Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN103606428 A
Publication typeApplication
Application numberCN 201310486724
Publication date26 Feb 2014
Filing date17 Oct 2013
Priority date17 Oct 2013
Also published asCN103606428B
Publication number201310486724.7, CN 103606428 A, CN 103606428A, CN 201310486724, CN-A-103606428, CN103606428 A, CN103606428A, CN201310486724, CN201310486724.7
Inventors唐建成, 叶楠, 卓海鸥, 吴桐
Applicant南昌大学
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Nano vanadium carbide ferrofluid and preparation method thereof
CN 103606428 A
Abstract
The invention relates to a nano vanadium carbide ferrofluid and a preparation method thereof. High-energy ball milling nano magnetic vanadium carbide with the particle size between 30nm and 60nm is used as magnetic particles in the ferrofluid, the precursor is prepared through an aqueous solution batching method, and nano vanadium carbide is prepared through a direct carbonization method of vanadium oxides; nano magnetic vanadium carbide is prepared after high-energy ball milling, nano magnetic vanadium carbide particles are pre-dispersed in a base solution and subjected to surface modification to obtain the nano vanadium carbide ferrofluid. According to the nano vanadium carbide ferrofluid and the preparation method thereof, the nano vanadium carbide particle size is between 30nm and 60nm, aggregation is not serious, ferromagnetism is provided after high-energy ball milling, the saturated magnetization is 48.02 emu/g, the saturated magnetic field intensity is 4000 Oe, the nano vanadium carbide particles have good dispersity and stability in the base solution after surface modification, the ferrofluid saturated magnetization is 6.87 emu/g, and the ferrofluid can be used for ferrofluid sealing, lubrication, damping and the like and can be used in specific environments such as the strong oxidizing environment.
Claims(2)  translated from Chinese
1.一种纳米碳化f凡磁流体,其特征是成分是:基液、纳米磁性碳化f凡微粒和表面改性剂;所述的纳米磁性碳化钒微粒的粒径为30〜60nm,基液是水、二甲基硅油或者煤油;其中: 纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10; 表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2。 A magnetic fluid where f nano carbide, characterized in that component is: a base fluid, where f nanomagnetic carbide particles and a surface modifier; wherein nanomagnetic particle size of the vanadium carbide particles 30~60nm, base fluid water, dimethyl silicone oil or kerosene; wherein: the mass ratio of vanadium carbide particles and magnetic nanoparticles base liquid was 1: 40~3: 10; surface modifier vanadium carbide particles and nano-magnetic mass ratio of 1: 20~1 : 2.
2.权利要求1所述的纳米碳化钒磁流体的制备方法,其特征是步骤如下: (1)配料:按照钒源和碳源中钒:碳的摩尔比为1: 3〜1:1的比例,将三氧化二钒、偏钒酸铵、多钒酸铵或草酸氧钒与葡萄糖、果糖、蔗糖或水溶酚醛树脂,溶于温度高于80C的去离子水中,电动搅拌使原料充分混合,然后采用喷雾干燥的方法制备出碳化要用的前驱体粉末; (2)碳化:将步骤(I)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550C保温lh,然后升至碳化温度为1100〜1300C,升温速率8〜IO0C /min,碳化保温时间为2〜5h ;碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30〜60nm ; (3)高能球磨:将步骤(2)中制得的纳米碳化钥;微粒在不锈钢球磨罐中高能球磨5〜8h,球料比10: I,转速400r/min,球磨后所得产物为纳米磁性碳化f凡微粒; (4)洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10的比例,加入基液水、二甲基硅油或者煤油,机械搅拌的同时用不同频率的超声波振荡20〜60 min,进行预分散,制备成纳米磁性碳化f凡磁衆; (5)表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60〜85C,改性时间为2〜5h,产物为纳米碳化钒磁流体; 三种基液对应的表面改性剂分别为:水一油酸钠、二甲基硅油一硅烷偶联剂KH-550+羧基硅油、煤油一油酸。 Preparation of nano vanadium carbide magnetic fluid as claimed in claim 1, characterized in that the steps are as follows: (1) Ingredients: According to the source of vanadium in the vanadium and carbon: carbon molar ratio of 1: 3~1: 1 the proportion of the vanadium trioxide, ammonium metavanadate, ammonium or more vanadium and vanadyl oxalate, glucose, fructose, sucrose, or water-soluble phenolic resin, a temperature above 80 C is dissolved in deionized water, these materials were fully stirred electric mixed and then spray drying method for preparing the precursor powder carbonized use; (2) Carbonization: the step (I) prepared in precursor powder was placed in a tubular atmosphere furnace, under a hydrogen atmosphere for carbonization, using stepwise heating, the first 550 C since the insulation lh, then rose to the carbonization temperature of 1100~1300 C, the heating rate 8~IO0C / min, carbonization holding time 2~5h; After the carbonized powder baked before use passivation inert gas, and the resulting product is a nano-vanadium carbide particles having a particle size 30~60nm; (3) high-energy ball milling: the step (2) obtained in nanometer carbonized key; particle energy ball milling in a stainless steel ball mill jar 5~8h, ball feed ratio 10: I, speed 400r / min, the resulting product after milling carbide nano-magnetic particles where f; (4) washing and pre-dispersed: the use of a strong magnetic field of subsidence, the vanadium carbide particles with magnetic nanoparticles Secondary repeatedly washed with deionized water and ethanol to remove carbon and other than non-magnetic impurities; in accordance with the quality of the vanadium carbide particles and nano-magnetic base liquid ratio of 1: 40~3: 10 ratio of water added to the base solution, two methyl silicone oil or kerosene, while stirring with a mechanical ultrasonic oscillations of different frequencies 20~60 min, pre-dispersion to prepare a magnetic nanomagnetic carbide f where public; (5) Surface modification: In accordance with the surface modifying agent nanomagnetic vanadium carbide particle mass ratio of 1: 2 ratio, the pre-dispersed nano-magnetic magnetic slurry was added vanadium carbide surface modifiers, surface modification reaction electric mixer, the reaction temperature is 60~85 C: 20~1 , modified time 2~5h, vanadium carbide product nano magnetic fluid; three basic fluid corresponding surface modifiers are: water-oleate, dimethicone a silane coupling agent KH-550 + a carboxyl oil, kerosene monooleate.
Description  translated from Chinese

一种纳米碳化钒磁流体及其制备方法 A nano-vanadium carbide magnetic fluid and preparation method

技术领域 Technical Field

[0001] 本发明属磁性流体材料及制备领域。 [0001] The present invention belongs to the field of magnetic fluid materials and preparation.

背景技术 Background

[0002] 磁性流体,又称磁流体(Ferrof Iuid),是由纳米级的铁磁性或亚铁磁性微粒,经表面改性后,均匀弥散地分布于液态基液中形成的一种高稳定性胶体体系。 [0002] The magnetic fluid, also known as magnetic fluid (Ferrof Iuid), is composed of nanoscale ferromagnetic or ferrimagnetic particles after surface modification, distributed evenly dispersed in the liquid-based solution to form a high-stability colloidal system. 磁流体由于兼具固体的磁性和液体的流动性,磁场作用下能够表现出许多优良的特殊性能,在电子信息、航空航天、国防军工、精密制造和生物医学等方面表现出良好的应用前景。 MHD Since both magnetic and solid liquid fluidity, the magnetic field can exhibit many excellent special performance, in terms of electronic information, aerospace, defense industry, precision manufacturing, and biomedical show good prospects.

[0003] 磁流体按磁性微粒种类可以分为铁氧体磁流体、金属及其合金磁流体和氮化铁磁流体。 [0003] The magnetic fluid according to the type of magnetic particles can be divided into magnetic fluid, magnetic fluid metals and their alloys and nitrides ferrofluid. 目前研究和应用最多的是纳米四氧化三铁(Fe3O4)磁流体,它是将共沉淀法制备的纳米Fe3O4磁性微粒经表面改性后,分散于基液中制备而成。 Most current research and application of nano-iron oxide (Fe3O4) magnetic fluid, it is the co-precipitation of Fe3O4 magnetic particles prepared by after surface modification solution prepared by dispersing groups in. 虽然Fe3O4磁流体具有制备工艺简单方便、成本低廉等优点,但是由于纳米Fe3O4具有很高的比表面积,在制备、贮存和使用过程中容易氧化,变成Fe2O3导致磁性能大大降低,影响使用;另外Fe3O4磁流体对使用环境要求比较高,只能在特定的PH值下保持稳定,过酸或者过碱都会使磁流体失稳,甚至会溶解Fe3O4纳米微粒。 Although Fe3O4 magnetic fluid having a preparation process is simple and convenient, low cost, etc., but because of Fe3O4 has a high specific surface area, in the preparation, storage and use easily oxidized, become greatly reduced magnetic Fe2O3 result, affect the use; another Fe3O4 magnetic fluid environment of use is relatively high, only stable under specific PH value, too acid or too alkaline will cause the magnetic fluid instability, or even dissolve Fe3O4 nanoparticles.

[0004] 采用钒氧化物直接碳化法能够制备出纳米碳化钒(VC),高能球磨会使原本不具有磁性的纳米碳化钒微粒产生铁磁性,而且这种铁磁性是不可逆的,即在高能球磨后纳米碳化钒的铁磁性通过退火或者其它工艺也无法消除。 Nano vanadium carbide particles [0004] can be prepared nano vanadium carbide (VC) using vanadium oxide direct carbonization, high-energy ball milling would otherwise not have the magnetism generating ferromagnetism, and this ferromagnetism is irreversible, that high energy ball milling ferromagnetic Hou Nami vanadium carbide by annealing or other processes can not be eliminated. 利用高能球磨纳米碳化钒微粒的这一特性,制备了纳米碳化f凡磁流体。 Nano-high-energy ball milling vanadium carbide particles of this feature, where f carbide nano magnetic fluid was prepared.

发明内容 DISCLOSURE

[0005] 本发明的目的是,针对上述铁氧体磁流体材料和制备工艺上的不足,提供了一种磁性能好、稳定性优良、耐氧化的新型纳米碳化钒磁流体材料。 Objective [0005] The present invention is for less than the above magnetic fluid preparation materials and workmanship, provided a good magnetic properties, good stability, resistance to oxidation of the new nano-magnetic fluid vanadium carbide material.

[0006] 本发明还提供了一种工艺简单、可用于工业生产的纳米碳化钒磁流体的制备方法,这一制备方法还适用于其他表面改性碳化物磁流体的制备,适用范围广泛。 [0006] The present invention also provides a simple process and can be used for preparation of the industrial production of nano vanadium carbide magnetic fluid, this preparation method also applies to the preparation of other surface modification carbide magnetic fluid in wide range of applications.

[0007] 本发明是通过以下技术方案实现的。 [0007] The present invention is achieved by the following technical solutions.

[0008] 本发明所述的纳米碳化钒磁流体的成分是:基液、纳米磁性碳化钒微粒和表面改性剂;其中纳米磁性碳化钒微粒的粒径为30〜60nm,基液可以是水、二甲基硅油或者煤油。 [0008] The composition according to the present invention, the vanadium carbide nano magnetic fluid are: a base fluid, vanadium carbide nano-magnetic particles and a surface modifier; wherein the magnetic nano-particle size of the vanadium carbide particles 30~60nm, the base fluid may be water , dimethyl silicone oil or kerosene.

[0009] 纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10。 [0009] The mass ratio of the vanadium carbide particles and nano-magnetic base fluid is 1: 40~3: 10.

[0010] 表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2。 [0010] surface modifier vanadium carbide particles and nano-magnetic mass ratio of 1: 20~1: 2.

[0011] 本发明采用的具体制备步骤如下。 Specific use of the invention preparation step [0011] This follows.

[0012] (I)配料:采用水溶液配料的方法制备前驱体粉末。 [0012] (I) Ingredients: ingredients prepared using aqueous precursor powder. 按照钒源和碳源中钒:碳的摩尔比为1: 3〜1:1的比例,将一定量的三氧化二钒(或其他钒源,如偏钒酸铵[NH4VO3]、多钒酸铵[(NH4)2V6O16]、草酸氧钒[VOC2O4]等)与葡萄糖(或其他水溶性碳源,如果糖、蔗糖、水溶酚醛树脂等),溶于加热的去离子水中,电动搅拌使原料充分混合,去离子水的温度应不低于80C以保证混料均匀。 In accordance with the vanadium source of vanadium and carbon: carbon molar ratio of 1: 3~1: 1 ratio, the amount of vanadium oxide (vanadium or other sources, such as ammonium metavanadate [NH4VO3], more vanadate ammonium [(NH4) 2V6O16], vanadyl oxalate [VOC2O4], etc.) and glucose (or other water-soluble carbon source, fructose, sucrose, water-soluble phenolic resin), dissolved in deionized water and heating, electric materials were sufficiently stirred mixing, deionized water temperature should not be less than 80 C in order to ensure uniform mixing. 原料混合均匀后采用喷雾干燥的方法制备出碳化要用的前驱体粉末。 After mixing the raw material prepared by spray drying the use of carbide precursor powder.

[0013] (2)碳化:将步骤(I)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550C保温lh,使前驱体粉末分解成钒氧化物和游离活性炭,然后升至碳化温度为1100〜1300C,升温速率8〜10C /min,碳化保温时间为2〜5h。 [0013] (2) carbonization: the step (I) obtained in the precursor powder was put into a tube furnace atmosphere for carbonization under a hydrogen atmosphere, using stepwise heating, the first 550 C since the insulation lh, make precursor powder down into vanadium oxide and free carbon, then rose to the carbonization temperature of 1100~1300 C, heating rate of 8~10 C / min, carbonization holding time 2~5h. 碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30 〜60nmo After the carbonization, the powder released prior passivation with an inert gas, the resulting product is a nano-vanadium carbide particles having a particle size of 30 ~60nmo

[0014] (3)高能球磨:将步骤(2)中制得的纳米碳化钥;微粒在不锈钢球磨罐中高能球磨5〜8h,球料比10: I,转速400r/min,球磨后所得产物为纳米磁性碳化f凡微粒。 [0014] (3) high-energy ball milling: the step (2) obtained in nanometer carbonized key; particle energy ball milling in a stainless steel ball mill jar 5~8h, ball feed ratio 10: I, speed 400r / min, the resulting milled product where f carbide nano magnetic particles.

[0015] (4)洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10的比例,加入一定量的基液,机械搅拌的同时用不同频率的超声波振荡20〜60 min,进行预分散,制备成纳米磁性碳化钒磁浆。 [0015] (4) washing and pre-dispersed: Using Settlement strong magnetic field, the magnetic nano vanadium carbide particles with secondary deionized water repeatedly washed with ethanol, removed more than carbon and other non-magnetic impurities; in accordance with nano-magnetic carbide mass ratio of vanadium-based particles and liquid was 1: 10, a certain amount of the base liquid, with mechanical stirring while ultrasonic waves of different frequencies of oscillation 20~60 min, pre-dispersion to prepare a carbonized nanomagnetic: 40~3 Vanadium magnetic slurry. 其中基液可以是水、二甲基硅油或者煤油。 Wherein the base fluid may be water, dimethyl silicone oil or kerosene.

[0016] (5)表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60〜85C,改性时间为2〜5h,产物为纳米碳化钒磁流体。 [0016] (5) surface modification: A surface modifier and nano-magnetic vanadium carbide particle mass ratio of 1: 2 ratio, the pre-dispersed nano-magnetic magnetic slurry was added vanadium carbide surface modifier: 20~1 , electric surface modification reaction with stirring, the reaction temperature is 60~85 C, the modified time 2~5h, product of vanadium carbide nano magnetic fluid. 三种基液对应的表面改性剂分别为:水一油酸钠、二甲基硅油一娃烷偶联剂KH-550+羧基硅油、煤油一油酸。 Three basic fluid corresponding surface modifiers are: water-oleate, dimethicone a baby silane coupling agent KH-550 + silicone carboxyl, kerosene monooleate.

[0017] 本发明采用水溶液配料法制备前驱体,在碳化升温过程中前驱体中的钒源会转变为氧化钒,碳源会转变为活性炭;钒氧化物直接碳化法制备纳米碳化钒,由于溶液配料后钒源和碳源是分子级的均匀混合,大大缩短了反应的扩散距离,降低了反应温度和反应时间,抑制了碳化过程中晶粒的长大,从而得到纳米级碳化钒。 [0017] The present invention uses an aqueous solution of the precursor ingredients prepared in the heating process carbonized precursor vanadium source will be converted into vanadium oxide, carbon will be converted into activated carbon; vanadium oxide prepared by direct carbonation nano vanadium carbide, since the solution After the ingredients vanadium source and carbon are uniformly mixed molecular level, greatly reducing the distance between the diffusion reaction, reducing the reaction temperature and reaction time, restrained the growth of crystal grains in the carbonization process, resulting in nanoscale vanadium carbide. 高能球磨后制得纳米磁性碳化钒,然后将纳米磁性碳化钒微粒预分散于基液中,表面改性后得到纳米碳化钒磁流体。 After the high-energy ball milling to obtain nanometer magnetic vanadium carbide and vanadium carbide nano-magnetic particles dispersed in a base fluid pre-rear surface-modified nano vanadium carbide magnetic fluid. 高能球磨促使C进入V的晶格,使V的晶格常数d膨胀,产生交换偶合效应使原本没有磁性的碳化钒具有铁磁性。 Energy ball milling promote C enters the lattice V, so that V lattice constant d expansion, resulting in the exchange had no magnetic coupling effect makes vanadium carbide ferromagnetic. 表面改性反应会在纳米磁性碳化钒微粒表面形成包覆层,增加碳化钒与基液的亲和性,减小碳化钒与基液之间的密度差,并且具有一定的空间位阻作用,从而维持磁流体的稳定性,防止产生团聚和沉降。 The reaction in the nano-surface modification of magnetic fine particles of the vanadium carbide coating layer formed on the surface, to increase the affinity with the base liquid vanadium carbide, vanadium carbide and reduce the density difference between the base liquid, and has some steric hindrance, in order to maintain the stability of the magnetic fluid, to prevent agglomeration and sedimentation.

[0018] 本发明制备出的纳米碳化钒微粒粒径为30〜60nm,而且团聚并不严重,经高能球磨后具有铁磁性,饱和磁化强度为48.02emu/g,饱和磁场强度40000e。 [0018] The present invention is prepared by nano vanadium carbide particle diameter of 30~60nm, and reunion is not serious, after the high-energy ball milling ferromagnetic saturation magnetization 48.02emu / g, saturation magnetization 40000e. 表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度6.87emu/g。 Surface Modification Hou Nami vanadium carbide particles having a magnetic base fluid good dispersion, good MHD stability, gravity field for 30 days, and allowed to stand for a week in strong magnetic field, no significant settlement and reunification, magnetic fluid saturation magnetization 6.87emu / g. 采用此发明方法制备的纳米碳化钒磁流体,磁性能好、稳定性优良并且耐氧化,能够有效的推进磁流体技术的发展,可应用于磁流体密封、磁流体润滑和磁流体阻尼等,并可应用于强氧化性等特殊的环境下。 With this invention prepared vanadium carbide nano magnetic fluid, magnetic good, excellent stability and resistance to oxidation, can effectively promote the development of magnetic fluid technology can be applied to the magnetic fluid seal, magnetic fluid lubrication and magnetic fluid damping, and Under special circumstances it can be used in strong oxidation resistance.

附图说明 Brief Description

[0019] 图1为实施例1制备出的纳米磁性碳化钒的TEM照片。 [0019] Figure 1 is an embodiment of the preparation of vanadium carbide nanomagnetic Example 1 TEM photographs.

[0020] 图2为实施例1制备出的纳米磁性碳化钒的磁滞回线。 [0020] FIG. 2 is prepared in Example 1 vanadium carbide nano-magnetic hysteresis loop.

[0021] 图3为实施例1制备出的纳米碳化钒水基磁流体的磁滞回线。 [0021] FIG. 3 is prepared in Example 1 nanometer vanadium carbide ferrofluids hysteresis loop. 具体实施方式 DETAILED DESCRIPTION

[0022] 本发明将通过以下实施例作进一步说明,但本发明的保护范围不限于此。 [0022] The present invention will be further illustrated by the following examples, but the scope of the present invention is not limited thereto.

[0023] 实施例1。 [0023] Example 1.

[0024] 称取三氧化二钒30g、无水葡萄糖12g,溶于80C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0024] vanadium oxide weighed 30g, anhydrous glucose 12g, was dissolved in 80 C deionized water, electric mixing the raw material after mixing, spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550C保温Ih后升至碳化温度为1200C,升温速率10C /min,碳化保温时间3h。 The precursor powder into a tubular atmosphere furnace Hydrogen was carbonized after Ih raised to 550 C heat the carbonization temperature is 1200 C, heating rate of 10 C / min, carbonization holding time 3h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨6h,球料比10:1,转速400r/min。 The carbonized vanadium carbide particles prepared in a stainless steel ball mill jar energy ball milling 6h, ball feed ratio of 10: 1, speed 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。 Use of sedimentation strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water twice and repeatedly washed with ethanol, to remove carbon and other than non-magnetic contaminants, and then added to a certain percentage of the water-based liquid, with mechanical stirring different frequencies of ultrasonic oscillation 30 min, pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75C,改性时间为2.5h,其中各成分的比例为:基液水质量分数为80%,纳米磁性碳化钒质量分数为17%,表面改性剂油酸钠质量分数为3%,表面改性后产物即为水基纳米碳化钒磁流体。 To pre-dispersed magnetic nanoparticles of vanadium carbide magnetic paint surface modifier was added sodium certain percentage of oil, electric stirring reaction surface modification, surface modification temperature was 75 C, modified time of 2.5h, wherein each the proportion of components are: base liquid water content of 80%, vanadium carbide nano-magnetic mass fraction of 17%, a surface modifier oil sodium content of 3%, the product is water-based nano vanadium carbide magnetic surface modification fluid. 所得的纳米磁性碳化钒饱和磁化强度为48.02emu/g,饱和磁场强度40000e。 Nanomagnetic vanadium carbide saturation magnetization is obtained 48.02emu / g, saturation magnetization 40000e. 表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度为6.87emu/g。 Surface Modification Hou Nami vanadium carbide particles having a magnetic base fluid good dispersion, good MHD stability, gravity field for 30 days, and allowed to stand for a week in strong magnetic field, no significant settlement and reunification, magnetic fluid saturation magnetization 6.87emu / g.

[0025] 实施例2。 [0025] Example 2.

[0026] 称取偏钒酸铵20g、无水葡萄糖Sg,溶于80C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0026] ammonium metavanadate was weighed 20g, anhydrous glucose Sg, was dissolved in 80 C deionized water, electric mixing the raw material after mixing, spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550C保温Ih后升至碳化温度为1150C,升温速率8C /min,碳化保温时间4h。 The precursor powder into a tubular atmosphere furnace Hydrogen was carbonized after Ih raised to 550 C heat the carbonization temperature is 1150 C, the heating rate 8 C / min, carbonization holding time 4h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨7h,球料比10:1,转速400r/min。 The carbonized prepared vanadium carbide particles in high-energy ball milling stainless steel ball mill jar 7h, ball feed ratio of 10: 1, speed 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液煤油中,机械搅拌的同时用不同频率的超声波振荡20 min,进行预分散。 Use of sedimentation strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water twice and repeatedly washed with ethanol, to remove carbon and other than non-magnetic contaminants, and then added to a certain proportion of base liquid kerosene, mechanical stirring by different frequencies of ultrasonic oscillation 20 min, pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸,电动搅拌下进行表面改性反应,表面改性温度为65C,改性时间为4h,其中各成分的比例为:基液煤油质量分数为80%,纳米磁性碳化钒质量分数为16%,表面改性剂油酸质量分数为4%,表面改性后产物即为煤油基纳米碳化钒磁流体。 To pre-dispersed magnetic nanoparticles of vanadium carbide magnetic slurry was added a certain percentage of the surface modifier oleic acid, the reaction surface modification, surface modification temperature of 65 C, modified for 4h under electric mixer, in which each component ratio: base liquid kerosene content of 80%, the nanomagnetic vanadium carbide content was 16%, the surface modifying agent is oleic acid content of 4%, after the surface-modified nano vanadium carbide product is kerosene magnetic fluid. 所得的磁流体饱和磁化强度6.32emu/g。 The resulting magnetic fluid saturation magnetization 6.32emu / g.

[0027] 实施例3。 [0027] Example 3.

[0028] 称取多钒酸铵30g、无水葡萄糖15g,溶于80C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0028] Multi-vanadate weighed 30g, anhydrous glucose 15g, was dissolved in 80 C deionized water, electric mixing the raw material after mixing, spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550C保温Ih后升至碳化温度为1300C,升温速率10C /min,碳化保温时间2.5h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 C carbonization temperature 1300 C, heating rate 10 C / min, holding time carbonization 2.5h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨8h,球料比10:1,转速400r/min。 The carbonized vanadium carbide particles prepared in a stainless steel ball mill jar energy ball milling 8h, ball feed ratio of 10: 1, speed 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液二甲基硅油中,机械搅拌的同时用不同频率的超声波振荡40 min,进行预分散。 Use of sedimentation strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water twice and repeatedly washed with ethanol, to remove carbon and other than non-magnetic contaminants, and then added to a certain proportion of base liquid dimethyl silicone oil, machinery While stirring with ultrasonic waves of different frequencies of oscillation 40 min, pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂硅烷偶联剂KH-550和羧基硅油,电动搅拌下进行表面改性反应,表面改性温度为80C,改性时间为3h,其中各成分的比例为:基液二甲基硅油质量分数为76%,纳米磁性碳化钒质量分数为20%,表面改性剂硅烷偶联剂KH-550质量分数为2%、羧基硅油质量分数为2%,表面改性后产物即为硅油基纳米碳化钒磁流体。 To pre-dispersed magnetic nanoparticles of vanadium carbide magnetic slurry was added a certain percentage of the surface modifier silane coupling agent KH-550 and carboxyl oil, electric stirring reaction surface modification, surface modification temperature was 80 C, modified time is 3h, wherein the proportion of each component is: a base fluid dimethicone mass fraction of 76% vanadium carbide nano-magnetic mass fraction of 20%, the surface-modified silane coupling agent KH-550 mass fraction of 2% carboxy silicone mass fraction of 2%, and the surface-modified silicone oil product is vanadium carbide nano magnetic fluid. 所得磁流体饱和磁化强度7.17emu/g。 The resulting magnetic fluid saturation magnetization 7.17emu / g.

[0029] 实施例4。 [0029] Example 4.

[0030] 称取草酸氧钒25g、无水葡萄糖Sg,溶于80C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0030] Weigh vanadyl oxalate 25g, anhydrous glucose Sg, was dissolved in 80 C deionized water, electric mixing the raw material after mixing, spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550C保温Ih后升至碳化温度为1250C,升温速率10C/min,碳化保温时间3.5h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 C carbonization temperature 1250 C, heating rate 10 C / min, holding time carbonization 3.5h. 将碳化后制得的碳化钥;微粒在不锈钢球磨罐中高能球磨5h,球料比10:1,转速400r/min。 After carbonation carbonation key obtained; particles in a stainless steel ball mill jar energy ball milling 5h, ball feed ratio of 10: 1, speed 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。 Use of sedimentation strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water twice and repeatedly washed with ethanol, to remove carbon and other than non-magnetic contaminants, and then added to a certain percentage of the water-based liquid, with mechanical stirring different frequencies of ultrasonic oscillation 30 min, pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75C,改性时间为3h,其中各成分的比例为:基液水质量分数为88%,纳米磁性碳化钒质量分数为10%,表面改性剂油酸钠质量分数为2%,表面改性后产物即为水基纳米碳化钒磁流体。 The pre-dispersed slurry magnetic nanomagnetic vanadium carbide surface modifying agent is added in accordance with a certain proportion of sodium oleate, electric surface modification reaction with stirring, the temperature of the surface modification of 75 C, the modified time of 3h, wherein the components ratio of: water-based liquid mass fraction of 88%, the nanomagnetic vanadium carbide mass fraction of 10%, the surface modifying agent sodium oleate mass fraction of 2%, the product is water-based nano-vanadium carbide ferrofluid rear surface modification . 所得磁流体饱和磁化强度4.03emu/g。 The resulting magnetic fluid saturation magnetization 4.03emu / g.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
CN101198442A *20 Jul 200611 Jun 2008Tdy工业公司Composite materials
US7560160 *25 Nov 200214 Jul 2009Materials Modification, Inc.Multifunctional particulate material, fluid, and composition
Classifications
International ClassificationH01F41/02, H01F1/44
Legal Events
DateCodeEventDescription
26 Feb 2014C06Publication
20 Jan 2016C14Grant of patent or utility model