer Beschichtung mit kolumnarer Struktur
WO2008049080A1 (en) * 2006-10-18 2008-04-24 Inframat Corporation Superfine/nanostructured cored wires for thermal spray applications and methods of making
US20080138624A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US20080138538A1 (en) * 2006-12-06 2008-06-12 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US7781031B2 (en) * 2006-12-06 2010-08-24 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US9040816B2 (en) * 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US8465602B2 (en) 2006-12-15 2013-06-18 Praxair S. T. Technology, Inc. Amorphous-nanocrystalline-microcrystalline coatings and methods of production thereof
WO2008086402A1 (en) * 2007-01-09 2008-07-17 Inframat Corporation Coating compositions for marine applications and methods of making and using the same
CA2619331A1 (en) * 2007-01-31 2008-07-31 Scientific Valve And Seal, Lp Coatings, their production and use
KR100834515B1 (ko) * 2007-03-07 2008-06-02 삼성전기주식회사 금속 나노입자 에어로졸을 이용한 포토레지스트 적층기판의형성방법, 절연기판의 도금방법, 회로기판의 금속층의표면처리방법 및 적층 세라믹 콘덴서의 제조방법
US8057914B2 (en) * 2007-03-26 2011-11-15 Howmedica Osteonics Corp. Method for fabricating a medical component from a material having a high carbide phase and such medical component
US8920534B2 (en) * 2007-03-26 2014-12-30 Howmedica Osteonics Corp. Method for fabricating a biocompatible material having a high carbide phase and such material
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
KR100981368B1 (ko) 2007-06-25 2010-09-10 한국과학기술연구원 텅스텐 복합 분말, 이로부터 형성된 코팅재, 및 텅스텐복합 분말의 제조 방법
US8530000B2 (en) 2007-09-19 2013-09-10 Micron Technology, Inc. Methods of forming charge-trapping regions
US7763325B1 (en) * 2007-09-28 2010-07-27 The United States Of America As Represented By The National Aeronautics And Space Administration Method and apparatus for thermal spraying of metal coatings using pulsejet resonant pulsed combustion
US20110003084A1 (en) * 2008-02-25 2011-01-06 National Research Council Of Canada Process of Making Ceria-Based Electrolyte Coating
DE102008001721B4 (de) * 2008-05-13 2021-01-14 Voith Patent Gmbh Verfahren zum Beschichten einer Klinge
DE102008026101B4 (de) * 2008-05-30 2010-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermisch gespritzte Al2O3-Schichten mit einem hohen Korundgehalt ohne eigenschaftsmindernde Zusätze und Verfahren zu ihrer Herstellung
US20100068405A1 (en) * 2008-09-15 2010-03-18 Shinde Sachin R Method of forming metallic carbide based wear resistant coating on a combustion turbine component
KR101110588B1 (ko) 2009-04-22 2012-02-15 한국세라믹기술원 액상-기상 전환 에어로졸 증착 방법 및 장치
FR2947568B1 (fr) * 2009-07-02 2011-07-22 Snecma Revetement de protection thermique pour une piece de turbomachine et son procede de realisation
US20110086178A1 (en) * 2009-10-14 2011-04-14 General Electric Company Ceramic coatings and methods of making the same
US8679246B2 (en) 2010-01-21 2014-03-25 The University Of Connecticut Preparation of amorphous mixed metal oxides and their use as feedstocks in thermal spray coating
EP2543443B1 (en) * 2010-03-04 2019-01-09 Imagineering, Inc. Coating forming device, and method for producing coating forming material
US20130126773A1 (en) 2011-11-17 2013-05-23 General Electric Company Coating methods and coated articles
RU2490204C1 (ru) * 2011-12-19 2013-08-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) Способ получения композиций на основе углеродных нанотрубок и полиолефинов
RU2477763C1 (ru) * 2012-01-11 2013-03-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Способ получения полимерного нанокомпозиционного материала
US20130295485A1 (en) * 2012-05-07 2013-11-07 Cellera, Inc. Anode Electro-Catalysts for Alkaline Membrane Fuel Cells
RU2508963C2 (ru) * 2012-05-18 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Бурятский государственный университет" Способ диспергирования наноразмерного порошка диоксида кремния ультразвуком
US20130332362A1 (en) * 2012-06-11 2013-12-12 Visa International Service Association Systems and methods to customize privacy preferences
DE102012021222B4 (de) * 2012-10-27 2015-02-05 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer nanoporösen Schicht auf einem Substrat
US10377905B2 (en) 2013-03-13 2019-08-13 Fujimi Incorporated Slurry for thermal spraying, thermal sprayed coating, and method for forming thermal sprayed coating
KR20150123939A (ko) 2013-03-13 2015-11-04 가부시키가이샤 후지미인코퍼레이티드 용사용 슬러리, 용사 피막 및 용사 피막의 형성 방법
US9822264B2 (en) 2013-07-15 2017-11-21 United Technologies Corporation Nanocellular and nanocellular particle filled polymer composite coating for erosion protection
FR3014115B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede et systeme de depot d'oxyde sur un composant poreux
FR3013996B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede de reparation locale de barrieres thermiques
US9647254B2 (en) * 2013-12-05 2017-05-09 GM Global Technology Operations LLC Coated separator and one-step method for preparing the same
US20170157582A1 (en) * 2014-07-02 2017-06-08 Corning Incorporated Spray drying mixed batch material for plasma melting
RU2568555C1 (ru) * 2014-07-08 2015-11-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления
US11145894B2 (en) 2014-08-21 2021-10-12 Battelle Memorial Institute Process for fabrication of enhanced β″-alumina solid electrolytes for energy storage devices and energy applications
US11066734B2 (en) 2014-09-03 2021-07-20 Fujimi Incorporated Thermal spray slurry, thermal spray coating and method for forming thermal spray coating
WO2016044749A1 (en) * 2014-09-19 2016-03-24 Nanosynthesis Plus. Ltd. Methods and apparatuses for producing dispersed nanostructures
JP6548406B2 (ja) * 2015-02-27 2019-07-24 日立造船株式会社 溶射材料およびその製造方法、溶射方法並びに溶射製品
CN104827025A (zh) * 2015-05-09 2015-08-12 芜湖鼎瀚再制造技术有限公司 一种高硬度Co-Cr-W-B焊层材料及其制备方法
US9999721B2 (en) 2015-05-26 2018-06-19 Medtronic Minimed, Inc. Error handling in infusion devices with distributed motor control and related operating methods
CN104947027A (zh) * 2015-06-24 2015-09-30 安徽再制造工程设计中心有限公司 MnO2-TiC-Co纳米材料及其制备方法
JP6741410B2 (ja) 2015-09-25 2020-08-19 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
JP6681168B2 (ja) * 2015-10-20 2020-04-15 株式会社フジミインコーポレーテッド 溶射用スラリー、溶射皮膜および溶射皮膜の形成方法
CN105369177A (zh) * 2015-11-20 2016-03-02 江苏尚大海洋工程技术有限公司 一种等离子喷涂制备耐酸碱纳米哈氏合金涂层的方法
CN105369187B (zh) * 2015-11-20 2018-08-07 江苏尚大海洋工程技术有限公司 一种等离子喷涂及整体重熔制备耐酸碱纳米哈氏合金涂层的方法
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
JP2019520200A (ja) 2016-06-01 2019-07-18 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ アリゾナ ステート ユニバーシティ 微粒子コーティングの堆積スプレーのためのシステム及び方法
US10697464B2 (en) * 2016-07-29 2020-06-30 Raytheon Technologies Corporation Abradable material
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
RU2652202C2 (ru) * 2016-10-11 2018-04-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Способ получения полых наноструктурированных металлических микросфер
FI128311B (en) * 2017-02-17 2020-03-13 Teknologian Tutkimuskeskus Vtt Oy A process for making a carbide powder and a carbide powder
US10363553B2 (en) * 2017-04-19 2019-07-30 King Abdulaziz University Nanocomposite hollow sphere as a photocatalyst and methods thereof
PL424869A1 (pl) * 2018-03-13 2019-09-23 3D Lab Spółka Z Ograniczoną Odpowiedzialnością Urządzenie do ultradźwiękowej atomizacji materiałów metalicznych i sposób jego czyszczenia
PL423410A1 (pl) * 2017-11-09 2019-05-20 3D Lab Spolka Z Ograniczona Odpowiedzialnoscia Urządzenie do wytwarzania sferycznych proszków metali metodą atomizacji ultradźwiękowej
US10639712B2 (en) 2018-06-19 2020-05-05 Amastan Technologies Inc. Process for producing spheroidized powder from feedstock materials
JP7206716B2 (ja) * 2018-09-07 2023-01-18 トヨタ自動車株式会社 蒸発器及びその製造方法、並びに蒸発器を有するループ型ヒートパイプ
IT201900001321A1 (it) 2019-01-30 2020-07-30 Ima Spa Metodo per la realizzazione di un dispositivo operatore automatico articolato e relativo dispositivo operatore automatico articolato.
IT201900001323A1 (it) 2019-01-30 2020-07-30 Ima Spa Metodo per la realizzazione di un componente per una macchina per la produzione e/o il confezionamento di prodotti farmaceutici.
SG11202111578UA (en) 2019-04-30 2021-11-29 6K Inc Lithium lanthanum zirconium oxide (llzo) powder
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
CN110129711A (zh) * 2019-06-28 2019-08-16 沈阳富创精密设备有限公司 一种新型制备涂层的热喷涂方法
JP2023512391A (ja) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド 球形粉体用の特異な供給原料及び製造方法
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111334739A (zh) * 2019-12-30 2020-06-26 苏州三基铸造装备股份有限公司 一种挤压铸造型腔表面强化方法
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
CN112063959B (zh) * 2020-08-06 2022-02-11 西安交通大学 一种柱-层/树复合结构热障涂层及其制备方法
CN112195461A (zh) * 2020-09-11 2021-01-08 广东工业大学 一种纳米材料冷喷涂装置
WO2022067303A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
KR20230095080A (ko) 2020-10-30 2023-06-28 6케이 인크. 구상화 금속 분말을 합성하는 시스템 및 방법
WO2022211218A1 (ko) * 2021-04-02 2022-10-06 한국과학기술원 액체금속 전구체 용액, 이를 이용한 금속막 제조방법 및 이를 포함하는 전자소자
EP4071267A1 (en) 2021-04-07 2022-10-12 Treibacher Industrie AG Suspension for thermal spray coatings
CN114560707A (zh) * 2022-03-24 2022-05-31 湖南国发控股有限公司 一种窑具生产用氮化硅浸渍剂的配方及制备与应用工艺

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419415A (en) * 1964-09-29 1968-12-31 Metco Inc Composite carbide flame spray material
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
JPS61263628A (ja) * 1985-05-17 1986-11-21 Mitsubishi Mining & Cement Co Ltd セラミツクスマイクロ球の製造方法
JPS63121647A (ja) 1986-11-12 1988-05-25 Mitsubishi Heavy Ind Ltd イツトリア安定化ジルコニア皮膜コ−テイング方法
SU1463799A1 (ru) * 1987-06-12 1989-03-07 Московский институт тонкой химической технологии Способ получени шихты дл газоплазменных покрытий
US4982067A (en) * 1988-11-04 1991-01-01 Marantz Daniel Richard Plasma generating apparatus and method
US5688565A (en) 1988-12-27 1997-11-18 Symetrix Corporation Misted deposition method of fabricating layered superlattice materials
US5213851A (en) * 1990-04-17 1993-05-25 Alfred University Process for preparing ferrite films by radio-frequency generated aerosol plasma deposition in atmosphere
US5155071A (en) 1991-08-16 1992-10-13 E. I. Du Pont De Nemours And Company Flame-produced partially stabilized zirconia powder
JP3519406B2 (ja) 1993-03-24 2004-04-12 ジョージア テック リサーチ コーポレイション フィルム及びコーティングの燃焼化学蒸着の方法
DE4334639A1 (de) * 1993-10-11 1995-04-13 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung von TiN-Sinterkörpern und -Schichten
DE4402890A1 (de) * 1994-02-01 1995-08-03 Basf Ag Verfahren zur Herstellung von Zusammensetzungen, enthaltend Metallpartikel im Nanometergrößenbereich
US5609921A (en) * 1994-08-26 1997-03-11 Universite De Sherbrooke Suspension plasma spray
US5874134A (en) * 1996-01-29 1999-02-23 Regents Of The University Of Minnesota Production of nanostructured materials by hypersonic plasma particle deposition
US5932293A (en) 1996-03-29 1999-08-03 Metalspray U.S.A., Inc. Thermal spray systems
US5986277A (en) 1997-10-29 1999-11-16 National Research Council Of Canada Method and apparatus for on-line monitoring the temperature and velocity of thermally sprayed particles
US6071324A (en) 1998-05-28 2000-06-06 Sulzer Metco (Us) Inc. Powder of chromium carbide and nickel chromium

Also Published As

Publication number Publication date
US6025034A (en) 2000-02-15
EP0866885A1 (en) 1998-09-30
US6277448B2 (en) 2001-08-21
US20010004473A1 (en) 2001-06-21
RU2196846C2 (ru) 2003-01-20
US20030077398A1 (en) 2003-04-24
CA2237588A1 (en) 1997-05-22
US6579573B2 (en) 2003-06-17
EP0866885A4 (en) 2000-09-20
CN1175984A (zh) 1998-03-11
WO1997018341A1 (en) 1997-05-22

Similar Documents

Publication Publication Date Title
CN1195884C (zh) 用于热喷涂的纳米结构的进料
WO1997018341A9 (en) Nanostructured feeds for thermal spray
US7537636B2 (en) Methods of making superfine alloys
KR101277661B1 (ko) 나노재료 분산물의 제조 방법 및 그 제조물
US5631044A (en) Method for preparing binder-free clad powders
US20080311306A1 (en) Superfine ceramic thermal spray feedstock comprising ceramic oxide grain growth inhibitor and methods of making
JP2019522730A5 (ja) 付加製造に使用するための焼結可能な金属ペースト
CN101412618A (zh) 包含陶瓷氧化物晶粒生长抑制剂的超细陶瓷热喷涂原料和其制备方法
CN112207287B (zh) 一种掺杂氧化钇纳米颗粒的纳米钼粉制备方法及应用
JP4425888B2 (ja) コンポジット構造を有するナノ球状粒子、粉末、及び、その製造方法
CN108393484B (zh) 一种热喷涂用金属陶瓷纳米复合结构喂料及其制备方法
CN110396002A (zh) 一种高温抗氧化耐烧蚀非氧化物基致密涂层的制备方法
CN1212191A (zh) 制造WC/Co复合纳米粉末的方法
CN1637080A (zh) 热喷涂用纳米团聚体氧化锆粉末的制备方法
CN1377857A (zh) 大颗粒球形纳米陶瓷粉末的生产方法和应用方法
CN109971982B (zh) 原位自生陶瓷相增强钛基复合材料的制备方法及制品
JP2008038163A5 (zh)
CN1587062A (zh) 纳米结构的钇稳定氧化锆团聚型粉末及其生产方法
CN115043689A (zh) 一种含有碳骨架的铝热剂及其制备方法
CN111410201A (zh) 一种适合等离子喷涂的纳米结构硅酸镱喂料的制备方法
CN108837818B (zh) 一种二氧化钛复合涂层及其制备方法
CN100334037C (zh) 纳米结构的钇稳定氧化锆团聚型粉末及其生产方法
CN1600820A (zh) 一种纳米耐磨涂层用热喷涂粉体的制备及应用
JP2005513264A (ja) 反応アルミニウム又は銅のナノ粒子を製造する方法
TWI471266B (zh) 碳化物微粒子之製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050406

Termination date: 20091214