CN1055069A - 接触透镜的激光固化 - Google Patents

接触透镜的激光固化 Download PDF

Info

Publication number
CN1055069A
CN1055069A CN91101618A CN91101618A CN1055069A CN 1055069 A CN1055069 A CN 1055069A CN 91101618 A CN91101618 A CN 91101618A CN 91101618 A CN91101618 A CN 91101618A CN 1055069 A CN1055069 A CN 1055069A
Authority
CN
China
Prior art keywords
contact lens
lens material
technology
laser
photopolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN91101618A
Other languages
English (en)
Other versions
CN1028803C (zh
Inventor
文森特·麦布赖尔蒂
约翰·马根
沃纳·布劳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bausch and Lomb Inc
Original Assignee
Bausch and Lomb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bausch and Lomb Inc filed Critical Bausch and Lomb Inc
Publication of CN1055069A publication Critical patent/CN1055069A/zh
Application granted granted Critical
Publication of CN1028803C publication Critical patent/CN1028803C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/0041Contact lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S522/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S522/913Numerically specified distinct wavelength

Abstract

一种用于固化可光聚合接触透镜材料的工艺,该 工艺包括用具有约200nm到约400nm波长的激光 器辐射对该材料照射预定的时间周期的步骤。在无 氧环境中照射所述接触透镜材料,并在照射期间将该 材料在模具中旋转。所述激光器工作在选择的脉冲 能量强度和重复频率下以在合理的短时间周期内完 成所述接触透镜材料的光聚合作用。

Description

本发明涉及使用相干辐射固化可光聚合接触透镜材料的工艺。
软接触透镜目前是通过将水凝胶单体混合物注入旋转的并曝光在汞灯紫外辐射下的模具中使该单体混合物光聚合来制造。该水凝胶单体混合物包括甲基丙烯酸羟乙酯、二甲基丙烯乙二醇酯、乙二醇和安息香甲基醚光引发剂。一般将该水凝胶单体混合物在汞灯阵列的紫外辐射下至少曝光10分钟以导致光聚合作用,然后将模具浸没在热水中以除去乙二醇和其它非聚合材料并将透镜从模具分离。该聚合过程必须在惰性气体中进行,例如氮,以排除如果存在会抑制聚合作用的氧气。
上述过程的一个主要缺点是必须使用滤光器除去来自汞灯的附加辐射。必须对滤光器和汞灯进行水冷却以滤去红外辐射和防止过热。又,汞灯寿命有限,必须定期更换。而且,汞灯的紫外辐射输出随工作时间降低,因而需要定期监视。另外灯的大部分能量被废弃了。
本发明的一个目的是减少处理接触透镜的上述缺点。
根据本发明,提供了一种用于固化可光聚合接触透镜材料的工艺,该工艺包括用具有约200nm到约400nm波长的激光辐射对该可光聚合接触透镜材料照射预定的时间周期的步骤。
最好是,该接触透镜材料含有水凝胶单体混合物。该水凝胶单体混合物最好含甲基丙烯酸羟乙酯、二甲基丙烯乙二醇酯、乙二醇和安息香甲基醚光引发剂。
又,最好是,接触透镜材料在激光照射期间在模具中旋转。
更理想的是,在无氧环境中照射该接触透镜材料。又最好是,在固化条件下在对接触透镜材料为惰性的气体中照射该接触透镜材料。该惰性气体最好是氩气或氮气。
适合的激光器最好含激元激光器(分别工作在351nm、308nm和248nm的XeF、XeCl和KrF),工作在337nm的氮激光器,工作在约355nm的固态激光器,以及氩和氪离子激光器的紫外输出辐射。
所选择的激光器工作在合适的脉冲能量强度和重复频率下以在一个合理的短时间周期内实现接触透镜材料的光聚合。
本发明的优点在于改进了控制并获得较短的光聚合时间,激光设备需要的维修比汞灯和附带技术要少。另外,使用激光能容易实现工艺自动化,无需汞灯所必需的冷却和滤光器设备。
将参照附图,以举例方式对本发明实施例进行描述,附图中:
图1是用于执行根据本发明工艺的装置的示意图;
图2是用于在接触透镜材料的样品中监测光聚合量装置的示意图;
图3a、3b和3c是示出在光聚合期间红外光谱变化的曲线图;
图4是示出如实例1中所述的被照射接触透镜材料的固化曲线的曲线图;
图5是示出如实例2中所述被照射的接触透镜材料的固化曲线的曲线图;
图6是示出如实例3中所述被照射的接触透镜材料的固化曲线的曲线图;
图7是示出如实例4中所述被照射的接触透镜材料的固化曲线的曲线图;
图8是示出如实例5中所述被照射的接触透镜材料的固化曲线的曲线图;
图9是示出如实例6中所述被照射的接触透镜材料的固化曲线的曲线图;
图10是示出如实例7中所述被照射的接触透镜材料的固化曲线的曲线图;
图11示出接触透镜材料的固化样品的吸收光谱。
现在参照图1,示出用来执行根据本发明的工艺的用10表示的装置。将常规软接触透镜材料11以水凝胶单体混合物的形式放在旋转模具12中,该模具12能以合适的例如在本领域所知的350rpm速度旋转。将透镜材料11和模具12放在确定基本无氧腔14的外壳13中。腔14有诸如导入其中的氮或氩惰性气体。含有接触透镜材料11的模具12以合适的速度旋转以致于在最后的透镜上形成内凹表面。然后运行紫外激光器15产生激光束20以合适的脉冲能量强度和重复频率直接照射在透镜材料11上充分的时间周期以使接触透镜材料11聚合。显然,激光束20具有足够的宽度以覆盖透镜材料11,或者它可以对旋转轴偏置以能照射所有的透镜材料。
可以使用图2所示的布置或类似的布置对接触透镜材料11的聚合程度连续监测。如图所示,将接触透镜材料11放在由外壳13′确定的腔14′中NaCl底板16上。腔14′是无氧的,并通过导管17导入氩气。紫外激光束20′通过窗18射入腔14′并被石英棱镜19反射,射到接触透镜材料11上。底板16可以常规方式旋转。
一束红外光束21射过接触透镜材料11,透射过样品11的红外光束21′由红外分光计22监测。一束参考红外光束23也射入腔14′,并且也由分光计22监测透射参考光束23′。表明透镜材料11逐渐固化的分光计22的输出光谱图示在图3a、3b和3c中。分光计22将样品光束21′与参考光束23′相比较并提供如在图3a、3b和3c每一幅图中所示的样品材料11的红外吸收光谱。在图3a、3b和3c中,吸收峰B是1720cm-1处的碳氧C=O吸收峰,吸收峰A是在1640cm-1处的碳碳C=C吸收峰。图3a提供样品材料11在任何聚合作用前的吸收光谱,因此碳碳C=C吸收峰位于由Ao所示的最大处。图3b代表样品材料11聚合作用的中间阶段的吸收光谱,因此碳碳C=C吸收峰Ai的大小减小。图3C代表样品11几乎完全聚合的时间t后的吸收光谱,因此吸收峰A的大小如图示减小到At。将知道碳氧C=O吸收峰由于不受样品接触透镜材料11的聚合作用影响而保持恒定。
象在本领域中所知道的,由于单体的吸收率,红外吸收量随着水凝胶单体混合物的聚合作用而下降,图3a图示了没有聚合作用,图3b图示了适度数量的聚合作用,图3c图示了红外样品光束21′在1640cm-1处几乎完全透射,因此接触透镜材料11′几乎完全聚合。
实例1
将通常为10微升的普通水凝胶单体混合物样品涂在GaF底板上,并在无氧腔中用XeF激元激光器发射的波长为351nm、脉冲重复频率为4Hz、脉冲能量为35mJ的激光束加以曝光。使用上述红外技术对聚合程度作定期监测。图4中所示结果是示出相对于以分钟为单位的时间的已聚合部分的曲线图。如图所示,6分钟后,约85%的样品聚合。
实例2
将10微升的普通水凝胶单体混合物样品涂在GaF底板上,并在无氧腔中用N2激光器发射的波长为337cm、脉冲重复频率为4Hz、脉冲能量为0.3mJ的激光束加以曝光。使用上述红外技术对聚合程度作定期监测。图5中所示结果是类似于图4所示的曲线图。如图所示,3分钟后,约85%的样品聚合,6分钟后,样品几乎完全聚合。
实例3
将10微升的普通水凝胶单体混合物样品涂在NaCl底板上,并在无氧腔中用N2激光器发射的波长为337cm、脉冲重复频率为100Hz、脉冲能量为0.7mJ的激光束加以曝光。使用上述红外技术对聚合程度作定期监测。将类似的单体混合物样品类似地用激光器照射加以曝光,但所用N激光器以100Hz重复频率工作,其脉冲能量为0.3mJ。图6中所示结果是类似于图5所示的曲线图。如图所示,在2分钟内实现90%以上的样品聚合,至少需要0.7mJ的脉冲。
实例4
将10微升的普通水凝胶单体混合物样品涂在NaCl底板上,并在无氧腔中用N2激光器发射的波长为337cm、脉冲重复频率为10Hz、脉冲能量为0.75mJ的激光束加以曝光。使用上述红外技术对聚合程度作定期监测。结果示在图7中,从中可观察到5分钟后实现90%的固化,然而此时将激光器断开,在没有进一步照射情况下,固化过程继续到1.5小时后达到100%的固化。
实例5
将10微升的普通水凝胶单体混合物样品涂在NaCl底板上,并在无氧腔中用N2激光器发射的波长为337cm、脉冲重复频率为100Hz、脉冲能量为0.7mJ的激光束加以曝光。使用上述红外技术对聚合程度作定期监测。将类似的单体混合物样品涂在NaCl底板上,并在无氧环境中用N2激光器发射的波长为337nm、脉冲重复频率为10Hz、脉冲能量为0.75mJ的激光束加以曝光。对该样品进行监测并将结果示在图8中,从中可注意到在10Hz的较低脉冲频率时固体速度较慢。10Hz的较低速度模拟当使用工作在100Hz重复频率的激光器对10个样品顺序扫描时所获得的效果。
实例6
将10微升的普通水凝胶单体混合物样品涂在NaCl底板上,并在无氧腔中用XeF激光器发射的脉冲重复频率为100Hz、脉冲能量为4mJ的激光束加以曝光。将该激光器断续性接通和断开,并使用上述红外技术连续监测聚合作用程度。结果示在图9中,从中可注意到在激光器断开后固化显然连续(在初始激光照射阶段后两分钟内F值从0.4升到0.6)。但是,一旦被固化部分达到90%,激光束的出现对固化速度只有极小的影响。
实例7
将10微升的普通水凝胶单体混合物样品涂在NaCl底板上,并在无氧腔中用XeF激元激光器发射的脉冲重复频率为100Hz、脉冲能量为0.35mJ激光束加以曝光。将类似的样品也涂在NaCl底板上,并在无氧腔中用XeF激光器发射的脉冲重复频率为10Hz、脉冲能量为25mJ的激光束加以曝光。聚合作用程度被连续监测并将结果示在图10中。在100Hz脉冲重复频率的较上轨迹有35mW的平均照射功率,它比平均功率为250mW的10Hz轨迹有较快的初始固化速度。看来较高的脉冲重复频率产生较高的初始固化速度。
实例8
将26微升的普通水凝胶单体混合物样品置于以350rpm的速度旋转的接触透镜模具中(见图1)。该样品在氩气中用工作在100Hz重复频率具有3mJ脉冲能量的N2激光器光束(337nm)加以曝光。2分钟后将模具从氩气中取出,并浸入热水中,此后再将聚合的接触透镜取出。该接触透镜没有可见瑕疵并被认为适合于使用。
用于在激光照射期间监测接触透镜材料样品聚合程度的技术可通常只对薄的透镜材料样品进行。该技术不能成功地用在具有用来生产实际接触透镜的足够体积样品上,所述体积太大以致于不能对红外光束的透射光谱进行定量测量。实例1到7中在小体积上的测试结果清楚地表示了用于对普通接触透镜材料成功地进行光聚合作用的参数。
图11中示出普通水凝胶接触透镜材料的1.4mm厚已固化样品的吸收光谱。从该曲线中可确定最佳固化激光波长。如图所示,大于380nm的激光束不实用,因为只吸收其一小部分(超过1mm深度8%)。在较短波长侧,该材料在300nm附近或以下强烈吸收以致于只有非常薄的层可以用这些波长进行固化。可见光聚合作用的最佳激光波只在约300nm到约380nm的范围内,因此最有用的激光器可能是XeCl和XeF激元激光器(分别为308nm和351nm)以及N2激光器(337nm)。
本发明不限于在此所描述的实施例,它可不偏离本发明的范围而进行改进或变化。

Claims (10)

1、一种用于固化可光聚合接触透镜材料的工艺,该工艺包括用具有约200nm到约400nm波长的激光辐射对该可光聚合接触透镜材料照射预定的时间周期的步骤。
2、如权利要求1所述的工艺,其特征在于:该激光辐射具有约300nm到380nm间的波长。
3、如权利要求1所述的工艺,其特征在于:在无氧环境中照射接触透镜材料。
4、如权利要求2所述的工艺,其特征在于:在无氧环境中照射接触透镜材料。
5、如权利要求1所述的工艺,其特征在于:在固化条件下在对接触透镜材料为惰性的气体中照射该接触透镜材料。
6、如权利要求2所述的工艺,其特征在于:在固化条件下在对接触透镜材料为惰性的气体中照射该接触透镜材料。
7、如权利要求5所述的工艺,其特征在于:所述气体是氩气或氮气。
8、如前面权利要求中任一项所述的工艺,其特征在于:在照射期间该接触透镜材料在模具中旋转。
9、如前面权利要求中任一项所述的工艺,其特征在于:激光器工作在选择的脉冲能量强度和重复频率下以在合理的短时间周期内完成接触透镜材料的光聚合作用。
10、一种基本上参照附图所描述的和如附图中所示的对可光聚合接触透镜材料进行固化的工艺。
CN91101618A 1990-03-13 1991-03-12 接触透镜的激光固化 Expired - Fee Related CN1028803C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IE903/90 1990-03-13
IE903190 1990-03-13
IE90390A IE65863B1 (en) 1990-03-13 1990-03-13 Laser curing of contact lens

Publications (2)

Publication Number Publication Date
CN1055069A true CN1055069A (zh) 1991-10-02
CN1028803C CN1028803C (zh) 1995-06-07

Family

ID=11019586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN91101618A Expired - Fee Related CN1028803C (zh) 1990-03-13 1991-03-12 接触透镜的激光固化

Country Status (11)

Country Link
US (1) US5154861A (zh)
EP (1) EP0447169B1 (zh)
JP (1) JPH05188330A (zh)
KR (1) KR0161690B1 (zh)
CN (1) CN1028803C (zh)
AT (1) ATE116195T1 (zh)
BR (1) BR9100977A (zh)
CA (1) CA2037703C (zh)
DE (1) DE69106182T2 (zh)
ES (1) ES2069199T3 (zh)
IE (1) IE65863B1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121421A (zh) * 2016-11-23 2019-08-13 阿森纽光学科学有限责任公司 光学器件的三维打印

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288221A (en) * 1992-05-18 1994-02-22 Essilor Of America, Inc. Apparatus for making ophthalmic lenses
US5380387A (en) * 1992-10-13 1995-01-10 Loctite Corporation Lens blocking/deblocking method
WO1996003666A1 (en) * 1994-07-26 1996-02-08 Bausch & Lomb Incorporated Method of polymerizing methacrylate-based compositions
US7468398B2 (en) 1994-09-06 2008-12-23 Ciba Vision Corporation Extended wear ophthalmic lens
US5760100B1 (en) 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US5858163A (en) * 1996-03-22 1999-01-12 Gerber Optical, Inc. Apparatus for making ophthalmic lenses by vacuum lamination
US6022498A (en) 1996-04-19 2000-02-08 Q2100, Inc. Methods for eyeglass lens curing using ultraviolet light
US6280171B1 (en) 1996-06-14 2001-08-28 Q2100, Inc. El apparatus for eyeglass lens curing using ultraviolet light
JP3772243B2 (ja) * 1996-09-25 2006-05-10 湘南デザイン株式会社 複製製品の成形方法
DE19706846A1 (de) * 1997-02-21 1998-09-03 Bodenseewerk Geraetetech Vorrichtung zur lichtinitiierten chemischen Vernetzung von Material
US6008264A (en) 1997-04-30 1999-12-28 Laser Med, Inc. Method for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US6282013B1 (en) 1997-04-30 2001-08-28 Lasermed, Inc. System for curing polymeric materials, such as those used in dentistry, and for tailoring the post-cure properties of polymeric materials through the use of light source power modulation
US5989462A (en) 1997-07-31 1999-11-23 Q2100, Inc. Method and composition for producing ultraviolent blocking lenses
EP1027010A1 (en) 1997-10-29 2000-08-16 Bisco, Inc. Dental composite light curing system
US6116900A (en) * 1997-11-17 2000-09-12 Lumachem, Inc. Binary energizer and peroxide delivery system for dental bleaching
US6200134B1 (en) 1998-01-20 2001-03-13 Kerr Corporation Apparatus and method for curing materials with radiation
US6103148A (en) * 1998-02-19 2000-08-15 Technology Resources International Corporation Method for curing a lens-forming fluid
US6451226B1 (en) 1998-09-25 2002-09-17 Q2100, Inc. Plastic lens compositions
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US6157661A (en) * 1999-05-12 2000-12-05 Laserphysics, Inc. System for producing a pulsed, varied and modulated laser output
US6716375B1 (en) 2000-03-30 2004-04-06 Q2100, Inc. Apparatus and method for heating a polymerizable composition
US6723260B1 (en) 2000-03-30 2004-04-20 Q2100, Inc. Method for marking a plastic eyeglass lens using a mold assembly holder
US6698708B1 (en) 2000-03-30 2004-03-02 Q2100, Inc. Gasket and mold assembly for producing plastic lenses
US6960312B2 (en) 2000-03-30 2005-11-01 Q2100, Inc. Methods for the production of plastic lenses
AU2001252985A1 (en) 2000-03-31 2001-10-15 Bausch And Lomb Incorporated Methods and devices to control polymerization
WO2001074554A2 (en) * 2000-03-31 2001-10-11 Bausch & Lomb Incorporated Method and mold to control optical device polymerization
US6463872B1 (en) 2000-03-31 2002-10-15 Alcatel Laser photocuring system
US6632535B1 (en) 2000-06-08 2003-10-14 Q2100, Inc. Method of forming antireflective coatings
US6709257B2 (en) 2001-02-20 2004-03-23 Q2100, Inc. Eyeglass lens forming apparatus with sensor
US6676399B1 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having sensors for tracking mold assemblies
US6712331B2 (en) 2001-02-20 2004-03-30 Q2100, Inc. Holder for mold assemblies with indicia
US6863518B2 (en) 2001-02-20 2005-03-08 Q2100, Inc. Mold filing apparatus having multiple fill stations
US6790022B1 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having a movable lamp mount
US6758663B2 (en) 2001-02-20 2004-07-06 Q2100, Inc. System for preparing eyeglass lenses with a high volume curing unit
US6612828B2 (en) 2001-02-20 2003-09-02 Q2100, Inc. Fill system with controller for monitoring use
US6752613B2 (en) 2001-02-20 2004-06-22 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for initiation of lens curing
US6702564B2 (en) 2001-02-20 2004-03-09 Q2100, Inc. System for preparing an eyeglass lens using colored mold holders
US6790024B2 (en) 2001-02-20 2004-09-14 Q2100, Inc. Apparatus for preparing an eyeglass lens having multiple conveyor systems
US6808381B2 (en) 2001-02-20 2004-10-26 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller
US6655946B2 (en) 2001-02-20 2003-12-02 Q2100, Inc. Apparatus for preparing an eyeglass lens having a controller for conveyor and curing units
US6726463B2 (en) 2001-02-20 2004-04-27 Q2100, Inc. Apparatus for preparing an eyeglass lens having a dual computer system controller
US6676398B2 (en) 2001-02-20 2004-01-13 Q2100, Inc. Apparatus for preparing an eyeglass lens having a prescription reader
US6464484B1 (en) 2002-03-30 2002-10-15 Q2100, Inc. Apparatus and system for the production of plastic lenses
US7235195B2 (en) * 2002-09-06 2007-06-26 Novartis Ag Method for making opthalmic devices
US20060202368A1 (en) * 2005-03-09 2006-09-14 Yasuo Matsuzawa Method for producing contact lenses
JP4577103B2 (ja) * 2005-06-10 2010-11-10 株式会社デンソー レーザ溶着良否判定方法及びその装置
US20080185744A1 (en) * 2007-02-01 2008-08-07 Bausch & Lomb Incorporated Thermal Conductive Curing of Ophthalmic Lenses
US9066777B2 (en) 2009-04-02 2015-06-30 Kerr Corporation Curing light device
US9072572B2 (en) 2009-04-02 2015-07-07 Kerr Corporation Dental light device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113224A (en) * 1975-04-08 1978-09-12 Bausch & Lomb Incorporated Apparatus for forming optical lenses
GB2082107A (en) * 1980-08-15 1982-03-03 Philips Electronic Associated Plastics optical elements which comprise a moulded plastics material coated on one face with a photopolymerized resin
EP0202803A3 (en) * 1985-05-14 1987-06-03 Commonwealth Of Australia Department Of Industry Technology And Commerce Laser curing of coatings and inks
US4701288A (en) * 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
JPH01163027A (ja) * 1987-12-21 1989-06-27 Matsushita Electric Ind Co Ltd 光学素子の成形方法およびその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121421A (zh) * 2016-11-23 2019-08-13 阿森纽光学科学有限责任公司 光学器件的三维打印
US11370162B2 (en) 2016-11-23 2022-06-28 Atheneum Optical Sciences, Llc Three-dimensional printing of optical devices

Also Published As

Publication number Publication date
CA2037703A1 (en) 1991-09-14
EP0447169A1 (en) 1991-09-18
EP0447169B1 (en) 1994-12-28
CA2037703C (en) 2000-05-02
KR910016471A (ko) 1991-11-05
KR0161690B1 (ko) 1999-02-18
BR9100977A (pt) 1991-11-05
US5154861A (en) 1992-10-13
IE65863B1 (en) 1995-11-29
JPH05188330A (ja) 1993-07-30
IE900903A1 (en) 1991-09-25
DE69106182D1 (de) 1995-02-09
ES2069199T3 (es) 1995-05-01
DE69106182T2 (de) 1995-09-07
ATE116195T1 (de) 1995-01-15
CN1028803C (zh) 1995-06-07

Similar Documents

Publication Publication Date Title
CN1028803C (zh) 接触透镜的激光固化
EP0233755B1 (en) Ultraviolet laser treating of molded surfaces
KR0122467B1 (ko) 고체 영상 시스템
Stampfl et al. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography
FR2583334A1 (fr) Procede et dispositif pour realiser un modele de piece industrielle
JPS6128512A (ja) 多孔性電気泳動ゲル生成物およびその製造方法
EP0036298B1 (en) Improvements in or relating to colour selective filters
KR950014870A (ko) 강성분의 분석방법 및 그 장치
JP2002508265A (ja) 予備成形したプラスチックシートの分離及び/又は剥離による加工法
CN1259171C (zh) 飞秒倍频激光直写系统及微加工方法
CN1042679A (zh) 透镜的激光成型
CA2258457A1 (en) Laser machining method and laser machining apparatus
JPH03144458A (ja) ドラム端部の塗膜除去方法および装置
JPH0479828B2 (zh)
JPH06198747A (ja) 光造形技術による3次元物体形成装置
JP4706010B2 (ja) ダイヤモンド様炭素薄膜の形成方法
Niino et al. Excimer laser ablation of polymers and carbon fiber composites
EP0522158B1 (en) Method of forming a thin electroconductive film
ATE286001T1 (de) Verfahren und vorrichtung zum durchtrennen von folien in verbundglas
JPH0811772B2 (ja) レーザーを用いた高分子成形物の表面加工方法
GB2168493A (en) Ageing materials
SU1084711A1 (ru) Способ изготовлени тонкопленочных фильтров
Evseev et al. Rapid objects manufacturing from liquid photosensitive compounds induced by pulsed and cw laser beams
Evseev et al. Layer-by-layer manufacture of parts from liquid photopolymerisable compositions by XeCl laser radiation
RU2107619C1 (ru) Способ контроля полимеризации, стимулированной лазерным излучением

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee