CN103606428A - 一种纳米碳化钒磁流体及其制备方法 - Google Patents

一种纳米碳化钒磁流体及其制备方法 Download PDF

Info

Publication number
CN103606428A
CN103606428A CN201310486724.7A CN201310486724A CN103606428A CN 103606428 A CN103606428 A CN 103606428A CN 201310486724 A CN201310486724 A CN 201310486724A CN 103606428 A CN103606428 A CN 103606428A
Authority
CN
China
Prior art keywords
nano
magnetic
vanadium carbide
vanadium
ferrofluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310486724.7A
Other languages
English (en)
Other versions
CN103606428B (zh
Inventor
唐建成
叶楠
卓海鸥
吴桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201310486724.7A priority Critical patent/CN103606428B/zh
Publication of CN103606428A publication Critical patent/CN103606428A/zh
Application granted granted Critical
Publication of CN103606428B publication Critical patent/CN103606428B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种纳米碳化钒磁流体及其制备方法,采用粒径为30~60nm的高能球磨纳米磁性碳化钒作为磁流体中的磁性微粒,采用水溶液配料法制备前驱体,钒氧化物直接碳化法制备纳米碳化钒;高能球磨后制得纳米磁性碳化钒,然后将纳米磁性碳化钒微粒预分散于基液中,表面改性后得到纳米碳化钒磁流体。本发明制备的纳米碳化钒粒径为30~60nm,而且团聚并不严重,经高能球磨后具有铁磁性,饱和磁化强度为48.02emu/g,饱和磁场强度4000Oe,表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性和稳定性,磁流体饱和磁化强度6.87emu/g,可应用于磁流体密封、磁流体润滑和磁流体阻尼等,并可应用于强氧化性等特殊的环境下。

Description

一种纳米碳化钒磁流体及其制备方法
技术领域
本发明属磁性流体材料及制备领域。
背景技术
磁性流体,又称磁流体(Ferrofluid),是由纳米级的铁磁性或亚铁磁性微粒,经表面改性后,均匀弥散地分布于液态基液中形成的一种高稳定性胶体体系。磁流体由于兼具固体的磁性和液体的流动性,磁场作用下能够表现出许多优良的特殊性能,在电子信息、航空航天、国防军工、精密制造和生物医学等方面表现出良好的应用前景。
磁流体按磁性微粒种类可以分为铁氧体磁流体、金属及其合金磁流体和氮化铁磁流体。目前研究和应用最多的是纳米四氧化三铁(Fe3O4)磁流体,它是将共沉淀法制备的纳米Fe3O4磁性微粒经表面改性后,分散于基液中制备而成。虽然Fe3O4磁流体具有制备工艺简单方便、成本低廉等优点,但是由于纳米Fe3O4具有很高的比表面积,在制备、贮存和使用过程中容易氧化,变成Fe2O3导致磁性能大大降低,影响使用;另外Fe3O4磁流体对使用环境要求比较高,只能在特定的pH值下保持稳定,过酸或者过碱都会使磁流体失稳,甚至会溶解Fe3O4纳米微粒。
采用钒氧化物直接碳化法能够制备出纳米碳化钒(VC),高能球磨会使原本不具有磁性的纳米碳化钒微粒产生铁磁性,而且这种铁磁性是不可逆的,即在高能球磨后纳米碳化钒的铁磁性通过退火或者其它工艺也无法消除。利用高能球磨纳米碳化钒微粒的这一特性,制备了纳米碳化钒磁流体。
发明内容
本发明的目的是,针对上述铁氧体磁流体材料和制备工艺上的不足,提供了一种磁性能好、稳定性优良、耐氧化的新型纳米碳化钒磁流体材料。
本发明还提供了一种工艺简单、可用于工业生产的纳米碳化钒磁流体的制备方法,这一制备方法还适用于其他表面改性碳化物磁流体的制备,适用范围广泛。 
本发明是通过以下技术方案实现的。
本发明所述的纳米碳化钒磁流体的成分是:基液、纳米磁性碳化钒微粒和表面改性剂;其中纳米磁性碳化钒微粒的粒径为30~60nm,基液可以是水、二甲基硅油或者煤油。
纳米磁性碳化钒微粒与基液的质量比为1∶40~3∶10。
表面改性剂与纳米磁性碳化钒微粒质量比为1∶20~1∶2。
本发明采用的具体制备步骤如下。
(1) 配料:采用水溶液配料的方法制备前驱体粉末。按照钒源和碳源中钒∶碳的摩尔比为1∶3~1∶1的比例,将一定量的三氧化二钒(或其他钒源,如偏钒酸铵[NH4VO3]、多钒酸铵[(NH4)2V6O16]、草酸氧钒[VOC2O4]等)与葡萄糖(或其他水溶性碳源,如果糖、蔗糖、水溶酚醛树脂等),溶于加热的去离子水中,电动搅拌使原料充分混合,去离子水的温度应不低于80℃以保证混料均匀。原料混合均匀后采用喷雾干燥的方法制备出碳化要用的前驱体粉末。
(2) 碳化:将步骤(1)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550℃保温1h,使前驱体粉末分解成钒氧化物和游离活性炭,然后升至碳化温度为1100~1300℃,升温速率8~10℃/min,碳化保温时间为2~5h。碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30~60nm。
(3) 高能球磨:将步骤(2)中制得的纳米碳化钒微粒在不锈钢球磨罐中高能球磨5~8h,球料比10∶1,转速400r/min,球磨后所得产物为纳米磁性碳化钒微粒。
(4) 洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1∶40~3∶10的比例,加入一定量的基液,机械搅拌的同时用不同频率的超声波振荡20~60 min,进行预分散,制备成纳米磁性碳化钒磁浆。其中基液可以是水、二甲基硅油或者煤油。
(5) 表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1∶20~1∶2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60~85℃,改性时间为2~5h,产物为纳米碳化钒磁流体。三种基液对应的表面改性剂分别为:水—油酸钠、二甲基硅油—硅烷偶联剂KH-550+羧基硅油、煤油—油酸。
本发明采用水溶液配料法制备前驱体,在碳化升温过程中前驱体中的钒源会转变为氧化钒,碳源会转变为活性炭;钒氧化物直接碳化法制备纳米碳化钒,由于溶液配料后钒源和碳源是分子级的均匀混合,大大缩短了反应的扩散距离,降低了反应温度和反应时间,抑制了碳化过程中晶粒的长大,从而得到纳米级碳化钒。高能球磨后制得纳米磁性碳化钒,然后将纳米磁性碳化钒微粒预分散于基液中,表面改性后得到纳米碳化钒磁流体。高能球磨促使C进入V的晶格,使V的晶格常数d膨胀,产生交换偶合效应使原本没有磁性的碳化钒具有铁磁性。表面改性反应会在纳米磁性碳化钒微粒表面形成包覆层,增加碳化钒与基液的亲和性,减小碳化钒与基液之间的密度差,并且具有一定的空间位阻作用,从而维持磁流体的稳定性,防止产生团聚和沉降。
本发明制备出的纳米碳化钒微粒粒径为30~60nm,而且团聚并不严重,经高能球磨后具有铁磁性,饱和磁化强度为48.02emu/g,饱和磁场强度4000Oe。表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度6.87emu/g。采用此发明方法制备的纳米碳化钒磁流体,磁性能好、稳定性优良并且耐氧化,能够有效的推进磁流体技术的发展,可应用于磁流体密封、磁流体润滑和磁流体阻尼等,并可应用于强氧化性等特殊的环境下。
附图说明
图1为实施例1制备出的纳米磁性碳化钒的TEM照片。
图2为实施例1制备出的纳米磁性碳化钒的磁滞回线。
图3为实施例1制备出的纳米碳化钒水基磁流体的磁滞回线。
具体实施方式
本发明将通过以下实施例作进一步说明,但本发明的保护范围不限于此。
实施例1。
称取三氧化二钒30g、无水葡萄糖12g,溶于80℃的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550℃保温1h后升至碳化温度为1200℃,升温速率10℃/min,碳化保温时间3h。将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨6h,球料比10:1,转速400r/min。利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75℃,改性时间为2.5h,其中各成分的比例为:基液水质量分数为80%,纳米磁性碳化钒质量分数为17%,表面改性剂油酸钠质量分数为3%,表面改性后产物即为水基纳米碳化钒磁流体。所得的纳米磁性碳化钒饱和磁化强度为48.02emu/g,饱和磁场强度4000Oe。表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度为6.87emu/g。
实施例2。
称取偏钒酸铵20g、无水葡萄糖8g,溶于80℃的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550℃保温1h后升至碳化温度为1150℃,升温速率8℃/min,碳化保温时间4h。将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨7h,球料比10:1,转速400r/min。利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液煤油中,机械搅拌的同时用不同频率的超声波振荡20 min,进行预分散。按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸,电动搅拌下进行表面改性反应,表面改性温度为65℃,改性时间为4h,其中各成分的比例为:基液煤油质量分数为80%,纳米磁性碳化钒质量分数为16%,表面改性剂油酸质量分数为4%,表面改性后产物即为煤油基纳米碳化钒磁流体。所得的磁流体饱和磁化强度6.32emu/g。
实施例3。
称取多钒酸铵30g、无水葡萄糖15g,溶于80℃的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550℃保温1h后升至碳化温度为1300℃,升温速率10℃/min,碳化保温时间2.5h。将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨8h,球料比10:1,转速400r/min。利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液二甲基硅油中,机械搅拌的同时用不同频率的超声波振荡40 min,进行预分散。按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂硅烷偶联剂KH-550和羧基硅油,电动搅拌下进行表面改性反应,表面改性温度为80℃,改性时间为3h,其中各成分的比例为:基液二甲基硅油质量分数为76%,纳米磁性碳化钒质量分数为20%,表面改性剂硅烷偶联剂KH-550质量分数为2%、羧基硅油质量分数为2%,表面改性后产物即为硅油基纳米碳化钒磁流体。所得磁流体饱和磁化强度7.17emu/g。
实施例4。
称取草酸氧钒25g、无水葡萄糖8g,溶于80℃的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550℃保温1h后升至碳化温度为1250℃,升温速率10℃/min,碳化保温时间3.5h。将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨5h,球料比10:1,转速400r/min。利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75℃,改性时间为3h,其中各成分的比例为:基液水质量分数为88%,纳米磁性碳化钒质量分数为10%,表面改性剂油酸钠质量分数为2%,表面改性后产物即为水基纳米碳化钒磁流体。所得磁流体饱和磁化强度4.03emu/g。

Claims (2)

1.一种纳米碳化钒磁流体,其特征是成分是:基液、纳米磁性碳化钒微粒和表面改性剂;所述的纳米磁性碳化钒微粒的粒径为30~60nm,基液是水、二甲基硅油或者煤油;其中:
纳米磁性碳化钒微粒与基液的质量比为1∶40~3∶10;
表面改性剂与纳米磁性碳化钒微粒质量比为1∶20~1∶2。
2.权利要求1所述的纳米碳化钒磁流体的制备方法,其特征是步骤如下:
(1) 配料:按照钒源和碳源中钒∶碳的摩尔比为1∶3~1∶1的比例,将三氧化二钒、偏钒酸铵、多钒酸铵或草酸氧钒与葡萄糖、果糖、蔗糖或水溶酚醛树脂,溶于温度高于80℃的去离子水中,电动搅拌使原料充分混合,然后采用喷雾干燥的方法制备出碳化要用的前驱体粉末;
(2) 碳化:将步骤(1)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550℃保温1h,然后升至碳化温度为1100~1300℃,升温速率8~10℃/min,碳化保温时间为2~5h;碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30~60nm;
(3) 高能球磨:将步骤(2)中制得的纳米碳化钒微粒在不锈钢球磨罐中高能球磨5~8h,球料比10∶1,转速400r/min,球磨后所得产物为纳米磁性碳化钒微粒;
(4) 洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1∶40~3∶10的比例,加入基液水、二甲基硅油或者煤油,机械搅拌的同时用不同频率的超声波振荡20~60 min,进行预分散,制备成纳米磁性碳化钒磁浆;
(5) 表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1∶20~1∶2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60~85℃,改性时间为2~5h,产物为纳米碳化钒磁流体;
三种基液对应的表面改性剂分别为:水—油酸钠、二甲基硅油—硅烷偶联剂KH-550+羧基硅油、煤油—油酸。
CN201310486724.7A 2013-10-17 2013-10-17 一种纳米碳化钒磁流体及其制备方法 Expired - Fee Related CN103606428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310486724.7A CN103606428B (zh) 2013-10-17 2013-10-17 一种纳米碳化钒磁流体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310486724.7A CN103606428B (zh) 2013-10-17 2013-10-17 一种纳米碳化钒磁流体及其制备方法

Publications (2)

Publication Number Publication Date
CN103606428A true CN103606428A (zh) 2014-02-26
CN103606428B CN103606428B (zh) 2016-01-20

Family

ID=50124644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310486724.7A Expired - Fee Related CN103606428B (zh) 2013-10-17 2013-10-17 一种纳米碳化钒磁流体及其制备方法

Country Status (1)

Country Link
CN (1) CN103606428B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119908A (zh) * 2016-08-16 2016-11-16 王世群 一种脚手架用纳米颗粒复合电镀液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198442A (zh) * 2005-07-22 2008-06-11 Tdy工业公司 复合材料
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
CN101198442A (zh) * 2005-07-22 2008-06-11 Tdy工业公司 复合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119908A (zh) * 2016-08-16 2016-11-16 王世群 一种脚手架用纳米颗粒复合电镀液

Also Published As

Publication number Publication date
CN103606428B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103606429B (zh) 一种纳米碳化铬磁流体及其制备方法
CN101299914B (zh) 一种纳米晶超细合金粉电磁波吸收剂及其制备方法
CN104529424B (zh) 一种具有双相交换耦合并保持高矫顽力的复合永磁铁氧体
CN101475367B (zh) 一种纳米钡铁氧体磁性材料的制备方法
CN101723470B (zh) 一种赤铁矿型纳米级氧化铁红的制备方法
CN101913854A (zh) 纳米锶铁氧体磁粉的制备方法
CN102184776A (zh) 一种稀土配合物晶界改性烧结钕铁硼磁体的制备方法
CN103611479A (zh) 一种具有核-壳结构的Fe3O4/SiO2/PANI纳米颗粒的制备方法
CN103130202B (zh) 一种制备高纯度Fe4-xMxN(M=Ni,Co)软磁粉体的方法
JP6252224B2 (ja) 複合磁性材料及びその製造方法
Li et al. Analysis of the factors affecting the magnetic characteristics of nano-Fe 3 O 4 particles
CN103606428B (zh) 一种纳米碳化钒磁流体及其制备方法
CN106082297B (zh) 一种中心粒径20~60微米氧化钆的制备方法
CN103191698B (zh) 一种石墨烯/四氧化三铁复合微米球的制备方法
CN104973859A (zh) 一种具有交换耦合作用的复合铁氧体粉末的制备方法
CN102744419A (zh) 一种磁性纳米颗粒形貌控制的方法
CN103342552A (zh) 一种纳米晶m型铁氧体粉末及其合成方法
CN101698608A (zh) 一种纳米晶m型铁氧体粉末的合成方法
CN104874807A (zh) 一种具有体心立方结构纳米铁钴固溶体合金粉末的制备方法
CN104525967A (zh) 一种制备纳米铁粉的方法
CN104386732A (zh) 一种采用吸附隔离剂制备纳米氧化铈的方法与系统
CN106956009A (zh) 一种合金粉体及其制备方法
CN103722176A (zh) 一种纳米稀土镧掺杂钼粉的方法
CN108373327A (zh) 一种镍锌铈铁氧体软磁材料及其制备方法
Ahmadi et al. Phase Formation, Microstructure and‎ Magnetic Properties of BiFeO3 Synthesized‎ by Sol-Gel Auto Combustion Method Using‎ Different Solvents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20191017