CN104127262A - Astigmatism-correcting intraocular lens and design and production methods thereof - Google Patents

Astigmatism-correcting intraocular lens and design and production methods thereof Download PDF

Info

Publication number
CN104127262A
CN104127262A CN201310610150.XA CN201310610150A CN104127262A CN 104127262 A CN104127262 A CN 104127262A CN 201310610150 A CN201310610150 A CN 201310610150A CN 104127262 A CN104127262 A CN 104127262A
Authority
CN
China
Prior art keywords
intraocular lenses
artificial intraocular
optic
astigmatism correction
correction type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310610150.XA
Other languages
Chinese (zh)
Other versions
CN104127262B (en
Inventor
王曌
解江冰
甄彦杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott (Beijing) Medical Technology Co., Ltd.
Original Assignee
EYEBRIGHT (BEIJING) MEDICAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EYEBRIGHT (BEIJING) MEDICAL TECHNOLOGY Co Ltd filed Critical EYEBRIGHT (BEIJING) MEDICAL TECHNOLOGY Co Ltd
Priority to CN201310610150.XA priority Critical patent/CN104127262B/en
Priority to PCT/CN2014/090351 priority patent/WO2015078271A1/en
Publication of CN104127262A publication Critical patent/CN104127262A/en
Application granted granted Critical
Publication of CN104127262B publication Critical patent/CN104127262B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

The invention relates to an astigmatism-correcting intraocular lens and design and production methods thereof. The outer edge of an optical portion of a Toric intraocular lens is equally thick; the outer edge of an effective optical region of the Toric intraocular lens is adaptively and fitly turned; accordingly, the different thicknesses of various angled parts of the outer edge of the effective optical area are outwardly and adaptively increased to a same height, the equal thickness of the outer edge of the optical portion of the Toric intraocular lens is guaranteed, the position of the Toric intraocular lens in a sac is more stable, long-term astigmatism correction of the Toric intraocular lens is improved, and the limitations of the loop position design are eliminated.

Description

Astigmatism correction type artificial intraocular lenses and design thereof and production method
Technical field
The present invention relates generally to astigmatism correction type artificial intraocular lenses.Particularly, the present invention relates to the Toric artificial intraocular lenses for astigmatism and design and the production method that the outer edge thickness of a kind of optic equates.
Background technology
Artificial intraocular lenses (IOL) is a kind of artificial lens that can implant ophthalmic.As shown in Figure 1, artificial intraocular lenses 1 form, normally the You Yige circular light department of the Chinese Academy of Sciences 2 forms with the support button loop 5 that is arranged on optic 2 peripheries.Artificial intraocular lenses 1 optic 2 consists of efficient light school district 3 and optic marginal portion 4.
Ametropia is on the obvious a kind of factor of image quality impact, wherein astigmatism is a kind of common people's ametropia phenomenon, refer to that eyeball refractive power on different warps is inconsistent, or the diopter of same warp is not etc., so that the parallel rays that enters ophthalmic can not form focus on retina, and form the phenomenon of focal line.Astigmatism is divided into two kinds of regular astigmatism and irregular astigmatisms clinically.Two warps of refractive power difference maximum are main radial line, and two main warp lines are mutually vertical, are regular astigmatism; Each meridianal astigmatic flexibility is inconsistent, is irregular astigmatism.Wherein regular astigmatism can be corrected by eyeglass.
In normal population, corneal astigmatism is greater than the 15%-29% that accounts for of 1.5D, and has a strong impact on people's visual quality.The astigmatic up-to-date Therapeutic Method of cataract of companion is the object of correcting corneal astigmatism when an astigmatic type artificial intraocular lenses (Toric IOL) reaches normal dioptric by implanting within the eye at present.
Toric artificial intraocular lenses's development was to be proposed by Japanese Kimiya Shimizu at first, and U.S. FDA was formally examined by being applied to clinical in 1998, after this Toric artificial intraocular lenses of oneself that all released one after another of each large artificial crystal production manufacturer.These Toric artificial intraocular lensess have single type, also have three-member type; Have soft, rigid; It is hydrophilic, hydrophobic that material has; Combine aspheric surface, multifocal, also can adopt modified model " L " button loop or " C " button loop simultaneously, improve the stability of Toric artificial intraocular lenses in human eye.No matter which kind of design, the technological core of realizing the Toric artificial intraocular lenses of astigmatism correction is that the toroid in optical surface shape (toroidal) is applied to artificial intraocular lenses, extra-column mirror degree on the original dioptric basis of artificial intraocular lenses, utilize toroid inconsistent feature of diopter on each warp direction, correct the astigmatism of cataract patient cornea.
The definition of Toric face shape (toroid) is known for those skilled in the art, that is: the curve l(bus in Y-Z plane) around Y-axis, perpendicular to the straight line l ' (rotating shaft) of Z axis, rotate a circle and form (referring to Zemax Optical Design Program Users Guide page 272, Toroidal part).Curve l can be round, can be also aspheric curve, and l ' is rotating shaft radius to the distance in the bus center of circle, as shown in Figure 2 (graphic extension of toric acquisition principle).
No matter bus is spherical curve is still aspheric curve, by the derivation of equation, (respective formula can be at optical tooling book, as Daniel Malacara, Handbook of optical design, chapter 2, formula A2.2 and formula A2.5(are shown in appendix)) and Theoretical Calculation can know: for toric artificial intraocular lenses, determined primary mirror and the radius of curvature of post mirror direction and artificial intraocular lenses's center thickness (or edge thickness of primary mirror direction), the thickness at the each point place of intraocular lens optic portion outer rim is all determined.
Fig. 3 shows the radius of curvature of Toric artificial intraocular lenses under different angles and the situation of change of thickness.For toric artificial intraocular lenses, on Radius in office (as Fig. 3 radius r), eyeglass is different in each radius of curvature in the radial direction, and thickness is different, as shown in Figure 3, and the maximum (R of primary mirror directional curvature radius 0), the thickest (d of while 0), the minimum (R of post mirror directional curvature radius 90), the thinnest (d of while 90), the radius of curvature of all the other directions and thickness is between the two, gradually transition change.Correspondingly, the thickness of Toric intraocular lens optic portion outer rim also meets this rule, and became uneven, the thickest with primary mirror direction, and post mirror direction is the thinnest, and in all the other directions, thickness is between the two.Again for example, it is 1.48 that Fig. 4 shows refractive index, diopter 20D, and post mirror degree 1.5D, the thickness d of the toric intraocular lens optic portion outer rim of the thick 0.3mm of primary mirror direction (unit is millimeter) is with the change curve of circumferential position angle A (unit is degree).By simple Theoretical Calculation, derive and just can find and as shown in Figure 4: the thickness distribution of toric intraocular lens optic portion outer rim meets sin/cos curve distribution rule along circumferential thickness.
Yet the phenomenon along circumferential became uneven of this optic outer rim brings following problem can to toric artificial intraocular lenses:
(1) make Toric artificial intraocular lenses all directions unbalance stress in human eye pouch, cause Toric artificial intraocular lenses to rotate off normal, affect astigmatism correction effect.
Artificial intraocular lenses puts into after human eye pouch 9, and pouch supports button loop 5 to artificial intraocular lenses and exerts pressure, and artificial intraocular lenses is corresponding can produce counteracting force, maintains the position stability of artificial intraocular lenses in pouch.The force analysis of Toric artificial intraocular lenses in pouch is shown in Fig. 5.Pouch 9 supports button loop by compression, and intraocular lens optic portion 2 is applied to compression stress F, and this power can be decomposed into the component in all directions, such as the power F being decomposed in the thinnest direction of Toric artificial intraocular lenses tpower F in the thickest direction i, (F as shown in Figure 5 1t, F 2t; And F 1i, F 2i); Toric artificial crystal material produces retroaction tension force f to the compression stress of pouch iwith f t, (f as shown in Figure 5 1t, f 2t; And f 1i, f 2i), due to Toric artificial intraocular lenses marginal portion became uneven, cause the support force f of thin direction tdiminish, pouch applied pressure can not be offset completely in two thin directions, the f that makes a concerted effort that Toric artificial intraocular lenses produces in all directions is all not identical in size and direction with the compression stress F of pouch, these two revolving forces that there is no the power formation Toric artificial intraocular lenses circumferencial direction of counteracting, cause Toric artificial intraocular lenses rotation.
Astigmatism correction type artificial intraocular lenses has strict requirement to crystal astigmatism axle and corneal astigmatism shaft alignement, clinical practice shows, implant Toric artificial intraocular lenses, 1 ° of the every rotation of Toric artificial intraocular lenses, can cause 3.3% lens cylinder mirror degree loss, Toric artificial intraocular lenses rotates 30 ° of > or more, can cause the complete failure of astigmatism correction, so the rotation of Toric artificial intraocular lenses's this circumferencial direction can produce and have a strong impact on to astigmatism correction.And the Toric artificial intraocular lenses that the pouch active force inequality that this optic outer rim became uneven causes causes rotation is accumulated over a long period, can not stop along with the increase of Toric artificial intraocular lenses Implantation Time accumulation and increase the weight of.
(2) be subject to the fastening with a rope, string, etc. restriction of support force, artificial intraocular lenses's button loop need to guarantee certain thickness.Yet, Toric artificial intraocular lenses forms restriction to the Position Design of button loop, the phenomenon of brim-portion thickness inequality must design button loop in the thickest direction of Toric intraocular lens optic portion's outer rim Toric artificial intraocular lenses, to guarantee enough thickness and enough support forces, limited thus doctor and patient's selection.
Summary of the invention
The present invention proposes in view of the above problems, its object is to provide a kind of optic the outer equal Toric artificial intraocular lenses of edge thickness, to improving the positional stability of Toric artificial intraocular lenses in pouch, and then improve toric artificial intraocular lenses's long-term astigmatism correction effect, and remove the restriction of button loop Position Design.
Term definition
The term " optic " using in this application refers to the rounded optical lens (as shown in the Reference numeral 2 in Fig. 1, Fig. 6) of the section 8-8 ' of longitudinal center consisting of artificial intraocular lenses's efficient light school district and optic marginal portion around thereof.
The term " efficient light school district " using in this application thus refer to the part that optical characteristics can realize the major function that regulates artificial intraocular lenses's diopter and/or astigmatism that has that is positioned at intraocular lens optic portion center.Particularly, the diameter of the toric artificial intraocular lenses's who uses in the embodiment of the present invention optic is approximately 6 millimeters (maximum can reach 6.5 millimeters), wherein efficient light school district refer to the optic marginal portion that is positioned at toric artificial intraocular lenses with circular portion, its diameter is more than or equal to 4.25 millimeters.
The term " optic marginal portion " using in this application refers to the annular marginal area of the optical characteristics that can not affect artificial intraocular lenses that is arranged on periphery, intraocular lens optic portion efficient light school district.
The term " efficient light school district outer rim " using in this application refers to for the rounded artificial intraocular lenses of the section 8-8 ' of longitudinal center of optic, the vertical section of circular efficient light school district perimeter edge of take waits radius circumferential position to the distance between the vertical section O'-O'' through the optical center O of optic in the intraocular lens optic portion that radius limits, referring to Figure of description Fig. 6.
The term " optic outer rim " using in this application refers to for the rounded artificial intraocular lenses of longitudinal center's section of optic, and the vertical section of circular light department of the Chinese Academy of Sciences perimeter edge of take waits radius circumferential position to the distance between the vertical section O'-O'' of the optical center O through optic in the intraocular lens optic portion that radius limits.
The term " anterior optic surface " using in this application refers to tailing edge axis oculi direction that optic surface nearer apart from eye cornea in artificial intraocular lenses is implanted to human eye.
The term " optic rear surface " using in this application refers to that optic surface relative with above-mentioned anterior optic surface in artificial intraocular lenses.
The term " button loop " using in this application refers to intraocular lens optic portion and is connected, has not only played the effect of support of optical portion but also plays the part that the contractility that the contraction of ciliary muscle and varicose are produced is delivered to the effect of described optic.
Use in this application the term for example " protruding " that represents shape, " recessed " is for the longitudinal median plane 8-8 ' of intraocular lens optic portion.
For the Toric artificial intraocular lenses in the application, the term using in the application " anterior optic surface summit " refers to the central point in described artificial intraocular lenses's anterior optic surface.Also can say, anterior optic surface summit refers to: the point (referring to the Reference numeral O' in Fig. 7) farthest of the distance in described artificial intraocular lenses's anterior optic surface and between the longitudinal median plane of this intraocular lens optic part; The term using in the application " summit, optic rear surface " refers to the central point on described artificial intraocular lenses's optic rear surface.Also can say, summit, optic rear surface refers to: the point (referring to the Reference numeral O'' in Fig. 7) farthest of the distance on described artificial intraocular lenses's optic rear surface and between the longitudinal median plane of this intraocular lens optic part.
The term using in the application " efficient light school district bus " refers to according to above described toric definition campaign and produces the curve on surface, efficient light school district.
The term using in the application " flange curve " refers to the curve that certainly effective Optical Region outer rim corresponding with specific efficient light school district bus in optic marginal portion extends to optic outer rim.
The term using in the application " design of Adaptive matching flange " refers to the design that the bus flange curve smoothing corresponding with it in efficient light school district is connected, the design coinciding at the tangent line of efficient light school district, junction point place bus and its corresponding flange curve.
Particularly, the present invention relates to the content of following many aspects:
1. an astigmatism correction type artificial intraocular lenses, described astigmatism correction type artificial intraocular lenses comprises:
The optic being formed by efficient light school district and optic marginal portion;
The button loop being connected with described optic at optic outer rim place,
The diameter of wherein said efficient light school district is more than or equal to 4.25 millimeters and the design of described efficient light school district employing toroid;
It is characterized in that,
The thickness of described astigmatism correction type artificial intraocular lenses's optic outer rim equates and the thickness of described optic outer rim is 0.25mm-0.45mm.
2. according to the astigmatism correction type artificial intraocular lenses described in aspect 1, it is characterized in that the rounded shape of described optic.
3. according to the astigmatism correction type artificial intraocular lenses described in aspect 1 or 2, it is characterized in that, the thickness of described optic outer rim is 0.25mm-0.38mm.
4. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-3, it is characterized in that, the diameter of described efficient light school district is more than or equal to 5.00 millimeters.
5. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-4, it is characterized in that, described astigmatism correction type artificial intraocular lenses's anterior optic surface and the face shape of rear surface comprise one or more in the face shape of multifocal of sphere, aspheric surface, toroid, multi-region refractive design multifocal and multi-region diffractive designs, and described astigmatism correction type artificial intraocular lenses's anterior optic surface and at least one surface in rear surface comprise toroid design.
6. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-5, it is characterized in that, part is designed for flange in described optic marginal portion.
7. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-6, it is characterized in that, the flange curve that described astigmatism correction type artificial intraocular lenses's the efficient light school district bus described flange corresponding with it designs in part is connected.
8. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-7, it is characterized in that, the flange curve smoothing that described astigmatism correction type artificial intraocular lenses's the efficient light school district bus described flange corresponding with it designs in part is connected.
9. according to aforementioned aspect 1-6, the astigmatism correction type artificial intraocular lenses in 8 described in any one, is characterized in that, described flange curve is the circular arc with same curvature radius.
10. according to the astigmatism correction type artificial intraocular lenses described in aspect 9, it is characterized in that, the range of curvature radius of described flange curve is 0mm-2.4mm.
11. according to aforementioned aspect 1-6, and the astigmatism correction type artificial intraocular lenses in 8 described in any one is characterized in that, described flange curve is the circular arc with different curvature radius.
12. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-11, it is characterized in that, described astigmatism correction type artificial intraocular lenses is single type artificial intraocular lenses or three-member type artificial intraocular lenses.
13. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned aspect 1-12, it is characterized in that, described astigmatism correction type artificial intraocular lenses by refractive index the silica gel 1.45 to 1.56, hydrogel, hydrophobic acrylic acid's ester or polymethyl methacrylate make.
The astigmatism correction type artificial intraocular lenses's that outside optic in 14. 1 kinds of design consideration aspect 8-13 described in any one, edge thickness is equal method, said method comprising the steps of:
Set diameter and the thickness of described optic outer rim;
Set the link position of described efficient light school district bus and its corresponding flange curve; And
Set the radius of curvature of described flange curve, thereby described efficient light school district bus is coincided at the tangent line of the tangent line at described link position place flange curve corresponding thereto.
15. according to the method described in aspect 14, it is characterized in that, described link position is positioned at outer rim place, efficient light school district and described flange curve has different radius of curvature.
16. according to the method described in aspect 14, it is characterized in that, described link position is arranged on the circumference of optic different-diameter and described flange curve has identical radius of curvature.
17. 1 kinds of employings are according to the method for designing described in any one in aforementioned aspect 14-16, the astigmatism correction type artificial intraocular lenses's that the outer edge thickness of production optic is equal method.
The present invention has following beneficial effect especially:
The present invention proposes a kind of Toric artificial intraocular lenses of optic outer rim uniform thickness, at outer rim place, Toric artificial intraocular lenses efficient light school district, adopt the design of Adaptive matching flange, Toric crystal is thickened to sustained height by the outside self adaptation of different-thickness of outer rim all angles position, efficient light school district, thereby guarantee toric intraocular lens optic portion outer rim uniform thickness, improve the positional stability of toric artificial intraocular lenses in pouch, and then improve toric artificial intraocular lenses's long-term astigmatism correction effect, and remove the restriction of button loop Position Design.
Accompanying drawing explanation
According to following accompanying drawing and explanation, feature of the present invention, advantage will become more clear, wherein:
Fig. 1 is the Toric artificial intraocular lenses's that observes from prior art Toric artificial intraocular lenses front surface perspective schematic view, and wherein button loop launches and is not folded on the surface of Toric intraocular lens optic portion;
Fig. 2 schematically shows the toric acquisition principle of Toric artificial intraocular lenses;
Fig. 3 schematically shows the situation of change of edge thickness outside the radius of curvature of prior art Toric artificial intraocular lenses under different angles and optic;
It is 1.48 that Fig. 4 schematically shows refractive index, diopter 20D, and post mirror degree 1.5D, outside the prior art Toric intraocular lens optic portion of the thick 0.3mm of primary mirror direction, edge thickness is with the change curve of circumferential position angle;
After Fig. 5 schematically shows in being implanted to human eye, the stressing conditions of Toric artificial intraocular lenses in human eye pouch;
Fig. 6 is the single type Toric artificial intraocular lenses's according to an embodiment of the invention that observes from Toric artificial intraocular lenses front surface of the present invention perspective schematic view;
Fig. 7 is the generalized section of the Toric intraocular lens optic portion that obtains along the line A-A' intercepting shown in Fig. 6, for the sake of clarity, and this not shown button loop being connected with Toric intraocular lens optic portion outer rim;
Fig. 8 schematically shows the Adaptive matching (circular arc flange) of Toric artificial intraocular lenses according to an embodiment of the invention between its outer rim place, efficient light school district and flange curve;
Fig. 9 schematically shows the Adaptive matching (same curvature radius arc flange) of Toric artificial intraocular lenses according to an embodiment of the invention between its outer rim place, efficient light school district and flange curve, and this there is shown the Adaptive matching connection of efficient light school district bus in A-A' section (solid line) and B-B' section (dotted line) and its corresponding flange curve;
Figure 10 schematically shows the Toric artificial intraocular lenses according to another embodiment of the invention Adaptive matching (different curvature radius circular arc flange) between its outer rim place, efficient light school district and flange curve, and this there is shown efficient light school district bus in A-A' section (solid line) and B-B' section (dotted line) and the Adaptive matching connection of its corresponding flange curve;
Figure 11 schematically shows the Toric artificial intraocular lenses who obtains along the line A-A' intercepting shown in Fig. 6 according to still another embodiment of the invention transition flange (the curve flange that comprises straight line designs) between its outer rim place, efficient light school district and flange curve; With
Figure 12 schematically shows the Toric artificial intraocular lenses who obtains along the line A-A' intercepting shown in Fig. 6 according to still a further embodiment transition flange (the curve flange of arbitrary shape designs) between its outer rim place, efficient light school district and flange curve.
In the application's accompanying drawing, use identical drawing reference numeral to represent same or analogous element.
Drawing reference numeral explanation
1 Toric artificial intraocular lenses
2 optic
3 efficient light school districts
4 optic marginal portions
5 buttons loop
6 anterior optic surface
7 optic rear surfaces
The longitudinal median plane of 8-8 ' intraocular lens optic portion
9 pouches
F-pouch acts on the compression stress on artificial intraocular lenses
F i-pouch is the component in the thickest direction to artificial intraocular lenses's compression stress
F t-pouch is the component in the thinnest direction to artificial intraocular lenses's compression stress
F ithe retroaction tension force of-artificial intraocular lenses in the thickest direction
F tthe retroaction tension force of-artificial intraocular lenses in the thinnest direction
Making a concerted effort of f-artificial intraocular lenses counteracting force
10 efficient light school district outer rims
11 optic outer rims
12 efficient light school district buses
13 flange curves
O optic (front or rear) surface vertices
The radius of curvature of R flange curve
A-A ' is along the hatching of Toric artificial intraocular lenses primary mirror direction
For example, hatching in B-B ' arbitrarily angled (being θ angle with respect to primary mirror direction) direction.
The specific embodiment
Following specific embodiment is just for further the present invention being explained further, but the present invention is not limited to following specific embodiments.Any variation on these embodiment bases, as long as spirit according to the invention and scope all will fall in the covering scope of patent of the present invention.
Toric artificial intraocular lenses of the present invention by refractive index the hydrophobic acrylic acid's ester material 1.45 to 1.56 make.Certainly, those skilled in the art also can recognize, toric artificial intraocular lenses of the present invention also can be made by other conventional materials such as silica gel, hydrogel or polymethyl methacrylates.
The front surface of toric intraocular lens optic portion in the embodiment of the present invention and the face shape of rear surface can comprise one or more in the face shape of multifocal of sphere, aspheric surface, toroid, multi-region refractive design multifocal and multi-region diffractive designs, and the front surface of the toric intraocular lens optic portion in the embodiment of the present invention and at least one surface in rear surface comprise toroid design.
Toric artificial intraocular lenses of the present invention can be single type artificial intraocular lenses, can be also three-member type artificial intraocular lenses.According to one embodiment of present invention, the rounded shape of toric artificial intraocular lenses's of the present invention optic.Part is designed for flange in toric artificial intraocular lenses's of the present invention optic marginal portion, and the object of this design is to make Toric crystal to be thickened to sustained height by the outside self adaptation of different-thickness of outer rim all angles position, efficient light school district.
In addition, the center thickness of toric artificial intraocular lenses's of the present invention optic in the scope of 0.3 millimeter-1.2 millimeters and the thickness of optic outer rim in the scope of 0.25 millimeter-0.45 millimeter." center thickness of optic " refers to the thickness between the corresponding optic front and rear surfaces in position, the center of circle (optical center) of longitudinal center of toric intraocular lens optic of the present invention portion section.Known for those skilled in the art: the size of the thickness of the size of the center thickness of toric artificial intraocular lenses's of the present invention optic and toric artificial intraocular lenses's of the present invention optic outer rim depends primarily on selected material and the diopter reaching.
Toric artificial intraocular lenses in the embodiment of the present invention all can reach the diopter that uses clinically maximum 15.0D-26.0D at present.
(I) astigmatism correction type artificial intraocular lenses
Fig. 6 is single type Toric artificial intraocular lenses's according to an embodiment of the invention perspective schematic view.Fig. 7 is the generalized section of the Toric intraocular lens optic portion that obtains along the line A-A' intercepting shown in Fig. 6, for the sake of clarity, and this not shown button loop being connected with Toric intraocular lens optic portion outer rim 11.As seen from Figure 6, A-A ' direction is the hatching along Toric artificial intraocular lenses primary mirror direction.
The optic 2 of astigmatism correction type artificial intraocular lenses shown in Fig. 6 and Fig. 7 consists of efficient light school district 3 and optic marginal portion 4.The diameter of described efficient light school district 3 is more than or equal to 4.25 millimeters, and preferably, the diameter of described efficient light school district is more than or equal to 5.00 millimeters.Efficient light school district 3 in the front surface 6 of described astigmatism correction type artificial intraocular lenses's optic 2 adopts toroid design.The thickness of described astigmatism correction type artificial intraocular lenses's optic outer rim 11 equates and the thickness h of described optic outer rim 11 is 0.25mm-0.45mm.Preferably, the thickness h of described optic outer rim 11 is 0.25mm-0.38mm.
Those skilled in the art can recognize: described astigmatism correction type artificial intraocular lenses's anterior optic surface 6 and the face shape of rear surface 7 can comprise one or more in the face shape of multifocal of sphere, aspheric surface, toroid, multi-region refractive design multifocal and multi-region diffractive designs, and described astigmatism correction type artificial intraocular lenses's anterior optic surface 6 and at least one surface in rear surface 7 comprise toroid design.
As shown in Figure 7, described astigmatism correction type artificial intraocular lenses's the efficient light school district bus 12 flange curve 13 corresponding with it is connected.As shown in Figure 7, the thickness of efficient light school district outer rim 10 is d.Preferably, efficient light school district bus 12 and its corresponding flange curve 13 smooth connections of described astigmatism correction type artificial intraocular lenses, at junction point 10 places, the tangent line of the tangent line of efficient light school district bus 12 and its corresponding flange curve 13 coincides.
As shown in Figure 7, in this embodiment, described flange curve 13 is for having the circular arc of single radius of curvature R.
Fig. 8 schematically shows Toric artificial intraocular lenses according to an embodiment of the invention and starts to adopt single radius of curvature circular arc flange from its efficient light school district outer rim in optic marginal portion; Fig. 9 schematically shows the Adaptive matching (same curvature radius arc flange) of Toric artificial intraocular lenses according to an embodiment of the invention between its outer rim place, efficient light school district and flange curve, and this there is shown the Adaptive matching connection of efficient light school district bus in A-A' section (solid line) and B-B' section (dotted line) and its corresponding flange curve; Figure 10 schematically shows the Toric artificial intraocular lenses according to another embodiment of the invention Adaptive matching (different curvature radius circular arc flange) between its outer rim place, efficient light school district and flange curve, and this there is shown efficient light school district bus in A-A' section (solid line) and B-B' section (dotted line) and the Adaptive matching connection of its corresponding flange curve; Figure 11 schematically shows the Toric artificial intraocular lenses according to still another embodiment of the invention transition flange (the curve flange that comprises straight line) between its outer rim place, efficient light school district and flange curve; Figure 12 schematically shows the Toric artificial intraocular lenses according to still a further embodiment transition flange (the curve flange of arbitrary shape) between its outer rim place, efficient light school district and flange curve.
From Fig. 9-12, described flange curve 13 can be also to have the circular arc of different curvature radius or the curve of other any shapes (comprising straight line).As shown in Figure 9, the circular arc outward flanging at outer rim 10 places, efficient light school district (identical circular diameter (D)) with different curvature radius (R0.5, R1), until reach same optic outer rim 11 thickness h.Another kind of optional mode is that as shown in figure 10, the circular arc outward flanging at different circular diameter places (D1, D2) with same curvature radius (R0.5), until reach same optic outer rim 11 thickness h.
(II) Adaptive matching flange method for designing and the production method of astigmatism correction type intraocular lens optic portion 2
Preferably, the invention still further relates to the astigmatism correction type artificial intraocular lenses's 1 that optic outer rim 11 thickness described in a kind of design are above equal method, said method comprising the steps of:
Set diameter and the thickness h of described optic outer rim 11;
Set the link position of described efficient light school district bus 12 and its corresponding flange curve 13; And
Set the radius of curvature of described flange curve 13, thereby the tangent line of described efficient light school district bus 12 tangent lines at described link position place flange curve 13 is corresponding thereto coincided.
This method for designing can be achieved by means of computer equipment.
Preferably, described link position is positioned at outer rim 10 places, efficient light school district and described flange curve 13 has different radius of curvature, as shown in figure 10.Another kind of optional mode is, according to the feature of described efficient light school district bus 12, described link position is arranged on the circumference of optic different-diameter and described flange curve 13 has identical radius of curvature, as shown in Figure 9.
The invention still further relates to a kind of employing previous designs method, the astigmatism correction type artificial intraocular lenses's 1 that production optic outer rim 11 thickness are equal method.This production method can be achieved by means of numerical control machine process equipment.
The present invention has following beneficial effect especially:
The present invention proposes a kind of Toric artificial intraocular lenses of optic outer rim uniform thickness, at outer rim place, Toric artificial intraocular lenses efficient light school district, adopt the design of Adaptive matching flange, Toric crystal is thickened to sustained height by the outside self adaptation of different-thickness of outer rim all angles position, efficient light school district, thereby guarantee toric intraocular lens optic portion outer rim uniform thickness, improve the positional stability of toric artificial intraocular lenses in pouch, and then improve toric artificial intraocular lenses's long-term astigmatism correction effect, and remove the restriction of button loop Position Design.
Embodiment
Below adopt embodiment in further detail the Adaptive matching flange design (same curvature radius arc flange) adopting in the present invention to be described, but those skilled in the art can recognize: the present invention is not limited to these embodiment below.
Embodiment 1
Outer edge thickness: the 0.25-0.45mm of optic
(1) diopter 15-26D, refractive index 1.45-1.56, astigmatic post mirror degree≤4.5D, flange original position diameter >=4.25mm, flange curve curvature radius R:0-3.5mm.
(2) diopter 15-26D, refractive index 1.45-1.56, astigmatic post mirror degree≤4.5D, flange original position diameter >=5.0mm, flange curve curvature radius R:0-1.5mm.
Embodiment 2
Outer edge thickness: the 0.25-0.38mm of optic
(1) diopter 15-26D, refractive index 1.45-1.56, astigmatic post mirror degree≤4.5D, flange original position diameter >=4.25mm, flange curve curvature radius R:0-2.4mm.
(2) diopter 15-26D, refractive index 1.45-1.56, astigmatic post mirror degree≤4.5D, flange original position diameter >=5.0mm, flange curve curvature radius R:0-1.0mm.
Table 1: outer edge thickness: the 0.25-0.45mm of optic, diopter 15-26D, refractive index 1.45-1.56, astigmatic post mirror degree≤4.5D, optical area diameter reaches the flange circular arc maximum curvature radius R that 4.25mm or 5.0mm can be used when above
Embodiment is above only illustrative rather than restrictive.Therefore,, in the situation that not departing from invention disclosed herein design, those skilled in the art can modify or change above-described embodiment.Therefore, protection scope of the present invention is only limited by the scope of appended claims.

Claims (10)

1. an astigmatism correction type artificial intraocular lenses, described astigmatism correction type artificial intraocular lenses comprises:
The optic being formed by efficient light school district and optic marginal portion;
The button loop being connected with described optic at optic outer rim place,
The diameter of wherein said efficient light school district is more than or equal to 4.25 millimeters and the design of described efficient light school district employing toroid;
It is characterized in that,
The thickness of described astigmatism correction type artificial intraocular lenses's optic outer rim equates and the thickness of described optic outer rim is 0.25mm-0.45mm.
2. astigmatism correction type artificial intraocular lenses according to claim 1, is characterized in that, the rounded shape of described optic.
3. astigmatism correction type artificial intraocular lenses according to claim 1 and 2, is characterized in that, the thickness of described optic outer rim is 0.25mm-0.38mm.
4. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned claim 1-3, it is characterized in that, the diameter of described efficient light school district is more than or equal to 5.00 millimeters.
5. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned claim 1-4, it is characterized in that, described astigmatism correction type artificial intraocular lenses's anterior optic surface and the face shape of rear surface comprise one or more in the face shape of multifocal of sphere, aspheric surface, toroid, multi-region refractive design multifocal and multi-region diffractive designs, and described astigmatism correction type artificial intraocular lenses's anterior optic surface and at least one surface in rear surface comprise toroid design.
6. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned claim 1-5, it is characterized in that, part is designed for flange in described optic marginal portion.
7. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned claim 1-6, it is characterized in that, the flange curve that described astigmatism correction type artificial intraocular lenses's the efficient light school district bus described flange corresponding with it designs in part is connected.
8. according to the astigmatism correction type artificial intraocular lenses described in any one in aforementioned claim 1-7, it is characterized in that, the flange curve smoothing that described astigmatism correction type artificial intraocular lenses's the efficient light school district bus described flange corresponding with it designs in part is connected.
9. according to aforementioned claim 1-6, the astigmatism correction type artificial intraocular lenses in 8 described in any one, is characterized in that, described flange curve is the circular arc with same curvature radius.
10. astigmatism correction type artificial intraocular lenses according to claim 9, is characterized in that, the range of curvature radius of described flange curve is 0mm-2.4mm.
CN201310610150.XA 2013-11-27 2013-11-27 Astigmatism correction type artificial intraocular lenses and design thereof and production method Active CN104127262B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310610150.XA CN104127262B (en) 2013-11-27 2013-11-27 Astigmatism correction type artificial intraocular lenses and design thereof and production method
PCT/CN2014/090351 WO2015078271A1 (en) 2013-11-27 2014-11-05 Astigmatism-correcting intraocular lens and design and production methods therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310610150.XA CN104127262B (en) 2013-11-27 2013-11-27 Astigmatism correction type artificial intraocular lenses and design thereof and production method

Publications (2)

Publication Number Publication Date
CN104127262A true CN104127262A (en) 2014-11-05
CN104127262B CN104127262B (en) 2016-07-27

Family

ID=51800297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310610150.XA Active CN104127262B (en) 2013-11-27 2013-11-27 Astigmatism correction type artificial intraocular lenses and design thereof and production method

Country Status (2)

Country Link
CN (1) CN104127262B (en)
WO (1) WO2015078271A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110613532A (en) * 2019-10-24 2019-12-27 西安浦勒生物科技有限公司 Posterior chamber type lens designed by toric surface
CN111971154A (en) * 2018-09-29 2020-11-20 东莞东阳光医疗智能器件研发有限公司 Artificial crystal semi-finished product forming die, forming method and artificial crystal semi-finished product

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
KR101796801B1 (en) 2009-08-13 2017-11-10 아큐포커스, 인크. Masked intraocular implants and lenses
JP6046160B2 (en) 2011-12-02 2016-12-14 アキュフォーカス・インコーポレーテッド Ophthalmic mask with selective spectral transmission
EP3359987B1 (en) 2015-10-05 2024-02-28 AcuFocus, Inc. Methods of molding intraocular lenses
US11464625B2 (en) 2015-11-24 2022-10-11 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus
BR112019011538B1 (en) * 2016-12-07 2023-12-19 Kowa Company, Ltd BICONVEX TORIC INTRAOCULAR LENS
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
CN111035471B (en) * 2018-10-12 2023-12-26 富螺(上海)医疗器械有限公司 Artificial crystal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133747A (en) * 1990-03-16 1992-07-28 Feaster Fred T Epiphakic intraocular lens and process of implantation
CN101203193A (en) * 2005-06-22 2008-06-18 *阿克里泰克眼科产品股份公司 Astigmatic intraocular lens
US20090323020A1 (en) * 2008-02-21 2009-12-31 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
CN102014793A (en) * 2008-05-06 2011-04-13 爱尔康公司 Aspheric toric intraocular lens
JP2012040326A (en) * 2010-08-14 2012-03-01 Tadayuki Nishide Interchaneable intraocular lens, and implantation method thereof
CN202920413U (en) * 2012-09-12 2013-05-08 爱博诺德(北京)医疗科技有限公司 Astigmatism corrective intraocular lens
CN103211664A (en) * 2012-01-19 2013-07-24 爱博诺德(北京)医疗科技有限公司 Posterior chamber type artificial crystal
CN203647535U (en) * 2013-11-27 2014-06-18 爱博诺德(北京)医疗科技有限公司 Astigmatism correction type intraocular lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865381B1 (en) * 2004-01-28 2006-04-28 Corneal Ind INTRAOCULAR IMPLANT WITH FLEXIBLE OPTICS
NL2001503C2 (en) * 2008-04-21 2009-10-22 Oculentis B V Intraocular lens.
US20100079723A1 (en) * 2008-10-01 2010-04-01 Kingston Amanda C Toric Ophthalimc Lenses Having Selected Spherical Aberration Characteristics

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133747A (en) * 1990-03-16 1992-07-28 Feaster Fred T Epiphakic intraocular lens and process of implantation
CN101203193A (en) * 2005-06-22 2008-06-18 *阿克里泰克眼科产品股份公司 Astigmatic intraocular lens
US20090323020A1 (en) * 2008-02-21 2009-12-31 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
CN102014793A (en) * 2008-05-06 2011-04-13 爱尔康公司 Aspheric toric intraocular lens
JP2012040326A (en) * 2010-08-14 2012-03-01 Tadayuki Nishide Interchaneable intraocular lens, and implantation method thereof
CN103211664A (en) * 2012-01-19 2013-07-24 爱博诺德(北京)医疗科技有限公司 Posterior chamber type artificial crystal
CN202920413U (en) * 2012-09-12 2013-05-08 爱博诺德(北京)医疗科技有限公司 Astigmatism corrective intraocular lens
CN203647535U (en) * 2013-11-27 2014-06-18 爱博诺德(北京)医疗科技有限公司 Astigmatism correction type intraocular lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111971154A (en) * 2018-09-29 2020-11-20 东莞东阳光医疗智能器件研发有限公司 Artificial crystal semi-finished product forming die, forming method and artificial crystal semi-finished product
CN110613532A (en) * 2019-10-24 2019-12-27 西安浦勒生物科技有限公司 Posterior chamber type lens designed by toric surface
CN110613532B (en) * 2019-10-24 2022-02-22 西安眼得乐医疗科技有限公司 Posterior chamber type lens designed by toric surface

Also Published As

Publication number Publication date
WO2015078271A1 (en) 2015-06-04
CN104127262B (en) 2016-07-27

Similar Documents

Publication Publication Date Title
CN203647535U (en) Astigmatism correction type intraocular lens
CN104127262B (en) Astigmatism correction type artificial intraocular lenses and design thereof and production method
TWI828696B (en) Ophthalmic lens comprising lenslets for preventing and/or slowing myopia progression
AU2017202382B2 (en) Asymmetric lens design and method for preventing and/or slowing myopia progression
CN106291978B (en) Contact lenses comprising non-coaxial lenslets for preventing and/or slowing myopia progression
US10226326B2 (en) Microincision lens
CN102395917B (en) Ophthalmic lens with optical sectors
US8287593B2 (en) Adjustable multifocal intraocular lens system
JP6698293B2 (en) Lens design regardless of pupil diameter and method for preventing and/or delaying myopia progression
US9931200B2 (en) Ophthalmic devices, systems, and methods for optimizing peripheral vision
US8388130B2 (en) Non-deforming contact lens
JP6490332B2 (en) Multi-axis lens design for astigmatism
CN102763025B (en) Systems and methods for the regulation of emerging myopia
EP1453439A1 (en) Myopic corneal ring with central accommodating portion
US11662606B2 (en) Orthokeratology lens and method for making orthokeratology lenses
WO2016046439A1 (en) Multifocal intraocular lens with extended depth of field
US20190076236A1 (en) Intraocular Lens for Implantation in a Ciliary Sulcus of an Eye
JPH09504448A (en) Device for modifying the refractive properties of the cornea
US20190183636A1 (en) Intraocular lenses having an anterior-biased optical design
WO2023045989A1 (en) Progressive multifocal ophthalmic lens
WO2021144809A1 (en) Oval shaped optic intra-ocular lens with "l"-shaped haptic
CN116880085A (en) Contact lens
AU2002340418A1 (en) Myopic corneal ring with central accommodating portion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Astigmatism-correcting intraocular lens and design and production methods thereof

Effective date of registration: 20170925

Granted publication date: 20160727

Pledgee: Pudong Development Silicon Valley Bank Co., Ltd. Beijing branch

Pledgor: Eyebright (Beijing) Medical Technology Co., Ltd.

Registration number: 2017990000900

PE01 Entry into force of the registration of the contract for pledge of patent right
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 102200 No. 9 Xingchang Road, Changping District Science and Technology Park, Beijing

Patentee after: Abbott (Beijing) Medical Technology Co., Ltd.

Address before: 102200, Changping District Beijing science and Technology Park, super Road, No. 37, building 1, 6 North Zone

Patentee before: Eponode (Beijing) Medical Technology Co., Ltd.

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20191118

Granted publication date: 20160727

Pledgee: Pudong Development Silicon Valley Bank Co., Ltd. Beijing branch

Pledgor: Abbott (Beijing) Medical Technology Co., Ltd.

Registration number: 2017990000900

PM01 Change of the registration of the contract for pledge of patent right
PM01 Change of the registration of the contract for pledge of patent right

Change date: 20191118

Registration number: 2017990000900

Pledgor after: Abbott (Beijing) Medical Technology Co., Ltd.

Pledgor before: Eponode (Beijing) Medical Technology Co., Ltd.