CN1165092C - 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法 - Google Patents

聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法 Download PDF

Info

Publication number
CN1165092C
CN1165092C CNB021182825A CN02118282A CN1165092C CN 1165092 C CN1165092 C CN 1165092C CN B021182825 A CNB021182825 A CN B021182825A CN 02118282 A CN02118282 A CN 02118282A CN 1165092 C CN1165092 C CN 1165092C
Authority
CN
China
Prior art keywords
platinum
catalyst
carbon
active carbon
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB021182825A
Other languages
English (en)
Other versions
CN1380711A (zh
Inventor
巍 邢
邢巍
李旭光
陆天虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CNB021182825A priority Critical patent/CN1165092C/zh
Publication of CN1380711A publication Critical patent/CN1380711A/zh
Priority to US10/424,215 priority patent/US6815391B2/en
Application granted granted Critical
Publication of CN1165092C publication Critical patent/CN1165092C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明属于聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法。本发明利用氯化铵、氯化钾、溴化氨、溴化钾、碘化氨或碘化钾作为氯铂酸的锚定物,实现了氯铂酸还原所得的铂粒子在活性炭孔隙内与表面上的均匀分布,并且铂的粒径均一,直径为4±0.5纳米,是一种简便的制备纳米铂/炭电催化剂的新方法。该电催化剂对氧还原的催化性能与E-TEK公司的相应铂/炭电催化剂相当。

Description

聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
技术领域:本发明属于聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法。
背景技术:聚合物电解质膜燃料电池(PEMFC)具有能量转换效率高、环境污染小、工作条件温和以及体积小、重量轻、安全耐用等特点,它比较适合作为交通器用动力电源和便携式电源。目前,PEMFC的研制越来越受到各国的重视。氧还原作为PEMFC的阴极反应,其性能直接影响到整个电池的电压与输出功率。而阴极的性能主要取决于阴极电催化剂的催化性能。迄今为止,人们已经研究过的阴极电催化剂主要有:(1)铂及其合金;(2)过渡金属大环化合物,尤其是Fe及Co的卟啉和酞菁化合物;(3)具有钙钛矿、烧绿石等结构的过渡金属氧化物;(4)过渡金属原子簇合物。但是,后三种催化剂的内在催化活性和稳定性与铂及其合金相比,还有明显的差距,因此目前实际应用在PEMFC上的阴极电催化剂仍主要为铂/炭。在铂/炭电催化剂中,铂的粒径是影响其催化氧还原活性的主要因素,Peukert等研究表明,铂粒径为3-5nm的铂/炭电催化剂的质量比活性最高[M.Peuckert,T.Yoneda,R.A.Dalla Betta and M.Boudart,J.Electrochem.Soc.113(1986)944-947],铂的粒径是由铂/炭催化剂的制备方法决定的。目前,铂/炭电催化剂的制备方法主要有两类,一类是胶体法,即先将氯铂酸转化为铂的络合物,再由该络合物进一步制备铂/炭电催化剂[如H.bnnemann,W.Bri joux,R.Brinkman,E.Dinjus,T.Joussen and B.Korall,Angew.Chem.103(1991)1344],该类方法对温度、溶液浓度、pH值、反应时间等条件要求比较严格;另一类方法是浸渍法,即直接由氯铂酸出发,采用不同方法制备铂/炭电催化剂[如J.B.Goodenough,A.Hamnett,B.J.Kemmedy,et al.Electrochimica Acta,15(1990)199-207],该类方法主要依靠毛细管作用使氯铂酸溶液进入活性炭的孔隙,吸附在活性炭上,然后用还原剂进行还原,因此,氯铂酸的吸附能力显著影响最后催化剂的性能。当加入还原剂以后,由于扩散阻力的存在,本体溶液中的氯铂酸先被还原,又由于吸附平衡的存在,吸附平衡向本体溶液方向移动,吸附在活性炭孔隙内的部分氯铂酸就会脱附进入到本体溶液,因此实际上大部分氯铂酸的还原是在本体溶液中进行的,这样还原得到的催化剂必然产生铂粒子的聚集、铂粒径的均一性下降和活性炭承载不佳。一般很难制备铂微粒在活性炭孔隙中与表面上的分布状态均匀的纳米催化剂。
发明内容:本发明的目的是提供一种聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法,通过加入锚定剂来控制活性炭对氯铂酸的吸附,使进入到活性炭孔隙内的氯铂酸以氯铂酸铵或氯铂酸钾的形式沉淀下来,防止了因为吸附平衡使得活性炭孔隙内的氯铂酸脱附并进入到本体溶液,获得了铂粒子在活性炭内部以及表面分布均匀、粒径均一的铂/炭电催化剂,铂粒径主要为4±0.5纳米,其催化氧还原的性能与E-TEK公司的相应电催化剂相当。
本发明选择的活性炭在混合溶剂中的含量为0.1-1g/L,混合溶剂中有机溶剂与去离子水的体积比为1-10∶10-1,有机溶剂为甲醇、乙醇、异丙醇、乙醚或丙酮;加入锚定剂,锚定剂为氯化铵、氯化钾、溴化氨、溴化钾、碘化氨或碘化钾,其水溶液的质量百分比浓度为10-60%,锚定剂的摩尔数为加入的氯铂酸中铂的摩尔数的1.2-6倍,搅拌;加入氯铂酸溶液,溶液中铂的含量为0.1-1g/L,搅拌;加入氨水或氢氧化钾溶液,调节pH值为8-10.5;或者不进行调节pH;直接加入过量还原剂,还原剂为甲醛、甲酸、水合肼、硼氢化钠或硼氢化钾,其摩尔数为铂摩尔数的3-6倍,还原温度为0-80℃;温度降低到室温,过滤,洗涤,在80-100℃下真空干燥,得到粒径4±0.5纳米的铂/炭电催化剂。
本发明提供的实施例如下:
实施例1:将400mg活性炭加入到500mL体积比为1∶1的乙醇/去离子水混合溶剂中,搅拌1小时,加入610mg质量百分比浓度为27%的氯化铵水溶液,搅拌1小时,缓慢滴加氯铂酸溶液,铂含量为0.2g/L,搅拌,用氨水调节pH=9,缓慢滴加92mg甲醛,搅拌,在80℃还原1小时,将温度降低到室温,过滤,沉淀物用去离子水洗涤;在80℃下真空干燥,得到粒径4±0.5纳米的铂/炭电催化剂。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例2:其它条件同实施例1,仅改变活性炭的质量为500mg,锚定剂为2060mg质量百分比浓度为20%的氯化铵水溶液,铂含量为1g/L,调节pH=8,还原剂为230mg甲醛。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例3:具它条件同实施例1,仅改变锚定剂为670mg质量百分比浓度为10%的氯化铵水溶液,铂含量为0.1g/L,还原剂为47mg甲酸,不调节pH值,还原温度为60℃。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例4:其它条件同实施例1,仅改变乙醇和去离子水的体积比为10∶1,氯化铵水溶液的质量为1020mg,铂含量为0.5g/L,还原剂为192mg甲醛。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例5:其它条件同实施例1,仅改变混合溶剂为体积比为3∶1的异丙醇和去离子水,锚定剂为460mg质量百分比浓度为25%的氯化钾溶液,用氢氧化钾调节pH=10.5,还原温度为40℃。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例6:其它条件同实施例1,仅改变活性炭的质量为50mg,混合溶剂为体积比为5∶1的乙醚和去离子水,还原剂为59mg甲酸,还原温度为20℃。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例7:其它条件同实施例1,仅改变混合溶剂为体积比为1∶2的甲醇和去离子水,还原剂为58mg硼氢化钠,还原温度为0℃。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例8:其它条件同实施例1,仅改变乙醇和去离子水的体积比为1∶3,活性炭的质量为200mg,铂含量为0.3g/L,还原剂为208mg硼氢化钾。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例9:其它条件同实施例1,仅改变活性炭的质量为300mg,乙醇和去离子水的体积比为1∶5,锚定剂为580mg质量百分比浓度为59%的碘化钾水溶液,用氢氧化钾调节pH=10,还原温度为30℃。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例10:其它条件同实施例1,仅改变混合溶剂为体积比为1∶7的丙酮和去离子水,锚定剂为670mg质量百分比浓度为30%的溴化铵水溶液,不调节pH值。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例11:其它条件同实施例1,仅改变混合溶剂为体积比为1∶8的乙醚和去离子水,锚定剂为625mg质量百分比浓度为39%的溴化钾水溶液,不调节pH值。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。
实施例12:其它条件同实施例1,仅改变混合溶剂的体积比为1∶10的异丙醇和去离子水,锚定剂为470mg质量百分比浓度为60%的碘化铵水溶液,还原剂为51mg水合肼。催化剂中铂的粒径为4±0.5纳米,由半电池测得的氧还原极化曲线表明,其性能与E-TEK公司相应的电催化剂相当。

Claims (1)

1.一种聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法,其特征在于制备步骤如下:
(1)将活性炭加入到有机溶剂和去离子水的混合溶剂中,活性炭在混合溶剂中的含量为0.1-1g/L,有机溶剂为甲醇、乙醇、异丙醇、乙醚或丙酮,混合溶剂中有机溶剂与去离子水的体积比为1-10∶10-1,搅拌;
(2)加入锚定剂溶液,锚定剂为氯化铵、氯化钾、溴化氨、溴化钾、碘化氨或碘化钾,其水溶液的质量百分比浓度为10-60%,锚定剂的摩尔数为将要加入的氯铂酸中铂的摩尔数的1.2-6倍,搅拌;
(3)加入铂的含量为0.1-1g/L的氯铂酸溶液,搅拌;
(4)加入氨水或氢氧化钾溶液调节pH值为8-10.5或者不进行调节pH;
(5)加入还原剂,还原剂为甲醛、甲酸、水合肼、硼氢化钠或硼氢化钾,其摩尔数为铂摩尔数的3-6倍,还原温度为0-80℃;
(6)还原反应产物温度降低到室温,过滤,洗涤;在80-100℃下真空干燥,得到粒径4±0.5纳米的铂/炭电催化剂。
CNB021182825A 2002-04-30 2002-04-30 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法 Expired - Fee Related CN1165092C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB021182825A CN1165092C (zh) 2002-04-30 2002-04-30 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
US10/424,215 US6815391B2 (en) 2002-04-30 2003-04-25 Method of preparing nano-level platinum/carbon electrocatalyst for cathode of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021182825A CN1165092C (zh) 2002-04-30 2002-04-30 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN1380711A CN1380711A (zh) 2002-11-20
CN1165092C true CN1165092C (zh) 2004-09-01

Family

ID=4744635

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021182825A Expired - Fee Related CN1165092C (zh) 2002-04-30 2002-04-30 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法

Country Status (2)

Country Link
US (1) US6815391B2 (zh)
CN (1) CN1165092C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624171B (zh) * 2009-08-12 2013-07-17 中国科学院上海硅酸盐研究所 Pt纳米颗粒—碳纳米管复合材料、制备方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911412B2 (en) * 1998-02-24 2005-06-28 Cabot Corporation Composite particles for electrocatalytic applications
JP2004185874A (ja) * 2002-11-29 2004-07-02 Honda Motor Co Ltd 固体高分子形燃料電池用電極触媒層
JP2005235435A (ja) * 2004-02-17 2005-09-02 Seiko Epson Corp 機能性材料層形成用組成物、機能性材料層の形成方法、燃料電池の製造方法、電子機器および自動車
WO2005120703A1 (ja) * 2004-06-10 2005-12-22 Sumitomo Electric Industries, Ltd. 金属触媒とその製造方法
US9005331B2 (en) 2004-12-22 2015-04-14 Brookhaven Science Associates, Llc Platinum-coated non-noble metal-noble metal core-shell electrocatalysts
CN1299376C (zh) * 2005-02-01 2007-02-07 哈尔滨工业大学 直接甲醇燃料电池用催化剂的制备方法
US20070003822A1 (en) * 2005-06-30 2007-01-04 Shyam Kocha Voltage cycling durable catalysts
CN100344021C (zh) * 2005-08-23 2007-10-17 天津大学 制备铂/碳催化剂的无机胶体方法
US7288500B2 (en) 2005-08-31 2007-10-30 Headwaters Technology Innovation, Llc Selective hydrogenation of nitro groups of halonitro aromatic compounds
US7691770B2 (en) * 2005-09-02 2010-04-06 General Electric Company Electrode structure and methods of making same
US7935652B2 (en) * 2005-09-15 2011-05-03 Headwaters Technology Innovation, Llc. Supported nanoparticle catalysts manufactured using caged catalyst atoms
US7892299B2 (en) * 2005-09-15 2011-02-22 Headwaters Technology Innovation, Llc Methods of manufacturing fuel cell electrodes incorporating highly dispersed nanoparticle catalysts
US7718710B2 (en) 2006-03-17 2010-05-18 Headwaters Technology Innovation, Llc Stable concentrated metal colloids and methods of making same
KR100774746B1 (ko) * 2006-09-25 2007-11-08 현대자동차주식회사 복합 환원제를 이용한 고분산 백금 담지 촉매의 제조방법
WO2008085472A1 (en) * 2006-12-27 2008-07-17 Eveready Battery Company, Inc. Electrochemical cell with a catalytic electrode and process for making the electrode and the cell
FR2918214B1 (fr) * 2007-06-26 2009-10-30 Commissariat Energie Atomique Dispersion de materiaux composites, notamment pour des piles a combustible
CN101618352B (zh) * 2008-06-30 2011-11-16 比亚迪股份有限公司 一种负载型金属催化剂的制备方法
US20100099012A1 (en) * 2008-10-17 2010-04-22 Brookhaven Science Associates, Llc Electrocatalyst Synthesized by Depositing a Contiguous Metal Adlayer on Transition Metal Nanostructures
US8404613B2 (en) * 2008-10-21 2013-03-26 Brookhaven Science Associates, Llc Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures
US20100216632A1 (en) * 2009-02-25 2010-08-26 Brookhaven Science Associates, Llc High Stability, Self-Protecting Electrocatalyst Particles
US20120237855A1 (en) * 2009-12-09 2012-09-20 Michigan Molecular Institute Fuel Cells with Improved Durability
US20130131402A1 (en) * 2010-07-01 2013-05-23 Solvay Specialty Polymers Italy S.P.A. Process for the synthesis of trifluoroethylene
US9716279B2 (en) 2013-05-15 2017-07-25 Brookhaven Science Associates, Llc Core-shell fuel cell electrodes
CN103872344A (zh) * 2014-03-07 2014-06-18 绍兴县永利新能源研究院有限公司 燃料电池用铂碳催化剂制备方法
US10790514B2 (en) 2014-11-04 2020-09-29 Alliance For Sustainable Energy, Llc Platinum nickel nanowires as oxygen reducing electrocatalysts and methods of making the same
JP6818288B2 (ja) * 2015-06-16 2021-01-20 国立大学法人東北大学 白金族担持触媒及びその製造方法
CN105905993A (zh) * 2016-06-14 2016-08-31 北京工业大学 一种基于石墨烯掺杂Nafion膜修饰的负载钯催化剂电极的制备方法
CN109962248B (zh) * 2017-12-25 2021-01-05 有研工程技术研究院有限公司 一种具有保湿功能的燃料电池催化剂的制备方法
RU2695999C1 (ru) * 2018-12-13 2019-07-30 Общество С Ограниченной Ответственностью "Прометей Рд" Способ получения катализаторов с наноразмерными частицами платины и ее сплавов с металлами
CN111233056A (zh) * 2020-01-17 2020-06-05 陕西瑞科新材料股份有限公司 一种多铂氧化物的制备方法
CN111530455B (zh) * 2020-05-18 2023-09-12 中国工程物理研究院材料研究所 采用乙二醇还原氯铂酸溶剂热合成Pt/C催化剂的方法
CN114976049A (zh) * 2022-05-13 2022-08-30 一汽解放汽车有限公司 一种阴极催化剂及其制备方法和应用
CN115064718A (zh) * 2022-06-03 2022-09-16 北京亿华通科技股份有限公司 一种小粒径PtFe结构有序燃料电池催化剂及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906716A (en) * 1994-10-20 1999-05-25 Hoechst Aktiengesellschaft Metallized cation exchange membrane
US6602630B1 (en) * 2000-03-14 2003-08-05 The Electrosynthesis Company, Inc. Membrane electrode assemblies for electrochemical cells
CN1166019C (zh) * 2001-05-25 2004-09-08 中国科学院长春应用化学研究所 质子交换膜燃料电池纳米电催化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624171B (zh) * 2009-08-12 2013-07-17 中国科学院上海硅酸盐研究所 Pt纳米颗粒—碳纳米管复合材料、制备方法

Also Published As

Publication number Publication date
US6815391B2 (en) 2004-11-09
CN1380711A (zh) 2002-11-20
US20030224926A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
CN1165092C (zh) 聚合物电解质膜燃料电池阴极纳米铂/炭电催化剂的制备方法
Jiang et al. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt: Sn ratio
CN100492731C (zh) 一类燃料电池用纳米钯或钯铂合金电催化剂的制备方法
CN1166019C (zh) 质子交换膜燃料电池纳米电催化剂的制备方法
Li et al. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation
CN1186838C (zh) 一种质子交换膜燃料电池电极催化剂的制备方法
CN100511789C (zh) 一种高活性PtNi基质子交换膜燃料电池阳极催化剂
CN101161341A (zh) 一种直接甲醇燃料电池阳极多元催化剂的制备方法
CN101380584B (zh) 一种高活性耐甲醇直接甲醇燃料电池阴极催化剂及其制法
CN101773825B (zh) 一种燃料电池双效氧电极催化剂浆料及制备和应用
CN110586127B (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
CN101785999B (zh) 一种燃料电池用电催化剂Pt1Bi1金属间化合物的制备方法
CN1171671C (zh) 碳纳米管载铂钌系列抗co电极催化剂的制备方法
CN108746659B (zh) 一种花状AgPd纳米合金及制备和使用方法
CN1262030C (zh) 含助催化元素的铂/碳电催化剂及其制备方法
CN109037717A (zh) 一种碱性燃料电池的铁基催化剂及制备方法
CN101185900A (zh) 直接醇类燃料电池阳极催化剂的制备方法
CN100399612C (zh) 一种具有导质子功能的燃料电池催化剂及制备方法
CN1632975A (zh) 质子交换膜燃料电池阴极电催化剂及其应用
CN101829565B (zh) 一种PtRu/C二元合金纳米催化剂的制备方法
CN100467125C (zh) 碳载纳米碳化钨增强的氧还原电催化剂的制备方法
CN100364157C (zh) 一种添加非金属元素的燃料电池纳米催化剂的制备方法
CN100337353C (zh) 直接醇类燃料电池用Pt-Ru-Ni/C催化剂的制备方法
CN104810529A (zh) 一种表面氰化改性的纳米金属材料及其制备方法
CN115025816A (zh) 用于去除废水中硝酸盐的Cu基咪唑电催化剂及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee