CN1174922C - 准晶体勃姆石的制备方法 - Google Patents

准晶体勃姆石的制备方法 Download PDF

Info

Publication number
CN1174922C
CN1174922C CNB00811448XA CN00811448A CN1174922C CN 1174922 C CN1174922 C CN 1174922C CN B00811448X A CNB00811448X A CN B00811448XA CN 00811448 A CN00811448 A CN 00811448A CN 1174922 C CN1174922 C CN 1174922C
Authority
CN
China
Prior art keywords
quasi
crystalline boehmites
crystalline
boehmite
ageing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB00811448XA
Other languages
English (en)
Other versions
CN1368938A (zh
Inventor
D
D·斯塔米莱斯
P·奥康纳
�������ɭ
G·皮尔森
W·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Netherlands BV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23468656&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1174922(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of CN1368938A publication Critical patent/CN1368938A/zh
Application granted granted Critical
Publication of CN1174922C publication Critical patent/CN1174922C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/447Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes
    • C01F7/448Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by wet processes using superatmospheric pressure, e.g. hydrothermal conversion of gibbsite into boehmite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/04Compounds with a limited amount of crystallinty, e.g. as indicated by a crystallinity index
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram

Abstract

本发明涉及一种改进的制备准晶体勃姆石的方法。在这种改进的方法中,准晶体勃姆石前体在pH低于7时,优选在水热条件下被陈化。已经发现,当取代现有技术中所采用的高pH值及热陈化,在pH低于7并且在水热条件下,进行现有技术中所述的准晶体氧化铝的制备过程时,所得到的是具有较高结晶度的QCBs。在本发明的方法中,添加剂可以加到准晶体勃姆石前体中。这样形成高质量的、含有均匀分散的添加剂的QCB。适合的添加剂为含有选自稀土金属、碱土金属、过渡金属、锕系元素、硅、镓、硼和磷的元素的化合物。

Description

准晶体勃姆石的制备方法
发明背景
发明领域
本发明涉及一种制备准晶体勃姆石的方法。
现有技术说明
氧化铝、α-一水合物或勃姆石及其脱水和或烧结形式是一些应用最广泛的氧化铝-氢氧化铝材料。一些主要的工业应用涉及这些材料中的一种或多种,这些应用如陶瓷、研磨材料、阻燃剂、吸附剂、催化剂、复合材料中的填料等等。另外,大部分工业勃姆石氧化铝均用于催化用途,如精制催化剂、加氢处理烃类进料的催化剂、重整催化剂、控制污染的催化剂、裂解催化剂。本文中术语“加氢处理”包括在升温、升压下烃类进料与氢反应的所有过程。这些过程包括加氢脱硫、加氢脱氮、加氢脱金属、加氢脱芳、加氢异构化、加氢脱蜡、加氢裂解及在温和压力条件下的加氢裂解,通常称之为温和加氢裂解。这类氧化铝也用作特定化学过程的催化剂,如环氧乙烷的制备及甲醇的合成。相对而言勃姆石类氧化铝或其改进形式更新的工业应用包括转化对环境不友好的化学组分如氯氟代烃(CFCs)及其它不希望的污染物。勃姆石类氧化铝还用作处理燃气轮机废气时还原氮氧化物的催化材料。
这些材料在如此众多的工业应用中具有广泛和多样的成功应用的主要原因是其能力及灵活性,可以被制成具有广泛的物化及机械性能的产品。
决定其工业应用包括气固相的相互作用,例如催化剂与吸附剂适用性的一些主要性能有孔体积、孔径分布、孔结构、比密度、表面积、密度及活性中心的类型、碱度和酸度、挤压强度、磨损性能、热和水热陈化性能(烧结性能)以及其长期的稳定性。
大体上,通过选择和用心控制一些参数可以获得所要求的氧化铝产品的性能。这些参数通常包括:原料、杂质、沉淀或转化过程的条件、陈化条件以及后续的热处理(煅烧/汽蒸),以及机械处理。
然而,尽管已知这项专门技术如此广泛和多样,该技术仍处于发展阶段,并且对生产者和最终的应用者来说,进一步开发这种以氧化铝为基础的材料,存在着无限的科学和技术挑战。
术语勃姆石在工业上用来描述氧化铝水合物,其XRD图形接近于氧化铝-氢氧化铝[AlO(OH)],该物质为自然存在的勃姆石或一水硬铝石。另外,通用术语勃姆石通常用于描述较宽范围的氧化铝水合物,这些物质含有不同量的水合水,具有不同的表面积、孔体积、比密度,并且在热处理时表现出不同的热特性。虽然它们的XRD图形显示出特定的勃姆石[AlO(OH)]峰,但是它们的宽度通常会变化,并且也可能改变位置。XRD峰的尖锐程度及其位置均被用于表明其结晶度、晶体尺寸以及其杂质的量。
大体上有两类勃姆石氧化铝。通常第一类包括在接近100℃的温度下合成和/或陈化的、大部分时间处于环境大气压力下的勃姆石。在本说明书中,这类勃姆石被称为准-晶体勃姆石。第二类勃姆石就是所谓的微晶体勃姆石。
在现有技术中,第一类勃姆石,即准晶体勃姆石,可相互替换地称为:假勃姆石、凝胶态勃姆石或准晶体勃姆石(QCB)。通常这些QCB氧化铝有非常高的表面积、大的孔和孔体积,以及比微晶体勃姆石更低的比密度。它们很容易分散在水中或酸中,具有比微晶体勃姆石更小的晶体尺寸,并且含有更大数目的水合水分子。QCB的水合程度可以具有宽的取值范围,例如每摩尔AlO,含有大约1.4到大约2摩尔的水,通常可以有序地嵌入或另外位于八面体层间。
从QCB材料中释放出来的水作为温度函数的DTG(差热分析)曲线表明,同更接近晶体的勃姆石相比,主峰出现在低得多的温度下。QCBs的XRD图形显示出很宽的峰,这些峰的半宽值表明晶体尺寸及晶体的完美程度。
最大强度处半宽值的加宽大体上是变化的,并且对于QCBs来说通常为大约2°-6°至2θ。另外随着嵌入QCB晶体中的水量增加,XRD主反射峰(020)移到更低的2θ值,对应于更大的d间隔。一些通常在工业上可以获得的QCB为:Condea Pural_、Catapal_和Versal_产品。
第二类勃姆石为微晶体勃姆石(MCB),与QCBs的区别在于它们高的结晶度、相对大的晶体尺寸、很低的表面积及高的密度。与QCBs相反,MCBs所显示的XRD图形具有更高的峰强度和很窄的半峰线宽。这是由于相对少的嵌入水分子数、大的晶体尺寸、主体材料更高的结晶度以及更少量的不完美结晶的存在。通常对于每摩尔AlO,嵌入的水分子数可以在大约1至大约1.4的范围内变化。在最大强度的半峰宽处XRD的主反射峰(020)的宽度为大约1.5至大约0.1度的2-θ(2θ)。针对本发明的目的,我们定义准晶体勃姆石在最大强度的半峰宽处的020峰宽为1.5或大于1.5°。而在最大强度的半峰宽处的(020)峰宽小于1.5的勃姆石则被认为是微晶体勃姆石。
通常工业上可以获得的MCB产品为Condea的P-200_级别的氧化铝。总之在QCB和MCB两类勃姆石之间基本的区别特征包括下列不同:三维网格序列、晶体尺寸、嵌在八面体层间的水量,以及晶体的不完美程度。
对于工业制备这些勃姆石氧化铝来说,QCB最常用的制备过程包括:
用碱中和铝盐、酸化铝盐、水解烷氧基铝、使金属铝(汞齐化的)与水反应,以及将煅烧三水铝石得到的无定形p氧化铝重新水合。通常MCB型勃姆石氧化铝可利用通常在高于150℃的温度和自身压力下通过水热过程进行工业制备。这些过程通常包括水解铝盐形成凝胶态氧化铝,然后在升温、升压下在高压釜中对其进行水热陈化。在US3,357,791中描述了这类过程。针对这一基本过程存在几种改变,包括不同的起始铝源、在陈化过程中加入酸或盐,以及较宽范围内的过程条件。
还可通过水热处理三水铝石来制备MCBs。针对这些过程的改进包括:在水热处理过程中加入酸、碱和盐,以及使用勃姆石晶种增大三水铝石到MCB的转化率。在Alcoa的US 5,194,243、US 4,117,105和US 4,797,139中也描述了这类过程。
然而,无论是假-、准-或微晶体,这些勃姆石材料的特征均在于其粉末的X光衍射。ICDD包括进入勃姆石并且确定对应于(020)、(021)和(041)平面的反射应该存在。对于铜射线,这些反射应出现在14、28和38度的2-θ处。各种勃姆石形式可通过反射的相对强度和宽度来区分。许多作者已经确认了针对结晶程度而言的反射的精确位置。而靠近上述位置的线会指示一种或多种勃姆石相的存在。
在现有技术中,我们发现含有金属离子的QCBs可以通过水解与镧系元素共沉淀的异丙氧基铝来制备,正如J.Medena的论文J.Catalysis,Vol.37,91-(1975),以及J.Wachowski等人,Materials Chemistry,Vol.37,29-38(1994)中所描述的。该过程是在pH高于7.0时进行的。其产物为包藏有一种或多种镧系金属离子的假勃姆石型氧化铝。这些材料主要用于高温工业用途,其中在假勃姆石结构中存在这些镧系金属离子延迟了γ-氧化铝向α-氧化铝相的转化。因此实现了γ相的稳定,即在转化成耐火的、比表面积较小的α-氧化铝之前,保持较高的表面积。具体地,Wachowski等人使用1-10%wt的镧系元素离子(La,Ce,Pr,Nd,Sm),在500-1200℃的温度范围内进行煅烧。
另外,EP-A1-0 597 738描述了通过加入镧,任选与钕组合,来实现氧化铝的热稳定。这种材料是在70-110℃的温度下,在含有镧盐的、pH为8-12的浆液中陈化可重新水合的氧化铝(即快速煅烧后的三水铝石),然后在100-1000℃的温度下进行热处理而制备的。
另外,EP-A-0 130 835描述了一种含有载带在镧或钕-β-Al2O3载体上的催化活性金属的催化剂。所述的载体是在镧、镨或钕盐溶液存在时,利用氢氧化铵沉淀硝酸铝溶液而制备的。由于沉淀后的无定形材料是直接用水洗涤并过滤的,因此在通常条件及一定pH值、浓度及温度下,氧化铝不必花时间进行陈化,以至于结晶成勃姆石氧化铝结构。
发明概述
本发明涉及一种改进的制备准晶体勃姆石的方法。在这种改进的方法中,准晶体勃姆石前体在pH低于7时,优选在水热条件下被陈化。
本发明的其它目的和实施方案包括有关组合物的详细情况、制备步骤等,在下文有关本发明每一侧面的讨论中,公开了所有内容。
附图简述
图1为Vista Chemicals的Catapal_的X射线衍射谱图(XRD)。
图2为实施例2的过程中所形成的QCB的XRD图形。
图3为实施例3的过程中所形成的QCB的XRD图形。
图4为对比例4的过程中所形成的QCB的XRD图形。
发明的详细说明
已经发现,当取代现有技术中所述的高pH值和热陈化,在pH低于7,优选在水热条件下,进行准晶体氧化铝的制备过程时,所得到的是具有较高结晶度的QCBs。适合的准晶体勃姆石前体为烷氧基铝、三水合铝如三水铝石、BOC及三羟铝石、以及它们的混合物。
在本发明的方法中,添加剂可以加到准晶体勃姆石的前体中。这样形成高质量的、含有均匀分散的添加剂的QCB。已经发现,与现有技术的方法中采用更高的pH值和热陈化相比,在pH低于7时,所形成的QCB中的添加剂分布得更均匀。事实上,我们已经发现某些添加剂只能在这些低pH值下加入并达到均匀分散状态,如硝酸镧和镍盐。在更高的pH值下,添加剂容易作为分散相沉淀出来。存在于QCB中的添加剂有助于调节QCBs的物理、化学及催化性能如热稳定性、比密度、表面积、孔体积、孔径分布、密度及活性中心的类型、碱度和酸度、挤压强度、磨损性能等等,从而决定勃姆石用作催化剂或吸附剂材料的适用性。事实是均匀分散在QCB内部的添加剂使本发明的QCBs与利用添加剂浸渍过的QCBs区别开来,并且使这些新的QCBs极其适合用于催化目的或作为制备非均相催化反应催化剂的起始原料。针对本发明的目的,如果在X射线衍射的图形中没有添加剂的反射,则说明添加剂均匀分散在QCB中,因此该添加剂不是以分散相存在。当然,也可以将不同类型的添加剂结合到本发明的QCB中。
适合的添加剂为含有选自稀土金属、碱土金属、碱金属、过渡金属、锕系元素、贵金属如Pd和Pt、硅、镓、硼、钛和磷的元素的化合物。例如,硅的存在增加了勃姆石中酸位的量,过渡金属引入了催化或吸附活性,如捕集SOx、捕集NOx、加氢、加氢转化及其它的气/固相互作用的催化体系。
适合的含有所需元素的化合物为硝酸盐、硫酸盐、氯化物、甲酸盐、乙酸盐、碳酸盐、钒酸盐等等。使用带有可分解的阴离子的化合物是优选的,因为所形成的带有添加剂的QCBs可以直接干燥,不需要任何洗涤,因为催化目的所不需要的阴离子是不存在的。
本发明的QCBs可以按照几种方式进行制备,只要陈化步骤是在pH低于7的条件下进行即可。该方法优选在水热条件下进行。通常准晶体勃姆石前体和任选的添加剂优选在水热条件下被陈化,以形成准晶体氧化铝。可以进行水热陈化,这意味着在质子液体或气体如水、乙醇、丙醇或蒸汽存在时,并且在压力下即在升高的压力下进行陈化,如在水中、在高于100℃的温度下、在自身压力下进行陈化。适合的制备方法的例子如下文所述:
方法1
可以通过水解并陈化烷氧基铝来制备QCB,优选在水热条件下进行陈化。可以在水解步骤过程中加入添加剂,或者在陈化步骤结束之前加入。
方法2
也可以在所需要的添加剂化合物存在时,并借助于适当的勃姆石晶种,通过陈化,优选通过水热处理三水合氧化铝如三水铝石、BOC及三羟铝石,来制备QCBs。适合的晶种是制备微晶体勃姆石已知的晶种,如工业上可以得到的勃姆石(Catapal_,Condea_Versal,P-200_等等)、无定形晶种、磨碎的勃姆石晶种、由铝酸钠溶液制备的勃姆石等等。另外由本申请所述的方法之一制备的准晶体勃姆石也可以适当地用作晶种。已经发现在pH低于7时进行陈化来制备QCBs比制备MCBs有利。除了所选择的添加剂的离子以外,没有其它离子被引入QCB中,并且该方法可以在陈化步骤之前进行成型。
尽管上述方法2对制备微晶体勃姆石来说是已知的,但我们发现在pH低于7时进行陈化来制备QCBs比制备MCBs有利。另外也可以通过调节所使用的晶种及条件,从而调节该方法来形成QCBs。
针对在水热处理转化三水合铝的过程中使用晶种的最早的出版物可以追溯到40年代后期及50年代早期。例如G.Yamaguchi和K.Sakamato(1959)清楚地证明了一个概念,即勃姆石晶种主要通过降低温度、缩短反应时间及增大三水铝石的转化率,从而改善了三水铝石水热转化成勃姆石的动力学。
另外G.Yamaguchi和H.Yamanida(1963)也清楚地证明了在升高的温度及自身压力下运行的高压釜中,在水热转化三水铝石的过程中,利用勃姆石作晶种的有益原则。
在公开的文献中,还有几篇其它的出版物,其中证明了利用勃姆石和/或碱溶液作晶种具有同样的好处。另外,生产粒度更细、更容易分散在水中的勃姆石产品要使用勃姆石晶种。在1987年12月16日申请的US4,797,139及1985年9月30日申请的US5,194,243中均描述了在三水铝石水热转化的过程中使用勃姆石晶种。
上面描述的所有方法均可以按间歇或连续方式进行,任选在连续的多步操作中进行。这些方法也可以部分连续、部分间歇地进行。
如上文所述,虽然应该注意所采用的反应条件应使前体能转化成QCB,但仍可使用多种QCB前体。所述的QCB前体混合物可以在引入添加剂之前制备,或者可以在任何其它反应阶段中加入不同类型的前体。
在制备本发明QCBs的方法中,可以采用多个陈化步骤,例如其中陈化温度和/或条件(热或水热、pH、时间)是变化的。
制备本发明QCBs的方法的反应产物也可以循环回到反应器中。
如果将多种添加剂结合到QCB中,则各种添加剂可以在任一反应步骤中同时加入或者相继加入。
优选在水解和/或沉淀过程中加入酸或碱,以调节pH值。
如上文所述,制备本发明的准晶体勃姆石的某些方法可以在制备过程中成型,以得到成形体。也可以使最终的QCB成型,视情况可借助于粘结剂和/或填料。本发明还涉及利用本发明方法得到的成形体。
如上文所述,本发明的QCBs极其适合作为催化剂组合物或催化剂添加剂的组分或起始材料。为了这一目的,视情况可将QCB与粘结剂、填料(例如粘土如高岭土、钛氧化物、氧化锆、二氧化硅、二氧化硅-氧化铝、膨润土等等)、催化活性材料如分子筛(如ZSM-5、沸石Y、USY沸石)、以及任何其它催化剂组分如通常用于催化剂组合物中的调孔添加剂组合起来使用。对于某些应用,在用作催化剂组分之前中和QCB可能是优选的,例如改进或生成孔体积。另外优选除去所有的钠,使其含量低于0.1wt%Na2O。因此本发明还涉及含有本发明QCB的催化剂组合物及催化剂添加剂。
在本发明的另一实施方案中,在生产吸附剂、陶瓷、耐火材料、基质及其它载体的进一步处理过程中,QCB可以与其它金属氧化物或氢氧化物、粘结剂、补充剂、活化剂、调孔添加剂等等混合。
针对催化目的,通常在200-1000℃的温度下使用勃姆石。在这些高温下,勃姆石通常转化成过渡型氧化铝。因此本发明还涉及过渡型氧化铝,这种氧化铝可通过对本发明方法制备的准晶体勃姆石进行热处理得到。
利用上述过渡型氧化铝,可以制备催化剂组合物或催化剂添加剂,视情况可借助于粘结剂材料、填料等等。
下面将通过如下非限定性的实施例来描述本发明。
实施例
对比例1
由图1给出工业上可以得到的准晶体勃姆石Catapal A_试样的XRD图形。
对比例2
通过水解异丙氧基铝并在65℃下陈化5天,制备一种准晶体勃姆石。图2给出了XRD图形。
实施例3
使对比例2的产品在水中重新形成浆液,并且在pH为4时,在198℃的温度下,陈化1小时。图3给出了XRD图形。
对比例4
使用Wachowski的方法,制备含有5wt%镧离子(按氧化物计算)的准晶体勃姆石。图4给出了XRD图形。
实施例5
使对比例4的产品在水中重新形成浆液,将pH调节到4,并且在198℃下,对浆液进行水热处理1小时。将实施例4的产品的XRD与实施例5的产品的XRD进行比较,可知当按照本发明的方法,采用水热条件及低的pH时,可改善结晶度。
实施例6
向含有细颗粒的三水铝石和20%的Catapal A氧化铝_作为晶种的浆液中,加入5wt%的硝酸镧(按氧化物计算)溶液。将pH调节到4和6之间,并使之均匀化。在高压釜中,在自身压力下将所形成的浆液加热到180℃,并保持2小时。
实施例7
利用研细的BOC重复实施例6。将用硝酸强度胶溶的、10wt%的Catapal A用作晶种。将pH调节到6,加入10wt%的硝酸镧(按氧化物计算)溶液。在搅拌器中使所形成的浆液均匀化,并将其转移到高压釜中,在高压釜中,在自身压力下将其加热到175℃并保持2小时。
实施例8
利用铝酸钠(按氧化铝计算为10wt%)作为晶种重复实施例6。利用硝酸将pH调节到6和7之间,并加入5wt%的硝酸镧(按氧化物计算)溶液。在搅拌器中使所形成的浆液均匀化,并将其转移到高压釜中,在高压釜中,在自身压力下将其加热到165℃并保持2小时。

Claims (12)

1.一种制备准晶体勃姆石的方法,其中准晶体勃姆石前体在pH低于7时被陈化,且其中该准晶体勃姆石前体是烷氧基铝、三水合铝或它们的混合物,准晶体勃姆石指在最大强度的半峰宽处的020峰宽为1.5°或大于1.5°的勃姆石。
2.权利要求1的方法,其中在水热条件下进行陈化。
3.权利要求1-2中任意一项的方法,其中在添加剂存在时陈化准晶体勃姆石前体。
4.权利要求3中的方法,其中添加剂为含有选自稀土金属、碱土金属、过渡金属、锕系元素、硅、硼和磷的元素的化合物。
5.权利要求1的方法,其中将烷氧基铝水解并陈化形成准晶体勃姆石。
6.权利要求1的方法,其中所述的前体包括三水合铝及勃姆石晶种,该前体被陈化,形成所述的准晶体勃姆石。
7.权利要求1的方法,其中在陈化步骤之前,使准晶体勃姆石前体成型,得到成形体。
8.权利要求1的方法,是以连续方式进行的。
9.权利要求1的方法,其中所述的制备过程是在反应器中进行的,并且反应产物被循环回到所述的反应器中。
10.权利要求1的方法,其中采用多个陈化步骤。
11.权利要求1的方法,其中将陈化步骤中形成的准晶体勃姆石成型,得到成形体。
12.一种制备过渡型氧化铝的方法,该方法通过热处理权利要求1-11中任意一项的方法所制备的准晶体勃姆石来进行。
CNB00811448XA 1999-08-11 2000-08-11 准晶体勃姆石的制备方法 Expired - Fee Related CN1174922C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37255799A 1999-08-11 1999-08-11
US09/372,557 1999-08-11

Publications (2)

Publication Number Publication Date
CN1368938A CN1368938A (zh) 2002-09-11
CN1174922C true CN1174922C (zh) 2004-11-10

Family

ID=23468656

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00811448XA Expired - Fee Related CN1174922C (zh) 1999-08-11 2000-08-11 准晶体勃姆石的制备方法

Country Status (12)

Country Link
US (1) US6506358B1 (zh)
EP (1) EP1200350B1 (zh)
JP (1) JP2003507299A (zh)
KR (1) KR100711342B1 (zh)
CN (1) CN1174922C (zh)
AT (1) ATE280738T1 (zh)
BR (1) BR0013135A (zh)
CA (1) CA2381301C (zh)
DE (1) DE60015345T2 (zh)
ES (1) ES2231252T3 (zh)
PT (1) PT1200350E (zh)
WO (1) WO2001012554A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD713975S1 (en) 2012-07-30 2014-09-23 Airlite Plastics Co. Insulative insert for insulated concrete form
US8919067B2 (en) 2011-10-31 2014-12-30 Airlite Plastics Co. Apparatus and method for construction of structures utilizing insulated concrete forms
US10787827B2 (en) 2016-11-14 2020-09-29 Airlite Plastics Co. Concrete form with removable sidewall
US11155995B2 (en) 2018-11-19 2021-10-26 Airlite Plastics Co. Concrete form with removable sidewall

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208446B2 (en) * 1999-08-11 2007-04-24 Albemarle Netherlands B. V. Quasi-crystalline boehmites containing additives
WO2001012553A1 (en) * 1999-08-11 2001-02-22 Akzo Nobel N.V. Process for the preparation of quasi-crystalline boehmites from inexpensive precursors
US20030180214A1 (en) * 1999-08-11 2003-09-25 Dennis Stamires Process for the preparation of quasi-crystalline boehmites
JP4909497B2 (ja) * 2001-05-10 2012-04-04 アルベマーレ ネザーランズ ビー.ブイ. 無機固体粒子の効率的な転化のための連続プロセス及び装置
US7090824B2 (en) * 2001-07-27 2006-08-15 Board Of Trustees Of Michigan State University Mesostructured transition aluminas
US20050124745A1 (en) * 2002-04-19 2005-06-09 Saint-Gobain Ceramics & Plastics, Inc. Flame retardant composites
US20050227000A1 (en) * 2004-04-13 2005-10-13 Saint-Gobain Ceramics & Plastics, Inc. Surface coating solution
CN1156336C (zh) * 2002-07-12 2004-07-07 清华大学 柔性基底材料表面负载二氧化钛薄膜光催化剂的制备方法
RU2336935C2 (ru) * 2002-08-13 2008-10-27 Интеркэт, Инк. Обработка дымовых газов для снижения выбросов nox и со
US6964934B2 (en) 2002-08-28 2005-11-15 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolite using doped seeds
US6969692B2 (en) 2002-08-28 2005-11-29 Albemarle Netherlands B.V. Process for the preparation of doped pentasil-type zeolites using a doped reactant
JP4614354B2 (ja) * 2003-03-10 2011-01-19 河合石灰工業株式会社 耐熱性水酸化アルミニウム及びその製造方法
WO2005051845A2 (en) 2003-11-26 2005-06-09 Albemarle Netherlands B.V. Hydrothermal process for the preparation of quasi-crystalline boehmite
US7431825B2 (en) * 2003-12-05 2008-10-07 Intercat, Inc. Gasoline sulfur reduction using hydrotalcite like compounds
DE102004018336A1 (de) * 2004-04-15 2005-11-10 Albemarle Corporation Flammhemmender Füllstoff für Kunststoffe
TWI342335B (en) * 2004-06-02 2011-05-21 Intercat Inc Mixed metal oxide additives
US20060104895A1 (en) 2004-11-18 2006-05-18 Saint-Gobain Ceramics & Plastics, Inc. Transitional alumina particulate materials having controlled morphology and processing for forming same
DE102006012268A1 (de) * 2006-03-15 2007-09-27 Nabaltec Ag Feinkristalliner Böhmit und Verfahren zu dessen Herstellung
KR100885309B1 (ko) * 2007-08-24 2009-02-24 한국화학연구원 고기공성 AlO(OH) 겔의 제조방법
CN101827651B (zh) * 2007-08-29 2015-06-10 太平洋工业发展公司 稀土氧化铝颗粒生产方法和应用
EP2231523A2 (en) * 2007-12-19 2010-09-29 Saint-Gobain Ceramics & Plastics, Inc. Aggregates of alumina hydrates
US8460768B2 (en) 2008-12-17 2013-06-11 Saint-Gobain Ceramics & Plastics, Inc. Applications of shaped nano alumina hydrate in inkjet paper
WO2014073228A1 (ja) * 2012-11-06 2014-05-15 河合石灰工業株式会社 高熱伝導性ベーマイト及びその製造方法
EP3723900A1 (en) 2017-12-11 2020-10-21 BASF Corporation Reactive silica-alumina matrix component compositions for bottoms cracking catalysts
WO2022155523A1 (en) 2021-01-15 2022-07-21 Albemarle Corporation Pseudo solid state crystallization of zeolites and uses therein
CN116081668B (zh) * 2023-03-06 2023-07-25 成都超纯应用材料有限责任公司 一种勃母石溶胶分散剂、制备方法及其应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357791A (en) 1964-07-20 1967-12-12 Continental Oil Co Process for producing colloidal-size particles of alumina monohydrate
US3739062A (en) * 1970-10-05 1973-06-12 Kaiser Aluminium Chem Corp Direct conversion of dawsonite to pseudoboehmite
US4089811A (en) * 1976-11-01 1978-05-16 Texaco Inc. Preparation of catalyst support
US4117105A (en) 1977-03-21 1978-09-26 Pq Corporation Process for preparing dispersible boehmite alumina
JPS5442399A (en) * 1977-09-10 1979-04-04 Mizusawa Industrial Chem Superfine powdery hydrated alumina and its manufacturing method
JPS5527830A (en) * 1978-08-15 1980-02-28 Chiyoda Chem Eng & Constr Co Ltd Production of alumina carrier
FR2449650A1 (fr) * 1979-02-26 1980-09-19 Rhone Poulenc Ind Procede de preparation d'alumine au moins partiellement sous forme de boehmite ultra-fine
US4318896A (en) * 1980-04-14 1982-03-09 Uop Inc. Manufacture of alumina particles
US4332782A (en) * 1980-07-28 1982-06-01 Filtrol Corporation Method of producing pseudoboehmite
DE3243193A1 (de) * 1982-11-23 1984-05-30 Degussa Ag, 6000 Frankfurt Wasserhaltiges aluminiumoxid, enthaltend im wesentlichen pseudoboehmit, verfahren zu seiner herstellung und verwendung
EP0130835B1 (en) * 1983-07-01 1990-05-02 Hitachi, Ltd. High temperature stable catalyst, process for preparing same and process for conducting chemical reaction using same
JPS6022929A (ja) * 1983-07-15 1985-02-05 Hitachi Ltd 触媒用耐熱性担体
US5194243A (en) 1983-09-22 1993-03-16 Aluminum Company Of America Production of aluminum compound
US4676928A (en) * 1986-01-30 1987-06-30 Vista Chemical Company Process for producing water dispersible alumina
US4797139A (en) 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
US5837634A (en) * 1992-11-12 1998-11-17 Condea Vista Company Process for producing stabilized alumina having enhanced resistance to loss of surface area at high temperatures
FR2697832B1 (fr) 1992-11-12 1994-12-30 Rhone Poulenc Chimie Alumine stabilisée par du lanthane et son procédé de préparation.
JPH08268716A (ja) * 1995-03-30 1996-10-15 Japan Energy Corp 擬ベ−マイト粉の粒径制御方法
JP3847862B2 (ja) * 1996-10-04 2006-11-22 株式会社ジャパンエナジー 触媒担体用擬べーマイト及びその製造方法
US6027706A (en) * 1998-05-05 2000-02-22 Board Of Trustees Operating Michigan State University Porous aluminum oxide materials prepared by non-ionic surfactant assembly route

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919067B2 (en) 2011-10-31 2014-12-30 Airlite Plastics Co. Apparatus and method for construction of structures utilizing insulated concrete forms
USD713975S1 (en) 2012-07-30 2014-09-23 Airlite Plastics Co. Insulative insert for insulated concrete form
US10787827B2 (en) 2016-11-14 2020-09-29 Airlite Plastics Co. Concrete form with removable sidewall
US11591813B2 (en) 2016-11-14 2023-02-28 Airlite Plastics Co. Concrete form with removable sidewall
US11155995B2 (en) 2018-11-19 2021-10-26 Airlite Plastics Co. Concrete form with removable sidewall

Also Published As

Publication number Publication date
BR0013135A (pt) 2002-04-30
PT1200350E (pt) 2005-03-31
DE60015345D1 (de) 2004-12-02
EP1200350A1 (en) 2002-05-02
EP1200350B1 (en) 2004-10-27
ES2231252T3 (es) 2005-05-16
DE60015345T2 (de) 2005-10-20
JP2003507299A (ja) 2003-02-25
KR100711342B1 (ko) 2007-04-27
WO2001012554A1 (en) 2001-02-22
CN1368938A (zh) 2002-09-11
KR20020026563A (ko) 2002-04-10
CA2381301C (en) 2009-01-20
US6506358B1 (en) 2003-01-14
ATE280738T1 (de) 2004-11-15
CA2381301A1 (en) 2001-02-22

Similar Documents

Publication Publication Date Title
CN1174922C (zh) 准晶体勃姆石的制备方法
CN1247460C (zh) 含有添加剂的准晶体勃姆石的制备方法
CN1207208C (zh) 由廉价前体制备准晶体勃姆石的方法
CN1195682C (zh) 含有添加剂的微晶体勃姆石以及含有这种微晶体勃姆石的成型颗粒和催化剂组合物
US7208446B2 (en) Quasi-crystalline boehmites containing additives
CN1177765C (zh) 基于氧化铈和氧化锆的组合物、其制备方法及其催化用途
CN1200767C (zh) 基于钴的催化剂及其在费-托反应中的应用
CN1491186A (zh) 制备含有阴离子粘土和勃姆石的组合物的方法
EP1515912B1 (en) Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
RU2005137188A (ru) Способ приготовления циркониевых оксидов и смешанных оксидов на циркониевой основе
US20030180214A1 (en) Process for the preparation of quasi-crystalline boehmites
CN1692077A (zh) 阳离子层状材料的用途,含有这些材料的组合物以及阳离子层状材料的制备方法
US7598202B2 (en) Use of cationic layered materials, compositions comprising these materials, and the preparation of cationic layered materials
CN1678393A (zh) 包含pentasil型沸石的催化剂的制备方法
KR20050019788A (ko) 양이온 층상 물질의 용도, 이를 포함하는 조성물, 및 이의제조 방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: ALBEMARLE NETHERLANDS B V

Free format text: FORMER OWNER: AKZO NOVEL N.V. CORP.

Effective date: 20050812

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20050812

Address after: Amersfoort Holland

Patentee after: Albemarle Netherlands B. V.

Address before: Holland Arnhem

Patentee before: Akzo Nobel N. V.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20041110

Termination date: 20100811