CN1047107C - 弹性体微机电系统 - Google Patents

弹性体微机电系统 Download PDF

Info

Publication number
CN1047107C
CN1047107C CN96194329A CN96194329A CN1047107C CN 1047107 C CN1047107 C CN 1047107C CN 96194329 A CN96194329 A CN 96194329A CN 96194329 A CN96194329 A CN 96194329A CN 1047107 C CN1047107 C CN 1047107C
Authority
CN
China
Prior art keywords
mentioned
microelectrode
substrate
elastic body
electromechanical transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96194329A
Other languages
English (en)
Other versions
CN1186458A (zh
Inventor
洛恩·A·怀特黑德
布伦特·J·博勒曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of British Columbia
Original Assignee
University of British Columbia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of British Columbia filed Critical University of British Columbia
Publication of CN1186458A publication Critical patent/CN1186458A/zh
Application granted granted Critical
Publication of CN1047107C publication Critical patent/CN1047107C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means

Abstract

一种机电转换器,它具有一载有多个弹性体微结构(5)的衬底(4),在每个微结构上有一微电极(6)。将一电源(11)电气连接到微电极上,用于控制将一电势施加到微电极上,该电势交替地在相邻对的微电极间诱发吸引力,从而使微电极产生受控的、时变位移。作为替代方案,进一步的多个微电极(14)、或者一个或多个宏电极(32)被弹性地支承高出微电极之上,电源则被连接到宏电极上,其方式使施加于微电极和宏电极之间的电势交替地在微电极和宏电极之间诱发吸引力,从而使微电极相对于宏电极进行受控的、时变位移。宏电极也可被施加到衬底与微结构相对的一侧。

Description

弹性体微机电系统
发明的领域
本发明有关一种微机电转换器,它包括多个被弹性地支承在弹性体微结构之上的微电极。
发明的背景
过去的十年中,在微机电系统领域中取得了长足的发展,微机电系统的英文缩写通常为“MEMS”。如其名字所包含的意义那样,MEMS基本上为结合有某种形式的机电转换以达到一定功能的微系统。在这种情况下,“微”意指微米量级的零件尺寸。MEMS装置方面的例子有:微型泵、微型马达、微光学平镜等。在IEEE Spectrum,May 1994,pp.20-31上刊载有一篇题为“Micromachines on the March,”(前进中的微机械)的文章,对MEMS当前的发展水平作了回顾。
文献中报导的许多MEMS装置均采用静电转换。如大多数的机电转换器一样,静电转换器也可被配置为致动器或者传感器的形式。当被配置成致动器时(这种形式特别关系到本发明的应用),静电转换器利用极性相反电荷间的吸引作用来产生吸引力。对于一平行板结构型式,这一力(或压力)P可容易地被计算如下: P = 1 2 ϵ 0 E 2 = 1 2 ϵ 0 ( v D ) 2 - - - - ( 1 )
式中ε0为空气的介电常数(8.85×10-12F/m),E为电场强度。在两平行电极的场合,E=v/D,因而要用到第二步的关系式。
在MEMS装置的有关文献中举出了许多的例子,它们均采用静电致动力。例如下列文章:Zengerle,R.et al.,1992,“A Micro MembranePump with Electro static Actuation,”IEEE Micro Electro MechanicalSystems Workshop.;Gabriel K.J.et al.,1992,“Surface Normal Electro-static/Pneumatic Actuator,”IEEE Micro Electro Mechanical SystemsWorkshop;bobbio et al.,1993,“Integrated force Arrags,”Proc.ofIEEE MEMS 1993 Workshop,pp.149-154;以及K.Minami et al.,1993,“Fabri cation of Distributed Electrostatic Micro Actuator(DEMA),”J.of MEMS,vol.2,No.3,1993。
选择静电转换而不采用其它转换方法的某些主要原因如下:
(1)能量密度:对于两电极间所施加的一定电压,电场强度随两电极间间距的减小而增加。由于静电力与电场强度的平方成正比,当施加的电压一样时,两电极间距离减小一个数量级则会使产生的静电力增大两个数量级。与此相关的是,大部分气体的电场强度也随着极间距的减小而迅速增加(例见:H.L.Saums,“Materials for ElectricalInsulating and Dielectric Functrions,”Hayden Book Co.1973)。因此可看出,静电力很适合用于MEMS装置中。
(2)效率:静电装置典型地具有较高的效率,因为它们不需要大的电流密度,因而电阻损耗小,而这些常常是磁性的或形状记忆合金为基础的致动器所固有的,当一个静电装置它的电极运动仅为极间距的几分之一时(MEMS装置中常常是这种情形),它的效率就特别的高。
(3)费用:不同于大部分其它的转换器,尤其不同于压电转换器和磁致伸缩转换器,静电转换仅需具有相对电荷的两电极来产生机械力。仅仅淀积两个电极要比淀积两电极加一种(比如)压电材料(该压电材料其后由电极所激励)便宜得多。
尽管静电致动机构具有上述所需的特征,仍有某些例子其中效率并非是十分关键的因素,因而在这些例子中采用磁致动要更为优越些。磁致动的一个优点是能产生在较长距离上作用的力,因为力的减小仅仅与微电极距离线性相关,这一点与在分别给定电流和电势之下静电力与电极间距成平方关系的场合是不一样的。此外,在磁驱动致动器中典型地可使用较低的电压,因为它们的性能与所加电压无关,而仅取决于电流。即使效率并不十分重要,仍需注意由载有致动电流的微电极的电阻性功耗所产生的热耗散。
MEMS的研究领域似乎是从两个因素中产生的:对探索机电装置小型化所能达到的极限的好奇心(例见Feynman,R.,1993,“InfintesimalMachinery,”J.MEMS,Vol.2.No.1,)以及广泛地可得到用于集成电路制造的微加工设备。微加工技术目前已相当先进,特别是最近又增加了如LIGA法,硅熔接法等技术;且可用于制造相当多种类的装置。但是,这些微加工技术对每单位加工面积的费用就很贵,即使是对大批量的生产也是一样,因此它们似乎仅仅只能被用于单位面积价值很高的微加工表面。
限制当前MEMS技术发展的另一因素是:能使电极间产生相对运动的手段是电机械铰链机构、或是由弯曲薄的、做成高度悬臂梁形式的结构来提供。例如,在Bobbio等人文章中所描述的装置中,规定阵列中每个“单元”(cell)的支承点间的距离相对于聚酰胺/金属结构的厚度应足够大,这是因为这些材料具有较高的弹性模量的缘故。这些相对较薄的结构除了使设计和制造这些装置变得相当复杂之外,还是十分易碎的,因而也不十分适用于要求高耐用性的场合。已有MEMS技术的这样和那样的缺点可通过使用如下所述的一种新型的、称之为弹性体微机电系统(“EMEMS”)的MEMS技术来加以克服。
发明概述
本发明的目的是提供一种微机电装置,其中支承于一弹性体微结构之上的微电极在静电力的作用下经受实质性的相对运动。
本发明的另一目的是提供一种微机电转换器,通过采用模制弹性体膜的微结构仅表面可便宜地构造这种转换器。
本发明的再一目的是为有关的气体和气压在EMEMS中相反极性的两微电极间使用一定范围的极间距,即小于两倍的最小帕邢(Paschen)距离。
本发明的还一个目的是提供一种手段来在与相对极性的微电极相互接触的固体表面上增加路径长度,且同时还提供一种手段来构造上述微电极的图形且扩展气流路径区域。
本发明的另一个目的是提供一种手段来通过采用相对微结构化表面来制造更复杂的结构。
上述目的及其他目的是通过提供一种微机电转换器来达到的,在这种转换器中将微电极有选择地淀积到一微结构化表面上。这些微结构被选择性地连结到激励它们的一种装置上,其方式能在任何两相反极性的微电极间或在一微电极和一与之邻近的宏电极间产生静电力。
微电极的构造材料优选地采用一种具有高弹性应变极限值的低弹性模量材料,这些材料通常被称做弹性体。这种材料的选择加上对微电极作的合适的微结构设计和配置,能使静电力在两极性相反的电极间产生实质性的相对运动,或在一微电极和另一与之邻近的宏电极间产生相对运动。这种EMEMS设计技术能提供优于常规MEMS装置的专门性能优点,比如改善了耐用性。但是,预期的最重要的优点还是大大降低了单位面积的制造费用。
制造具有低弹性模量和高弹性的弹性体材料的微结构能使微结构具有相对较低的纵横比,然而却仍是高度柔性的。与此相反,常规MEMS装置中所用的高弹性模量硅微结构要求有较高的纵横比以使之具实质性的柔性。采用低纵横比能有助于采用两种关键加工技术。首先,可将微结构设计成在一膜状弹性体片材之上的可模制表面结构的形式。其次,采用熟知的大规模微细加工技术(如金刚石切削)来加工一个模子用于微细复制结构化的表面弹性体薄膜。在薄膜表面作微细复制以产生微结构与常规微细加工技术相比极大地降低了生产费用。最后,采用合适的结构设计和物理气相淀积技术,则可选择性地淀积微电极,而无需采用在制造常规MEMS装置中通常所用的昂贵的掩模工序。所有这些特点综合起来便可使人们采用熟知的大规模生产技术来便宜地生产EMEMS装置。
附图简介
图1A为本发明一优选实施例的放大了的局部剖视透视图。
图1B为图1A所示结构的局部剖面正视图,示出当微电极位于一种由施加图中所标记电势而引起的激励状态时所在的位置。
图1C为图1A所示结构的局部剖面正视图,示出当微电极位于一由施加图中所标记电势而引起的第二激励状态时所在的第二位置。
图1D示出图1A的结构外加一连结装置用于与每个电极实现电气接触。
图1E为图1D所示结构的顶视图。
图2A为图1A所示结构的剖面正视图,图中示出如何能将微结构设计原理用于取得本发明的各个目的。
图2B为一扫描电镜图,示出根据本发明的方法制造的一金属镀层弹性体微结构。
图3示出一对放大了的、相对的微结构化表面,它们提供了多个储气室。
图4与图3类似,但去掉了上部微结构部分,示出在下部微结构中储气室的位置以及弹性支撑在该微结构之上的一宏电极。
图5A和5B示出本发明的一实施例,它具有一位于图1实施例下方的一宏电极。
图6示出与图1A-1D的实施例相类似的一实施例,其中载有微电极的弹性体微结构被提供在一平面衬底的两侧。
优选实施例详细说明
图1A提供的是根据本发明的优选实施例所制造的一装置的剖视透视图。该装置具有一组线性排列的(通常超过1000个)均匀间隔开的微电极6,每个电极均被支承在微结构化的弹性体脊5的顶部。微结构化的弹性体脊5作为表面特征被形成在一弹性体衬底膜或片4之上。
可采用大批量模制微复制技术来经济地制造这种微结构脊5,已知的有如制造象微棱镜式光学膜片等微结构化表面产品。可以采用许多好的导电性材料中的任何一种来形成微电极6,例如:纯金属(如Al,Cu,Au)、合金、金属氧化物(如铟锡氧化物)、超导体、导电聚合物、形状记忆合金;或导电弹性体。
在导电材料要求的应变相对较高的场合,则需采用导电弹性体材料制作微电极以降低机械疲劳失效的风险,这种机械疲劳失效会导致微电极失去导电性。以下将更详细地叙述一种用于将微电极淀积在微结构脊5之上的优选技术。
图1A所示装置的一个重要目的是要使微电极6在完全平行于微结构化底片4的方向上以一定的频率f且作为时间t的函数作一种简谐运动。这种简谐运动对许多流体力学的应用是有用的,例如边界层控制,其中需要对流体表面相互作用进行微观控制以便对宏观流产生实质性影响。例如,可利用这种效果来增加混合在边界层中的流体量级并由此增加其动量交换。在某些电驱动条件下,也可以使用这种效果来减少所混合入的湍流量级并由此亦降低在诸如飞机这样的空气动力体之上的表面阻力。在许多参考文献中已对使用微机械装置来与液体流相互作用作了详细讨论,如:Ho,Chih-Ming,“Interaction Between Fluid DynamicsAnd New Technology,”IEEE Internationai Conference on flowInteraction,Keynote Talk,Sept.5-9,1994。
下面根据图1B和1C来讨论能用来得到微电极6的简谐运动的手段。将4个独特的驱动电势函数a、b、c、d中的一个施加于每个微电极6,其中:
a=+V  B=+VSin(2πft)
c=-V  d=-VSin(2πft)
如图1B所示的那样,这些函数被反复地交替施加到邻近微电极上。由这种驱动电势序列所产生的静电力通过支撑微电极6的微结构化弹性体脊5的变形以下列的方式来产生微电极6的简谐运动。在时间t=0时,微电极6处于图1A所示的未变形状态。在t=1(4f)时,微电极6处于图1B所示的最大变形状态。在t=1/(2f)时,微电极6将经过图1A所示的未变形状态。最后在t=3/(4f)时,微电极6将处于图1C所示的最大变形的相反极性状态。这一运动模式被以频率f反复进行并由此取得所需的操作。由此可知,所施加的电势交替地在相邻电极6对之间诱发吸引力,从而使微电极产生受控的时变位移。
每个微电极6优选地具有小于0.01mm2的横截面积,且产生的位移超过这一面积的平方根值的1%。
微电极6与一合适的电源11电气连接,例如可采用一边缘连接带10来将微电极6电气连接到电源11(如图1D和1E所示)。连接带10由一系列突出的微结构化脊8组成,它们隔开且支承住倒“U”型电触头9。脊8的几何形状被做成能同时插进微结构化弹性体脊5之间。脊的几何形状要做成使相互交错的脊5和8间的间隙足以能容易地插入但却要仍能在触头9和各电极6的相邻表面间提供很好的电接触。
每个倒“U”型电触头9组成从电源11运载合适驱动信号(即a、b、c或d)的导电路径的一部分。采用诸如光刻法那样的众所周知的集成电路制造工艺来将一种微图形化的接线方案应用于连接带10可很方便地实现上述这一点。由于微电极6和触头9紧密接触,因而可得到十分好的电连接,可能的话还可借助于如导电胶那样的导电粘性材料在将微电极和触头如前所述地交错插入之前将导电胶涂在一个表面上。将诸如聚酰胺那样的一种具有适当较高的电场强度绝缘性材料用来形成每个脊8的主体并用来绝缘邻近的导电通路。
在微电极6之间可被产生的最大静电力是受相邻电极间的静击穿所限制。尽管发明者并不愿意被任何特殊理论所约束,但看起来在如上所述的一EMEMS装置中通常仍存在有三种主要的电击穿方式。
第一种主要的电击穿方式是在微电极6和/或平面电极间的整个弹性体表面上的表面放电。如碳化这样的许多机理均可引起在原本非导电表面上产生表面放电。在大多数场合,表面放电的机率随每单位路径长度上的电压的增加而增加。这样便希望尽可能长地增加路径长度。这一点在优选实施例的结构中是通过利用长的路径长度“S”(图2A)来达到的,而这种长的路径长度“S”则是横过位于弹性体脊5之上的微电极6(见图2A)之间的凹槽所要求的。
第二种主要的电击穿方式是位于电极间的气体的雪崩击穿。当电压超过给定气体的帕邢曲线值的电压时,则会产生气体雪崩击穿。Paschen曲线可参考某些学术著作来加以确定,如Kufiel,E.Et al,“The SparkingUoltage-Faschem’s Law,”pp.354-361 in High Uoltage EngineeringFundamentals,Pergamon Press,Oxford,1984。帕邢(Paschen)定理讲述:不发生雪崩击穿所能获取的最大电压V是一个仅与气压p和间隙D的乘积有关的函数,即V=f(pD)。这样便希望使电极间隙3(图1A)做得尽量小以防止气体击穿。然而,这一点必须针对如下的事实来加以平衡,即:电极间隙3的减小也会减小微电极6的最大位移量,而这将限制装置的有用性。某些类型的气体,尤其象六氟化硫这样的负电性气体,较之空气具有对雪崩击穿更高的抵抗性且可提供一种增加绝缘强度的有用手段。
第三种主要的电击穿方式是场致发射。场致发射是在一个表面上电子穿过势垒的隧道效应,它反过来又导致一系列的击穿机理。从理论上讲,势垒值太大以致不可能允许产生实质性的隧道效应,除非电场强度达到3000MV/m这样大的量级。然而在实际中,实质性的场致发射仍可在标称电场强度达到比上述值低两个数量级的值时(即30MV/m)开始发生。这种减弱性看起来似乎是由大量的微凸起所造成的,它们即使是在高度抛光过的表面中也是固有地存在的。这些微凸起能使局部电场强度增大两个数量级且因此而导致场致发射击穿。所以,为防止场致发射,必须采用一种手段来减小表面粗糙度。也有证据表明,除了电场强度值之外,电极间距(它影响着施加在间隙两端的整个电压)也能起作用(例见A.Kojima et al.,“Effect of Gap Length on Effective FieldStrength,”Proc.3rd Intl.Conf on Properties and Applications ofDielectric Maferials,July 8-12,1991,Tokyo,Japan)。这一点进一步表明,应将电极间距尽量做得切合实际地小。
总的说来,作为薄弱环节的击穿机理将取决于一系列的因素,诸如:表面路径长度、电极间距、介电气体类型、电极表面等。例如:如果要在一高真空环境中来操作上述装置,就必须实质性地减少气体击穿机理且仅需对付表面放电和场致发射。根据一般的经验,对涉及的气体和气压来说,应使电极间距小于2倍的最小帕邢距离。这样可原则上保证能得到实质性的静电力而不生产出气体击穿或不需要过分高的工作电压。
现在来讨论用来将微电极6有选择地淀积在脊5顶部的方法。如上所述,需要有选择地将微电极6以一种便宜的、大规模生产的方式淀积在脊5的某些部分。一种这样的方法是采用物理气相淀积原子的定向性质与弹性体的微结构相结合来制造微遮蔽效应。微遮蔽技术已被用于本领域的其它地方,如用在Bobblo等人所描述的装置中,见Babbio et al.,“Integrated Force Arrays,”Proc.1993 IEEE MEMSWorkshop,p.150。
参照图2A,通过将金属原子沿与垂直于脊5的方向成α的角度进行投射(该角度α足以产生所需的遮蔽度),可获得微遮蔽效应。图2A示出一45°的投射角α。这样可提供一相对较长的表面击穿路径长度,同时也在靠近脊5顶部的地方造成到电场的一光滑过渡。较小的角度将会使金属限制在脊5顶部的一较小区域中,但这些较小区域的边缘会产生很高的电场,这些电场有可能成为电击穿源。图2B是在与一个装置的微结构化表面成一斜角的方向上拍摄的扫描电镜图,该装置是根据上述本发明的优选实施例所构造的。在该扫描电镜图中,浅阴影区32代表钽金属镀层,而深阴影区33则代表硅弹性体。
在某些场合需要使用两相对且相互接触的微结构化表面图3中示出一个这样的实施例的一小部分。图3的下部表示载有多个第一弹性体脊5的一弹性体微结构化衬底4,每个弹性体脊均如前所述如图1A所示的那样覆盖有一第一微电极6。图3的上部表示一第二弹性体微结构化衬底12,在其中连接有多个第二微电极14,其方式为:每个微电极14面对多个相应的微电极6。图3的尺度是不成比例的,实际中,上弹性体微结构化衬底12的厚度要远大于下弹性体微结构化衬底4的厚度。
一系列的弹性体脊16从上微结构化衬底12的下伸出以规则的间隔同下微结构化衬底4相接触,这样便限定了微电极6和14间的一极间距18。象空气这样的一种气体充实了由两微结构化衬底所包围的空间20。优选地将一种粘接剂涂到两微结构间的触点22上。将微电极14连到一电压源的一端,而面对电极14的微电极6则被连至另一端。在上微结构化衬底12上等间隔地做有多个凹槽以提供多个储气室24用于下面所述的目的。
图3实施例的操作如下:在两组微电极6和14间施加一电势差以产生一静电吸引力。这一静电吸引力使弹性体脊16变形,从而使这两组微电极相互间进行运动。当微电极运动时,被围在空间20中的气体在上、下微结构间被压缩。在微电极6和14间的气体压缩要大于储气室24内的气体压缩,这样气体倾向于被压进、压出储气室24。因此,如果不提供储气室24的话,整个气体压缩量要小得多。由于空间20中的气体具有压缩刚性,因此储气室24相应地减少了对两微结构相对运动的阻力,且因此也无需再构造具有高纵横比的下微结构,而这种高纵横比的下微结构通常是难于制造的。
气体流进流出储气室24带来了粘性阻尼,这种阻尼在许多场合通常是不希望的。为减少粘性阻尼,应减小流体流进流出储气室24的速度。这一点比如可通过将各储气室24安排得更靠近些来达到,因为这样仅需移动较少的气流量,或者可增加储气室横截面积以降低平均气流速度。再次参考图2A,与凹槽区“r”相关的被增加的截面积除被用于其它前述的增加表面击穿路径长度和能进行微电极6的微遮蔽之外,还可用来进行上述第二途径。
图4为图3装置的一替补方案,它消除了对上微结构的需要,如图4所见,一个或多个宏电极32(它们是毫米量级的平面结构)高出微电极6被支承在从衬底4向上伸出的弹性体脊16之上。采用有选择地移去衬底4和弹性体脊5的某些部分来制造出储气室24,操作时,将电势差施加于微电极6和宏电极32之间,以在它们之间产生一静电吸引力。这一静电吸引力使弹性体脊16产生变形,从而使微电极和宏电极相互间产生相对运动。在此运动期间,被围在空间20中的气体在宏电极和微电极间被压缩。
图5A和5B示出一进一步的替补实施例,其中将一个或多个宏电极30加于衬底4的基底上。操作时,将一电势差加于微电极6和宏电极30之间,以在它们之间产生一静电吸引力。该静电吸引力使弹性体脊5变形,从而使微电极6如图5B所示的那样相对于宏电极30移动。
图6示出一更进一步的替补实施例,其中将微电极6和6’施加于衬底4的两侧。可看到这样便提供了上、下两结构(对称于衬底4的平面),每一结构以上述图1A-1D所示的方式工作。这样一种双边结构可被用于例如改善通过薄膜的对流热传递。
根据前面披露的内容,熟悉本技术领域的人将可看到,在实施本发明过程中在不偏离本发明的精神和范围的条件下仍会有许多替代方案和修改。因此,有必要根据以下权利要求所述的精神来解释本发明的范围。

Claims (12)

1.一种机电转换器,其特征为:
(a)一个第一衬底(4),在上述衬底的一侧载有多个第一弹性体微结构(5);
(b)在上述多个第一弹性体微结构的每一个上的一第一微电极(6);
(c)用于对上述微电极施加电势进行控制的、与上述微电极电气连接的电源装置(11);
(d)载有多个第二弹性体微结构(16)的一第二衬底(12),上述第二衬底邻接于且面对着上述第一衬底,上述多个第二弹性体微电极与上述第一衬底相接触;以及,
(e)位于上述第二衬底之上的多个第二微电极(14);
其中:
上述电源装置被进一步电气连接到上述第二微电极,用于控制将上述电势施加到上述第二微电极以便在上述多个第一和第二微电极间交替地诱发吸引力,从而使上述多个第一和第二微电极产生受控的、时变位移。
2.一种机电转换器,其特征为:
(a)一个第一衬底(4),在上述衬底的一侧载有多个第一弹性体微结构(5);
(b)在上述多个第一弹性体微结构的每一个上的一第一微电极(6);
(c)用于对上述微电极施加电势进行控制的、与上述微电极电气连接的电源装置(11);
(d)载有多个第二弹性体微结构(16)的一第二衬底(12),上述第二衬底邻接于且面对着上述第一衬底,上述多个第二弹性体微结构与上述第一衬底相接触;以及,
(e)一个或多个宏电极(32)被上述多个第二弹性体微结构支承高出上述微电极;
其中:
上述电源装置被进一步电气连接至上述一个或多个宏电极上,用于控制将上述电势施加到一个或多个宏电极以便在上述微电极和上述一个或多个宏电极间交替地诱发吸引力,从而使上述微电极产生相对于上述一个或多个宏电极的受控制的、时变位移。
3.如权利要求1或2所述的机电转换器,其特征在于,进一步包括在上述第一或第二衬底中的多个储气室(24),用于上述微电极作上述位移期间使上述微电极间的气流流进和流出上述储气室。
4.如权利要求1或2所述的机电转换器,其特征为:上述电势在相邻对的上述微电极之间交替地诱发吸引力,从而使上述微电极产生受控的、时变位移。
5.如权利要求1或2所述的机电转换器,其特征为:上述第一弹性体微结构的数量超过1000。
6.如权利要求1或2所述的机电转换器,其特征为:
(a)上述第一和第二衬底为弹性体片状材料;以及
(b)上述微结构被成型为上述片状材料的集成表面特征。
7.如权利要求1或2所述的机电转换器,其特征为:
(a)相邻对的上述第一微电极被一充气间隙(3)所分隔开,上述间隙的特征是在一特定的气压之下具有一最小帕邢距离“D”;以及
(b)上述间隙宽度小于两倍的最小帕邢距离“D”。
8.如权利要求1或2所述的机电转换器,其特征为:上述第一微电极具有一导电的弹性体。
9.如权利要求1或2所述的机电转换器,其特征为:上述微结构的几何形状被做成能将导电材料定向地淀积到上述微结构上,用于在当一预定的表面微图形淀积在上述微结构上时形成上述微电极。
10.如权利要求1或2所述的机电转换器,其特征在于,进一步包括位于每一相邻对的上述多个第一微结构间的一凹槽,每个上述凹槽限定了位于上述相邻微结构之上的上述第一微电极间的一表面路径长度,上述表面路径长度应实质性地超过位于相邻微结构之上的上述第一微电极间的任何直接的路程长度。
11.如权利要求1或2所述的机电转换器,其特征为:上述微电极各自具有小于0.01mm2的横截面积。
12.如权利要求1或2所述的机电转换器,其特征为:上述微电极各自具有小于0.01mm2的横截面积,且上述位移量超过上述横截面积值的平方根的1%。
CN96194329A 1995-05-01 1996-04-26 弹性体微机电系统 Expired - Fee Related CN1047107C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/431,735 1995-05-01
US08/431,735 US5642015A (en) 1993-07-14 1995-05-01 Elastomeric micro electro mechanical systems

Publications (2)

Publication Number Publication Date
CN1186458A CN1186458A (zh) 1998-07-01
CN1047107C true CN1047107C (zh) 1999-12-08

Family

ID=23713203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96194329A Expired - Fee Related CN1047107C (zh) 1995-05-01 1996-04-26 弹性体微机电系统

Country Status (9)

Country Link
US (1) US5642015A (zh)
EP (1) EP0824381B1 (zh)
JP (1) JP3016870B2 (zh)
KR (1) KR100286486B1 (zh)
CN (1) CN1047107C (zh)
AU (1) AU5394596A (zh)
CA (1) CA2218876C (zh)
DE (1) DE69609414T2 (zh)
WO (1) WO1996034701A1 (zh)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320457B2 (en) * 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US6812624B1 (en) * 1999-07-20 2004-11-02 Sri International Electroactive polymers
US6545384B1 (en) 1997-02-07 2003-04-08 Sri International Electroactive polymer devices
US6376971B1 (en) 1997-02-07 2002-04-23 Sri International Electroactive polymer electrodes
US6781284B1 (en) 1997-02-07 2004-08-24 Sri International Electroactive polymer transducers and actuators
US6833242B2 (en) * 1997-09-23 2004-12-21 California Institute Of Technology Methods for detecting and sorting polynucleotides based on size
US7214298B2 (en) * 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
DE19825581A1 (de) * 1998-06-09 1999-12-16 Volkswagen Ag Ultraschall-Folien-Wandler
US6216973B1 (en) 1998-10-23 2001-04-17 Trw Vehicle Safety Systems Inc. Electric locking seat belt retractor
US6184607B1 (en) * 1998-12-29 2001-02-06 Honeywell International Inc. Driving strategy for non-parallel arrays of electrostatic actuators sharing a common electrode
US6184608B1 (en) 1998-12-29 2001-02-06 Honeywell International Inc. Polymer microactuator array with macroscopic force and displacement
US6297069B1 (en) 1999-01-28 2001-10-02 Honeywell Inc. Method for supporting during fabrication mechanical members of semi-conductive dies, wafers, and devices and an associated intermediate device assembly
US7247490B2 (en) * 1999-04-06 2007-07-24 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
DE60034033T2 (de) * 1999-04-06 2007-12-06 University of Alabama, Birmingham Research Foundation, Birmingham Vorrichtung zum screening von kristallisierungsbedingungen in lösungen zur kristallzüchtung
US7214540B2 (en) 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US20020164812A1 (en) * 1999-04-06 2002-11-07 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7250305B2 (en) * 2001-07-30 2007-07-31 Uab Research Foundation Use of dye to distinguish salt and protein crystals under microcrystallization conditions
US7244396B2 (en) * 1999-04-06 2007-07-17 Uab Research Foundation Method for preparation of microarrays for screening of crystal growth conditions
US6166478A (en) * 1999-06-04 2000-12-26 The Board Of Trustees Of The University Of Illinois Method for assembly of microelectromechanical systems using magnetic actuation
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US7244402B2 (en) * 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US8052792B2 (en) * 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US7144616B1 (en) * 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
DK1065378T3 (da) * 1999-06-28 2002-07-29 California Inst Of Techn Elastomere mikropumpe- og mikroventilsystemer
US7052545B2 (en) * 2001-04-06 2006-05-30 California Institute Of Technology High throughput screening of crystallization of materials
US20080277007A1 (en) * 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US7459022B2 (en) 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US8550119B2 (en) * 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US6929030B2 (en) * 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7217321B2 (en) * 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
US7537197B2 (en) * 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
US6664718B2 (en) 2000-02-09 2003-12-16 Sri International Monolithic electroactive polymers
EP1212800B1 (en) 1999-07-20 2007-12-12 Sri International Electroactive polymer generators
FR2803957B1 (fr) * 2000-01-13 2002-03-08 Information Technology Dev Micro-actionneur capacitif a structure deformable optimise pour memoire a disques et procede de fabrication
US6753638B2 (en) * 2000-02-03 2004-06-22 Calient Networks, Inc. Electrostatic actuator for micromechanical systems
US6911764B2 (en) 2000-02-09 2005-06-28 Sri International Energy efficient electroactive polymers and electroactive polymer devices
AU2001238459A1 (en) * 2000-02-16 2001-08-27 Omlidon Technologies Llc Method for microstructuring polymer-supported materials
AU2001238675A1 (en) * 2000-02-23 2001-09-03 Sri International Electroactive polymer thermal electric generators
US6768246B2 (en) * 2000-02-23 2004-07-27 Sri International Biologically powered electroactive polymer generators
AU2001240040A1 (en) * 2000-03-03 2001-09-17 California Institute Of Technology Combinatorial array for nucleic acid analysis
CN1191475C (zh) 2000-03-31 2005-03-02 生命扫描有限公司 用于测量导电生物流体的被分析物浓度的医疗诊断装置
US7279146B2 (en) * 2003-04-17 2007-10-09 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US20050118073A1 (en) * 2003-11-26 2005-06-02 Fluidigm Corporation Devices and methods for holding microfluidic devices
US6628041B2 (en) * 2000-05-16 2003-09-30 Calient Networks, Inc. Micro-electro-mechanical-system (MEMS) mirror device having large angle out of plane motion using shaped combed finger actuators and method for fabricating the same
US7420659B1 (en) * 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US6837476B2 (en) * 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US7351376B1 (en) 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
AU2001273057A1 (en) 2000-06-27 2002-01-08 Fluidigm Corporation A microfluidic design automation method and system
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
AU2001278697A1 (en) * 2000-08-11 2002-02-25 Ecchandes Inc. Overlapping type piezoelectric stator, overlapping type piezoelectric acturator and applications thereof
EP1334347A1 (en) * 2000-09-15 2003-08-13 California Institute Of Technology Microfabricated crossflow devices and methods
US6825967B1 (en) 2000-09-29 2004-11-30 Calient Networks, Inc. Shaped electrodes for micro-electro-mechanical-system (MEMS) devices to improve actuator performance and methods for fabricating the same
US6842964B1 (en) 2000-09-29 2005-01-18 Tucker Davis Technologies, Inc. Process of manufacturing of electrostatic speakers
US7678547B2 (en) * 2000-10-03 2010-03-16 California Institute Of Technology Velocity independent analyte characterization
US7097809B2 (en) * 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US7258774B2 (en) * 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
EP1336097A4 (en) * 2000-10-13 2006-02-01 Fluidigm Corp SAMPLE INJECTION SYSTEM USING A MICROFLUIDIC DEVICE, FOR ANALYSIS DEVICES
US8181338B2 (en) 2000-11-02 2012-05-22 Danfoss A/S Method of making a multilayer composite
US7400080B2 (en) * 2002-09-20 2008-07-15 Danfoss A/S Elastomer actuator and a method of making an actuator
DE10054247C2 (de) * 2000-11-02 2002-10-24 Danfoss As Betätigungselement und Verfahren zu seiner Herstellung
US7548015B2 (en) * 2000-11-02 2009-06-16 Danfoss A/S Multilayer composite and a method of making such
US7518284B2 (en) 2000-11-02 2009-04-14 Danfoss A/S Dielectric composite and a method of manufacturing a dielectric composite
WO2002065005A1 (en) * 2000-11-06 2002-08-22 California Institute Of Technology Electrostatic valves for microfluidic devices
AU2002248149A1 (en) * 2000-11-16 2002-08-12 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
EP1343973B2 (en) 2000-11-16 2020-09-16 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US20050196785A1 (en) * 2001-03-05 2005-09-08 California Institute Of Technology Combinational array for nucleic acid analysis
US7670429B2 (en) * 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
US6802342B2 (en) 2001-04-06 2004-10-12 Fluidigm Corporation Microfabricated fluidic circuit elements and applications
US6752922B2 (en) * 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
US20020164816A1 (en) * 2001-04-06 2002-11-07 California Institute Of Technology Microfluidic sample separation device
EP1384022A4 (en) 2001-04-06 2004-08-04 California Inst Of Techn AMPLIFICATION OF NUCLEIC ACID USING MICROFLUIDIC DEVICES
JP5162074B2 (ja) 2001-04-06 2013-03-13 フルイディグム コーポレイション ポリマー表面修飾
US7233097B2 (en) * 2001-05-22 2007-06-19 Sri International Rolled electroactive polymers
US6543087B2 (en) 2001-06-01 2003-04-08 Aip Networks, Inc. Micro-electromechanical hinged flap structure
US20050149304A1 (en) * 2001-06-27 2005-07-07 Fluidigm Corporation Object oriented microfluidic design method and system
US7075162B2 (en) * 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US7192629B2 (en) 2001-10-11 2007-03-20 California Institute Of Technology Devices utilizing self-assembled gel and method of manufacture
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US7064740B2 (en) 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
US7691333B2 (en) 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
AU2002351187A1 (en) 2001-11-30 2003-06-17 Fluidigm Corporation Microfluidic device and methods of using same
AU2002351736A1 (en) 2001-12-21 2003-07-15 Danfoss A/S Dielectric actuator or sensor structure and method of making it
JP2005522162A (ja) * 2002-03-18 2005-07-21 エスアールアイ インターナショナル 流体を移動させる電気活性ポリマーデバイス
EP2666849A3 (en) 2002-04-01 2014-05-28 Fluidigm Corporation Microfluidic particle-analysis systems
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
US20070026528A1 (en) * 2002-05-30 2007-02-01 Delucas Lawrence J Method for screening crystallization conditions in solution crystal growth
WO2003107372A1 (en) * 2002-06-14 2003-12-24 International Business Machines Corporation Micro-electromechanical switch having a deformable elastomeric conductive element
WO2004005898A1 (en) * 2002-07-10 2004-01-15 Uab Research Foundation Method for distinguishing between biomolecule and non-biomolecule crystals
WO2004028955A2 (en) 2002-09-25 2004-04-08 California Institute Of Technology Microfluidic large scale integration
US8220494B2 (en) * 2002-09-25 2012-07-17 California Institute Of Technology Microfluidic large scale integration
EP1546412B1 (en) 2002-10-02 2014-05-21 California Institute Of Technology Microfluidic nucleic acid analysis
WO2004053782A1 (en) * 2002-12-12 2004-06-24 Danfoss A/S Tactile sensor element and sensor array
ES2309502T3 (es) 2003-02-24 2008-12-16 Danfoss A/S Vendaje de compresion elastico electroactivo.
US20050145496A1 (en) 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7476363B2 (en) 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US8828663B2 (en) 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
JP5419248B2 (ja) * 2003-04-03 2014-02-19 フルイディグム コーポレイション マイクロ流体装置およびその使用方法
CA2526368A1 (en) 2003-05-20 2004-12-02 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
AU2004261655A1 (en) * 2003-07-28 2005-02-10 Fluidigm Corporation Image processing method and system for microfluidic devices
US7413712B2 (en) 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7623105B2 (en) 2003-11-21 2009-11-24 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive color
KR100875326B1 (ko) * 2003-12-18 2008-12-22 샤프 가부시키가이샤 액정 디스플레이 응답 특성 결정 방법 및 프리젠테이션 방법
US7407799B2 (en) * 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
SG187392A1 (en) * 2004-01-25 2013-02-28 Fluidigm Corp Crystal forming devices and systems and methods for making and using the same
US7532192B2 (en) 2004-05-04 2009-05-12 Sharp Laboratories Of America, Inc. Liquid crystal display with filtered black point
US7612757B2 (en) 2004-05-04 2009-11-03 Sharp Laboratories Of America, Inc. Liquid crystal display with modulated black point
US7505018B2 (en) 2004-05-04 2009-03-17 Sharp Laboratories Of America, Inc. Liquid crystal display with reduced black level insertion
US8395577B2 (en) 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
US7872631B2 (en) 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
US7602369B2 (en) * 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US7777714B2 (en) 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US20060024751A1 (en) * 2004-06-03 2006-02-02 Fluidigm Corporation Scale-up methods and systems for performing the same
US7023451B2 (en) * 2004-06-14 2006-04-04 Sharp Laboratories Of America, Inc. System for reducing crosstalk
US7116463B2 (en) * 2004-07-15 2006-10-03 Optron Systems, Inc. High angular deflection micro-mirror system
US7898519B2 (en) 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8050512B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US7525528B2 (en) 2004-11-16 2009-04-28 Sharp Laboratories Of America, Inc. Technique that preserves specular highlights
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7222639B2 (en) * 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
US7328882B2 (en) * 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) * 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US7517201B2 (en) * 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US7624755B2 (en) 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8121401B2 (en) 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
US7815868B1 (en) * 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US7880371B2 (en) * 2006-11-03 2011-02-01 Danfoss A/S Dielectric composite and a method of manufacturing a dielectric composite
US7732999B2 (en) * 2006-11-03 2010-06-08 Danfoss A/S Direct acting capacitive transducer
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
EP1970122A1 (en) * 2007-03-12 2008-09-17 Koninklijke Philips Electronics N.V. Microfluidic system based on magnetic actuator elements
EP2174360A4 (en) 2007-06-29 2013-12-11 Artificial Muscle Inc CONVERTER WITH ELECTROACTIVE POLYMER FOR SENSOR REVIEW APPLICATIONS
WO2009132651A1 (en) * 2008-04-30 2009-11-05 Danfoss A/S A pump powered by a polymer transducer
CN102165237A (zh) * 2008-04-30 2011-08-24 丹佛斯多能公司 电动阀
US8591206B2 (en) * 2008-12-06 2013-11-26 Thomas R. Krenik Air cycle heat pump techniques and system
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
US8712559B2 (en) * 2010-02-10 2014-04-29 The Board Of Trustees Of The University Of Illionois Adaptive control for uncertain nonlinear multi-input multi-output systems
JP5548563B2 (ja) * 2010-09-14 2014-07-16 ヤマハ株式会社 ナノシートトランスデューサ
JP2014513510A (ja) 2011-03-01 2014-05-29 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 変形可能なポリマー装置及び変形可能なポリマーフィルムを作るための自動化された製造プロセス
TW201250288A (en) 2011-03-22 2012-12-16 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8692442B2 (en) 2012-02-14 2014-04-08 Danfoss Polypower A/S Polymer transducer and a connector for a transducer
US8891222B2 (en) 2012-02-14 2014-11-18 Danfoss A/S Capacitive transducer and a method for manufacturing a transducer
WO2013142552A1 (en) 2012-03-21 2013-09-26 Bayer Materialscience Ag Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
WO2013192143A1 (en) 2012-06-18 2013-12-27 Bayer Intellectual Property Gmbh Stretch frame for stretching process
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
WO2014066576A1 (en) 2012-10-24 2014-05-01 Bayer Intellectual Property Gmbh Polymer diode
EP2953012B1 (en) * 2013-01-29 2018-04-18 Suzhou Institute of Nano-tech and Nano-bionics (SINANO) Chinese Academy of Sciences Electronic skin, preparation method and use thereof
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US9899937B2 (en) * 2015-01-16 2018-02-20 Wisconsin Alumni Research Foundation Peg-style electrostatic rotating machine
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
WO2020097730A1 (en) * 2018-11-16 2020-05-22 The University Of British Columbia Deformable sensor for simulating skin and other applications
US11713240B2 (en) * 2019-12-09 2023-08-01 Board Of Regents, The University Of Texas System Cellular array electrostatic actuator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772537A (en) * 1972-10-27 1973-11-13 Trw Inc Electrostatically actuated device
US4376302A (en) * 1978-04-13 1983-03-08 The United States Of America As Represented By The Secretary Of The Navy Piezoelectric polymer hydrophone
US4654546A (en) * 1984-11-20 1987-03-31 Kari Kirjavainen Electromechanical film and procedure for manufacturing same
CA1277415C (en) * 1986-04-11 1990-12-04 Lorne A. Whitehead Elastomer membrane enhanced electrostatic transducer
US4887248A (en) * 1988-07-07 1989-12-12 Cleveland Machine Controls, Inc. Electrostatic transducer and method of making and using same
JP2797146B2 (ja) * 1990-10-09 1998-09-17 株式会社ゼクセル 物体移動用電磁アクチュエータ
US5206557A (en) * 1990-11-27 1993-04-27 Mcnc Microelectromechanical transducer and fabrication method
US5485437A (en) * 1993-02-05 1996-01-16 Discovision Associates Shock-resistant, electrostatically actuated pick-up for optical recording and playback
US5450498A (en) * 1993-07-14 1995-09-12 The University Of British Columbia High pressure low impedance electrostatic transducer
US5359574A (en) * 1993-08-27 1994-10-25 The United States Of America As Represented By The Secretary Of The Navy Electromagnetically activated compliant wavy-wall
US5395592A (en) * 1993-10-04 1995-03-07 Bolleman; Brent Acoustic liquid processing device

Also Published As

Publication number Publication date
CN1186458A (zh) 1998-07-01
WO1996034701A1 (en) 1996-11-07
DE69609414D1 (de) 2000-08-24
DE69609414T2 (de) 2001-03-08
MX9708359A (es) 1998-06-30
EP0824381B1 (en) 2000-07-19
JPH10511528A (ja) 1998-11-04
CA2218876A1 (en) 1996-11-07
JP3016870B2 (ja) 2000-03-06
EP0824381A1 (en) 1998-02-25
CA2218876C (en) 1999-12-07
AU5394596A (en) 1996-11-21
US5642015A (en) 1997-06-24
KR100286486B1 (ko) 2001-04-16
KR19990008212A (ko) 1999-01-25

Similar Documents

Publication Publication Date Title
CN1047107C (zh) 弹性体微机电系统
US11616455B2 (en) Electrostatic actuator
US6184609B1 (en) Piezoelectric actuator or motor, method therefor and method for fabrication thereof
EP1145417B1 (en) Polymer microactuator array with macroscopic force and displacement
CN1815646B (zh) 可变电容器及制造可变电容器的方法
CN101529712B (zh) 静电动作装置
US6583533B2 (en) Electroactive polymer electrodes
US6781284B1 (en) Electroactive polymer transducers and actuators
US6543110B1 (en) Electroactive polymer fabrication
ES2394160T3 (es) Polímeros electroactivos
US7705514B2 (en) Bi-directional actuator utilizing both attractive and repulsive electrostatic forces
US20020125790A1 (en) MEMS actuator with lower power consumption and lower cost simplified fabrication
RU98119708A (ru) Пьезоэлектрический привод или двигатель, способ приведения его в действие и способ его изготовления
US10804818B2 (en) Triboelectric generator and network for mechanical energy harvesting
US6933662B2 (en) Electrostrictive compound actuator
EP0483147A1 (de) Dielektrisches mikromechanisches element.
MXPA97008359A (en) Elastomeri microelectromecanic system
US11713240B2 (en) Cellular array electrostatic actuator
Pelrine et al. Artificial muscle for small robots and other micromechanical devices
CA2485153C (en) Bi-directional actuator utilizing both attractive and repulsive electrostatic forces
Tominaga et al. A bending and expanding motion actuator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee