CN1183419A - 交联的多孔无表皮pvc树脂的水液相转换聚合方法 - Google Patents

交联的多孔无表皮pvc树脂的水液相转换聚合方法 Download PDF

Info

Publication number
CN1183419A
CN1183419A CN96122819A CN96122819A CN1183419A CN 1183419 A CN1183419 A CN 1183419A CN 96122819 A CN96122819 A CN 96122819A CN 96122819 A CN96122819 A CN 96122819A CN 1183419 A CN1183419 A CN 1183419A
Authority
CN
China
Prior art keywords
resin
polymerization
monomer
crosslinked
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96122819A
Other languages
English (en)
Other versions
CN1091114C (zh
Inventor
罗斯·姆斯·科曾斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geon Co
Original Assignee
Geon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geon Co filed Critical Geon Co
Publication of CN1183419A publication Critical patent/CN1183419A/zh
Application granted granted Critical
Publication of CN1091114C publication Critical patent/CN1091114C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Abstract

介绍了交联的PVC多孔性粒料。这种粒料是无表皮的。且粉料混合时间短。还介绍了合成这种新型树脂粒料的方法。

Description

交联的多孔无表皮PVC树脂 的水液相转换聚合方法
通过压延成型或挤出成型的聚氯乙烯(PVC)树脂的产品表面非常平滑,具有光泽的外表。这种光泽的外表在许多实际应用中是适合的,如用作包装薄膜和光洁的容器等。如果要获得粗糙或消光的表面,即通常所说的消光面时,建议采用交联PVC树脂。一些消费者发现消光处理很适合他们的产品。将PVC树脂交联后,树脂具有更多的橡胶性能,从而生成消光的外表。交联的树脂在其它性能方面也得到改善,例如耐磨损性能。
交联的树脂在许多应用中需要混入大量的增塑剂。PVC树脂通常具有孔隙,能够吸收增塑剂。而交联树脂对其快速吸收增塑剂的能力产生不利的影响。尽管交联的树脂具有孔隙,但它和增塑剂结合的速度不如具有相同孔隙度的非交联的树脂快。这就使得混和增塑剂的时间延长。这个混合时间通常称作“粉料混合时间”。
因此,需要一种能很快地吸收增塑剂,从而具有一个快速粉料混合时间的交联PVC树脂。
本发明的一个目的是提供一种无表皮的颗粒状交联PVC树脂。
本发明进一步的目的是提供一种粉料混合时间短的交联PVC树脂。
本发明的另一个目的是提供一种颗粒状的交联PVC树脂,这种树脂是非球状的,多孔,酥脆的,以及无表皮层。
本发明的再一个目的是提供一种生产上述交联的树脂的工艺。
本发明的上述和其它的目的通过下面的叙述将会很清楚。
具有颗粒状的交联的PVC树脂,其特征是,占重量百分数90%以上的树脂颗粒具有下面的特性:
(a)上述树脂颗粒实质上不存在环绕树脂颗粒的连续膜层,因而是无表皮的。
(b)复数粘度大约在0.9×105-1000.0×105泊,较好的是在1.0×105-100.0×105泊,更好的是在4.0×105-60.0×105泊;
(c)tanδ值小于1.0,较好的是从大约0.1到大约0.95之间,更好的是在大约0.3到大约0.7之间。
占90%以上的上述树脂颗粒还应具有下述特性:
(a)用注汞法测出的孔隙度为大约0.1cc/g到大约0.8cc/g,较好的是在大约0.3cc/g到大约0.5cc/g之间;
(b)附聚成团的非球状颗粒的形状系数小于大约0.85,较好的是小于0.83,更好的是小于约0.80。
(c)重均颗粒尺寸从大约70微米到大约1000微米间,较好的是从大约100微米到大约250微米。
(d)颗粒脆度小于2,较好的是小于1,更好的是等于0。
(e)粉料混合时间少于约400秒,较好的是少于约300秒,更好的是少于250秒。
(f)用ESCA测定上述树脂颗粒的表面积,PVC面积大于约20%,较好的是大于约50%,更好的是大于约60%。
生产本发明的较好的新型树脂颗粒的工艺是:在搅拌的水相悬浮液中在交联剂存在下使氯乙烯单体聚合;其中水相介质中含有少量的至少一种离子敏感性分散剂做为主悬浮剂使水增加稠度。水相中还要至少有一种助分散剂;一种离子型材料,当单体较化率为大约1%到5%时加入。这些离子型材料从单位液滴上将大量的对离子敏感的主分散剂脱附,由此生产出一种交联无皮的,附聚成团高孔隙度的,脆性PVC树脂。这种树脂颗粒没有连续的环绕颗粒的膜层。
还提供了其它的工艺来制备本发明的无表皮交联PVC树脂颗粒。
本发明制备的树脂,尽管是高度交联的,但出乎意料的是其粉料混合时间短,且能很快地混合大量的增塑剂。
附图是一张半对数座标图,显示出本发明实例II(实验序号1-24)制备的无表皮的交联树脂和例III(A-D)中市售有表皮型交联树脂的范围。复数粘度值标在Y-轴上,单位为105泊,Y-轴是对数座标刻度。X-轴是tanδ值。图中数字表示实例II中相应实验序号,而字母A-D表示相应的例III中的树脂。
本发明中所使用的聚氯乙烯(PVC)树脂包括聚氯乙烯均聚物,以及氯乙烯与一种或多种具有至少一个CH2=C<端基的乙烯基类单体的共聚物,这种乙烯基类单体用量至多为50%(重量),较好的是20%。能和氯乙烯单体共聚的合适的共聚单体有丙烯酸酯类,如丙烯酸甲酯,丙烯酸乙酯,丙烯酸丁酯,丙烯酸辛酯,丙烯酸氰基乙酯等等;醋酸乙烯;甲基丙烯酸酯类,如甲基丙烯酸甲酯,甲基丙烯酸乙酯,甲基丙烯酸丁酯等等;苯乙烯和苯乙烯的衍生物,包括α-甲基苯乙烯,乙烯基甲苯,氯代苯乙烯,乙烯基萘;二烯烃类包括丁二烯,异戊二烯,2-氯代丁二烯等等;以及任意一种上述单体与其它可共聚的乙烯基类单体混合物,再有的就是本专业技术人员所知的其它类型的乙烯基类单体。正如内行人所熟知的那样,与氯乙烯共聚合的共聚单体的含量和所选择的共聚单体有关。本发明中聚氯乙烯选用均聚物为好。这里所说的聚乙烯均聚物包括聚合的氯乙烯以及少量的交联剂。从道理上讲,本发明中的交联的树脂总是共聚物,这是因为交联剂和氯乙烯共聚合。然而,交联剂含量非常少,在这种特定情况下,由氯乙烯和交联剂聚合而成的树脂就被称为均聚物。本发明将以聚氯乙烯均聚物做为一个较好的例子来加以说明。
本发明的无表皮的交联树脂颗粒可以用许多种方法制备,例如搅拌下的水相悬浮聚合方法,这是一个较好的方法。也可以用本体聚合法制备,本体聚合是在无水无表面活性剂的条件下进行的。美国专利3,522,227号中叙述了一种本体聚合方法,这里做为参考文献。该本体聚合法生产的PVO树脂无表皮,因为这时无表面活性剂存在。
在本体聚合中,氯乙烯通过两步法合成(本体中除了添加适量的催化剂外没有其它添加剂);聚合的第一步中用高速搅拌;第二步中用非常温和的搅拌,通常只是用来维持聚合体系中温度均匀。在第一步高速搅拌聚合反应中,聚合转化率控制在7~15%,较好的控制在10%左右。然后将聚合液转移到第二个反应釜中聚合到所需的转化率为止。第一步反应物通常称之为预聚物。交联剂可以加入到预聚反应釜中。当然,本体聚合也可以采用单釜进行,但用两釜法较好。
本发明所述的交联的无表皮树脂也可以采用一种相转变聚合方法生产。在美国专利3,706,722号中公布了这种相转变聚合方法,在此引此专利做为参考资料。在相转变聚合方法中,在聚合的初期阶段单体是连续相,在聚合转化率达10%左右后,往聚合体系中再加入水,使水成为连续相而单体成为不连续相。这种方法其实质是先进行本体聚合达到10%左右转化率,然后变为悬浮聚合反应。下面用较好的水相悬浮聚合方法来解释本发明。
用来生产本发明较好的新型树脂颗粒的优选方法是搅拌下的水相悬浮聚合方法。其中水是聚合介质,乙烯基单体与水的比例范围在大约1.0∶1.0到1.0∶10.0之间,较好的是采用大约1.0∶1.0到1.0∶4.0之间的比例范围。
生产本发明较好的树脂颗粒的方法的重要特征是分散剂体系,分散剂在聚合反应中的作用是稳定分散开的单体油滴。胶态不稳定体系将造成聚合物结块,就是说单体油滴将集聚成团,这样的PVC树脂不能正常使用。添加一种能防止任何单体油滴集聚的分散剂体系,则生产出一种球状树脂颗粒。这种生产球状树脂颗粒的方法见于美国专利4,603,151。为了获得本发明的适度集聚的无表皮树脂颗粒,需要达到既有少部分单体油滴集聚,但又不过分集聚以致于形成过多的粗大颗粒这两方面很好的协调。本发明的方法中的一个重要内容是使用能使水增稠的离子敏感性分散剂。这种增稠剂的例子以及使用方法公布于美国专利3,620,988号中。在这里作为参考资料。能使水增稠的离子敏感性分散剂通常是高分子量的分散剂或是交联的分散剂,这些分散剂在水中的浓度低于2%时就能将水增稠。较好的是低于0.2%,更好的是低于0.1%。适用的离子敏感性增稠分散剂有交联的聚丙烯酸类,交联的乙烯基苹果酸酐聚合物,高分子量的非交联聚丙烯酸类和乙烯基苹果酸酐类聚合物等等。本发明将结合一种实质上未中和的交联的共聚物来说明。
一种合适的离子敏感性增稠剂是一种基本上未被中和的交联的共聚物,由一种或多种含羧基的单体和一种带有多个可聚合的不饱和端基化合物共聚而成。例如交联的聚丙烯酸。交联使得聚丙烯酸在水中不能形成真溶液。从这一点而言,这些丙烯酸类聚合物被认为实质上是不溶于水的。尽管如此,共聚物的结构应该是使得它具有足够的亲水性,能在水介质中达到相当的溶胀程度,从而使水相变稠,但不能稠到妨碍快速搅拌的程度。共聚合物若只有微弱的或根本没有亲水性,且不会发生可观察到的溶胀的话,就不适用于本发明。
关于生产本发明的树脂中使用的交联聚合物分散剂,是由含羧酸基团的单体合成的,这类单体在羧基的α,β-位上至少有一个活性的碳-碳双键,其结构为:
Figure A9612281900081
其中R′是氢或-COOH基团,R″和R_各自可以是氢原子或是与双键上一个碳原子以单键相联的取代基团。在上式规定的羧酸类包括一元羧酸,如丙烯酸,其中双键在端基上如:或二元羧酸类如马来酸酐和具有下式结构的其它二元羧酸酐:其中R和R′是单键的取代基团,特别是下述基团如氢,卤素,烷基,芳香烃基,烷芳基,芳烷基和环脂肪基团等。
上面通式(1)所表示的羧酸包括了许多扩散剂材料,例如丙烯酸类,象丙烯酸本身就是,甲基丙烯酸,乙基丙烯酸,α和β氯代或溴代丙烯酸类,巴豆酸,马来酸,依康酸等等类似的羧酸类。
可聚合的羧酸酐类包括上述各种酸类的酸酐,有混合酸酐,以及上面通式(3)所表示的酸酐象马来酸酐等等。在许多情况下,最好是将一种羧酸酐类单体与一种象甲基乙烯醚,苯乙烯,乙烯等等类型的共聚单体共聚合。
所用的聚合物分散剂,较好的是选用那些由α,β-单烯烃的不饱和羧酸类单体聚合的产物。较好的羧酸类单体是丙烯酸类和具有下面通式结构的α-取代的丙烯酸类:其中R是单键的取代基,可以是氢,卤素原子,羟基,羧基,酰胺基,酯基,内酯基和内酰胺基团等等。
最好的聚合物分散剂是由轻度交联的丙烯酸类聚合物制备的。这类分散剂最有效。
能够和任何一种羧酸类单体或羧酸单体混合物配合使用的交联剂,可以是任何一种每个分子中带有两个或多个可聚合的CH2 端基的化合物,不一定非要是单体。这类化合物的例子有多不饱和度的烃类,聚醚,聚酯,腈,羧酸,酸酐,酮,醇等,以及含有一个或多个上述官能团或其它官能团的多不饱和度的化合物。确切地说,可以使用二乙烯基苯,二乙烯基萘,低分子量的可溶解的聚二烯烃类如聚丁二烯及其它可溶解的开链脂肪共轭双烯烃均聚物,这类可溶的聚合物不含共轭双键,还有其它的多不饱和度的碳氢化合物类;多不饱和度的酯类,酯-酰胺类及其它酯类衍生物如二丙烯酸乙二醇酯,二甲基丙烯酸乙二醇酯,丙烯酸烯丙基酯,亚甲撑双丙烯酰胺,亚甲撑双甲基丙烯酰胺,三丙烯酰基三嗪,六烯丙基三亚甲基三砜,及其它类似化合物;多不饱和度的聚醚类如二乙烯基醚,二烯丙基醚,二甲基代烯丙基醚,二烯丙基乙二醇醚,二烯丙基,三烯丙基或其它多烯丙基的甘油醚、1,2-丁二醇醚、1-苯基丙三醇-1,2,3醚、每个分子中含有2-7个或更多些的多元烯丙基,乙烯基,巴豆酰基及其它烯烃基的多元醚类,它们由多元醇制备,如碳水化合物糖类以及所谓的“糖醇”象赤鲜醇,季戊四醇,阿糖醇,艾杜糖醇,甘露糖醇,山梨醇,肌醇,棉子糖,葡萄糖,蔗糖和其它多羟基碳水化合物的衍生物。交联剂还可是相应的多烯烃硅烷类如乙烯基或烯丙基硅烷等。在上述例举的大量交联剂中,碳水化合物糖类、糖醇类和其它多羟基的碳水化合物衍生物的多烯烃基多元醚,每个分子含有2-7个烯烃基醚基团,这类化合物是特别有用的。这类材料很容易用Williamson法合成,即将烯烃类卤代物如烯丙基氯、烯丙基溴、甲基烯丙基氯、巴豆酰氯等等与一种或多种多羟基碳水化合物衍生物的强碱性溶液反应制备。
在本发明的悬浮聚合方法中,交联的共聚物作为主分散剂使用。在其合成过程中,两种主要的单体应按一定的比例存在于单体混合体系中,尽管精确的比例值将依所需共聚物的性能而改变。少量的多烯烃基多元醚与羧酸类单体很快发生共聚合,多烯烃基多元醚对羧酸单体的交联作用非常强烈,只要使用反应体系总重量0.1%这样少的交联剂,就能使交联的聚合物在水和溶剂中的溶解性大大降低。当使用重量百分数为0.1%~4.0%左右,或更好的在0.20%-2.5%左右的多元醚交联剂时,得到的是水不溶的聚合物,尤其是与对水极为敏感的丙烯酸类共聚产物。当用0.1%-6.0%,较好的是用0.2%-5%的多元醚与马来酸酐共聚合时,也能获得有用的分散剂。这就意味着,在双组份共聚物,或叫两种化合物的共聚合物中,单体混合物中的剩余组份将是含羧基的单体。
合成多组份共聚物时单体的比例的变化可按类似上述的方式进行。然而,通常要根据共聚物所需要的水溶性和其它性能来确定与之相适应的那么多的羧基(类)单体量和相应的那么少的其它单体组份的用量。因此,在这类共聚物中,羧基单体决不应少于混合单体总重量的25%,较好的是不少于40%。多组份共聚物可由下面各类单体的混合体系合成,其中羧酸类单体如丙烯酸用量为25%~95%,多烯烃多元醚类单体如蔗糖的多烯丙基醚0.1%-30%,以及5.0%-74.9%的一种或多种其它类单体。较好的多组份共聚物是三元共聚物,由百分重量为40%-95%的丙烯酸,0.20%-2.5%的多烯丙基多元醚如蔗糖的多烯丙基醚,和4%~59%的一种或多种其它单体共聚而成。其它单体的例子为马来酸酐,N-甲基丙烯酰胺,甲基乙烯基醚,乙基乙烯基醚,正丁基乙烯基醚等等,以及由马来酸酐,烷基乙烯基醚如甲基乙烯基醚和多烯丙基多元醚等组成的混合物,其中乙烯基醚和多烯丙基多元醚的摩尔数之和与混合物中马来酸酐的摩尔数相等。要记住在上述的比例中,如果前两种单体的用量采用最大量时,第三种其它的单体用量必须比最大比例用量稍少些。
在生产多组份共聚物过程中,适合作为添加组份的单体是含有一个乙烯基
Figure A9612281900111
端基的一元烯类单体,如苯乙烯,氯代和乙氧基取代的苯乙烯等,丙烯酰胺,N-甲基丙烯酰胺,N,N-二甲基丙烯酰胺,丙烯腈,甲基丙烯腈,丙烯酸甲酯,丙烯酸乙酯,丙烯酸2-乙基己酯,甲基丙烯酸甲酯,醋酸乙烯,苯甲酸乙烯酯,乙烯基吡啶,氯乙烯,偏二氯乙烯,1-氯-1-溴代乙烯,乙烯基咔唑,乙烯基吡咯烷酮,甲基乙烯基醚,乙基乙烯基醚,正丁基乙烯基醚,甲基乙烯基酮,乙烯,异丁烯,马来酸二甲酯,马来酸二乙酯等等以及其它单体。除了上述的一元烯键的单体外,许多二乙烯基,二烯烃基或其它多官能的酯,酰胺,醚,酮等等也可以用来合成多组份共聚物,尤其是那些多功能的单体,通常作为交联剂或不溶解剂使用,但很易于皂化和水解成羟基,羧基和其它亲水性基团。例如,一种丙烯酸和二乙烯基醚的共聚物是非水溶性的,但在放置时,逐渐溶解成溶液了,这可能是由于二乙烯基醚交联键的水解和断裂引起的。强酸或强碱的存在加速溶解过程。光谱分析结果证实在聚合物中存在非羧基上的羟基。同样,二元酯类如马来酸二烯丙基酯,双甲基丙烯酸乙二醇酯,丙烯酸酐,丙烯酸-β-烯丙氧酯以及其它酯类,容易在酸或碱的催化下水解或皂化,从而引入额外的羟基和/或羧基。在添加的第三类单体中,N-甲基丙烯酰胺,甲基乙烯基醚,乙基乙烯基醚,和二乙烯基醚对于合成基本上未中和的交联共聚物特别有用,这类共聚物在烯类单体悬浮聚合中作为离子敏感性分散剂使用。
在合成本发明的新型树脂的工艺中,用作基本上未中和的交联共聚物作为离子敏感性分散剂使用,其用量以待聚合单体总重量为100份计算,大约在0.01-0.1份重量份数范围,较好的用量为每100份以重量计算的待聚合单体加入大约0.02~0.06份重量份数的分散剂。
在合成本发明的较好的新型树脂的工艺中,最好添加第二种分散剂来配合离子敏感性分散剂使用。必须避免使用易使树脂颗粒表面生成表皮的分散剂,如甲基纤维素,高水解度的(高于70%)聚醋酸乙烯等。第二种分散剂应能溶于单体但在水中溶解不完全。对于聚醋酸乙烯(PVA)这种助分散剂,其水解百分数越高,水溶性越好。例如,水解度30%的PVA在单体中可溶但水中不溶;水解度55%的PVA在烯类单体中溶解非常好,但在水中也有部分溶解,水解度72.5%的PVA在水中完全溶解,因而是不适用的。完全水溶的分散剂将在聚合物颗粒上生成一层表皮。油溶性的不含聚环氧乙烷的助分散剂类适用于本发明。适用的不含聚环氧乙烷的助分散剂为下述化合物:脱水山梨糖醇的酯系列或甘油酯或聚甘油酯系列化合物,以及低水解度的(低于70%,较好的低于60%,最好低于大约55%)聚醋酸乙烯,这些分散剂不含聚环氧乙烷链段。这种分散剂的例子有三油酸脱水山梨糖醇酯,三硬脂酸脱水山梨糖醇酯,单油酸脱水山梨糖醇酯,单软脂酸脱水山梨糖醇酯,单油酸甘油酯,单硬脂酸甘油酯,单油酸三缩丙三醇酯,水解度50%的聚醋酸乙烯等等。也可用上述这些分散剂的混合体系。助分散剂的作用是增加聚合物颗粒的孔隙度和增加聚合体系中胶体的稳定。不含聚环氧乙烷的分散剂用量为每100份重量的单体用大约0.005份到1.0份重量分数,较好的是每100份重量单体用约0.1~0.4份重量的这种分散剂。本发明中可以使用多种助分散剂以满足助分散剂用量要求。
聚合反应用自由基引发剂引发。本发明的聚合反应中所用的可溶于单体的引发剂,或叫油溶性引发剂,是脂肪酰基,芳酰基,烷芳酰基,芳烷酰基的二过氧化物,有机过氧化氢,偶氮化合物,过氧化酯,过氧化碳酸酯,以及其它自由基引发剂类。这类引发剂的例子有:过氧化苯甲酰,过氧化月桂酰,过氧化二醋酰,异丙苯过氧化氢,甲基乙基酮的过氧化物,二异丙基苯二过氧化氢,2,4-二氯代过氧化苯甲酰,过氧化二萘酰,苯甲酰过氧化叔丁酯,邻苯二甲酸过氧化二叔丁酯,异丙基过碳酸酯,乙酰基环己基磺酰过氧化物,二仲丁基过氧化二碳酸酯;新癸酸过氧化叔丁酯,二正丙基过氧化二碳酸酯,偶氮二异丁腈,α,α′-偶氮二异丁酸酯,2,2′-偶氮双(2,4-二甲基戊腈)和其它许多引发剂。所使用的自由基引发剂依不同的聚合单体,聚合物分子量和颜色的要求,聚合温度等条件而选用。当考虑到引发剂的用量时,以聚合的单体重量为100份计算,添加大约0.005~1.00份重量的引发剂是适合的。然而,按聚合单体重量为100份计算,较好的是使用大约0.01~0.20份重量份数的引发剂。
本发明优选的悬浮聚合方法,可以在聚合单体适合的任何温度下进行。较好的是在0~100℃范围内进行,更好的是在大约40~80℃之间进行。为了在聚合过程中易于控制温度,反应介质保持与用水,盐水,蒸发等方法冷却的表面接触。用夹套聚合反应釜可做到这一点,在聚合反应过程中冷却物质在夹套内循环。这种冷却是必要的,因为绝大多数聚合反应本质上是放热的。当然,易于理解,如果必要的话,可以在夹套中通入加热介质。
所选用的合成本发明树脂的方法中包括使用一种离子型材料来将树脂上的主分散剂脱附下来。适用的离子型材料是碱类,它将中和聚丙烯酸主分散剂并生成盐。离子型材料较可取的是单价的无机碱或有机碱如胺类,氢氧化钠,氢氧化铵,氢氧化钾,氢氧化锂,等等。最适用的离子型材料是氢氧化钠。二价和三价的碱类能使聚丙烯酸主分散剂交联,因而通常不选用来做离子型中和剂。本发明以选用氢氧化钠做为离子材料为例来描述发明实例。主分散剂在聚合反应最初阶段起保护单体液滴作用。在主分散剂与氯乙烯发生接枝共聚之前,在聚合介质中加入NaOH。对离子敏感的主分散剂将从而溶胀增大尺寸,并从单体液滴上脱附下来。在主分散剂的尺寸增大之后对单体液滴的保护作用也就完成了。NaOH必须在聚合反应早期阶段加入。通常在单体转化率达到0.5%~5.0%左右加入。如果一开始或在单体转化率达到0.5%之前加入NaOH,主分散剂将过早地从单体液滴上脱附下来,从而造成悬浮体系不稳定。较好地是在转化率1%-3%之间,加入NaOH,更好地在转化率1-2%时加。由于主分散剂从单体液滴上脱附下来了,在液滴表面没有分散剂情况下聚合反应继续进行,从而获得的树脂颗粒基本上是无表皮的。当然,有一些主分散剂会连接在树脂颗粒上,但这并不与本发明相违背。所得的PVC树脂表面不可能象一般悬浮聚合的PVC树脂那样存在连续的环绕树脂颗粒的皮膜。
典型的NaOH加入量是使聚合体系的pH值足以升高0.5-1.0的量。通常使主分散剂脱附所需要的NaOH用量,以聚合单体重量为100份计算,为大约0.0010份到0.0100份重量。可以多加入些NaOH,但不起什么作用。
如果所用的离子敏感性分散剂在降低pH值时会增稠,那么体系中应加入HCl,而不是加碱来使该分散剂脱附。HCl的作用机理和前面讨论的相似,而且也和前面叙述的一样在低单体转化率时加入。
生产本发明的交联的无表皮树脂的另外一种方法,是使用极低浓度的离子敏感性主分散剂。在这种方法中,主分散剂的用量,以聚合单体的重量为100份计算,只需加入0.01~0.03份。在这种低浓度的情况下,就没必要加入NaOH来使主分散剂从单体液滴上脱附下来了。在这种方法中使用助分散剂,其用量如前所述。
生产本发明的树脂的再一种方法是用复合分散剂。复合分散剂是由不含聚环氧乙烷的助分散剂如脱水山梨糖醇的酯类象单油酸脱水山梨糖醇酯,不含聚环氧乙烷的分散剂如低水解度的PVA和主分散剂聚丙烯酸所组成的。脱水山梨糖醇的酯类是有效的成孔剂,但在用量高于0.1份时,它具有强烈的去稳定化作用。还发现,脱水山梨糖醇酯的用量高达0.2~0.4份时,将能阻止在主分散剂作用下表皮层的生成。另外,低水解度的PVA(低于70%,较好的是低于60%,最好是低于55%)用量为0.1~0.3份时,将会减少脱水山梨糖醇酯的不稳定化作用。用这种方法生产无皮交联树脂时,聚丙烯酸分散剂的用量随PVA的用量不同而改变。如果PVA用量大约为0.3份,则聚丙烯酸分散剂应少于0.04份;当PVA用量为大约0.1份时,聚丙烯酸分散剂的用量可以稍高些,如0.06份。随着PVA用量的增加,聚丙烯酸分散剂的用量必须降低以得到无表皮的树脂。水解度高于70%的PVA和象甲基纤维素之类的分散剂应避免使用,因为它们将在树脂上形成表皮。
在本发明生产无表皮树脂的方法中,采用的加料反应方法和美国专利申请06/846,163(申请日期1986年3月31日)中公布的方法相似,在此引此文件作为参考。这种加料方法就是大家所熟知的One Poly floating method方法。在这种方法中自由基引发剂首先和溶剂(如异丙醇)混合。采用引发剂溶液这种技术和由此带来的好处在上面所引的专利申请书中有详细的叙述。往聚合反应釜中加料的方法分为下面几步:
(a)在聚合釜中加入水和能使水稠化的离子敏感型主分散剂。该主分散剂可以直接加入,但较好的是以和水混合的浓混合液形式加入。水和主分散剂在加入反应釜之前可以预先混合。加入的水最好是软化水。
(b)搅拌水和主分散剂体系直到形成乳液为止。
(c)降低搅拌速度或停止搅拌,使体系不产生湍流。
(d)往聚合釜中加入聚合的单体和交联剂,使单体漂浮在乳化了的增稠的水层上面。
(e)加入自由基引发剂的溶液,选择性加入助分散剂。如果助分散剂没有和引发剂溶液相混合,那么它应该与单体预先混合后再加入反应釜中。
(f)让引发剂溶液在单体层中扩散。
(g)加快搅拌,以使整个聚合体系成乳化液。
(h)使聚合反应进行到转化率达1%~2%之间,然后加入NaOH,使主分散剂从单体液滴上脱附下来。
(i)继续聚合反应直到所需要的聚合程度为止。
另一种加料方法,(称作the two poly method)是首先将单体交联剂和含有引发剂和助分散剂的溶液一起加入到聚合釜中。当然,引发剂溶液可以在加入反应釜之前先与单体混合,在这种预先混合的情况下加入聚合釜后不需要搅拌。物料加好后将釜中的混合液充分搅拌。事先由离子敏感性增稠主分散剂与水混合形成的增稠水溶液通过聚合釜底部的进料口注入聚合釜中,然后再开始搅拌,聚合反应按前述方法进行。
引发剂也可以直接加入到含有主分散剂的水相中去。如果采用这种方法,引发剂就不必事先与溶济混合了。
制备本发明的交联的无表皮的树脂,需要使用交联剂。较好的交联剂应是既能溶于乙烯基单体,也能溶在乙烯基聚合物中。交联剂的竞聚率数值应能说明交联剂先与烯类单体加聚,而不是交联剂本身自加聚,聚合反应中有关的各种速率常数表示如下: 乙烯基单体的竞聚率(R1)由下式表示:
R1=K11/K12
交联剂的竞聚率(R2)由下式表示:R2=K22/K21R1与R2的乘积最理想的是等于1(R1×R2=1)
在正常终止聚合之前,交联剂应该完全反应掉,这样不致于使交联剂作为残存单体存在于乙烯基单体中。氯乙烯聚合通常进行到单体转化率大约为50%~90%之间,较好的是在大约65%~80%之间。当然,依照所需的树脂性能的不同,转化率可以高些或低些。
适用于生产本发明的新型树脂的交联剂的例子有:苯二甲酸二烯丙基酯类,如邻苯二甲酸二烯丙基酯,间苯二甲酸二烯丙基酯,对苯二甲酸二烯丙基酯,等等;含有烯键不饱和的二元羧酸二烯丙基酯类如马来酸二烯丙基酯,富马酸二烯丙基酯,依康酸二烯丙基酯,等等;饱和二元羧酸的二烯丙基酯类如己二酸二烯丙基酯,壬二酸二烯丙基酯,癸二酸二烯丙基酯,等等;二乙烯基醚类如二烯丙基醚,氰脲酸三烯丙基酯,异氰脲酸三烯丙基酯,偏苯三酸三烯丙基酯,二乙烯基乙二醇醚,二乙烯基正丁二醇醚,二乙烯基十八烷二醇醚等等;多羟基醇的二(甲基)丙烯酸酯类如二甲基丙烯酸乙二醇酯,二甲基丙烯酸一缩二乙二醇酯,二丙烯酸一缩二乙二醇酯,二甲基丙烯酸二缩三乙二醇酯等等;多羟基醇的三(甲基)丙烯酸酯类如三甲基丙烯酸三(羟甲基)丙烷酯,三甲基丙烯酸三(羟甲基)乙烷酯,三丙烯酸三(羟甲基)丙烷酯,三丙烯酸三(羟甲基)甲烷酯,三丙烯酸季戊四醇酯等等;多官能团的化合物类如邻苯二甲酸双(甲基丙烯酰氧基)乙醇酯,1,3,5,-三丙烯酰基六氢化三嗪,等等。也可以应用多种交联剂组成的混合体系。合成本发明的树脂选用邻苯二甲酸二烯丙基酯最好。
交联剂可以采用本专业技术人员所知道的任何一种方法加入聚合体系中,例如事先与乙烯基单体混合后再加入,直接如入聚合体系中,或在聚合过程中计量加入。较好的办法是在加入聚合反应釜之前首先将交联剂与乙烯基单体混合。如果采用本体聚合法来制备本发明的交联的无表皮的树脂,则交联剂应加入到预聚物中去。
生产本发明的树脂时所用的交联剂的用量,以乙烯基单体的重量为100份计算,大约为0.05份到5.0份重量份数,较好的是大约0.15~1.0份之间,最好是大约0.2 5~0.6份重量份数之间。
本发明方法生产的聚合物颗粒的重量平均直径大于70微米左右。颗粒的平均直径会达到1000微米,但通常聚合物颗粒的重均直径小于约300微米。对大多数最终使用来说,聚合物颗粒的直径为约100~250微米之间较好,更好的是在大约125~200微米之间。重均颗粒尺寸小于70微米的树脂几乎变为尘埃,易于产生静电,因而比较不适用。
本发明的较好的树脂颗粒是非球型的集聚体。前面叙述的优选的搅拌水相悬浮聚合法将生成非球状集聚态的树脂颗粒。与优选的搅拌下水相悬浮聚合方法相比本体聚合法和美国专利3,706,722中叙述的相转换聚合法生产的树脂更接近于球状。测量树脂颗粒球状的一个很好的办法是用光学法测定颗粒的形状系数。将树脂颗粒的影象投影到一平面上形成一个平面象,对这个树脂颗粒的平面影象作出其内切圆和外切圆,然后求出其形状系数。内切圆直径与外切圆直径的比例值就是所谓的形状因子。
在颗粒投影是个完美的圆环形时,其内切圆和外切圆的直径相同,因此,形状系数即为1.0。树脂颗粒的形状系数越接近于1.0,树脂颗粒就越近于球形。
按本发明选择的搅拌下水相悬浮聚合方法合成的树脂颗粒的形状系数小于大约0.85,较好的是小于大约0.83,最好的是小于0.80。由本体聚合法和相转换聚合法合成的树脂颗粒的形状系数在0.87~0.91左右。
由本发明生产的较好的树脂颗粒具有高孔隙度,由注汞式孔隙度仪测定的孔隙度为大约0.10cc/g到大约0.80cc/g之间。较好的注汞孔隙度在大约0.30cc/g~0.50cc/g之间。孔隙度按美国材料测试协会ASTMD-2873标准测定。有时测定的是DOP孔隙度值,对于同一树脂样品,DOP孔隙度值比本申请中报导的注汞孔隙度值要高0.02cc/g左右。当用本体聚合法时,控制单体聚合在低转化率35%~65%,较好的是在40%~50%之间以达到高孔隙度。
本发明的树脂必须是无表皮的。本发明中所用的“无表皮”这个词是指本发明的树脂不象传统的PVC树脂那样有一层连续环绕颗粒的膜。在某些树脂表面可能有不连续的皮面或皮斑点,根据本发明的意思这类树脂仍然属于无表皮的树脂。本发明中使用无表皮这个词包括了通常所指的低表皮的情况。表征无表皮树脂的一个方法是用XPS(ESCA)技术来测定树脂颗粒表面的组成。如果树脂是完全无表皮的,颗粒表面将没有主分散剂成份。通过ESCA测定,本发明的树脂表面上含有的主分散剂量将少于40%,较好的是少于25%,更好的是少于10%。树脂表面将主要由PVC和第二种表面活性剂(致孔剂)所组成。
用ESCA测定本发明的树脂颗粒的表面组成,结果含PVC量大于20%,较好的是大于约50%,更好的为大于约60%。这说明,在树脂颗粒表层上有相当数量的孔隙,这些孔隙使得增塑剂易于进入树脂并被树脂颗粒吸收。ESCA是缩略词,表示“用于化学分的电子能谱”。ESCA技术包括用X-射线管射出的X-射线照射试样,X-射线将试样表面上的原子中的电子轰击出来,再测定被轰击的电子数目和能量。从测定的这些信息中可以确定有哪种元素存在。ESCA分析的深度大约为20~30埃(A°),这相当于试样表层中5~6个单原子层。应该记住,ESCA试验测定的是所有暴露给ESCA仪的表面。对于无表皮或低表皮的树脂,孔隙开口于表面,因此X-射线射进孔隙内,从而分析测试结果反映的是树脂颗粒的孔隙底部和最外表面的结果。这就基本上解释了为什么用。ESCA分析无表皮树脂时显示出有助分散剂存在的结果。据信助分散剂存在于树脂的原始颗粒中,而从颗粒的孔隙中可以看到助分散剂。
测定树脂是否无表层的另-个方法是在显微镜下观察树脂或拍下树脂颗粒的显微照片,看看树脂是否有连续的皮层或环绕颗粒的膜存在,在显微照片上,可以看到本发明树脂颗粒的内部区域。高孔隙度的脆性的颗粒就象一块海绵,在树脂颗粒的表面上有许多孔洞。这些孔洞使得树脂能快速吸收增塑剂,并使颗粒变得酥脆,易于粉碎成更小的颗粒(原始颗粒)。根据美国材料测试协会ASTMD-6373标准用扭矩流变仪测定表明,本发明的树脂颗粒还具有快的粉料混合时间。本发明的树脂颗粒的粉料混合时间少于约400秒,较好的少于300秒,更好的少于250秒。
本发明的树脂还具有良好的脆性。一种树脂的脆度值是树脂颗粒粉碎成粒料并最终粉碎为粉料基本颗粒的相对难易程度的指标。树脂的脆度值越低,该树脂越适用。树脂的高脆度值将使软质挤塑制品上出现暂时的鱼眼斑,而且表面粗糙,在制品中鱼眼斑是残缺点,如薄膜制品,鱼眼斑为不均匀的斑块。在粉料挤塑成型和使用大量增塑剂时,树脂具有好的脆性这一点特别重要。测定PVC树脂的脆性的一个方法是将一定量的树脂放在研钵中用研杵捣碎,脆性越好,树脂颗粒越易被捣碎。树脂脆性被分为0-5五级,0级的树脂非常脆,相当于所知的最好的PVC树脂的脆性。第5级相当于高质量薄膜级别的树脂。在0~5之间的级数划分,是以0级的树脂和5级的树脂混合物为参照标准,将待测的树脂与之比较而定出。本发明的树脂的脆度值大约为2或更小些,较好的具有1或更小些的脆度值,最好的树脂脆度值为0。
作为参考用,由GeonR92(一种无表皮的球状PVC树脂,B、F、Goodrich公司根据美国专利3,706,722号所述的方法生产的商品),一种因其优异的脆性而闻名的PVC树脂,和另一种树脂GeonR30(一种高质量薄膜级别的有皮的PVC树脂,由B、F、Goodrich公司生产出售)共混物作为标准如下:
参考标准“0”级:由100份Geon92和0份Geon30所共混成;
参考标准“1”级:由80份Geon92和20份Geon30所共混成;
参考标准“2”级:由60份Geon92和40份Geon30所共混成;
参考标准“3”级:由40份Geon92和60份Geon30所共混成;
参考标准“4”级:由20份Geon92和80份Geon30所共混成;
参考标准“5”级:由0份Geon92和100份Geon30所共混成。
将待测树脂的脆性与参考标准的脆性比较。选择与测定样品的脆性最相近的参考标准,则参考标准的脆度值就是待测样品的脆度值。
PVC树脂在配料过程中的行为(以及其配成的混合料在加工中的行为)取决于树脂的下述性能,如树脂颗粒尺寸,孔隙度及与温度切变速率有关的流变学。 PVC树脂的流变性或叫流动行为受到树脂的分子量,结晶度,组成和可能存在的支链结构等因素的显著影响。表征这些分子性质的最好的方法是分析树脂的粘弹性能,特别是有支链结构存在时更是如此。本发明的交联树脂可用它们的粘弹性能来表征。
测定本发明树脂的粘弹性能的方法是,用一台机械流变波谱仪(Rheometrics MechanicalSPectrometer),上装有能摆动的平行的板。对一圆盘形试样施加作用力使圆盘形样品发生非常微小的形变(应变小于1%)。在试样形变时,有一部分能量由于分子链段的运动而损耗了。其余的能量由弹性机械能贮存了起来。这两种行为在测试过程中被同时检测到,它们反映了损耗模量(G″)的大小和贮存或叫弹性模量(G′)的大小。树脂的复数粘度(n*)也被测定出来,这一项相似于用毛细管流变仪测定的静态切变粘度。
复数粘度是树脂分子量的表征。特性粘度(IV)是通常用来表示PVC树脂分子量的方法。然而,交联的树脂不能完全溶解,因此无法准确测出IV值。所以本发明的树脂的分子量用复数粘度来表示,其单位为泊。复数粘度在210℃下测定。本发明的树脂的复数粘度大约在0.9×105泊~1000.0×105泊之间,较好的大约为1.0×105~100.0×105泊之间,最好的是在大约4.0×105~60.0×105泊之间。从树脂行为上看,复数粘度值为0.9×105泊相应于IV值为大约0.8,复数粘度值为60.0×105泊时相应于IV值约为1.5。
本发明树脂的另一个重要粘弹性质是tanδ,tanδ是损耗模量(G″)与能量贮存模量(G′)的比例,tanδ可由下列方程式表示: tan δ = G ′ ′ G ′ tanδ值是树脂中长链支化(交联)量的指标。没有交联的PVC均聚物的tanδ值大约为1.0。随着交联生成,tanδ值变小。本发明的交联树脂的tanδ值小于1.0,较好的大约在0.1~0.95之间,更好的大约在0.3~0.7之间。tanδ值在210℃测定。
为了进一步阐述本发明,给出了下列具体实例。应当明确理解,这些例子只是用来解释说明本发明,而不是为限制本发明。在下述例子中,所有的份数和百分数都是以重量计算的,另有说明的除外。
实例一
本实例用来阐述生产本发明的交联无表皮树脂的方法。本例子用一个1100加仑的反应器,安装有搅拌器和冷却装置。使用下列聚合反应配方。
           组份氯乙烯水(软化的)邻苯二甲酸二烯丙基酯聚丙烯酸分散剂NaOH异丙醇低水解度(55%)的PVA2-乙基己基过氧化二碳酸酯苯酚阻聚剂     份数(重量)1001500.2600.0250.00250.1200.3000.0450.020
各组分按前面叙述的the two Poly method方法加入到聚合釜中。反应在53℃进行。氢氧化钠以水溶液形式在反应5分钟后加入反应釜中(大约1%转化率)。反应275分钟后,用苯酚阻聚剂终止聚合反应。将树脂从反应釜中转移出来,除去残存单体,干燥成可自由流动的粉未。
所得的树脂颗粒是附聚成团的无规则形状,多孔隙,交联的无表皮树脂颗粒,具有如下性能:重均颗粒尺寸:         ——160微米注汞孔隙度:           ——0.407cc/g粉料混合时间:         ——216秒复数粘度:             ——20×105泊tanδ:                ——0.5
这个例子表明交联的无表皮树脂具有快的粉料混合时间和高孔隙度。其tanδ值反映出有相当的交联量。这种树脂在延压或挤出成型时得到的产品具有消光的表面。
实例二
这个例子是用以表明具有不同交联度的各种各样的交联的无表皮PVC树脂。所用的聚合反应配方和加料方法和实例一相同,只是交联剂(邻苯二甲酸二烯丙基酯)的用量和聚合温度不同。交联剂的量按每100份氯乙烯单体所用的份数计量。实验得到下述结果。
                                              表1
  实验序号  反应温度℃  交联剂份数   复数粘度×105(泊) tanδ 注汞孔隙度cc/g  粉料混合时间(秒) 重均颗粒尺寸(微米)
    12345678910111213     554053605353606553556070.565     2.00.600.600.750.450.450.500.750.320.400.250.760.50     45.0053.0023.0016.0020.7020.2011.0010.9013.0015.305.405.908.05     0.170.240.380.390.420.450.490.430.540.550.880.540.60     0.710.350.750.440.420.380.450.380.410.310.410.310.36     159363-181--227215--227259295     236136191218150235150163145226144149182
                                        表1(续)
  实验序号  反应温度℃   交联剂份数   复数粘度×105(泊) tan6  注汞孔隙度cc/g 粉料混合时间  (秒) 重均颗粒尺寸(微米)
   1415161718192021222324     5053646470706558585670     0.150.150.400.300.500.250.250.200.150.150.75     16.0010.606.304.451.900.922.386.205.707.404.50    0.730.820.750.750.680.730.790.800.820.850.52     0.410.390.320.310.780.46-0.370.360.360.67      --240228-136-225256--     235150185169453218-16616797214
复数粘度对tanδ值作图,画在一个半对数座标图上如附图所示。该图表明本实施例中制备的交联树脂的范围很广。在图中座标点旁的数字相应于实例2中的实验序号。
实例3
本实例用来比较市售的有表皮的交联PVC树脂和本发明的无表皮的交联树脂。
                                               表2
  市售的有表皮型PVC树脂   复数粘度×105(泊) tanδ   注汞孔隙度cc/g  粉料混合时间(秒)  重均颗粒尺寸(微米)
    ABCD     44.5031.5014.805.75     0.700.620.590.62     0.3490.3660.2040.239       448556477829      119123123109
从上面数据可以看出,有表皮的交联的树脂的粉料混合时间比本发明的无表皮交联的树脂的粉料混合时间要长很多。
有关上面四种相竞争的有表皮型交联树脂的数据也画在附图上。附图是复数粘度对tanδ的半对数座标图,其中在数据点边的字母A-D标明了实例3中相对应的树脂。
本发明的树脂有许多用途,例如糊墙纸和窗贴面等PVC产品,需要有一个消光的表面,本发明的交联的PVC树脂在需要时可以用100%的该树脂,也可以以任何比例和非交联的PVC树脂共混使用以获得所需要的结果。

Claims (2)

1.一种生产无表皮多孔性交联PVC树脂的水液相转换聚合方法,首先以单体为连续相进行乙烯基单体和至少一种交联剂的聚合反应,在单体聚合成高聚物的转化率达到大约1%~10%之间时,往聚合釜中加入水,以发生相转变,从而水相为连续相,单体成为非连续相。
2.权利要求1的方法,其中交联剂的用量为每100份重量份数的乙烯基单体使用约0.05份到5.0份,交联剂为邻苯二甲酸二烯丙基酯。
CN96122819A 1987-04-14 1996-09-25 交联的多孔无表皮聚氯乙烯树脂的水液相转换聚合方法 Expired - Fee Related CN1091114C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US038087 1987-04-14
US038,087 1987-04-14
US07/038,087 US4742085A (en) 1987-04-14 1987-04-14 Crosslinked porous skinless particles of PVC resin and process for producing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN88102092A Division CN1037973C (zh) 1987-04-14 1988-04-13 交联的多孔无表皮pvc树脂颗粒的制备方法

Publications (2)

Publication Number Publication Date
CN1183419A true CN1183419A (zh) 1998-06-03
CN1091114C CN1091114C (zh) 2002-09-18

Family

ID=21898030

Family Applications (2)

Application Number Title Priority Date Filing Date
CN88102092A Expired - Fee Related CN1037973C (zh) 1987-04-14 1988-04-13 交联的多孔无表皮pvc树脂颗粒的制备方法
CN96122819A Expired - Fee Related CN1091114C (zh) 1987-04-14 1996-09-25 交联的多孔无表皮聚氯乙烯树脂的水液相转换聚合方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN88102092A Expired - Fee Related CN1037973C (zh) 1987-04-14 1988-04-13 交联的多孔无表皮pvc树脂颗粒的制备方法

Country Status (16)

Country Link
US (1) US4742085A (zh)
EP (1) EP0287757B1 (zh)
JP (1) JP3110737B2 (zh)
KR (1) KR960008307B1 (zh)
CN (2) CN1037973C (zh)
AT (1) ATE124708T1 (zh)
AU (1) AU613339B2 (zh)
BR (1) BR8800677A (zh)
CA (1) CA1333838C (zh)
DE (1) DE3854100T2 (zh)
EG (1) EG18711A (zh)
FI (1) FI880531A (zh)
MX (1) MX168610B (zh)
NO (1) NO175005C (zh)
PT (1) PT87232B (zh)
YU (1) YU33688A (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045214A (en) 1983-03-21 1991-09-03 Union Oil Company Of California Methods for removing substances from aqueous solutions
AU622147B2 (en) * 1988-02-23 1992-04-02 Geon Company, The Rigid thermoplastic compositions capable of forming articles with matte surface
US4973609A (en) * 1988-11-17 1990-11-27 Memron, Inc. Porous fluoropolymer alloy and process of manufacture
US5104741A (en) * 1989-10-06 1992-04-14 The B. F. Goodrich Company Plasticized articles having vinyl resin-based products in contact with polymeric or polymer coated substrates
AU642072B2 (en) * 1991-03-01 1993-10-07 B.F. Goodrich Company, The High melt flow crosslinked PVC resin, compound, and articles derived therefrom
EP1160264A4 (en) * 1998-06-25 2002-08-21 Sekisui Chemical Co Ltd RESIN BASED ON CHLORINATED VINYL CHLORIDE AND MOLDED ARTICLES
ITMI20042022A1 (it) * 2004-10-25 2005-01-25 Polimeri Europa Spa Processo per la preparazione di polibutadiene a basso grado di ramificazione
US20090143547A1 (en) * 2007-11-29 2009-06-04 Cheng-Jung Lin Method for producing a functional vinyl halide polymer
US9594999B2 (en) 2012-04-03 2017-03-14 X-Card Holdings, Llc Information carrying card comprising crosslinked polymer composition, and method of making the same
US9122968B2 (en) 2012-04-03 2015-09-01 X-Card Holdings, Llc Information carrying card comprising a cross-linked polymer composition, and method of making the same
WO2014149926A1 (en) 2013-03-15 2014-09-25 X-Card Holdings, Llc Methods of making a core layer for an information carrying card, and resulting products
US11361204B2 (en) 2018-03-07 2022-06-14 X-Card Holdings, Llc Metal card
CN113861325A (zh) * 2021-10-25 2021-12-31 安徽华塑股份有限公司 Pvc软制品生产用聚氯乙烯树脂制备工艺
CN114316105B (zh) * 2021-12-06 2023-06-02 宜宾海丰和锐有限公司 悬浮法pvc中皮膜的去除方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR83714E (fr) * 1963-02-26 1964-10-02 Pechiney Saint Gobain Procédé de préparation en masse de polymères et de copolymères à base de chlorure de vinyle
FR1382072A (fr) * 1963-03-01 1964-12-18 Pechiney Saint Gobain Procédé de préparation en masse de polymères et de copolymères à base de chlorure de vinyle, en deux étapes, et variantes de mise en oeuvre dudit procédé
US3706722A (en) * 1967-05-29 1972-12-19 Dow Chemical Co Polymers from essentially water-insoluble unsaturated liquid monomers and process for preparing same
JPS5142138B1 (zh) * 1970-07-20 1976-11-13
US3711908A (en) * 1970-08-27 1973-01-23 Ibm Method for forming small diameter tips on sintered material cathodes
DE2852563C2 (de) * 1977-12-08 1982-12-30 Sumitomo Bakelite Co. Ltd., Tokyo Vinylchloridpolymerisatmasse und Verwendung derselben
US4229547A (en) * 1979-03-19 1980-10-21 The B. F. Goodrich Company Method of preparing spherical porous bead-type polymers
JPH044321B2 (zh) * 1980-05-19 1992-01-28
JPS5927774B2 (ja) * 1980-12-15 1984-07-07 電気化学工業株式会社 塩化ビニル系樹脂組成物及びその製造法
JPS57195711A (en) * 1981-05-29 1982-12-01 Kanegafuchi Chem Ind Co Ltd Vinyl chloride copolymer and composition thereof
US4435524A (en) * 1981-09-08 1984-03-06 The B. F. Goodrich Company Process for preparing spherical and porous vinyl resin particles
JPS58213009A (ja) * 1982-06-04 1983-12-10 Kanegafuchi Chem Ind Co Ltd 架橋塩化ビニル樹脂の製法
US4458057A (en) * 1982-10-27 1984-07-03 The Bf Goodrich Company Process for producing spherical and porous vinyl resin particles
JPS60156739A (ja) * 1984-01-27 1985-08-16 Toyoda Gosei Co Ltd 軟質樹脂ステアリングホイ−ル
DE3574258D1 (en) * 1984-06-29 1989-12-21 Shinetsu Chemical Co A method for the suspension polymerization of vinyl chloride monomer
JPS6114205A (ja) * 1984-06-29 1986-01-22 Shin Etsu Chem Co Ltd 塩化ビニル系単量体の重合方法
JPS6189212A (ja) * 1984-10-08 1986-05-07 Shin Etsu Chem Co Ltd 塩化ビニル系単量体の重合方法
JPS6191205A (ja) * 1984-10-12 1986-05-09 Shin Etsu Chem Co Ltd 塩化ビニル系重合体の製造方法
NO855126L (no) * 1985-01-07 1986-07-08 Dow Chemical Co Ko-suspenderingshjelpesystem for anvendelse ved polymerisering av etylenisk umettede monomerer.
US4603151A (en) * 1985-03-04 1986-07-29 The Bfgoodrich Company Spherical polyvinyl chloride particles
JPS61283603A (ja) * 1985-06-10 1986-12-13 Tokuyama Sekisui Kogyo Kk 塩素化塩化ビニル系樹脂の製造方法
US4668707A (en) * 1986-03-31 1987-05-26 The B. F. Goodrich Company Process for producing porous spherical polyvinyl chloride particles
US4711908A (en) * 1987-04-14 1987-12-08 The B. F. Goodrich Company Skinless porous particle PVC resin and process for producing same

Also Published As

Publication number Publication date
CA1333838C (en) 1995-01-03
KR960008307B1 (en) 1996-06-24
NO880534L (no) 1988-10-17
US4742085A (en) 1988-05-03
ATE124708T1 (de) 1995-07-15
YU33688A (en) 1989-10-31
CN1091114C (zh) 2002-09-18
MX168610B (es) 1993-06-01
NO175005B (no) 1994-05-09
DE3854100T2 (de) 1996-03-21
KR880012660A (ko) 1988-11-28
NO175005C (no) 1994-08-17
NO880534D0 (no) 1988-02-08
CN1037973C (zh) 1998-04-08
AU613339B2 (en) 1991-08-01
BR8800677A (pt) 1988-10-25
EP0287757B1 (en) 1995-07-05
PT87232A (pt) 1988-05-01
EG18711A (en) 1994-06-30
JPS63268713A (ja) 1988-11-07
AU1140988A (en) 1988-10-20
FI880531A0 (fi) 1988-02-05
PT87232B (pt) 1992-11-30
CN88102092A (zh) 1988-10-26
EP0287757A1 (en) 1988-10-26
DE3854100D1 (de) 1995-08-10
FI880531A (fi) 1988-10-15
JP3110737B2 (ja) 2000-11-20

Similar Documents

Publication Publication Date Title
CN1183419A (zh) 交联的多孔无表皮pvc树脂的水液相转换聚合方法
US4000216A (en) Surface altering agent for thermoplastic polymers
EP0330153A2 (en) Rigid thermoplastic compositions capable of forming articles with matte surface
KR950006127B1 (ko) 표피없는 다공질입자의 pvc수지 및 이것의 제조방법
US4775699A (en) Crosslinked porous skinless particles of PVC resin
KR940006445B1 (ko) 다공성 구형의 폴리염화비닐 입자들의 제조방법
US4775702A (en) Inversion process for producing low-skin porous friable particles of crosslinked PVC resin
JPS6132346B2 (zh)
EP2915827A1 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin using same
US4775698A (en) Process for producing porous substantially skinless particles of crosslinked PVC resin
US4775701A (en) Mass process for producing porous friable particles of crosslinked PVC resin
US4775700A (en) Process for producing porous skinless particles of crosslinked PVC resin
KR101943473B1 (ko) 폴리머 입자의 제조방법
AU642072B2 (en) High melt flow crosslinked PVC resin, compound, and articles derived therefrom
JP2020105249A (ja) 熱可塑性エラストマー組成物および成形品、ならびに熱可塑性エラストマー組成物の製造方法
JPH11189606A (ja) 塩化ビニル系樹脂の懸濁重合方法
JP3236186B2 (ja) 塩化ビニル系樹脂の製造方法
JPH11158221A (ja) 塩化ビニル系樹脂及び塩素化塩化ビニル系樹脂
JPH09227607A (ja) 塩化ビニル系単量体の懸濁重合方法
CN114981319A (zh) 聚乙烯醇系树脂、聚乙烯醇系树脂的制造方法、分散剂和悬浮聚合用分散剂
JP3730790B2 (ja) 塩化ビニル系樹脂の製造方法及びその樹脂組成物
JP2002088216A (ja) 塩化ビニル系樹脂組成物
JPH07102146A (ja) 塩化ビニル系樹脂組成物およびその製造方法
JPH07258496A (ja) 架橋性樹脂組成物および架橋成形体
JPH0776603A (ja) ビニル系樹脂の製造方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee