CN1153371A - 具有反平行钉扎层和改进的交换偏磁层的自旋阀磁致电阻传感器,使用此传感器的磁记录系统 - Google Patents

具有反平行钉扎层和改进的交换偏磁层的自旋阀磁致电阻传感器,使用此传感器的磁记录系统 Download PDF

Info

Publication number
CN1153371A
CN1153371A CN96110311A CN96110311A CN1153371A CN 1153371 A CN1153371 A CN 1153371A CN 96110311 A CN96110311 A CN 96110311A CN 96110311 A CN96110311 A CN 96110311A CN 1153371 A CN1153371 A CN 1153371A
Authority
CN
China
Prior art keywords
layer
ferromagnetic
film
lamination
magnetoresistive sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96110311A
Other languages
English (en)
Other versions
CN1076498C (zh
Inventor
小R·E·冯塔纳
B·A·古尔尼
T·林
V·S·施佩里奥苏
C·H·曾
D·R·韦尔霍特
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1153371A publication Critical patent/CN1153371A/zh
Application granted granted Critical
Publication of CN1076498C publication Critical patent/CN1076498C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Abstract

自旋阀磁致电阻(SVMR)传感器用与改进的反铁磁性(AF)交换偏磁层组合的叠层反平行(AP)钉扎层,其中包括由非磁性耦合膜隔开的两层铁磁膜,其磁化以反平行取向反铁磁地强耦合起来。在旋转SVMR传感器的自由层所需的弱场内此叠层AP钉扎层是磁刚性的,其中两铁磁层磁矩接近相同时,钉扎层净磁矩较小。交换场较大,因其反比于净磁矩。叠层AP钉扎层的磁化被AF材料固定或钉扎,后者耐蚀性强但交换各向异性过小而不能用于传统SVMR传感器。

Description

具有反平行钉扎层和改进的交 换偏磁层的自旋阀磁致电阻传 感器,使用此传感器的磁记录 系统
本发明一般涉及基于自旋阀效应用于探测磁场的磁致电阻(MR)传感器,尤其是涉及这种具有层叠的反平行钉扎层和用于对钉扎层钉扎的改进的反铁磁交换耦合层的传感器,并涉及装有这种传感器的磁记录系统。
传统的磁致电阻(MR)传感器,例如用于磁记录盘驱动器的、基于各向异性磁致电阻效应而工作,其中读出单元电阻分量随读出单元磁化方向与流过读出单元的传感器电流方向之间的夹角余弦平方而变化。由于来自记录的磁介质(单场)的外磁场引起读出单元中磁化方向改变,随后引起读出单元电阻改变以及引起探测到的电流或电压相应地改变,所以能从磁介质读出记录的数据。
在各种磁多层结构中观察到一种不同的显著磁致电阻,称之为巨磁电阻(GMR),其基本特征是至少两层铁磁性金属层由非铁磁性金属层所分隔。GMR效应的物理基础是外磁场引起相邻铁磁性层相对取向变化。由此引起与自旋相关的传导电子散射改变以及结构电阻改变。随着铁磁性层磁化相对排列的变化,结构电阻也产生变化。
GMR特别有用的一种应用是包括两层由非磁性金属层隔开的非耦合铁磁性层的夹层结构,其中铁磁性层之一的磁化被钉扎。通过把该层淀积在反铁磁层,例如铁-锰(Fe-Me)层上,使两层交换耦合,可以实现钉扎。结果使得自旋阀磁致电阻(SVMR)传感器中,当存在任何小的外磁场时,只有未被钉扎的或自由铁磁性层能自由转动。属于IBM的美国专利5206590公开了一种基本的SVMR传感器。属于IBM的未审结的申请No.081139477,1993年10月15日申请的,描述了一种SVMR传感器,钉扎层是两层铁磁膜被非磁性耦合膜所隔开的层叠结构,以使两层铁磁性膜的磁化以反平行取向反铁磁性地强耦合在一起。
多数早期公开的SVMR传感器使用Fe-M、特别是Fe50Mn50作为淀积在钉扎层上的反铁磁性层,用来交换耦合以此固定或钉扎被钉扎层的磁化。通过与Fe-Mn反铁磁体的交换各向异性,该钉扎层的磁化被保持刚性以抵抗弱场激励,例如由待探测的信号场产生的。Fe-Mn以0.08erg/cm2的界面能量与镍-铁(Ni-Fe)、钴(Co)和铁(Fe)耦合,由此能提供超过200奥斯特(Oe)的交换偏磁场,用于典型的钉扎层磁矩。此交换能量对提供相当稳定的SVMR传感器是足够的。但是,由于Fe-Mn腐蚀特性较差,所以希望开发腐蚀特性较好的SVMR。有多种腐蚀特性优于Fe-Mn的反铁磁体选择物,可用于SVMR传感器。但是,这些耐蚀反铁磁性材料或是交换各向异性过小,或是在交换偏磁钉扎层中产生过高的矫顽力。在SVMR中使用氧化镍(NiO)替代Fe-Mn已公开于Journalof the Magnetism Society of Japan,H.Hoyashi等,Vol.18,p.355(1994)和IEEE Transactions on Magnetics,T.C.Anthony等,Vol.MAG-30,p.3819(1994)。但是,只有约100Oe的交换偏磁场,这对于SVMR传感器应用来说太低了。而且,NiO导致对于单层钉扎层相对高的50Oe左右的矫顽力。这种低的交换场和高矫顽力的组合是不能接受的,因为钉扎层对于中等场强的使用是不稳定的,包括由钉扎层自身产生的退磁场。
多数早期公开的SVMR传感器也有位于底部的自由层或者与在顶部带有钉扎层的传感器基片相邻。由于用于磁记录盘驱动器的SVMR读取传感器需要以窄的磁轨宽度用于磁性介质上,为了抑制磁畴噪声,需要其有掺杂的自由层纵向偏磁的SVMR传感器结构。一种提出的方案要求自由层位于结构顶部,并在底部有钉扎层或者与传感器基片相邻。但是,由于各层相互如何生长的差别,不能仅改变自旋阀层的淀积次序而获取相同的膜特性。所有的SVMR传感器均在自由层和钉扎层之间存在由例如静磁相互作用、膜中的钉扎孔和电子效应引起的中间层交换耦合场(Hi)。期望具有通常低Hi的SVMR传感器。然而,具有位于底部的钉扎层的SVMR传感器要求较薄的Fe-Mn层(如由90替换150)以此获取低于25Oe左右的Hi。但是这些较薄的Fe-Mn层是不希望的,这是因为它们具有低的闭塞温度(例如130℃,与160℃相比)。闭塞温度是这样的一个温度,若高于它,则Fe-Mn反铁磁层与铁扎层之间的交换场就为零。
SVMR传感器呈现出在非常小的厚度情况下具有期望的磁致电阻水平(在钉扎层与自由层的磁化平行和反平行排列之间的△R/R)。因此,为了实现非常高的记录密度,在两个MR屏蔽之间的MR读取间隙必须非常细,典型地小于2000A。这种部位抑制了间隙材料的电连续性,必须使SVMR传感器与一个或两个MR屏蔽电绝缘。
对于SVMR传感器所需的是要具有耐蚀的反铁磁体,还要能提供对于钉扎层来说有良好的交换各向异性,具有高于约130℃的闭塞温度。此反铁磁体还应能用作MR读取间隙的绝缘材料。
根据本发明的SVMR传感器使用与改进的反铁磁(AF)层叠层组合的反平行(AP)钉扎层。此结构中,钉扎层包括由非磁性耦合膜隔开的两层铁磁膜,以使两层铁磁膜的磁化以反平行取向反铁磁性地强耦合在一起。在自由层翻转所需的弱场激励下,此叠层的AP钉扎层是磁刚性的。当两铁磁层在此AP钉扎层中的磁矩接近相同时,钉扎层的净磁矩较小。结果,由于与净磁矩成反比,所以交换场相应地较大。叠层的AP钉扎层所具有的磁化被AF材料所固定或钉扎,后者的耐蚀性较强,但交换各向异性过弱,以致不能用于传统的SVMR传感器。在优选实施例中,AF层是NiO并形成于作为基片的MR屏蔽之一上。由此,AF材料也用作MR间隙绝缘材料。当制造SVMR传感器时,AF层的定位和在SVMR传感器底部交换耦合的叠层的AP钉孔层可使自由层的纵向偏磁得以改进。
为了进一步了解本发明的性质和优点,以下将结合附图做进一步说明。
图1是使用本发明的SVMR传感器的磁记录盘驱动器的简化框图。
图2是移去上盖的图1盘驱动器的顶视图。
图3是已有的SVMR传感器的分解透视图。
图4是图3的SVMR传感器旋转90度后的剖面图。
图5是根据本发明的SVMR传感器的剖面图。
图6是使用NiO基叠层的AP钉扎结构(NiO/Co/Ru/Co)的SVMR传感器的M-H回线图,在400Oe的磁场幅度范围叠层AP钉扎层呈现小的翻转。
图7是使用NiO基叠层的AP钉扎结构(NiO/Co/Ru/Co)的SVMR传感器的磁致电阻与外磁场的曲线图,在400Oe的磁场变化范围内,在最高场强处磁致电阻仅有微小的下降。
图8是使用NiO基叠层的AP钉扎结构(NiO/Co/Ru/Co)的SVMR传感器的磁致电阻与外磁场的曲线图,在1000Oe的磁场变化范围内,呈现出600Oe的交换场,大于传统的SVMR传感器。
图9是使用NiO基单层钉扎的结构(NiO/Co)的SVMR传感器的磁致电阻与外加磁场的曲线图,在1200Oe的磁场变化范围内,呈现约100Oe的弱交换场。
图10是本发明实施例的SVMR传感器,其中NiO基叠层的AP钉扎层位于顶部。
图11是下列传感器的磁致电阻与外加磁场的曲线图,(A)具有传统的由Fe50Mn50层钉扎的单一Co层的SVMR传感器,(B)具有由(Fe50Mn50)97Cr3层钉扎的传统的Co/Ni-Fe钉扎层的SVMR传感器,(C)具有由(Fe50Mn50)97Cr3层钉扎的叠层的AP钉扎层的SVMR传感器。
现以磁盘存储系统为例来说明本发明的SVMR传感器,如图1所示,尽管如此,本发明也可用于其它磁记录系统,例如磁带记录系统,并用于磁随机存取存储系统,其中磁致电阻元件用作比特单元。
参看图1,这里展示了已有技术中采用MR传感器式的盘驱动器的剖面示意图。该盘驱动器包括基座10,其上固定有盘驱动电机12和执行机构14,以及上盖11。基座10和上盖11为盘驱动器提供了基本密封的壳体。一般,在基座10与上盖11之间设有一个密封垫13和一个小通气孔(未示出),用于平衡盘驱动器内部与外部环境之间的气压。磁记录盘16通过安放在轴毂18上来与驱动电机12相连,以便由电机12来旋转。在盘16表面上有一层连续的润滑薄膜50。读/写头或传感器25形成于承载体例如空气支承滑块20的拖尾端。传感器25可以是感应式读写传感器,或者感应式写入传感器并带有将说明的类型的磁致电阻(MR)读取传感器。滑块20通过刚性臂22和悬架24与执行机构14相连。悬架24提供偏置力把滑块20驱策于记录盘16表面上。在盘驱动操作过程中,驱动电机12以恒速旋转盘16,执行机构14通常是线性或旋转音圈电机(VCM),使滑块20径向横跨盘16表面运动,以致读/写头25可以在盘16的不同数据轨迹上存取。
图2是移走上盖11的盘驱动器内部的顶视图,更详细地展示了向滑块20施力把它推向盘16的悬架24。此悬架可以是传统类型的悬架,例如公知的Watrous悬架,如受让人的美国专利4167765所述。此类悬架还提供滑块的常平机构,当滑体在空气支承上悬浮时能仰俯和转动。被磁头25从盘16检测到的数据通过位于臂22的集成电路芯片15中的信号放大处理电路被处理成数据读回信号。来自磁头25的信号通过软电缆17送至芯片15,芯片通过电缆19送出其输出信号。
以上结合图1和2对典型的磁盘存储系统的说明仅仅出于概述目的。盘存储系统可以包含大量的磁盘和操作机构,每个操作机构可以支承多个滑块。此外,为了代替空气支承滑块,磁头承载体可以是保持磁头与盘接触或接近接触盘的一种,例如在液体支承和其它接触的记录盘驱动器中的。
参看图3,已有的SVMR传感器30包括合适的基片31,例如玻璃、陶瓷或半导体,例如其上淀积有籽晶或缓冲层33;第一软磁材料薄层35;非磁性金属分隔薄层37;第二磁性材料薄层39。MR传感器30可以构成图1和2的盘驱动系统中的部分传感器25,基片31可以是磁头承载体或滑块20的拖层端。在设有来自记录的磁性介质的外加磁场的情况下,铁磁材料的两层35、39的磁化按相互夹角最好约为90度的方式取向,分别如箭头32和38所示。铁磁性层35被称为"自由"铁磁层,在于其磁化方向可以对应于外加磁场(例如来自磁性介质的磁场h而自由地旋转,如层35上的虚线箭头所示。铁磁性层39被称为"钉扎"铁磁层,因为其磁化方向被固定或钉扎在优选的取向,如箭头38所示。由具有相对高的电阻的交换偏磁反铁磁性材料制成的薄膜层41与铁磁层39直接接触地被淀积,通过交换耦合提供偏磁场。层41由此把铁磁层的磁化钉扎在优选方向,以致在具有其强度在信号场范围内的外加磁场的情况下,不能旋转其方向。交换偏磁层41一般是铁-锰(Fe-Mn)。此材料的耐蚀性相当差。但是,由于钉扎层一般具有与约30-100A的Ni-Fe相当的净磁矩,所以此材料提供了固定钉扎层磁化方向所需程度的交换耦合。
图4是图3所示结构旋转了90度后的剖面图,以致钉扎层39的磁化方向位于纸面,如箭头38所示。钉扎的铁磁层39具有净宏观磁矩,如箭头38所示。与此磁矩相关的磁场(如磁通量线36所示)对自由铁磁层35具有作用,其磁化方向与钉扎层形成约90度角(进入纸的箭头35)。来自钉扎层39的此场引起自由层35中的磁化变均匀。由于SVMR传感器中自由层35相对较短,所以在存在来自磁性介质的外加信号场时,磁化的非均匀性会引起传感器部分过早饱和。该SVMR是典型的自旋阀结构,其中自由层35位于传感器基片底部或与其相邻。
在本发明的SVMR传感器中,传统的单层钉扎的铁磁层被叠层结构所代替,该叠层结构包括至少两层被非磁性薄膜分隔的铁磁膜,该非磁性薄膜为两铁磁膜提供反平行耦合(APC)。此叠层的反平行(AP)钉扎层如未审结的美国专利申请No.08/139477所述。反平行耦合(APC)膜具有适合的类型和厚度,可使两铁磁膜相互反铁磁性地耦合,在优选实施例是约2-8的钌(Ru)。此叠层钉扎层靠近基片位于SVMR的底部,用于钉扎叠层钉扎层的反铁磁性层(AF)选自具有相对高的耐蚀性的反铁磁性材料的集合。AF层可以是具有相对弱的交换各向异性的材料,这将使其不适合用于传统的SVMR传感器。
如图5所示,SVMR具有按下列顺序的通常结构:基片/籽晶/AF/PF1/APC/PF2/SP/FR/CP。基片45可以是任何一种合适的物质,包括玻璃、半导体材料或陶瓷材料如三氧化二铝(Al2O3)。籽晶层55是任何一种改善后续层的晶体结构或晶粒尺寸的淀积层,而且根据基片状况也可不用。若使用,则籽晶层可由钽(Ta)、锆(Zr)、镍-铁(Ni-Fe)或AL2O3形成。反铁磁性(AF)层57最好是氧化镍(NiO)。通过任何一种传统的方法,例如在含氧气体中对NiO靶溅射或对Ni靶溅射,达到期望的交换特性所需的厚度,一般为200=500,在籽晶层55上淀NiO AF层57。PF1/APC/PF2叠层钉扎层70形成在AF层57上。两铁磁性层72、74(PF1和PF2)最好由Co形成,具有相同或近似相同的磁矩,并被非磁性材料的反平行耦合(APC)膜73隔开,以使PF1和PF2反铁磁性地强烈耦合在一起。叠层AP钉扎层70中的两Co膜72、74具有反平行的磁化方向取向,如箭头75、76所示。两膜72、74的磁化的反平行排列是因为通过APC膜73的反铁磁性交换耦合。由于这种反铁磁性耦合,而且两Co膜72、74具有基本相同厚度,所以各膜磁矩几乎相互抵消,以致在叠层的AP钉扎层70中只有极小的或者基本为零的磁矩。如果仅有层72被用做单一的被AF层57钉扎的钉扎层,则将会存在交换场的放大。
为了制成SVMR,在第二铁磁膜74上形成金属隔离层65(SP),在隔离层65上形成自由铁磁层63(FR),在自由铁磁层63上形成覆盖层62(CP)。当无外加磁场时,自由铁磁层63的磁化轴取向于箭头77所示方向上,亦即通常垂直于钉扎膜72、74的磁化轴75、76。
AF层57可以是任何一种耐蚀性较强的反铁磁性材料。但是,它必须为叠层的钉扎层70提供足够的交换能,对于以零点为中心的范围至少约为+/-200Oe的外加磁场,使AF/PF1/APC/PF2结构的上升或下降的磁化回线(M-H回线)一般为平坦的。满足此条件时,PF1或PF2的磁化仅有小的旋转或者无旋转,因此在弱场情况下对SVMR传感器的磁致电阻无不利影响。当使用交换能小于Fe-Mn的AF层57时,采用图5所示的叠层AP钉扎层可以达到此条件。
按下列方式制造具有NiO基AP钉扎层的SVMR传感器。采用RF磁控溅射由NiO靶在干净的玻璃基片上淀积420的NiOAF层。(在包含氧的反应气体存在的情况下使用Ni靶也能产生溅射淀积的NiO层)。在玻璃基片上不使用籽晶层。在有几百Oe的磁场的条件下淀积NiO层,但淀积过程不一定要外加磁场。NiO层淀积之后,从NiO淀积系统中取出样品,并在空气中传送于第二个淀积系统。把样品送入第二淀积系统,采用传统的离子来源用500eV的氢(Ar)离子剥蚀100秒。由此清洁了NiO表面,并导致去除了约10的表面材料。对叠层的Co/Ru/Co AP钉扎层剥蚀之后,把样品置于外磁场中,同时通过DC磁控溅射淀积其余膜。淀积后,NiO AF层将不可能是单一的反铁磁性畴态,结果Co/Ru/Co钉扎层不会是单一的反铁磁性畴态,使磁致电阻幅度降低。因此,在膜淀积之后,在15KOe的磁场中把样品加热至高于NiO反铁磁性闭塞温度(约180℃)。此强场是以抵抗Ru的影响使Co/Ru/Co钉扎层的两Co层的磁化旋转,以致它们的磁化平行于外加磁场,两Co层处于单畴态。在外场仍存在的情况下冷却样品,以使钉扎层的NiO/Co部分(NiO AF层和相邻的第一铁磁膜)的单畴态保留下来。在冷却至室温后,除去外加场,在Ru的影响下,钉扎层的第二Co膜的磁化旋转成为反平行于与NiOAF层接触的Co膜。这对准交换各向异性的方向,使钉扎层基本上处于单畴态,产生最大的磁致电阻。
图6展示了具有叠层的AP钉扎层的SVMR传感器的M-H回线,以4的Ru作为APC膜,以NiO作为AF层。其数据如图6所示的SVMR传感器具有图5所示结构,包括玻璃基片45,直接淀积在玻璃基片45而无籽晶层的420NiO层57(AF),30A钴(Co)的第一钉扎的磁膜72(PF1),4ARu膜73(APC),35CO的第二钉扎铁磁膜74(PF2),22.5铜(Cu)的隔离层65(SP),由2A Co和56A Ni-Fe制成的自由铁磁层63(FR),和50钽(Ta)覆盖层62(CP)。由于NiO层57是在与形成其余膜分开的室淀积的,所以在PF1膜淀积之前,用离子来对NiO层57剥蚀100秒,清洁基表面。图6中,在外加磁场为零时,磁化的大变化是自由层63的磁化方向反向。在外加磁场程度远离零时,在约为+/-400Oe的整个场幅范围,磁化方向基本上是平坦的,这表明叠层的AP钉扎层70只有小的旋转。
图7展示了具有NiO基的叠层的AP钉扎层的SVMR传感器的MR响应特性。此SVMR传感器与其MR响应如图7所示的传感器相同,只有自由层63由10Co/56Ni-Fe制成,用以代替2Co/56Ni-Fe。图7展示出当外加磁场达到+400Oe时,钉扎层的仅有小量的旋转,这表示为△R/R上的微小跌落。在其数据如图6和7所示的实施例中,PF1/APC/PF2叠层的钉扎层的净磁矩等同于仅有约10的Ni80Fe20
图8展示了具有与图6所示相同结构的NiO基叠层AP钉扎SVMR传感器在+/-1000Oe的整个场幅范围内的磁致电阻。以420的NiO层作为AF层,交换各向异性能大约是0.02erg/cm2,以致获得约600Oe的交换场HeX,如图8所示。图8展示出,即使在这样的强场下,以SVMR传感器的响应由叠层AP钉扎层的可逆旋转所支配,以致膜经受这样的强场时磁致电阻也不改变。因此,具有NiO基叠层的AP钉扎层的SVMR传感器大大地超过了所期望的抵抗强场的稳定性水平。与此响应相反,图9示出如果用传统的单一层钉扎层作为NiOAF层,则明显地违反了此规则。其MR响应如图9所示的SVMR传感器具有单一的35A的Co层作为被420NiOAF层所钉扎的钉扎层。图9示出交换场仅有约120Oe,在仅约200Oe的外加场范围内,钉扎层开始旋转。
再次参看图5,示意地展示了把SVMR传感器连接于磁记录系统中的传感电路的装置。设置电引线80以便在SVMR传感器、电流源82和传感装置84之间形成电路通道。正如已有技术所周知的,为了提供最佳的SVMR传感器响应电路,可以要求附加的传感元件,例如横向和纵向的偏磁层(未示出)。在优选实施例中,随着自由铁磁层63的磁化响应于来自记录介质的外加磁信号而旋转时,通过传感装置84探测电阻的改变△R,来检测介质中的磁信号。
在图5所示的实施例中,尽管叠层的AP钉扎层70包括两层单一APC膜73隔开的铁磁膜72、74,但叠层的AP钉扎层70也可包括多层由APC膜隔开的铁磁膜。根据为叠层的AP钉扎层70中的铁磁膜72、74和APC膜73所选用的材料,APC膜有一个优选的厚度,此时铁磁膜72、74成为强烈的反铁磁性耦合。对于优选的Co/Ru组合,Ru AF耦合膜的厚度可以在2-8之间选择。对于所选材料组合的振荡耦合关系由Parkin等在Phys.Rev.Lett.Vol.64,p.2034(1990)中给出了详细说明。尽管SVMR传感器中的叠层的AP钉扎层已经按以Co和Ru分别作为铁磁性和APC膜的优选材料给予了展示,但也可采用其它铁磁材料(例如Co、Fe、Ni及其合金,例如Ni-Fe、Ni-Co和Fe-Co)和其它APC膜(例如铬(Cr)、铑(Rh)、铱(Ir)、铜(Cu)及其合金)。对于这些材料的各种组合,如果并未预先知道,则必须确定振荡交换耦合关系,以便选择APC膜的厚度,确保两铁磁膜之间的反铁磁性耦合。
如果形成叠层的AP钉扎层70的两铁磁膜72、74的厚度相同,由于各磁矩将精确地抵消,则在理论上钉扎层70的净磁矩将为零。由于不可能把每层膜精确地形成为准确的相同厚度,所以作为通常的淀积工艺的自然结果,叠层的AP钉扎层70的净磁矩将很可能是小的但不为零的值。但是,可以期望把钉扎的铁磁膜72、74之一仔细地淀积成厚度稍大于另一膜,以使在钉扎层中存在不为零的小净磁矩。这将保证存在磁场时叠层的AP钉扎层70的磁化稳定,以使其磁化方向可予测。
自由铁磁层63也可包括与隔离层65相邻的Co薄膜。尽管未在图5中示出,但这是与图6-8所示数据对应的所述的优选实施例的一部分。这些Co膜提高了SVMR传感器的磁致电阻,但保持较薄,在2-20的范围,使相对"硬"的Co磁性材料对传感器的导磁率的影响降至最小,保持适当的自由层磁矩。
使用高耐蚀性、低交换各向异性AF材料使叠层的AP钉扎层自旋,在SVMR传感器中提供了附加的优点,亦即也可用作MR读取间隙的间隙材料。参看图5,在完整的SVMR结构的制造中,例如包括SVMR读取元件和感应式写入元件的集成读/写头中,图5所示的SVMR传感层将位于一对MR屏蔽之间,一般由Ni80Fe20或者铁硅铝(Fe、Si和Al的磁性合金)构成。电绝缘间隙材料位于屏蔽之间。但是,本发明中NiO AF层57提供一种附加优点,即由于它是优异的绝缘体,所以也可用作间隙材料。此时,第一MR蔽起基片45的作用。
图10是与图5类似的另一实施例,但是其中自由层63(FR)位于SVMR底部(靠近基片61),AP钉扎层70位于SVMR传感器顶部。AF层66淀积在第二钉扎铁磁层74(PF2)上。此结构也能使用低交换各向异性反铁磁体。
图11展示了图10所示的SVMR传感器实施例的磁改电阻与外加磁场的曲线关系,与其它SVMR传感器相比,但其中耐蚀AF层是Fe-Mn和铬的合金,如(Fe50Mn50)97Cr3,用以代替NiO。图11中曲线A是具有以Fe50Mn50作为反铁磁体的传统单层钉扎层的SVMR传感器,交换场约为220Oe。曲线B是具有以(Fe50Mn50)97Cr3作为反铁磁体的传统钉扎层的SVMR传感器,交换场约为160Oe。尽管已熟知(Fe50Mn50)97Cr3可提供比Fe-Mn更强的耐蚀性,但曲线B清楚地表明在传统的SVMR传感器中是不期望使用它,因为交换场明显降低。曲线C是根据本发明的采用具有(Fe50Mn50)97Cr3的Co/Ru/Co叠层AP钉扎层的SVMR传感器,交换场约900Oe。(Fe50Mn50)97Cr3为SVMR传感器提供了明显改善的耐蚀性。为提供期望的耐蚀程度,选择Cr量一般在约2-5%。
除了在SVMR传感器中的叠层AP钉扎层采用NiO和(Fe50Mn50)97Cr3作为AF层之外,另一种材料除非提供必需的耐蚀性和足够的交换各向异性,否则将不能用作SVMR传感器中的AF材料,这就是(Ni1-xCox)O,其中X约在0和0.5之间。
尽管本发明是结合优选实施例具体展示和说明的,但是本领域的技术人员可以明了在不脱离本发明的精髓、范围和指教的条件下,可以做出各种形式和细节上的变化。因此,所公开的发明仅被认为是解释性的,范围的限制仅取决于权利要求书的限定。

Claims (31)

1.一种磁致电阻传感器,包括:
第一铁磁性材料层和第二铁磁性材料层,由非磁性材料的隔离层隔开,外加磁场为零时,所述第一铁磁材料层的磁化方向与所述第二铁磁材料层磁化方向成一角度,第二铁磁性材料层包括第一和第二铁磁膜和位于其间的非磁性反平行耦合膜,该耦合膜与第一和第二铁磁膜接触以使第一和第二铁磁膜反铁磁性也耦合在一起,以致它们的磁化相互反平行地排列,并在有外加磁场时保持反平行;
反铁磁性材料的交换偏磁层,选自氧化镍(Ni1-xCox)O和(Fe-Mn)合金和Cr的集合,其中X是0.0-0.5,所述交换偏磁层与第二铁磁层中的一个铁磁膜相邻并接触,当存在外加磁场时使第二铁磁层中的一个铁磁膜的磁化保持在一个固定方向,从而当外加磁场存在时第一层的磁化可自由旋转的同时,第二层中的第一和第二铁磁膜的磁化方向保持固定及相互反平行。
2.根据权利要求1的磁致电阻传感器,其特征在于包括基片,而反铁磁性材料的交换偏磁层形成在该基片上。
3.根据权利要求2的磁致电阻传感器,其特征在于包括位于基片与交换偏磁层之间的籽晶层。
4.根据权利要求2的磁致电阻传感器,其特征在于基片是磁致电阻屏蔽。
5.根据权利要求1的磁致电阻传感器,其特征在于交换偏磁层基本上由氧化镍构成。
6.根据权利要求1的磁致电阻传感器,其特征在于第二铁磁层中的非磁性反平行耦合膜基本上由Ru构成。
7.根据权利要求2的磁致电阻传感器,其特征在于Ru膜厚度在约2-8A的范围。
8.根据权利要求1的磁致电阻传感器,其特征在于第二铁磁层中的第一和第二铁磁膜由选自Co、Fe、Ni及其合金的集合中的材料制成,第二铁磁层中的非磁性反平行耦合膜由选自Ru、Cr、Rh、Ir及其合金的集合中的材料制成。
9.根据权利要求8的磁致电阻传感器,其特征在于第二铁磁层中的第一和第二铁磁膜基本上由钴构成。
10.根据权利要求1的磁致电阻传感器,其特征在于第二铁磁层的净磁矩基本为零。
11.根据权利要求1的磁致电阻传感器,其特征在于第二铁磁层中的第一和第二铁磁膜的厚度基本上相同。
12.一种自旋阀磁致电阻传感器,包括:
基片;
反铁磁性材料的交换偏磁层,选自氧化镍(Ni1-xCox)O和(Fe-Mn)合金和Cr的集合,其中X是0.0-0.5,交换偏磁层形成在基片上;
叠层的反平行钉扎层,与交换偏磁层相邻,叠层的反平行钉扎层包括与交换偏磁层相邻并反铁磁性地耦合的第一铁磁膜、第二铁磁膜和位于第一和第二铁磁膜之间并与其接触的反平行耦合膜,该耦合膜使第一和第二铁磁膜反铁磁性地耦合在一起,以致它们的磁化相互反平行地排列,当外加磁场存在时第一和第二铁磁膜的磁化保持反平行并被交换偏磁层所钉扎;
非磁性隔离层,与叠层的反平行层的第二铁磁膜相邻;
自由的铁磁性层,与隔离层相邻接触,当不存在外加磁场时其易磁化轴通常垂直于叠层的反平行钉扎层中的第一和第二铁磁膜的磁化轴。
13.根据权利要求12的自旋阀磁致电阻传感器,其特征在于包括位于基片和交换偏磁层之间的籽晶层。
14.根据权利要求12的自旋阀磁致电阻传感器,其特征在于基片是磁致电阻屏蔽。
15.根据权利要求12的自旋阀磁致电阻传感器,其特征在于交换偏磁层基本由氧化镍构成。
16.根据权利要求12的自旋阀磁致电阻传感器,其特征在于非磁性反平行耦合膜基本由Ru构成。
17.根据权利要求12的自旋阀磁致电阻传感器,其特征在于Ru膜厚度在约2-8的范围。
18.根据权利要求12的自旋阀磁致电阻传感器,其特征在于叠层的反平行钉扎层中的第一和第二铁磁膜由选自Co、Fe、Ni及其合金的集合中的材料制成,叠层的反平行钉扎层中的非磁性反平行耦合膜由选自Ru、Cr、Rh、Ir及其合金的集合中的材料制成。
19.根据权利要求18的自旋阀磁致电阻传感器,其特征在于叠层的反平行钉扎层中的第一和第二铁磁膜基本由钴构成。
20.根据权利要求12的自旋阀磁致电阻传感器,其特征在于叠层的反平行钉扎层的净磁矩基本为零。
21.根据权利要求12的自旋阀磁致电阻传感器,其特征在于叠层的反平行钉扎层中的第一和第二铁磁膜具有基本相同的厚度。
22.一种磁记录盘驱动器,包括:
磁记录盘;
与盘连接的电动机,用于旋转盘;
自旋阀磁致电阻传感器,用于检测对盘上的磁性记录的数据,该传感器包括:
反铁磁性材料的交换偏磁层,选自氧化镍(Ni1-xCox)O和(Fe-Mn)合金和Cr的集合;其中X是0.0-0.5;
叠层的反平行钉扎层,与交换偏磁层相邻,叠层的反平行钉扎层包括与交换偏磁层相邻并反铁磁性地耦合的第一铁磁膜、第二铁磁膜和位于第一和第二铁磁膜之间并与其接触的反平行耦合膜,该耦合膜使第一和第二铁磁膜反铁磁性地耦合在一起,以致它们的磁化相互反平行地排列,当外加磁场存在时第一和第二铁磁膜的磁化保持反平行并被交换偏磁层所钉扎;
非磁性隔离层,与叠层的反平行层的第二铁磁膜相邻;
自由的铁磁性层,与隔离层相邻接触;
支承自旋阀磁致电阻传感器的承载体,该承载体具有传感器固定于其上的基片;
执行机构,按通常为径向横跨盘的方式移动承载体,以使传感器能存取盘上磁性记录的数据的不同区域;
把承载体连接于执行机构的装置,保持承载体靠近盘;
与传感器电耦合的装置,用于探测传感器电阻的变化,此变化是自由铁磁性层的磁化轴响应于来自磁性记录的盘的磁场相对于叠层的反平行钉扎层中的反平行耦合的第一和第二铁磁膜的固定磁化方向的旋转引起的。
支承电动机和执行机构的装置。
23.根据权利要求22的磁盘驱动器,其特征在于包括位于承载体基片和交换偏磁层之间的籽晶层。
24.根据权利要求22 的磁盘驱动器,其特征在于基片是磁致电阻屏蔽,其中交换偏磁层形成在屏蔽上。
25.根据权利要求22的磁盘驱动器,其特征在于交换偏磁层基本由氧化镍构成。
26.根据权利要求22的磁盘驱动器,其特征在于非磁性反平行耦合膜基本由Ru构成。
27.根据权利要求26的磁盘驱动器,其特征在于Ru膜厚度在约2-8的范围。
28.根据权利要求22的磁盘驱动器,其特征在于叠层的反平行钉扎层中的第一和第二铁磁膜由选自Co、Fe、Ni及其合金的集合中的材料制成,叠层的反平行钉扎层中的非磁性反平行耦合膜由选自Ru、Cr、Rh、Ir及其合金的集合中的材料制成。
29.根据权利要求28的磁盘驱动器,其特征在于叠层的反平行钉扎层中的第一和第二铁磁膜基本由钴构成。
30.根据权利要求22的磁盘驱动器,其特征在于叠层的反平行钉扎层的净磁矩基本为零。
31.根据权利要求22的磁盘驱动器,其特征在于叠层的反平行钉扎层的第一和第二铁磁膜具有基本相同的厚度。
CN96110311A 1995-06-30 1996-06-08 自旋阀磁致电阻传感器以及使用此传感器的磁记录系统 Expired - Fee Related CN1076498C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49732495A 1995-06-30 1995-06-30
US497324 1995-06-30

Publications (2)

Publication Number Publication Date
CN1153371A true CN1153371A (zh) 1997-07-02
CN1076498C CN1076498C (zh) 2001-12-19

Family

ID=23976401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96110311A Expired - Fee Related CN1076498C (zh) 1995-06-30 1996-06-08 自旋阀磁致电阻传感器以及使用此传感器的磁记录系统

Country Status (9)

Country Link
US (1) US5701223A (zh)
EP (1) EP0751499B1 (zh)
JP (1) JP3180027B2 (zh)
KR (1) KR100261385B1 (zh)
CN (1) CN1076498C (zh)
DE (1) DE69611326T2 (zh)
MY (1) MY114553A (zh)
SG (1) SG46731A1 (zh)
TW (1) TW330285B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319083C (zh) * 2000-06-21 2007-05-30 皇家菲利浦电子有限公司 具有改进的磁场范围的磁多层结构
CN100371990C (zh) * 2004-02-18 2008-02-27 日立环球储存科技荷兰有限公司 带有退藕的难偏置多层的磁阻传感器
CN100390859C (zh) * 2000-07-17 2008-05-28 国际商业机器公司 自旋阀及其制造方法
CN100424753C (zh) * 2005-04-22 2008-10-08 台湾积体电路制造股份有限公司 磁阻结构
CN100452175C (zh) * 2005-05-26 2009-01-14 株式会社东芝 磁阻效应元件、磁头、磁记录再生装置、以及磁存储器
CN1784610B (zh) * 2003-03-14 2010-06-02 S.N.R.鲁尔门斯公司 含有铁磁/反铁磁灵敏元件的磁致电阻传感器及其使用
CN101154709B (zh) * 2006-09-28 2010-06-09 株式会社东芝 磁阻效应元件和磁阻式随机存取存储器
CN104992716A (zh) * 2015-07-03 2015-10-21 河南科技大学 一种无磁锻炼效应交换偏置体系的制备方法
CN109791392A (zh) * 2016-12-06 2019-05-21 Eta瑞士钟表制造股份有限公司 包括借助于两个感应式传感器来检测其致动的旋转控制柄轴的便携式物体
CN112578323A (zh) * 2019-09-30 2021-03-30 英飞凌科技股份有限公司 磁阻传感器及其制造方法

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055135A (en) * 1996-03-25 2000-04-25 Alps Electric Co., Ltd. Exchange coupling thin film and magnetoresistive element comprising the same
JPH10241123A (ja) * 1997-02-28 1998-09-11 Nec Corp 磁気抵抗効果ヘッド
JP2970590B2 (ja) * 1997-05-14 1999-11-02 日本電気株式会社 磁気抵抗効果素子並びにこれを用いた磁気抵抗効果センサ、磁気抵抗検出システム及び磁気記憶システム
US5871622A (en) * 1997-05-23 1999-02-16 International Business Machines Corporation Method for making a spin valve magnetoresistive sensor
US6061210A (en) * 1997-09-22 2000-05-09 International Business Machines Corporation Antiparallel pinned spin valve with high magnetic stability
DE69827737D1 (de) * 1997-09-29 2004-12-30 Matsushita Electric Ind Co Ltd Magnetowiderstandseffektvorrichtung ,magnetoresistive Kopf und Verfahren zur Herstellung einer Magnetowiderstandseffektvorrichtung
US5898549A (en) * 1997-10-27 1999-04-27 International Business Machines Corporation Anti-parallel-pinned spin valve sensor with minimal pinned layer shunting
US6040961A (en) * 1997-10-27 2000-03-21 International Business Machines Corporation Current-pinned, current resettable soft AP-pinned spin valve sensor
US6038107A (en) * 1997-10-27 2000-03-14 International Business Machines Corporation Antiparallel-pinned spin valve sensor
US6245450B1 (en) 1997-11-17 2001-06-12 Matsushita Electric Industrial Co., Ltd. Exchange coupling film magnetoresistance effect device magnetoresistance effective head and method for producing magnetoresistance effect device
US6175477B1 (en) * 1997-12-05 2001-01-16 International Business Machines Corporation Spin valve sensor with nonmagnetic oxide seed layer
US6141191A (en) * 1997-12-05 2000-10-31 International Business Machines Corporation Spin valves with enhanced GMR and thermal stability
US6261681B1 (en) * 1998-03-20 2001-07-17 Asahi Komag Co., Ltd. Magnetic recording medium
JPH11296823A (ja) * 1998-04-09 1999-10-29 Nec Corp 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果センサ,磁気記録システム
US6269027B1 (en) 1998-04-14 2001-07-31 Honeywell, Inc. Non-volatile storage latch
US6191926B1 (en) * 1998-05-07 2001-02-20 Seagate Technology Llc Spin valve magnetoresistive sensor using permanent magnet biased artificial antiferromagnet layer
US6738236B1 (en) 1998-05-07 2004-05-18 Seagate Technology Llc Spin valve/GMR sensor using synthetic antiferromagnetic layer pinned by Mn-alloy having a high blocking temperature
US6063244A (en) * 1998-05-21 2000-05-16 International Business Machines Corporation Dual chamber ion beam sputter deposition system
US6313973B1 (en) 1998-06-30 2001-11-06 Kabushiki Kaisha Toshiba Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US7738220B1 (en) * 1998-06-30 2010-06-15 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, magnetic head assembly, magnetic storage system
US6221172B1 (en) 1998-07-21 2001-04-24 Alps Electric Co., Inc. Manufacturing method of spin-valve magnetoresistive thin film element
US6195240B1 (en) 1998-07-31 2001-02-27 International Business Machines Corporation Spin valve head with diffusion barrier
US6175476B1 (en) 1998-08-18 2001-01-16 Read-Rite Corporation Synthetic spin-valve device having high resistivity anti parallel coupling layer
US6278594B1 (en) 1998-10-13 2001-08-21 Storage Technology Corporation Dual element magnetoresistive read head with integral element stabilization
US6122150A (en) * 1998-11-09 2000-09-19 International Business Machines Corporation Antiparallel (AP) pinned spin valve sensor with giant magnetoresistive (GMR) enhancing layer
US6181534B1 (en) 1998-11-09 2001-01-30 International Business Machines Corporation Antiparallel (AP) pinned spin valve sensor with specular reflection of conduction electrons
US6201671B1 (en) 1998-12-04 2001-03-13 International Business Machines Corporation Seed layer for a nickel oxide pinning layer for increasing the magnetoresistance of a spin valve sensor
US6633464B2 (en) 1998-12-09 2003-10-14 Read-Rite Corporation Synthetic antiferromagnetic pinned layer with Fe/FeSi/Fe system
US6185077B1 (en) 1999-01-06 2001-02-06 Read-Rite Corporation Spin valve sensor with antiferromagnetic and magnetostatically coupled pinning structure
US6587315B1 (en) 1999-01-20 2003-07-01 Alps Electric Co., Ltd. Magnetoresistive-effect device with a magnetic coupling junction
JP3703348B2 (ja) 1999-01-27 2005-10-05 アルプス電気株式会社 スピンバルブ型薄膜素子とそのスピンバルブ型薄膜素子を備えた薄膜磁気ヘッド
JP3212567B2 (ja) * 1999-01-27 2001-09-25 アルプス電気株式会社 磁気抵抗効果型薄膜磁気素子を備えた薄膜磁気ヘッドおよびその製造方法
US6351355B1 (en) * 1999-02-09 2002-02-26 Read-Rite Corporation Spin valve device with improved thermal stability
US6469878B1 (en) * 1999-02-11 2002-10-22 Seagate Technology Llc Data head and method using a single antiferromagnetic material to pin multiple magnetic layers with differing orientation
US6181533B1 (en) 1999-02-19 2001-01-30 Seagate Technology Llc Simultaneous fixation of the magnetization direction in a dual GMR sensor's pinned layers
JP2000285413A (ja) * 1999-03-26 2000-10-13 Fujitsu Ltd スピンバルブ磁気抵抗効果型素子とその製造法、及びこの素子を用いた磁気ヘッド
US6282068B1 (en) * 1999-03-30 2001-08-28 International Business Machines Corporation Antiparallel (AP) pinned read head with improved GMR
US6201673B1 (en) 1999-04-02 2001-03-13 Read-Rite Corporation System for biasing a synthetic free layer in a magnetoresistance sensor
US6331773B1 (en) 1999-04-16 2001-12-18 Storage Technology Corporation Pinned synthetic anti-ferromagnet with oxidation protection layer
WO2000065578A1 (en) * 1999-04-28 2000-11-02 Seagate Technology Llc Giant magnetoresistive sensor with pinning layer
JP3575672B2 (ja) * 1999-05-26 2004-10-13 Tdk株式会社 磁気抵抗効果膜及び磁気抵抗効果素子
US6602612B2 (en) 1999-06-08 2003-08-05 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6753101B1 (en) 1999-06-08 2004-06-22 Fujitsu Limited Magnetic recording medium, magnetic storage apparatus, recording method and method of producing magnetic recording medium
US6689495B1 (en) 1999-06-08 2004-02-10 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6821652B1 (en) 1999-06-08 2004-11-23 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6645646B1 (en) 1999-06-08 2003-11-11 Fujitsu Limited Magnetic recording medium and magnetic storage apparatus
US6469877B1 (en) 1999-06-15 2002-10-22 Read-Rite Corporation Spin valve device with improved exchange layer defined track width and method of fabrication
US6219208B1 (en) 1999-06-25 2001-04-17 International Business Machines Corporation Dual spin valve sensor with self-pinned layer specular reflector
US6226159B1 (en) * 1999-06-25 2001-05-01 International Business Machines Corporation Multilayered pinned layer of cobalt based films separated by a nickel base film for improved coupling field and GMR for spin valve sensors
US6295187B1 (en) 1999-06-29 2001-09-25 International Business Machines Corporation Spin valve sensor with stable antiparallel pinned layer structure exchange coupled to a nickel oxide pinning layer
US6398924B1 (en) * 1999-06-29 2002-06-04 International Business Machines Corporation Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer
US6687098B1 (en) 1999-07-08 2004-02-03 Western Digital (Fremont), Inc. Top spin valve with improved seed layer
US6356419B1 (en) * 1999-07-23 2002-03-12 International Business Machines Corporation Antiparallel pinned read sensor with improved magnetresistance
US6252750B1 (en) * 1999-07-23 2001-06-26 International Business Machines Corporation Read head with file resettable double antiparallel (AP) pinned spin valve sensor
US6286200B1 (en) 1999-07-23 2001-09-11 International Business Machines Corporation Dual mask process for making second pole piece layer of write head with high resolution narrow track width second pole tip
DE19936896C1 (de) * 1999-07-29 2001-03-29 Hahn Meitner Inst Berlin Gmbh Verfahren zur Herstellung von nm-dicken antiferromagnetischen oder pinnenden Schichten und Verwendungen derartig hergestellter Schichten
US6219210B1 (en) 1999-07-30 2001-04-17 International Business Machines Corporation Spin valve sensor with nickel oxide pinning layer on a chromium seed layer
US6428657B1 (en) * 1999-08-04 2002-08-06 International Business Machines Corporation Magnetic read head sensor with a reactively sputtered pinning layer structure
WO2001024170A1 (fr) 1999-09-29 2001-04-05 Fujitsu Limited Tete a effet de resistance magnetique et dispositif de reproduction d'informations
US6292336B1 (en) 1999-09-30 2001-09-18 Headway Technologies, Inc. Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient
US6590751B1 (en) 1999-09-30 2003-07-08 Headway Technologies, Inc. Anisotropic magnetoresistive (MR) sensor element with enhanced magnetoresistive (MR) coefficient
US6455177B1 (en) * 1999-10-05 2002-09-24 Seagate Technology Llc Stabilization of GMR devices
US6519117B1 (en) 1999-12-06 2003-02-11 International Business Machines Corporation Dual AP pinned GMR head with offset layer
US6178111B1 (en) 1999-12-07 2001-01-23 Honeywell Inc. Method and apparatus for writing data states to non-volatile storage devices
US6388847B1 (en) 2000-02-01 2002-05-14 Headway Technologies, Inc. Specular spin valve with robust pinned layer
US6407890B1 (en) 2000-02-08 2002-06-18 International Business Machines Corporation Dual spin valve sensor read head with a specular reflector film embedded in each antiparallel (AP) pinned layer next to a spacer layer
US6466418B1 (en) 2000-02-11 2002-10-15 Headway Technologies, Inc. Bottom spin valves with continuous spacer exchange (or hard) bias
US6396671B1 (en) 2000-03-15 2002-05-28 Headway Technologies, Inc. Ruthenium bias compensation layer for spin valve head and process of manufacturing
US6496337B1 (en) 2000-03-20 2002-12-17 Headway Technologies, Inc. Copper alloy GMR recording head
US6522507B1 (en) 2000-05-12 2003-02-18 Headway Technologies, Inc. Single top spin valve heads for ultra-high recording density
JP2001358381A (ja) * 2000-06-14 2001-12-26 Fujitsu Ltd 磁気抵抗効果膜、磁気抵抗効果型ヘッド、および情報再生装置
US6396733B1 (en) 2000-07-17 2002-05-28 Micron Technology, Inc. Magneto-resistive memory having sense amplifier with offset control
US6493258B1 (en) 2000-07-18 2002-12-10 Micron Technology, Inc. Magneto-resistive memory array
US6562487B1 (en) 2000-07-28 2003-05-13 Seagate Technology Llc Writer pole employing a high saturation moment, low permeability layer adjacent to writer gap
EP1187103A3 (en) * 2000-08-04 2003-01-08 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element
US6493259B1 (en) 2000-08-14 2002-12-10 Micron Technology, Inc. Pulse write techniques for magneto-resistive memories
US6724654B1 (en) * 2000-08-14 2004-04-20 Micron Technology, Inc. Pulsed write techniques for magneto-resistive memories
US6363007B1 (en) 2000-08-14 2002-03-26 Micron Technology, Inc. Magneto-resistive memory with shared wordline and sense line
JP2002117508A (ja) 2000-10-06 2002-04-19 Hitachi Ltd 磁気ヘッドおよびその製造方法
US6580589B1 (en) 2000-10-06 2003-06-17 International Business Machines Corporation Pinned layer structure for a spin valve sensor having cobalt iron (CoFe) and cobalt iron oxide (CoFeO) laminated layers
US6764778B2 (en) 2000-11-01 2004-07-20 Alps Electric Co., Ltd. Thin film magnetic element with accurately controllable track width and method of manufacturing the same
US6714389B1 (en) * 2000-11-01 2004-03-30 Seagate Technology Llc Digital magnetoresistive sensor with bias
US6778357B2 (en) 2000-11-10 2004-08-17 Seagate Technology Llc Electrodeposited high-magnetic-moment material at writer gap pole
EP1359570A4 (en) * 2000-11-29 2004-04-14 Fujitsu Ltd MAGNETIC RECORDING MEDIUM AND MAGNETIC STORAGE DEVICE
JP3848079B2 (ja) 2000-12-07 2006-11-22 富士通株式会社 磁気記録媒体及び磁気記録装置
US6700757B2 (en) 2001-01-02 2004-03-02 Hitachi Global Storage Technologies Netherlands B.V. Enhanced free layer for a spin valve sensor
US6473279B2 (en) 2001-01-04 2002-10-29 International Business Machines Corporation In-stack single-domain stabilization of free layers for CIP and CPP spin-valve or tunnel-valve read heads
US6689497B1 (en) 2001-01-08 2004-02-10 Seagate Technology Llc Stabilized AFC magnetic recording media with reduced lattice mismatch between spacer layer(s) and magnetic layers
US6721146B2 (en) 2001-03-14 2004-04-13 International Business Machines Corporation Magnetic recording GMR read back sensor and method of manufacturing
US6791805B2 (en) * 2001-05-03 2004-09-14 Seagate Technology Llc Current-perpendicular-to-plane spin valve reader with reduced scattering of majority spin electrons
DE10128150C1 (de) * 2001-06-11 2003-01-23 Siemens Ag Magnetoresistives Sensorsystem
JP2002367124A (ja) * 2001-06-13 2002-12-20 Hitachi Ltd スピンバルブ型磁気ヘッド
US20030002231A1 (en) * 2001-06-29 2003-01-02 Dee Richard Henry Reduced sensitivity spin valve head for magnetic tape applications
US20030002232A1 (en) * 2001-06-29 2003-01-02 Storage Technology Corporation Apparatus and method of making a reduced sensitivity spin valve sensor apparatus in which a flux carrying capacity is increased
JP2003031867A (ja) 2001-07-17 2003-01-31 Hitachi Ltd 酸化物磁性層と金属磁性膜を積層した磁気抵抗効果素子
JP2003067904A (ja) * 2001-08-28 2003-03-07 Hitachi Ltd 磁気抵抗効果型磁気ヘッドおよびその製造方法
US6581272B1 (en) * 2002-01-04 2003-06-24 Headway Technologies, Inc. Method for forming a bottom spin valve magnetoresistive sensor element
US6751072B2 (en) 2002-03-21 2004-06-15 Hitachi Global Storage Technologies Netherlands B.V. High magnetoresistance spin valve sensor with self-pinned antiparallel (AP) pinned layer structure
US6741432B2 (en) 2002-03-21 2004-05-25 International Business Machines Corporation Current perpendicular to the planes (CPP) spin valve sensor with in-stack biased free layer and self-pinned antiparallel (AP) pinned layer structure
US6856493B2 (en) 2002-03-21 2005-02-15 International Business Machines Corporation Spin valve sensor with in-stack biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
US6865062B2 (en) 2002-03-21 2005-03-08 International Business Machines Corporation Spin valve sensor with exchange biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
US6857180B2 (en) * 2002-03-22 2005-02-22 Headway Technologies, Inc. Method for fabricating a patterned synthetic longitudinal exchange biased GMR sensor
US6811890B1 (en) 2002-04-08 2004-11-02 Maxtor Corporation Intermediate layer for antiferromagnetically exchange coupled media
US7119990B2 (en) * 2002-05-30 2006-10-10 Komag, Inc. Storage device including a center tapped write transducer
US6857937B2 (en) 2002-05-30 2005-02-22 Komag, Inc. Lapping a head while powered up to eliminate expansion of the head due to heating
US7426097B2 (en) * 2002-07-19 2008-09-16 Honeywell International, Inc. Giant magnetoresistive device with buffer-oxide layer between seed and ferromagnetic layers to provide smooth interfaces
US6714441B1 (en) * 2002-09-17 2004-03-30 Micron Technology, Inc. Bridge-type magnetic random access memory (MRAM) latch
US7123451B2 (en) * 2002-09-25 2006-10-17 Tdk Corporation Thin-film magnetic head for reading magnetic information on a hard disk by utilizing a magnetoresistance effect
CN100369117C (zh) * 2002-12-31 2008-02-13 有研稀土新材料股份有限公司 一种氧化物巨磁电阻自旋阀及包含其的设备
US6977801B2 (en) * 2003-02-24 2005-12-20 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive device with exchange-coupled structure having half-metallic ferromagnetic Heusler alloy in the pinned layer
JP2004296000A (ja) * 2003-03-27 2004-10-21 Hitachi Ltd 磁気抵抗効果型ヘッド、及びその製造方法
KR100522943B1 (ko) * 2003-04-25 2005-10-25 학교법인고려중앙학원 소자 크기 변화에 무관하게 작고 안정한 바이어스 자기장을 갖는 자기 저항 구조
US7592079B1 (en) 2003-07-03 2009-09-22 Seagate Technology Llc Method to improve remanence-squareness-thickness-product and coercivity profiles in magnetic media
US20050013059A1 (en) * 2003-07-15 2005-01-20 International Business Machines Corporation Magnetoresistive sensor with a net magnetic moment
US7145755B2 (en) * 2003-09-30 2006-12-05 Hitachi Global Storage Technologies Netherlands B.V. Spin valve sensor having one of two AP pinned layers made of cobalt
US7173796B2 (en) * 2003-09-30 2007-02-06 Hitachi Global Storage Technologies Netherlands B.V. Spin valve with a capping layer comprising an oxidized cobalt layer and method of forming same
JP2005123412A (ja) * 2003-10-16 2005-05-12 Anelva Corp 磁気抵抗多層膜製造方法及び製造装置
US7151653B2 (en) * 2004-02-18 2006-12-19 Hitachi Global Technologies Netherlands B.V. Depositing a pinned layer structure in a self-pinned spin valve
US7339818B2 (en) 2004-06-04 2008-03-04 Micron Technology, Inc. Spintronic devices with integrated transistors
US6870711B1 (en) 2004-06-08 2005-03-22 Headway Technologies, Inc. Double layer spacer for antiparallel pinned layer in CIP/CPP GMR and MTJ devices
US7446982B2 (en) * 2004-07-01 2008-11-04 Hitachi Global Storage Technologies Netherlands B.V. Pinning structure with trilayer pinned layer
US7289304B2 (en) * 2004-10-29 2007-10-30 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with improved antiparallel-pinned structure
US20060146452A1 (en) * 2005-01-04 2006-07-06 Min Li CIP GMR enhanced by using inverse GMR material in AP2
US7612970B2 (en) * 2005-02-23 2009-11-03 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with a free layer stabilized by direct coupling to in stack antiferromagnetic layer
US7554775B2 (en) * 2005-02-28 2009-06-30 Hitachi Global Storage Technologies Netherlands B.V. GMR sensors with strongly pinning and pinned layers
JP4466487B2 (ja) * 2005-06-27 2010-05-26 Tdk株式会社 磁気センサおよび電流センサ
JP4694332B2 (ja) * 2005-09-29 2011-06-08 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 磁気抵抗効果型磁気ヘッド及び複合型磁気ヘッド
US8582252B2 (en) 2005-11-02 2013-11-12 Seagate Technology Llc Magnetic layer with grain refining agent
JP4764294B2 (ja) * 2006-09-08 2011-08-31 株式会社東芝 磁気抵抗効果素子、及び磁気ヘッド
JP4673274B2 (ja) 2006-09-11 2011-04-20 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 外部ストレス耐性の高い磁気抵抗効果型ヘッド
US8514524B2 (en) * 2008-05-09 2013-08-20 Headway Technologies, Inc. Stabilized shields for magnetic recording heads
US10438997B2 (en) 2014-05-21 2019-10-08 Avalanche Technology, Inc. Multilayered seed structure for magnetic memory element including a CoFeB seed layer
US10347691B2 (en) 2014-05-21 2019-07-09 Avalanche Technology, Inc. Magnetic memory element with multilayered seed structure
US9496489B2 (en) 2014-05-21 2016-11-15 Avalanche Technology, Inc. Magnetic random access memory with multilayered seed structure
US10050083B2 (en) 2014-05-21 2018-08-14 Avalanche Technology, Inc. Magnetic structure with multilayered seed
US10115418B2 (en) 2016-11-21 2018-10-30 Headway Technologies, Inc. Hard magnet stabilized shield for double (2DMR) or triple (3DMR) dimension magnetic reader structures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206590A (en) * 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
US5159513A (en) * 1991-02-08 1992-10-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
US5315468A (en) * 1992-07-28 1994-05-24 International Business Machines Corporation Magnetoresistive sensor having antiferromagnetic layer for exchange bias
US5287238A (en) * 1992-11-06 1994-02-15 International Business Machines Corporation Dual spin valve magnetoresistive sensor
US5422571A (en) * 1993-02-08 1995-06-06 International Business Machines Corporation Magnetoresistive spin valve sensor having a nonmagnetic back layer
US5343422A (en) * 1993-02-23 1994-08-30 International Business Machines Corporation Nonvolatile magnetoresistive storage device using spin valve effect
US5465185A (en) * 1993-10-15 1995-11-07 International Business Machines Corporation Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
US5408377A (en) * 1993-10-15 1995-04-18 International Business Machines Corporation Magnetoresistive sensor with improved ferromagnetic sensing layer and magnetic recording system using the sensor
US5583725A (en) * 1994-06-15 1996-12-10 International Business Machines Corporation Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319083C (zh) * 2000-06-21 2007-05-30 皇家菲利浦电子有限公司 具有改进的磁场范围的磁多层结构
CN100390859C (zh) * 2000-07-17 2008-05-28 国际商业机器公司 自旋阀及其制造方法
CN1784610B (zh) * 2003-03-14 2010-06-02 S.N.R.鲁尔门斯公司 含有铁磁/反铁磁灵敏元件的磁致电阻传感器及其使用
CN100371990C (zh) * 2004-02-18 2008-02-27 日立环球储存科技荷兰有限公司 带有退藕的难偏置多层的磁阻传感器
CN100424753C (zh) * 2005-04-22 2008-10-08 台湾积体电路制造股份有限公司 磁阻结构
CN100452175C (zh) * 2005-05-26 2009-01-14 株式会社东芝 磁阻效应元件、磁头、磁记录再生装置、以及磁存储器
US7602592B2 (en) 2005-05-26 2009-10-13 Kabushiki Kaisha Toshiba Magnetoresistive element including connection layers with magnetization alignment angles therebetween of 30 to 60° between metallic magnetic layers
CN101154709B (zh) * 2006-09-28 2010-06-09 株式会社东芝 磁阻效应元件和磁阻式随机存取存储器
CN104992716A (zh) * 2015-07-03 2015-10-21 河南科技大学 一种无磁锻炼效应交换偏置体系的制备方法
CN109791392A (zh) * 2016-12-06 2019-05-21 Eta瑞士钟表制造股份有限公司 包括借助于两个感应式传感器来检测其致动的旋转控制柄轴的便携式物体
CN112578323A (zh) * 2019-09-30 2021-03-30 英飞凌科技股份有限公司 磁阻传感器及其制造方法

Also Published As

Publication number Publication date
KR970002377A (ko) 1997-01-24
MY114553A (en) 2002-11-30
EP0751499A1 (en) 1997-01-02
EP0751499B1 (en) 2000-12-27
DE69611326D1 (de) 2001-02-01
DE69611326T2 (de) 2001-05-31
TW330285B (en) 1998-04-21
US5701223A (en) 1997-12-23
JP3180027B2 (ja) 2001-06-25
CN1076498C (zh) 2001-12-19
JPH0916920A (ja) 1997-01-17
SG46731A1 (en) 1998-02-20
KR100261385B1 (ko) 2000-07-01

Similar Documents

Publication Publication Date Title
CN1076498C (zh) 自旋阀磁致电阻传感器以及使用此传感器的磁记录系统
US6023395A (en) Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
KR100288466B1 (ko) 자기저항효과소자와이를이용한자기저항효과형헤드,기억소자및증폭소자
US5989690A (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
US6992866B2 (en) Exchange-coupled magnetoresistive sensor with a coercive ferrite layer and an oxide underlayer having a spinal lattice structure
US5465185A (en) Magnetoresistive spin valve sensor with improved pinned ferromagnetic layer and magnetic recording system using the sensor
US6947264B2 (en) Self-pinned in-stack bias structure for magnetoresistive read heads
KR100462926B1 (ko) 스핀터널 자기저항효과막과 소자 및 이를 사용한 자기저항센서 및 자기 장치와 그 제조방법
US6292336B1 (en) Giant magnetoresistive (GMR) sensor element with enhanced magnetoresistive (MR) coefficient
US6005753A (en) Magnetic tunnel junction magnetoresistive read head with longitudinal and transverse bias
EP0622781B1 (en) Granular multilayer magnetoresistive sensor
US7505235B2 (en) Method and apparatus for providing magnetostriction control in a freelayer of a magnetic memory device
US20020167766A1 (en) Magnetoresistive element and device utilizing magnetoresistance effect
US7688555B2 (en) Hard bias design for extra high density recording
JPH10303477A (ja) 磁気抵抗効果素子並びにこれを用いた磁気抵抗効果センサ、磁気抵抗検出システム及び磁気記憶システム
US20040196595A1 (en) Magnetoresistive sensor with magnetostatic coupling of magnetic regions
US20030206379A1 (en) Current-perpendicular-to-plane read head with an amorphous magnetic bottom shield layer and an amorphous nonmagnetic bottom lead layer
KR20080077330A (ko) 자기 저항 효과 소자, 자기 헤드, 자기 기억 장치 및 자기메모리 장치
US4800457A (en) Magnetoresistive sensor element
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US8670218B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with hard magnet biasing structure having a MgO insulating layer
JPH10188235A (ja) 磁気抵抗効果膜及びその製造方法
US20080007877A1 (en) Magneto-resistance effect element, magnetic head, magnetic recording/reproducing device and magnetic memory
JP3181512B2 (ja) デュアルスピンバルブ型素子および薄膜磁気ヘッド

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HITACHI GST

Free format text: FORMER OWNER: INTERNATIONAL BUSINESS MACHINE CORP.

Effective date: 20040112

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20040112

Address after: Amsterdam

Patentee after: Hitachi Global Storage Tech

Address before: American New York

Patentee before: International Business Machines Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20011219

Termination date: 20100608