CN1138980C - 用于静电力显微镜的带悬臂梁静电力检测器及其检测方法 - Google Patents

用于静电力显微镜的带悬臂梁静电力检测器及其检测方法 Download PDF

Info

Publication number
CN1138980C
CN1138980C CNB988128462A CN98812846A CN1138980C CN 1138980 C CN1138980 C CN 1138980C CN B988128462 A CNB988128462 A CN B988128462A CN 98812846 A CN98812846 A CN 98812846A CN 1138980 C CN1138980 C CN 1138980C
Authority
CN
China
Prior art keywords
electrostatic force
detecting device
electrostatic
specimen
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB988128462A
Other languages
English (en)
Other versions
CN1285915A (zh
Inventor
伊藤彰义
中川活二
谷掌
威廉姆斯
上原利夫
B·T·威廉姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trek Inc
Original Assignee
Trek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trek Inc filed Critical Trek Inc
Publication of CN1285915A publication Critical patent/CN1285915A/zh
Application granted granted Critical
Publication of CN1138980C publication Critical patent/CN1138980C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q40/00Calibration, e.g. of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/30Scanning potential microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/40Conductive probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/852Manufacture, treatment, or detection of nanostructure with scanning probe for detection of specific nanostructure sample or nanostructure-related property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/849Manufacture, treatment, or detection of nanostructure with scanning probe
    • Y10S977/86Scanning probe structure
    • Y10S977/864Electrostatic force probe

Abstract

一种静电力显微镜,其中通过获得几种不同形状检测器上的电场分布确定施加在检测器上的静电力,与此同时利用有限元方法计算检测器附近的电压分布以指导测试时表面绝对电荷量的测量,从而可以从平行平板模型确定分析与结果的差异。感兴趣的是测试介电材料厚度变化引起的电荷检测误差有多大。提供的检测器用于静电力显微镜的带有空间分辨率为10微米的合适形状的悬臂梁,它由镍箔制成,并且计算了其上的静电力。

Description

用于静电力显微镜的带悬臂梁静电力检测器及其检测方法
相关申请
申请人对1997年10月31日提交的题为“用于静电力显微镜的带悬臂梁静电力检测器”的分案专利申请No.60/063,936要求优先权,并且该申请作为参考文献包含在本文中。
技术领域
本发明涉及表面静电电荷分布的测量,特别是用于测量测试样品静电力和薄膜厚度的设备和方法。
背景技术
在电子摄影术中一直希望硬拷贝具有较高的空间分辨率和更佳质量的全彩色图像。光敏接收器件是获得高质量硬拷贝的关键设备。一方面需要精确测量光敏接收器件鼓上的电荷分布,另一方面目前可用装置的空间分辨率较差。在电子摄影术和半导体研究中都需要以非常高的空间分辨率测量电荷分布。需要进行研究以实现一种测量系统,它利用静电力能够以直径10微米以下的空间分辨率测量电荷分布。激光打印机具有600dpi或更高的空间分辨率,这意味着每个像素的直径大约为21微米。对于扫描静电力显微镜已经作了研究,但是这些研究在理论上仅仅分析了平行平板模型并且没有进一步讨论探针如何影响电荷分布的测量。
因此无法知道测量能够达到的空间分辨率精度,检测器的形状对电荷量检测的影响有多大以及测试时薄膜厚度和样品介电常数对测量的影响有多大。
发明内容
按照本发明,通过获得几种不同形状检测器上的电场分布确定施加在检测器上的静电力,与此同时利用有限元方法计算检测器附近的电压分布以指导测试时表面绝对电荷量的测量,从而可以从平行平板模型确定分析与结果的差异。感兴趣的是测试介电材料厚度变化引起的电荷检测误差有多大。提供的检测器用于静电力显微镜(EFM)的带有空间分辨率为10微米的合适形状的悬臂梁,它由镍箔制成,并且计算了其上的静电力。
本发明的第一方面提供了一种用于测量测试样品静电力和薄膜厚度的静电力显微镜,它包含:a)检测器,包含具有一种造形的悬臂从而因测试样品上静电电荷而在其尖端感应静电力;b)光学系统,用于将尖端静电力引起的悬臂弯曲转换为包含检测器尖端感应的静电力的频率分量的电学信号;c)用于将交流偏压和直流偏压的组合施加在所述检测器的装置;以及d)用于检测对应两倍频率的检测器尖端感应静电力频率分量从而可以同时获得测试样品的静电力和薄膜厚度的装置,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
基于本发明第一方面的本发明第二方面提供了一种静电力显微镜,它进一步包括反馈装置,用于将所述检测装置的输出施加在直流偏压受控电源上。
基于本发明第一方面的本发明第三方面提供了一种静电力显微镜,它进一步包括将直流偏压施加在同一测试样品上。
基于本发明第一方面的本发明第四方面提供了一种静电力显微镜,它的特点是所述检测器的悬臂包括镍箔条。
基于本发明第一方面的本发明第五方面提供了一种静电力显微镜,它的特点是述检测器的所述箔条形成圆柱状,一个端面面对测试样品并且与包含测试样品的平面基本平行。
基于本发明第一方面的本发明第六方面提供了一种静电力显微镜,它的特点是所述尖端形状为具有半球形的端头的圆锥体,呈半球形的一端面向测试样品。
基于本发明第一方面的本发明第七方面提供了一种静电力显微镜,它的特点是所述尖端形状为圆锥体,其尖端面向测试样品。
本发明的第八方面提供了一种用于确定本发明第一方面所提供的静电力显微镜检测器悬臂与测试样品表面静电电荷之间感应的静电力的方法,其特征在于包含以下步骤:a)确定检测器与样品表面之间由样品表面静电电荷引起的静电电压分布;b)利用步骤(a)获得的静电电压分布确定检测器和测试表面周围的静电场分布;以及c)利用步骤(b)中获得的静电场分布和步骤(a)中获得的静电电压分布确定检测器与测试样品电荷之间感应的静电力。
本发明的第九方面提供了一种利用本发明第一方面所提供的静电力显微镜测量测试样品表面介电薄膜厚度的方法,其特征在于包括以下步骤:a)使静电力显微镜的检测器与测试表面相对移动从而使检测器尖端与介电薄膜接触以标度基准点;b)使检测器与表面相对移动从而将检测器的位置设定在与测试表面相隔一定距离;c)检测检测器的移动;以及d)在检测器尖端与测试表面距离固定的一定的介电薄膜厚度下,确定对应两倍频率的检测器尖端感应的静电力频率分量从而可以确定薄膜厚度,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
基于本发明第九方面的本发明第十方面提供了一种方法,它的特点是根据施加的直流偏压检测两倍频率分量以降低薄膜厚度变化引起的误差,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
附图说明
图1为按照本发明的静电力显微镜的示意图;
图2为示出检测器尖端与金属衬底之间关系的平行平板模型的示意图;
图3为圆柱型检测器的FEM计算用网格结构的示意图;
图4-6为本发明的曲线图;
图7为比较数据表,它示出了本发明检测器中悬臂梁的灵敏度;
图8为有限元计算用网格的示意图;
图9为根据本发明另一方面的检测器上静电力计算结果的曲线图;
图10A-10C为按照本发明的不同形状检测器的示意图;
图11为按照本发明的静电力显微镜的系统透视图;以及
图12A和12B为制造按照本发明的检测器的方法的透视图。
具体实施方式
图1示出了按照本发明的静电力显微镜的典型结构。系统由精密检测器组成,包括:用标号10表示的悬臂梁,它包含悬臂12和探针或尖端14;光学系统20,包含激光器22和光电检测器24;检测电路30;与诸如压电驱动器之类的执行机构44操作上相连的测试样品40,压电驱动器依次又与执行机构40的扫描仪48操作上相连;与检测电路30的输出相连的处理器50;直流电压的可控电源60;具有与检测电路30输出相连的输入和与直流电源60相连的输出的反馈电路70;以及交流电源80。测试样品连接在直流电源60与接地或基准点之间。直流电源60与交流电源80的组合与检测器悬臂12和检测电路30相连。
由于测试表面40上的电荷,在检测器尖端14上感应出静电力。静电力使两端中一端固定在换能器90实体上的悬臂梁弯曲。弯曲量借助光杠杆方法被转换为电学信号。由直流和交流组成的外部偏压经导体92施加在检测器上以区分电荷的极性。偏压Vt由下列方程(1)给出。随后检测器接收包含频率分量ω和2×ω的振动力。如果检测器尖端与金属衬底之间的关系考虑为如图2所示的平行平板模型,则下列方程(2)和(3)根据探针尖端上的静电力给出ω和2×ω分量的信息。
Vt=VACsinωt+VDC                               (1) F ω = V DC - ρd 0 / ϵ [ d - ( 1 - ϵ 0 / ϵ ) d 0 ] 0 ϵ 0 SV AC sin ϵt - - - - ( 2 ) F 2 ω = 1 4 [ d - ( 1 - ϵ 0 / ϵ ) d 0 ] 2 ϵ 0 SV AC 2 cos 2 ϵt - - - - ( 3 )
在上述方程中,Vt为外部偏压,ρ为电荷分布密度,ε为测试样品的介电常数,d0为检测器尖端与测试表面之间的距离,d为检测器尖端与金属衬底之间的距离而S为平板面积。如果ε和d0已知,可以通过检测Fω(静电力的ω分量)或者通过测量作为使Fω变为零的反馈给予检测器的VDC获得ρ。如果d0为零,则意味着测试表面为固体材料。在控制d使F为常数时,F给出了测试表面的粗糙度信息。由于必须测量介电薄膜100上的电荷分布,所以d0=0的条件是不现实的,因此必须直接测量F
为了获得在检测器与测试表面电荷之间感应的静电力,首先必须计算测试表面与检测器之间的空间内因测试表面电荷而出现的静电电压分布。为了获得电压分布,求解泊松方程:
         2V=-ρ/ε0                     (4)这里V为从计算中得到的电压,ρ为电荷分布密度,而ε0为真空介电常数。可以借助数值数据的计算机增强使静电电压形象化。一种由Nihom Soken(日本研究院有限公司)设计的UNIX工作站软件有限元方法被用于计算机增强。
其次利用上述电压分布确定检测器和测试表面周围的静电场分布。第三是从上述两个步骤获得的数据计算检测器与测试表面电荷之间感应的静电力。
计算了三种不同形状的检测器上的静电力。在一个检测器中,尖端110如图10A所示为柱体,尖端直径为20微米并且尖端长度为50微米,而在另一检测器中,尖端112为如图10B所示的圆锥体,悬臂梁处直径为20微米,尖端上半球的直径为5微米。另一检测器的尖端114如图10C所示为完全或正圆锥体,悬臂梁处的直径为20微米并且高度为10微米。图3示出了圆柱型检测器的FEM计算用网格结构120。对于靠近检测器尖端的区域计算精度更高。对于远离检测器的区域计算精度较低。计算基于下列条件:
1)测试表面包含金属衬底和厚度为15~25微米并且相对介电常数为3的介电薄膜层。
2)检测器位于测试表面之上。检测器尖端与金属衬底之间的距离为30微米。
3)在测试表面上的检测器下方有1fc(1×10-15C)的电荷,其中的1fc是可在检测器尖端上产生几个pN静电力的静电电荷测量分辨率。
对于不同形状的检测器都计算了静电力。在计算时,将介电薄膜厚度从15微米改变为25微米。这些计算的结果提供了检测器形状差异如何影响电荷检测的信息。
图4-6中的计算值示出了检测器上产生的作用于测试表面的静电力的垂直分量。可以确认尖端上与测试表面平行的面积较大的检测器可以产生更大的静电力。结果表明如果需要更高的空间分辨率,则应该牺牲灵敏度,反之亦然。随后,检测器的形状始终按照所需的空间分辨率来考虑。已经确认的是,面对测试表面的检测器尖端面积越大,检测到的静电力越大。
对于普通的平行平板模型,为了获取测试表面的电荷量,首先利用检测器上的静电力获得电容,随后将介电常数用作数学公式(2)中的常数从而获得电荷数量。所做的工作是获得圆柱形检测器在d0=20微米时与平行平板模型等价的面积,随后绘出平行平板模型的静电力相对d0的变化的曲线如图4虚线所示。这种平行平板模型的实际面积为282平方微米。具体参见图4,曲线130对应图10A中的圆柱形检测器110,曲线132对应图10B带半球形尖端的圆锥体,曲线134对应图10C的圆锥体114,而曲线136对应平行平板模型。据发现,即使是三种不同模型中形状非常接近平行平板模型的圆柱形模型检测器,其结果也不同于平行平板模型。
平行平板模型与新计算之间的误差随着检测器与测试表面之间距离(d-d0)的减小而增大,并且当距离达到d0=25微米时,预计有50%的误差。该结果表明只要介电材料薄膜(测试表面)厚度变化,实际检测器上与平面平板模型等效的面积就发生变化。
为了利用2×ω分量考虑薄膜厚度分量,需要根据薄膜厚度差异获得不同位置的平行平板模型等效面积,或者直接分析出现在检测器上的实际静电力。与d0=20微米的薄膜厚度变化相关的误差如图5所示。具体而言,曲线140对应图10A中的圆柱形检测器110,曲线142对应图10B带半球形尖端的圆锥体112,曲线144对应图10C的圆锥体114。在薄膜厚度20+5微米的范围内,误差从-50%变为250%,特别是当检测器靠近测试表面时误差增大。因此结果表明,如果测试表面不是完美的平面,则无法借助平行平板模型获得精确的电荷数量。为了将误差减小到10%以内,需要以0.1-0.5微米的分辨率测量薄膜厚度。
如果介电常数不是无穷大的并且测试表面底部是平坦的,则可以借助下列方法测量薄膜厚度。首先,使检测器尖端接触测试表面的底部,从而标度基准点。随后,利用图1所示压电元件44和扫描仪48的组合向上移动检测器的位置并将检测器位置设定在高点。检测器的移动量通过测量压电单元电压的变化获得。随后预先计算检测器尖端与测试表面之间距离固定的介电薄膜在各种厚度下的F分量,从而可以将计算结果用作薄膜厚度测量的参数。因此可以根据测量数据和计算结果获得薄膜厚度。
计算薄膜厚度变化时检测器上的静电力(F分量)。在检测器上施加10V的交流偏压。图6示出了结果。具体而言,曲线(a)对应图10A中的圆柱形检测器110,曲线(b)对应图10B带半球形尖端的圆锥体112,曲线(c)对应图10C的圆锥体114。预计小圆锥形检测器模型的静电力最小。可以检测到0.5微米薄膜厚度变化引起的大约12pN的静电力差,并且可检测到的硬薄膜厚度变化引起的静电力大于力检测中普通原子力显微镜(AFM)的分辨率。根据计算结果确认利用光杠杆可以0.5微米的分辨率测量d0
根据上述计算结果,制造了几个检测器,它们附着在悬臂梁上,其尖端直径在几个到十个微米之间。选定的用于检测器的材料为镍箔,其弹性常数在几个到十个mN/m之间。图7的表格示出了所制造的检测器和悬臂梁的物理尺寸和弹性常数以及商用带悬臂梁的原子力显微镜(AFM)检测器的特性。如上所述,所制造的悬臂梁的弹性常数选择为与普通AFM悬臂梁的几乎相同。可以获得尖端直径小于5微米的检测器。以10微米的空间分辨率可以达到小于1[fc]c的静电电荷测量分辨率,这种分辨率可能在检测器尖端上产生几个pN的静电力。其次用图4所示的计算方法计算检测器上的静电力。图8和9分别示出了计算模型和结果。具体而言,图8示出了FEM计算的网格结构160,图9中的曲线162和164分别对应Fω和F分量。但是应该指出的是,由于计算机系统存储容量的限制,所以利用计算的对称性质仅仅计算了实际三维模型的1/4部分。检测器探针较长,从而需要在FEM上计算大量的单元和节点。
从这些计算结果可以发现,20微米薄膜中每个微米内的检测误差为19.5%/微米,并且为了将检测误差降低至10%/微米以内,需要以小于0.5微米的分辨率测量薄膜厚度。如果VAC=15V施加在检测器上,则由于交流电场,F以1pN/微米的速率变化。因此可以0.5微米的分辨率完成薄膜厚度的测量。在上述偏压测量条件下,检测器尖端的场强为5.8×106V/m。与电晕放电时109V/m的场强相比,该场强足够的低,因此预计不会产生电晕。因此可以利用本发明的检测器测量测试样品的薄膜厚度和电荷量。在顶部,可以将薄膜厚度变化引起的电荷量读取误差降低至10%以内。
图11的系统示意图进一步示出了本发明的静电力显微镜。检测器170的尖端位于悬臂174的一端,悬臂174的另一端固定在与控制悬臂梁角度和测微计头的控制器178操作上相连的实体176上。激光头180提供被光路184聚焦在检测器170上的光束182。镜子186使反射光束188射向圆柱体透镜190,该透镜将光束聚焦在光检测器192上。测试表面194位于与X-Y台面198相连的压电执行机构上。
图12A和12B示出了制造本发明检测器的方法。在图12A中,衬底实体202表面上为多个镍箔条,其中一个用200表示。每条箔条形成了检测器的臂,其长度为5cm,宽度为0.5mm,厚度为5微米。镍箔的优点是提供满足良好振动性能的柔软度,导电性好,耐尘并且易于制造。图12B示出了借助锐化装置,利用聚焦的离子束形成检测器尖端。
在本发明的方法和装置中,扫描面积较大,例如为几百平方厘米,空间分辨率较高并且能精确测量电荷分布。检测器尖端或探针形状的影响也被考虑进去,并且校正了测试样品介电薄膜厚度变化的影响。上述利用有限元方法分析检测器上静电力对检测器形状和薄膜厚度变化产生的影响作了估计。为了精确测量电荷分布,需要测量薄膜厚度。根据薄膜厚度计算了误差,并且通过检测F完成了按照本发明的薄膜厚度测量方法。
总之,设计并制造了带悬臂梁的静电力检测器,从而可以在位于导电表面的介电薄膜上检测静电电荷。已经发现,利用通过获得静电力确定一定厚度薄膜上静电电荷量的方法使静电力随薄膜厚度d0的变化而变化,这是因为面对测试表面的等效检测器尖端面积因d0的变化而变化的缘故。同样给出了几个具体的例子。通过计算薄膜厚度变化产生的绝对误差量证实了如果不补偿通过确定介电薄膜厚度变化获得的数据,就无法获得薄膜上静电电荷的绝对数量。提出的薄膜厚度测量方法从施加的交流偏压中检测F分量并且确认在理论上可以将薄膜厚度d0变化引起的误差降低在10%以内。带悬臂梁的检测器由镍箔制成。计算检测器上的静电力确认静电电荷检测的灵敏度可以小于1fc而空间分辨率为10微米。根据这些结果,可以同时测量测试样品的静电电荷和薄膜厚度从而可以测量测试样品上静电电荷的绝对数量。

Claims (10)

1.一种用于测量测试样品静电力和薄膜厚度的静电力显微镜,其特征在于包含:
a)检测器,包含具有一种造形的悬臂从而因测试样品上静电电荷而在其尖端感应静电力;
b)光学系统,用于将尖端静电力引起的悬臂弯曲转换为包含检测器尖端感应的静电力的频率分量的电学信号;
c)用于将交流偏压和直流偏压的组合施加在所述检测器的装置;以及
d)用于检测对应两倍频率的检测器尖端感应静电力频率分量从而可以同时获得测试样品的静电力和薄膜厚度的装置,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
2.如权利要求1所述的静电力显微镜,其特征在于进一步包括反馈装置,用于将所述检测装置的输出施加在直流偏压受控电源上。
3.如权利要求1所述的静电力显微镜,其特征在于进一步包括将直流偏压施加在同一测试样品上。
4.如权利要求1所述的静电力显微镜,其特征在于所述检测器的悬臂包括镍箔条。
5.如权利要求1所述的静电力显微镜,其特征在于所述检测器的所述尖端形成圆柱状,一个端面面对测试样品并且与包含测试样品的平面基本平行。
6.如权利要求1所述的静电力显微镜,其特征在于所述尖端形状为具有半球形的端头的圆锥体,呈半球形的一端面向测试样品。
7.如权利要求1所述的静电力显微镜,其特征在于所述尖端形状为圆锥体,其尖端面向测试样品。
8.一种用于确定如权利要求1所述的静电力显微镜检测器悬臂与测试样品表面静电电荷之间感应的静电力的方法,其特征在于包含以下步骤:
a)确定检测器与样品表面之间由样品表面静电电荷引起的静电电压分布;
b)利用步骤(a)获得的静电电压分布确定检测器和测试表面周围的静电场分布;以及
c)利用步骤(b)中获得的静电场分布和步骤(a)中获得的静电电压分布确定检测器与测试样品电荷之间感应的静电力。
9.一种利用如权利要求1所述静电力显微镜测量测试样品表面介电薄膜厚度的方法,其特征在于包括以下步骤:
a)使静电力显微镜的检测器与测试表面相对移动从而使检测器尖端与介电薄膜接触以标度基准点;
b)使检测器与表面相对移动从而将检测器的位置设定在与测试表面相隔一定距离;
c)检测检测器的移动;以及
d)在检测器尖端与测试表面距离固定的一定的介电薄膜厚度下,确定对应两倍频率的检测器尖端感应的静电力频率分量从而可以确定薄膜厚度,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
10.如权利要求9所述的方法,其特征在于根据施加的直流偏压检测两倍频率分量以降低薄膜厚度变化引起的误差,其中的两倍频率是悬臂在因响应静电力而弯曲时的振动频率的两倍。
CNB988128462A 1997-10-31 1998-10-30 用于静电力显微镜的带悬臂梁静电力检测器及其检测方法 Expired - Fee Related CN1138980C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US6393697P 1997-10-31 1997-10-31
US60/063,936 1997-10-31

Publications (2)

Publication Number Publication Date
CN1285915A CN1285915A (zh) 2001-02-28
CN1138980C true CN1138980C (zh) 2004-02-18

Family

ID=22052476

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988128462A Expired - Fee Related CN1138980C (zh) 1997-10-31 1998-10-30 用于静电力显微镜的带悬臂梁静电力检测器及其检测方法

Country Status (5)

Country Link
US (1) US6507197B1 (zh)
EP (1) EP1032828B1 (zh)
JP (1) JP4584446B2 (zh)
CN (1) CN1138980C (zh)
WO (1) WO1999023483A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849497A (zh) * 2014-02-17 2015-08-19 国家纳米科学中心 亚表面结构特征及微区宽频介电特性的测量装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337478B1 (en) * 1998-11-06 2002-01-08 Trek, Inc. Electrostatic force detector with cantilever and shield for an electrostatic force microscope
US20040257561A1 (en) * 2000-11-24 2004-12-23 Takao Nakagawa Apparatus and method for sampling
US6772642B2 (en) * 2001-08-24 2004-08-10 Damian A. Hajduk High throughput mechanical property and bulge testing of materials libraries
US6690179B2 (en) * 2001-08-24 2004-02-10 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using capacitance
KR100499125B1 (ko) * 2002-04-25 2005-07-04 삼성전자주식회사 커패시턴스 변화를 이용하는 정보 재생 장치 및 방법
JP3958206B2 (ja) * 2002-12-27 2007-08-15 独立行政法人科学技術振興機構 マルチカンチレバーの振動周波数の計測方法及び装置
US7026837B2 (en) * 2003-12-30 2006-04-11 Solid State Measurements, Inc. Method and apparatus for determining the dielectric constant of a low permittivity dielectric on a semiconductor wafer
JP4831484B2 (ja) * 2006-08-30 2011-12-07 セイコーインスツル株式会社 電位差検出方法及び走査型プローブ顕微鏡
JP2008224412A (ja) 2007-03-13 2008-09-25 Hitachi Kenki Fine Tech Co Ltd 走査プローブ顕微鏡
CN101493397B (zh) * 2009-02-27 2010-12-29 中山大学 一种静电力显微镜及其测量方法
US8581609B2 (en) * 2009-06-03 2013-11-12 Fluke Corporation Shielded antenna for system test of a non-contact voltage detector
US8458811B2 (en) 2010-03-25 2013-06-04 The Governors Of The University Of Alberta Micro/nano devices fabricated from Cu-Hf thin films
JP2013003039A (ja) 2011-06-20 2013-01-07 National Institute Of Advanced Industrial & Technology 静電気量計測装置、静電気量計測方法
KR101290060B1 (ko) * 2011-09-08 2013-07-26 명지대학교 산학협력단 절연막이 코팅된 전도성 탐침을 이용한 액상 정전기력 현미경
WO2013052111A1 (en) * 2011-10-03 2013-04-11 Trek, Inc. Method and device for moving a sensor close to a surface
CN102495043B (zh) * 2011-12-14 2013-10-30 中国科学院苏州纳米技术与纳米仿生研究所 半导体材料表面缺陷测量装置及表面缺陷测量方法
US9671443B2 (en) * 2012-09-13 2017-06-06 The United States Of America As Represented By The Secretary Of The Navy Device and method for measuring static charge on flying insects
WO2014043632A1 (en) * 2012-09-14 2014-03-20 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for dual resonance frequency enhanced electrostatic force microscopy
US10072927B2 (en) 2016-01-07 2018-09-11 Rarecyte, Inc. Detecting a substrate
US20160091460A1 (en) * 2013-06-05 2016-03-31 Nanomechanics, Inc. Electrostatic Force Tester
KR101911152B1 (ko) 2013-07-20 2018-10-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 정전기 분포 계측 장치 및 정전기 분포 계측 방법
JP6287775B2 (ja) * 2014-11-21 2018-03-07 株式会社島津製作所 走査型プローブ顕微鏡
JP6766351B2 (ja) * 2014-12-26 2020-10-14 株式会社リコー 微小物特性計測装置
CN109116127A (zh) * 2018-09-07 2019-01-01 合肥依科普工业设备有限公司 接触分离静电起电实验装置
CN112198370A (zh) * 2020-09-03 2021-01-08 中山大学 薄膜局部介电常数测量方法、系统和存储介质
CN112067851A (zh) * 2020-09-09 2020-12-11 四川大学 一种定量测量电场作用下有机高分子链所受电场力的方法
CN112748153B (zh) * 2021-01-07 2023-01-10 中国人民大学 振幅调制静电力显微术测量电学特性的方法及装置
CN113916967A (zh) * 2021-09-28 2022-01-11 中山大学 一种次表面成像和检测的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834173B2 (ja) 1989-02-17 1998-12-09 株式会社日立製作所 走査型トンネル音響顕微鏡
US5003815A (en) * 1989-10-20 1991-04-02 International Business Machines Corporation Atomic photo-absorption force microscope
US5065103A (en) * 1990-03-27 1991-11-12 International Business Machines Corporation Scanning capacitance - voltage microscopy
US5118941A (en) * 1991-04-23 1992-06-02 The Perkin-Elmer Corporation Apparatus and method for locating target area for electron microanalysis
US5334931A (en) * 1991-11-12 1994-08-02 International Business Machines Corporation Molded test probe assembly
JP3349779B2 (ja) * 1992-08-21 2002-11-25 オリンパス光学工業株式会社 スキャナシステム及びこれを用いた走査型顕微鏡
US5357105A (en) * 1993-11-09 1994-10-18 Quesant Instrument Corporation Light modulated detection system for atomic force microscopes
US5440121A (en) * 1993-12-28 1995-08-08 Seiko Instruments Inc. Scanning probe microscope
DE69427522T2 (de) * 1994-04-11 2002-03-28 Ibm Kalibrierungsnorm für einen Profilometer und Verfahren zu seiner Produktion
US5969345A (en) * 1997-04-30 1999-10-19 University Of Utah Research Foundation Micromachined probes for nanometer scale measurements and methods of making such probes
US6172506B1 (en) * 1997-07-15 2001-01-09 Veeco Instruments Inc. Capacitance atomic force microscopes and methods of operating such microscopes
US6002131A (en) * 1998-03-25 1999-12-14 The Board Of Trustees Of The Leland Stanford Junior University Scanning probe potentiometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849497A (zh) * 2014-02-17 2015-08-19 国家纳米科学中心 亚表面结构特征及微区宽频介电特性的测量装置

Also Published As

Publication number Publication date
EP1032828B1 (en) 2014-12-10
JP2001522045A (ja) 2001-11-13
WO1999023483A1 (en) 1999-05-14
CN1285915A (zh) 2001-02-28
EP1032828A4 (en) 2001-05-09
JP4584446B2 (ja) 2010-11-24
US6507197B1 (en) 2003-01-14
EP1032828A1 (en) 2000-09-06

Similar Documents

Publication Publication Date Title
CN1138980C (zh) 用于静电力显微镜的带悬臂梁静电力检测器及其检测方法
CN1244817C (zh) 带悬臂与屏蔽的静电力显微镜以及确定静电力、膜厚度的方法
US5210410A (en) Scanning probe microscope having scan correction
CN101688768B (zh) 高速大面积测微仪及其方法
US7941286B2 (en) Variable density scanning
JPH0781855B2 (ja) 微細表面形状測定装置
Okabe et al. Measurement methods of accumulated electric charges on spacer in gas insulated switchgear
JP3069923B2 (ja) カンチレバー型プローブ及び原子間力顕微鏡、情報記録再生装置
US6710339B2 (en) Scanning probe microscope
JPH08233836A (ja) 走査型プローブ顕微鏡、並びにその高さ方向較正用基準器および較正方法
Kato et al. Force‐balancing force sensor with an optical lever
Graham et al. Capacitance based scanner for thickness mapping of thin dielectric films
Grasso et al. Electrostatic systems for fine control of mirror orientation in interferometric GW antennas
CN1904583A (zh) 基于互关联放大器的扫描隧道显微镜的隧道电流测量装置
JPH095373A (ja) 薄膜の局所評価法およびその装置
JP4497665B2 (ja) プローブの走査制御装置、該走査制御装置による走査型プローブ顕微鏡、及びプローブの走査制御方法、該走査制御方法による測定方法
WO2001029621A9 (en) Semi-insulating material testing and optimization
US8081005B2 (en) Capacitive sensors for nano-positioning and methods of using the same
Guadarrama-Santana et al. A new approach for measuring surface parameters by a capacitive sensor
RU164856U1 (ru) Эталон прецизионных перемещений
JP2686651B2 (ja) 変位量検出装置
Uehara et al. A New Sensor Adjacent Methodology for High Spatial Resolution and High Voltage Measurement
Cottrell A new technique in contact electrification
Castelli The electrolytic capacitive displacement transducer for nano-technologies
Cui High performance nano-scale measurements by advanced atomic force estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040218

Termination date: 20091130