CN1183587A - 监控磁共振过程中插入器件附近的温度的温度监控系统 - Google Patents

监控磁共振过程中插入器件附近的温度的温度监控系统 Download PDF

Info

Publication number
CN1183587A
CN1183587A CN97118274A CN97118274A CN1183587A CN 1183587 A CN1183587 A CN 1183587A CN 97118274 A CN97118274 A CN 97118274A CN 97118274 A CN97118274 A CN 97118274A CN 1183587 A CN1183587 A CN 1183587A
Authority
CN
China
Prior art keywords
temperature
magnetic resonance
coupled
transducing circuit
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN97118274A
Other languages
English (en)
Inventor
C·L·杜莫林
R·D·沃特金斯
R·D·达罗
S·P·苏扎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1183587A publication Critical patent/CN1183587A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • G01R33/287Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR involving active visualization of interventional instruments, e.g. using active tracking RF coils or coils for intentionally creating magnetic field inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4804Spatially selective measurement of temperature or pH

Abstract

一种温度监控系统,这种温度监控系统用以监控组织因组织内电场的产生而引起的温升。这些电场是在磁共振程序中加上射频脉冲产生的,在插入的器件感应出电流。若检测出温升超过所选的阈值,温度监控系统就促使磁共振成象系统或者降低射频功率,或者终止磁共振程序。在成象或跟踪射频线圈与MR收信机之间可以采用光耦合方式来消除在磁共振程序过程中加射频脉冲引起的发热现象。

Description

监控磁共振过程中插入器件附近的温度的温度监控系统
本发明涉及器件插入人体内的医疗程序,更具体地说,涉及一种在人体处于磁共振扫描器中时使用这种插入的器件的医疗程序。
下面的一些美国专利介绍了用磁共振(MR)跟踪病人体内插入的器件的一些方法:美国专利5,307,808“用磁共振监控器件位置的跟踪系统和脉冲串”;美国专利5,318,205“用复式磁共振检测法监控器件的位置和取向的跟踪系统”;和美国专利5,353,795“用复式磁共振检测法监控器件位置的跟踪系统”,这些美国专利分别为CharlesL.Dumoulin、Steven P.Souza和Robert Darrow的发明专利,但都转让给本发明专利的受让人,这里将其包括进来以供参考。这些方法通过产生和检测磁共振信号来确定和跟踪插入的器件的位置,没有任何与X线监控有关的不希望有的效应。
磁共振跟踪法有一点是插入的器件必须装有电缆或导线,以便将人体内检测出的磁共振信号引出体外送到成象和跟踪系统上。MR成象或跟踪线圈安置在成象或跟踪对象内或表面上,一般通过同轴电缆与外部收信机连接。在人体内放置导电材料,在磁共振过程中的一个后果是,用以成象和跟踪器件的射频(RF)会在导体中感应出电流。这些电流会在导体端部产生强电场。若导体的端部处在象血液之类的导电组织的包围之中,这些强电场会在组织中感应出电流从而产生加热作用。组织中的发热量与电源和射频脉冲的占空因数有关。射频脉冲作用的强度越大,频率越高,产生的发热量就越多。发热量还间接与磁共振程序中使用的静电场强度有关,因为磁场强度越大,在其中使核自旋章动所需要的射频功率的越高。
若聚集在内插的器件附近导电组织中的热量引起的温升小于4℃左右,组织不至于损伤。但若聚集着的热量引起的温升超过4℃左右,组织的损伤可能可以康复,也可能不可以康复。
应该指出的是,在磁共振检查过程中出于跟踪器件以外的原因而在人体内放置导线或其它导电构件有时是有意这样做的,举例说,用小型磁共振接收线圈可以拍摄出象血管壁之类局部解剖的影象。不然也可能希望将其它象内窥镜或导管引线之类的医疗器件放入体内,这些都会使组织在磁共振检查过程中局部发热。
目前需要有一种监控和减少因器件放入人体内的磁共振检查过程中引起的发热的方法。
本发明在磁共振(MR)过程中拟放入人体内的器件增设了一个或多个热传感器。各传感器放入器件中来监控器件内或器件附近所选部位的温升。
这里可采用几种温度监控法。举例说,可用热电偶来监控温度的上升,但应该小心,因为热电偶引线的存在可能会导致不希望有的发热。更可取的方法是用光来测温,这样可采用不导电的光纤。有一种监控温度的光学器件采用荧光衰减时间为温度的函数的荧光物质。在光纤的端部放上一部分荧光的物质,同时在另一端激发和监控荧光物质的衰减情况,如此不难制取应用物理原理的温度监控装置。
器件一经调整能监控温度之后,温度的瞬时值可以有好几种用场。举例说,温度可以显示给护理的临床医生看。不然也可以将温度传送给扫描器的安全联锁装置,从而促使磁共振扫描器在检测出温度上升得超过所选阈值时降低其射频功率和/或占空因数,或防止医疗程序。
此外,将MR象或跟踪线圈与收信机连接起来的配线可用光纤代替,并在两端加一个换能器供将电信号与光信号相互转换之用。
本发明的目的是提供一种监控人体内因存在内插器件而在磁共振扫描过程中发热的系统。
本发明的另一个目的是提供一种每当检测出人体内组织在MR检查过程中发热超过所选的阈值时降低或终止磁共扫描器产生的射频功率的方法。
本发明的另一个目的是提供一种每当MR检查过程中检测出人体内组织的发热超过所选的阈值时减小射频占空因数的方法。
本发明的另一个目的是减少成象中的对象附近产生的射频发热现象。
本发明相信是新颖的诸多特点在所附的权利要求书中详细提出,但本发明本身无论是在操作的组织还是方法方面连同其它目的则最好结合附图参看下面的说明可以最清楚地了解到。附图中:
图1是本发明在跟踪检测对象中器件的位置的一个实施例的透视图;
图2是装入拟插入检查对象的人体中的医疗器件中的射频线圈和光纤温度传感器的示意图;
图3是代替MR成象或跟踪线圈与MR收信电子器件之间的配线的光耦合示意图;
图4是适宜装入磁共振扫描器中的热安全子系统一个实施例的系统方框图。
图1中,监控的对象100在支撑110上放入磁铁盒120中磁铁125产生的均匀磁场中。磁铁125和磁铁盒120柱形对称,图中以半个剖视图示出以展示出对象100的位置。插有器件150(图中以导管的形式示出)的对象100的部位位于磁铁125的孔大致中心的位置。对象100四周围是柱形磁场梯度线圈130,在预定时间产生预定强度的磁场梯度。梯度线圈130产生在三个方向上相互垂直的磁场梯度。
外线圈140也环抱着对象100的有关部位。从图中看到,线圈140是个筒形外线圈,其直径足以将整个对象套上。此外,还可以采用其它几何条件,例如较小的特别为供头部或人体两端造影用的筒体。不然也可以采用象表面线圈之类的非筒形外线圈。
外线圈140在预定的时间内往对象100中辐射射频(RF)能量,能量在预定频率下的功率足以使对象100的核磁自旋接本技术领域行家们周知的方式章动。自旋的章动促使各自旋在拉莫尔频率下共振。各自旋的拉莫尔频率与自旋所感受到的磁场强度成正比。此场强为磁铁125产生的静磁场与磁场梯度线圈130产生的局部磁场的和。
器件150由操作人员插入对象100体中,它可以是导向金属丝、导管、内窥镜、腹腔镜、活组织检查针或类似的器件。若想用磁共振实时跟踪器件150,可以将器件15制成里面装有射频线圈,由此射频线圈检测对象中根据外线圈140产生的射频场产生的MR信号。由于射频线圈小,因而灵敏区也小。因此,检测出的信号的拉莫尔频率只是紧靠线圈附的磁场强度引起的。这些检测出的信号送到成象和跟踪单元170进行分析。器件150的位置在成象和跟踪单元170中确定下来后显示在显示装置180上。在本发明的最佳实施例中,器件150的位置是通过在叠加装置(图中未示出,例如能将图标叠加到图象上的视频图形子系统)驱动的一般MR图象上叠加图形符号在显示装置180上显示出来的。
在本发明的另一些实施例中,表示器件150的图形符号叠加在用其它诸如计算机X线体层照相(CT)扫描器、正电子发射X线体层照相系统或超声波扫描器这类的成象系统得出的诊断图象上。本发明的其它实施例以数字的形式或作为图形符号没有就诊断图象显示器件的位置。
图2更详细地示出了器件150的一个实施例。小射频线圈200通过导线210和220电耦合到MR系统上。在本发明的最佳实施例中,导线210和220形成同轴导线对。导线210和220和射频线圈200装进器件150的外壳230中。检测出器件150四周围组织产生的MR信号。器件150还装有光纤270,光纤270配置得使其远端靠近小射频线圈200。在本发明的本实施例中,光纤270的近端接光源/检测器207,远端装有小量的经选择的荧光物质275。荧光物质275吸收传播到光纤270远端的光,再将其发射出去。光的这个再发射在初始光在可测出用以计算荧光物质275的温度的衰减常数下被吸收之后持续一段时间。这方面在《790型荧光温度计使用指南》一书,(美国加州圣克拉拉西北公园路2775,95051-0903 Luxtron公司1992年12月版权)第4.1~4.6页上有介绍。
为避免射频感应发热,对象内的配线可以用光纤代替,如图3中所示。射频线圈300安置在对象体内,与第一换能电路301连接。第一换能电路301则耦合到光纤303,将电子信号转换成经调制的波长一般在可见波长或近红外波长的光。第一换能电路301可以单向将信号传送给射频线圈300,单向将信号从射频线圈300传送给光纤303,也可以是双向的。这包括射频线圈300分别发信、收信或收发信的情况。
射频线圈300在MR跟踪或局部MR成象时可以收到MR信号。
在光纤303的另一端,第二换能电路305以第一换能电路301相反的方式工作。举例说,若射频线圈300在接收MR响应信号,则其电信号就由第一换能电路301转换成经调制的光信号,通过光纤303传送,由第二换能电路305还原成其原来的电信号,再传送给MR收信机,形成对象和/或射频线圈位置的MR图象。第一换能电路301可以由小储能器301b(电池或电容器)和光电二极管301a供电。光可以从光源307通过光纤303传送给第一换能电路301和光电二极管301a,产生给储能器301b充电的电流,从而供电给第一换能电路301。
不然第一换能电路301也可以分成两条光通道303a、303b或光纤,通道303a供传送信号用,通道303b供输电用。
图4是适宜成象和跟踪器件的MR系统的方框图。该系统的控制器900给一组磁场梯度放大器910提供控制信号。这些放大器驱动位于磁铁盒120(图1)中的磁场梯度线圈130。梯度线圈130能产生在三个方向上相互垂直的磁场梯度。控制器900产生的信号也发送给发信装置930。这些来自控制器900的信号促使发信装置930产生频率为经选择的频率、功率适宜使所选取的自旋在位于外线圈140内的对象的部位中章动的射频脉冲。这里,外线圈140处在磁铁125的孔中。射频线圈200(图2)中感应出MR信号,连接到收信装置940,这可通过图3的光耦合连接。收信装置940通过放大、解调、滤波、数字化MR信号处理MR信号。控制器900还收集来自收信装置940的信号,并将其传送给计算装置950处理。计算装置950对收自控制器900到达线圈200处的信号进行付里叶变换。计算装置950计算的结果显示在显示装置180上。
图4的MR系统也装有安全监控子系统990。安全监控子系统990包括温度监控装置992和安全联锁装置994。
在本发明的最佳实施例中,图2的光源/检测器207产生的光脉冲传送给位于器件150中光纤远端的荧光物质275。图4的温度监控装置992检测荧光的衰减,测定衰减率,并计算荧光物质275的温度。应该指出的是,本发明的精神并不局限于温度根据荧光衰减的检测,而是包括所有的监控装置,例如热敏电阻或热电偶。
在本实施例中,安全联锁装置994接控制器900。若温度监控装置检测到温度超过所选取的阈值,信号就从安全联锁装置994传送给控制装置900,促使控制装置或者降低射频功率、减小射频占空因数,或者终止当前的磁共振和梯度脉冲串。
此外,还可以用温度监控装置992在超过阈值时激发音响警报器993通知操作人员温度上升。
上面已就磁共振程序新型的温度监控子系统的一些目前最佳的实施例详细说明,本技术领域的行家们都知道对上述实施例是可以进行种种修改和更改的。因此,应该理解的是,所附的权利要求书是包括所有这些属于本发明精神实质的修改和更改的。

Claims (9)

1.一种磁共振成象系统中使用的安全子系统,用以在磁共振程序过程中监控插入的器件和对象组织附近的温度和调节加到所述对象的功率,其特征在于,包括:
a)温度检测装置,用以检测所述插入的器件的选择部分内的温度;
b)超温确定装置,用以确定所检测的温度是否超过所选的阈值;和
c)功率改变装置,用以在磁共振程序过程中根据检测出的所述器件内的温度改变射频功率。
2.如权利要求1所述的安全子系统,其特征在于,温度检测装置用光测定温度。
3.如权利要求2所述的安全子系统,其特征在于,温度检测装置通过测定荧光的衰减时间测定温度。
4.如权利要求1所述的安全子系统,其特征在于,温度检测装置用热电偶测定温度。
5.如权利要求1所述的安全子系统,其特征在于,它还包括一个显示器,给磁共振系统的操作人员显示检测出的温度用。
6.如权利要求1所述的安全子系统,其特征在于,它还包括一个音响器件,与确定装置耦合,用以指示何时超过阈值。
7.一种具射频线圈和成象电子设备的磁共振(MR)成象系统用的光耦合方式,其特征在于,它包括:
a)第一换能电路,耦合到射频线圈上,供将电信号和相应经调制的光信号相互转换之用;
b)第二换能电路,耦合到所述成象电子设备,用以按第一换能电路相反的方式将电信号与经调制的光信号相互转换之用;和
c)至少一根光纤,其第一端耦合到第一换能电路,其第二端耦合到第二换能电路,供在各换能电路之间传送光信号之用。
8.如根据权利要求7所述的光耦合方式,其特征在于,它还包括:
a)一个光电二极管,耦合到第一换能电路和光纤的第一端,能接收光并将其转换成电能;
b)一个光源,耦合到光纤的第二端,供产生光能并将其通过光纤传送给太阳能电池,给第一换能电路供电。
9.如权利要求7所述的光耦合方式,其特征在于,它还包括一个储能器,用以给第一换能电路供电。
CN97118274A 1996-09-09 1997-09-09 监控磁共振过程中插入器件附近的温度的温度监控系统 Pending CN1183587A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/714,840 US5730134A (en) 1996-09-09 1996-09-09 System to monitor temperature near an invasive device during magnetic resonance procedures
US714840 2000-11-16

Publications (1)

Publication Number Publication Date
CN1183587A true CN1183587A (zh) 1998-06-03

Family

ID=24871664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97118274A Pending CN1183587A (zh) 1996-09-09 1997-09-09 监控磁共振过程中插入器件附近的温度的温度监控系统

Country Status (6)

Country Link
US (2) US5730134A (zh)
JP (2) JP3978264B2 (zh)
KR (1) KR19980024447A (zh)
CN (1) CN1183587A (zh)
DE (1) DE19738543A1 (zh)
IL (1) IL121673A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101903788A (zh) * 2007-12-21 2010-12-01 皇家飞利浦电子股份有限公司 磁共振安全性监测系统和方法
CN101109720B (zh) * 2006-07-19 2011-02-16 西门子(中国)有限公司 测量磁性材料磁感应强度对温度变化特性的方法及装置
CN102369450A (zh) * 2009-04-01 2012-03-07 皇家飞利浦电子股份有限公司 用于全面的可植入装置安全测试和患者安全监测的磁共振系统和方法
CN103765176A (zh) * 2011-09-02 2014-04-30 皇家飞利浦有限公司 使用分布式光纤温度感测的医学设备插入和退出信息
CN104797954A (zh) * 2012-11-15 2015-07-22 皇家飞利浦有限公司 包括用于测量线圈线缆及阱的温度和/或应变的分布式传感器的mri
CN111537102A (zh) * 2012-12-18 2020-08-14 皇家飞利浦有限公司 用于表面和身体温度测量的可重复使用的mr安全温度探头

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185443B1 (en) * 1997-09-29 2001-02-06 Boston Scientific Corporation Visible display for an interventional device
US5984861A (en) 1997-09-29 1999-11-16 Boston Scientific Corporation Endofluorescence imaging module for an endoscope
US6198285B1 (en) 1997-11-28 2001-03-06 Hitachi Medical Corporation In-room MRI display terminal and remote control system
US6289229B1 (en) 1998-01-20 2001-09-11 Scimed Life Systems, Inc. Readable probe array for in vivo use
US6141037A (en) * 1998-03-18 2000-10-31 Linvatec Corporation Video camera system and related method
US6270463B1 (en) 1999-11-23 2001-08-07 Medrad, Inc. System and method for measuring temperature in a strong electromagnetic field
US6481886B1 (en) * 2000-02-24 2002-11-19 Applied Materials Inc. Apparatus for measuring pedestal and substrate temperature in a semiconductor wafer processing system
US6795730B2 (en) 2000-04-20 2004-09-21 Biophan Technologies, Inc. MRI-resistant implantable device
US8527046B2 (en) 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
US20020116029A1 (en) * 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US6829509B1 (en) 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
DE10113661A1 (de) * 2001-03-21 2002-09-26 Philips Corp Intellectual Pty Katheter zur Anwendung in einem Magnetresonanz-Bildgerät
DE10119543A1 (de) * 2001-04-21 2002-10-24 Philips Corp Intellectual Pty Optische MR-Signalübertragung
US7054686B2 (en) * 2001-08-30 2006-05-30 Biophan Technologies, Inc. Pulsewidth electrical stimulation
US6731979B2 (en) 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
US6921920B2 (en) * 2001-08-31 2005-07-26 Smith & Nephew, Inc. Solid-state light source
DE10149955A1 (de) * 2001-10-10 2003-04-24 Philips Corp Intellectual Pty MR-Anordnung zur Lokalisierung eines medizinischen Instrumentes
WO2003037399A2 (en) * 2001-10-31 2003-05-08 Biophan Technologies, Inc. Hermetic component housing for photonic catheter
US8423110B2 (en) * 2002-01-09 2013-04-16 Boston Scientific Scimed, Inc. Imaging device and related methods
US6968236B2 (en) * 2002-01-28 2005-11-22 Biophan Technologies, Inc. Ceramic cardiac electrodes
AU2003217553A1 (en) * 2002-02-19 2003-09-09 Biophan Technologies, Inc. Magnetic resonance imaging capable catheter assembly
US8328877B2 (en) * 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US6711440B2 (en) 2002-04-11 2004-03-23 Biophan Technologies, Inc. MRI-compatible medical device with passive generation of optical sensing signals
US7769426B2 (en) * 2002-04-23 2010-08-03 Ethicon Endo-Surgery, Inc. Method for using an MRI compatible biopsy device with detachable probe
US20030199753A1 (en) * 2002-04-23 2003-10-23 Ethicon Endo-Surgery MRI compatible biopsy device with detachable probe
US6725092B2 (en) * 2002-04-25 2004-04-20 Biophan Technologies, Inc. Electromagnetic radiation immune medical assist device adapter
AU2003240529A1 (en) * 2002-06-04 2003-12-19 Biophan Technologies, Inc. Nuclear magnetic resonance spectrometer assembly
US6925322B2 (en) * 2002-07-25 2005-08-02 Biophan Technologies, Inc. Optical MRI catheter system
ATE365334T1 (de) * 2003-01-10 2007-07-15 Deutsches Krebsforsch Vorrichtung zur ermittlung von ort und orientierung eines invasiven geräts
US20040171934A1 (en) * 2003-02-06 2004-09-02 Khan I. John Magnetic resonance system with multiple independent tracking coils
US20040199069A1 (en) * 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US7708751B2 (en) 2004-05-21 2010-05-04 Ethicon Endo-Surgery, Inc. MRI biopsy device
US9638770B2 (en) * 2004-05-21 2017-05-02 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating an imageable penetrating portion
US8932233B2 (en) 2004-05-21 2015-01-13 Devicor Medical Products, Inc. MRI biopsy device
US20060064002A1 (en) * 2004-09-20 2006-03-23 Grist Thomas M Method for monitoring thermal heating during magnetic resonance imaging
US7289856B1 (en) * 2004-09-29 2007-10-30 Pacesetter, Inc. Medical electrical lead containing a pyroelectric material
TWI258123B (en) * 2005-02-03 2006-07-11 Lite On It Corp Apparatus for positioning a clamper of a disc driver
JP2009519729A (ja) * 2005-03-16 2009-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴コイルの光学的デカップリング及び同調
US20060241385A1 (en) * 2005-04-12 2006-10-26 Ethicon Endo-Surgery, Inc. Guided disposable fiducial for breast biopsy localization fixture
US7324628B2 (en) * 2005-04-22 2008-01-29 General Electric Company Method of testing a medical imaging device
US20100022868A1 (en) * 2005-09-14 2010-01-28 The Government Of The U.S.A., As Represented By The Secretar, Dept. Of Hhs ACTIVE MRI COMPATIBLE AND VISIBLE iMRI CATHETER
US20070106148A1 (en) * 2005-10-28 2007-05-10 Dumoulin Charles L Electronic circuits to improve the sensitivity of magnetic resonance tracking catheters and intraluminal RF coils
EP1785739A1 (en) 2005-11-14 2007-05-16 DKFZ Deutsches Krebsforschungszentrum An elongate, segmented, RF safe device for use with an MRI machine
US7173426B1 (en) * 2005-11-29 2007-02-06 General Electric Company Optical link for transmitting data through air from a plurality of receiver coils in a magnetic resonance imaging system
US7345485B2 (en) * 2006-01-18 2008-03-18 Koninklijke Philips Electronics N.V. Optical interface for local MRI coils
JP5534652B2 (ja) * 2007-07-12 2014-07-02 株式会社東芝 磁気共鳴イメージング装置
US8080073B2 (en) * 2007-12-20 2011-12-20 3M Innovative Properties Company Abrasive article having a plurality of precisely-shaped abrasive composites
US8201996B1 (en) 2008-04-25 2012-06-19 Ipitek, Inc. Passive wavelength-division multiplexing (WDM) fiber-optic temperature sensor
US8206030B1 (en) * 2008-05-19 2012-06-26 Ipitek, Inc. Multiple sensing tip optical fiber thermometer
US20100217115A1 (en) * 2009-02-25 2010-08-26 Hushek Stephen G Temperature sensing within a patient during mr imaging
US8519711B2 (en) 2009-03-31 2013-08-27 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US20110066028A1 (en) * 2009-09-11 2011-03-17 Pacesetter, Inc. Systems and methods for remote monitoring of implantable medical device lead temperatures during an mri procedure
US20110201965A1 (en) * 2010-02-18 2011-08-18 John Anthony Hibner MRI Compatible Biopsy Device
US20130274591A1 (en) * 2011-01-05 2013-10-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Serv Single channel mri guidewire
US9820718B2 (en) 2012-03-01 2017-11-21 Syracuse University Enhanced electronic external fetal monitoring system
CA2911756C (en) 2013-05-09 2023-06-27 Sunnybrook Research Institute Systems and methods for providing visual feedback of touch panel input during magnetic resonance imaging
US20150015254A1 (en) 2013-05-17 2015-01-15 Imris Inc. Control of SAR Values in MR Imaging
WO2015157695A1 (en) * 2014-04-10 2015-10-15 Georgia Tech Research Corporation Interventional mri compatible medical device, system, and method
CN106415225B (zh) * 2014-04-15 2019-06-04 皇家飞利浦有限公司 用于温度测量的低成本磁共振安全探头
JP6717844B2 (ja) * 2014-10-31 2020-07-08 アールティーサーマル リミティド ライアビリティ カンパニー 磁気共鳴イメージングにおける患者の温度をモニタするシステムおよび関連する方法
US10773073B2 (en) 2015-01-12 2020-09-15 Medtronic, Inc. Methods, implantable medical leads, and related systems to monitor and limit temperature changes in proximty to electrodes
EP3363357A1 (en) * 2017-02-20 2018-08-22 Koninklijke Philips N.V. Contactless skin surface conductivity detector
EP3651848A1 (en) * 2017-07-08 2020-05-20 Medtronic Inc. Methods, implantable medical leads, and related systems to monitor and limit temperature changes in proximity to electrodes
US11691005B2 (en) * 2018-12-20 2023-07-04 Medtronic, Inc. Medical device and MRI systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215275A (en) * 1977-12-07 1980-07-29 Luxtron Corporation Optical temperature measurement technique utilizing phosphors
US4558279A (en) * 1983-03-07 1985-12-10 University Of Cincinnati Methods for detecting and imaging a temperature of an object by nuclear magnetic resonance
DE3566169D1 (en) * 1984-09-24 1988-12-15 Siemens Ag Opto-electronic device
US5209233A (en) * 1985-08-09 1993-05-11 Picker International, Inc. Temperature sensing and control system for cardiac monitoring electrodes
JPH0795004B2 (ja) * 1986-12-24 1995-10-11 テルモ株式会社 生体の温度測定装置
US5003965A (en) * 1988-09-14 1991-04-02 Meditron Corporation Medical device for ultrasonic treatment of living tissue and/or cells
US5284144A (en) * 1989-11-22 1994-02-08 The United States Of America As Represented By The Secretary Of The Dept. Of Health & Human Services Apparatus for hyperthermia treatment of cancer
JPH0449949A (ja) * 1990-06-15 1992-02-19 Hitachi Ltd 磁気共鳴サーモグラフィー方法
US5323778A (en) * 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
US5304214A (en) * 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
JP3325300B2 (ja) * 1992-02-28 2002-09-17 株式会社東芝 超音波治療装置
US5307808A (en) * 1992-04-01 1994-05-03 General Electric Company Tracking system and pulse sequences to monitor the position of a device using magnetic resonance
US5318025A (en) * 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5353795A (en) * 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
EP0627206B1 (en) * 1993-03-12 2002-11-20 Kabushiki Kaisha Toshiba Apparatus for ultrasound medical treatment
US5307812A (en) * 1993-03-26 1994-05-03 General Electric Company Heat surgery system monitored by real-time magnetic resonance profiling
US5599345A (en) * 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5411023A (en) * 1993-11-24 1995-05-02 The Shielding Corporation Optical sensor system
JPH10500885A (ja) * 1995-03-22 1998-01-27 フィリップス エレクトロニクス エヌ ベー モニタを含む磁気共鳴装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109720B (zh) * 2006-07-19 2011-02-16 西门子(中国)有限公司 测量磁性材料磁感应强度对温度变化特性的方法及装置
CN101903788A (zh) * 2007-12-21 2010-12-01 皇家飞利浦电子股份有限公司 磁共振安全性监测系统和方法
CN101903788B (zh) * 2007-12-21 2015-01-28 皇家飞利浦电子股份有限公司 磁共振安全性监测系统和方法
CN102369450A (zh) * 2009-04-01 2012-03-07 皇家飞利浦电子股份有限公司 用于全面的可植入装置安全测试和患者安全监测的磁共振系统和方法
CN103765176A (zh) * 2011-09-02 2014-04-30 皇家飞利浦有限公司 使用分布式光纤温度感测的医学设备插入和退出信息
CN103765176B (zh) * 2011-09-02 2016-08-17 皇家飞利浦有限公司 使用分布式光纤温度感测的医学设备插入和退出信息
CN104797954A (zh) * 2012-11-15 2015-07-22 皇家飞利浦有限公司 包括用于测量线圈线缆及阱的温度和/或应变的分布式传感器的mri
CN104797954B (zh) * 2012-11-15 2018-07-27 皇家飞利浦有限公司 包括用于测量线圈线缆及阱的温度和/或应变的分布式传感器的mri
CN111537102A (zh) * 2012-12-18 2020-08-14 皇家飞利浦有限公司 用于表面和身体温度测量的可重复使用的mr安全温度探头

Also Published As

Publication number Publication date
US5730134A (en) 1998-03-24
US5882305A (en) 1999-03-16
DE19738543A1 (de) 1998-03-12
JP3978264B2 (ja) 2007-09-19
IL121673A0 (en) 1998-02-22
KR19980024447A (ko) 1998-07-06
JPH10155766A (ja) 1998-06-16
JP2007203099A (ja) 2007-08-16
IL121673A (en) 2000-02-17
JP4153017B2 (ja) 2008-09-17

Similar Documents

Publication Publication Date Title
CN1183587A (zh) 监控磁共振过程中插入器件附近的温度的温度监控系统
US11592501B2 (en) Magnetic probe apparatus
JP3440114B2 (ja) 多重磁気共鳴検出を使用して器具の位置および方向を監視するための追跡システム
JP3440113B2 (ja) 器具内の試料の磁気共鳴検出により器具の位置を追跡するシステムおよび方法
US5782241A (en) Sensor device for electrocardiogram
JP4053091B2 (ja) 磁気共鳴画像化装置で用いられる侵襲的装置
CA2141271C (en) Magnetic resonance system for tracking a medical appliance
JP4315661B2 (ja) 医療器具を位置決めするための磁気共鳴装置
US7791353B2 (en) Ground loop locator
JP2008539411A (ja) 材料の磁気特性を測定する装置及び方法
EP0165742A2 (en) Catheter for use with NMR imaging systems
JP2006517416A (ja) 光mriカテーテルシステム
Sonmez et al. MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety
US20090069671A1 (en) Electric Motor Tracking System and Method
US20090322323A1 (en) Intraluminal Magneto Sensor System and Method of Use
EP1438921A1 (en) Device for detecting a position and an orientation of a medical insertion tool inside a body cavity
CN101416874A (zh) 能够用于压力感测的导管
WO1992003090A1 (en) Probe system
US20050070790A1 (en) Inserting shape detecting probe
RU2702943C2 (ru) Механизм обнаружения витков кабеля для использования в сильных магнитных полях
US20110137154A1 (en) Magnetic probe apparatus
EP0576016B1 (en) Diagnostic system using nuclear magnetic resonance phenomenon
US8019403B2 (en) Mobile radio transmission unit
CN102498409A (zh) 带有具有用于除颤器电极的开口或用于除颤器线缆的连接器的心脏线圈的mri 系统
JP2002528214A (ja) 対象検査装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication