CN103348486A - 基于纳米线阵列的太阳能接收装置 - Google Patents

基于纳米线阵列的太阳能接收装置 Download PDF

Info

Publication number
CN103348486A
CN103348486A CN2011800669706A CN201180066970A CN103348486A CN 103348486 A CN103348486 A CN 103348486A CN 2011800669706 A CN2011800669706 A CN 2011800669706A CN 201180066970 A CN201180066970 A CN 201180066970A CN 103348486 A CN103348486 A CN 103348486A
Authority
CN
China
Prior art keywords
layer
photovoltaic apparatus
plane reflection
transparent material
interlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800669706A
Other languages
English (en)
Other versions
CN103348486B (zh
Inventor
俞荣浚
穆尼布·沃贝尔
彼得·杜安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zena Technologies Inc
Original Assignee
Zena Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zena Technologies Inc filed Critical Zena Technologies Inc
Publication of CN103348486A publication Critical patent/CN103348486A/zh
Application granted granted Critical
Publication of CN103348486B publication Critical patent/CN103348486B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

一个光伏设备,具有将光能转化为电能的操作性,包括一个基板,复数个基本垂直于基板的结构,和结构之间的一个或多个凹槽,每个凹槽具有位于一个底壁上的平面镜,并且每个凹槽被一透明材料填充。该结构具有p-n或p-i-n结将光转换成为电能。该平面镜功能性的作为电极,可以将入射其上的光线反射给该结构来转换光成为电能。

Description

基于纳米线阵列的太阳能接收装置
对相关申请的交叉引用
此申请和美国专利申请号12/204,686(授予美国专利号7,646,943)12/648,942,12/270,233,12/472,264,12/472,271,12/478,598,12/573,582,12/575,221,12/633,323,12/633,318,12/633,313,12/633,305,12/621,497,12/633,297,61/266,064,61/357,429,61/306,421,61/306,421,12/945,492,12/910,664,12/966,514,12/966,535,12/966,573,12/967,880和12/974,499相关,其中披露在此被全部内容包含引用。
技术领域
背景技术
光伏设备,也称为太阳能电池,是通过光伏效应使太阳光的能量直接转换成电能的一种固态设备。集合的太阳能电池用来制造太阳能电池组件,亦称太阳能电池板。这些太阳能组件产生能量,即太阳能发电,是太阳能的一个例子。
光伏效应是在光线照射后的一种材料中产生电压(或相应的电流)。虽然光伏效应和光电效应直接相关,这两个过程是不同的并且应加以区别。在光电效应中,电子从接触足够能量的材料的表面被辐射弹出。光伏效应是不同的,其生成的电子在材料内部不同能量带(即从价带到导带)之间传递,致使在两个电极之间产生电压。
光伏发电是一种通过使用太阳能电池把太阳能转化为电能来产生电力的方法。光伏效应是指光子-分组的太阳能-将电子激发到一个更高的能量状态来发电。在较高的能量状态,电子能够摆脱其被半导体的单个原子束缚的正常的位置,成为电路中的电流的一部分。这些光子包含不同的能量数额,对应太阳光谱中的不同波长。当光子撞击一个PV太阳能电池时,他们可能会被反射或吸收,或者他们可能会直接通过。被吸收的光子可以产生电力。术语光伏表示一个光电二极管的不加偏压的操作模式,即通过该设备的电流完全是由于光能。几乎所有的光伏设备都是某种类型的光电二极管。
传统的太阳能电池往往在接收光的表面上有不透明电极。任何入射此类不透明电极的入射光被反射离开该太阳能电池或者被不透明电极吸收,从而不利于发电。因此,一个没有这个缺点的光伏设备是有需求的。
发明内容
此处所描述的一个具有将光能转化为电能的操作性的光伏设备,包括一个基板,复数个基本垂直于基板的结构,位于结构之间的一个或多个凹槽,每个凹槽具有一个侧壁和一个底壁,和位于每个凹槽底壁上的一个平面反射层,其中该结构是一种单晶半导体材料;其中每个凹槽侧壁没有平面反射层;并且每个凹槽被一透明材料填充。不同于传统的太阳能电池,入射到平面反射层的入射光没有被浪费,而是被反射到结构上被吸收并转换为电能。这种光伏设备也可以用来作为光电检测器。
附图说明
图1A是根据一个实施例的一个光伏设备的截面原理图。
图1B是根据一个实施例的图1A的光伏设备制造过程。
图2A是根据一个实施例的一个光伏设备的截面原理图。
图2B是根据一个实施例的图2A的光伏设备制造过程。
图3A是根据一个实施例的一个光伏设备的截面原理图。
图3B是根据一个实施例的图3A的光伏设备制造过程。
图4A显示根据一个实施例的打印涂布抗蚀剂层的方法。
图4B显示根据另一个实施例的打印涂布抗蚀剂层的方法。
图5显示了光线集中在光伏设备的结构上的示意图。
图6显示了该光伏设备的一个示例俯视横截面视图。
图7显示了该光伏设备的一个示例透视图。
图8A-8C显示了分别从图1A,图2A和图3A的光伏设备引出电流的原理图。
图9显示了该光伏设备的替代的条纹状结构的俯视视图。
图10显示了该光伏设备的替代的网格状结构的俯视视图。
图11A和图11B显示了制造通孔的过程。
图12A和图12B显示了示例通孔的俯视图。
具体实施方式
此处所描述的一个具有将光能转化为电能的操作性的光伏设备,包括一个基板,复数个基本垂直于该基板的结构,位于该结构之间的一个或多个凹槽,每个凹槽具有一个侧壁和一个底壁,和位于每个凹槽底壁上的一个平面反射层,其中该结构包含一种单晶半导体材料;其中每个凹槽侧壁没有平面反射层;并且每个凹槽被一透明材料填充。此处所用的术语“光伏设备”是指可以将例如太阳辐射的光能转化成电能的产生电力的设备。此处所用的术语结构是单晶是指整个结构的晶格在整个结构内是连续和完整的,其中无晶界。一种导电材料可以是基本上零带隙的材料。导电材料的导电性一般是大于103S/cm以上。半导体可以是具有有限带隙高达约3eV和导电性一般在103到10-8S/cm的范围内的材料。电绝缘材料可以是一个带隙大于约3eV并且一般具有导电性低于10- 8S/cm的材料。此处所用的术语“基本垂直于基板的结构”是指结构和基板之间的角度从85°到90°。此处所用的术语“凹槽”是指在基板上的一个中空的空间,其对基板外部的空间是开放的。
根据一个实施例,单晶的半导体材料是从包含硅,锗,III-V族化合物材料,II-VI族化合物材料,与四元材料的一组中所选。此处所用的III-V族化合物材料是指包含一种III族元素和一种V族元素的化合物。一种III族元素可以是B,Al,Ga,In,Tl,Sc,Y,镧系元素系列和锕系元素系列。V族元素可以是V,Nb,Ta,Db,N,P,As,Sb和Bi。此处所用的II-VI族的化合物材料是指包含一种II族元素和一种VI族元素组成的化合物。一种II族元素可以是Be,Mg,Ca,Sr,Ba和Ra。一种VI元素可以是Cr,Mo,W,Sg,O,S,Se,Te和Po。一种四元材料是一种由四种元素组成的化合物。
根据一个实施例,该结构是圆柱体或棱柱形,其截面是从包含椭圆形,圆形,长方形和多边形截面,条状,或网状的一组中所选。此处使用的术语“网状”是指一个网络状图案或者构成。
根据一个实施例,该结构是柱体,其直径从50纳米至5000纳米,其高度从1000纳米至20000纳米,两个最接近柱体的中心到中心的距离是在300纳米至15000纳米之间。
根据一个实施例,该结构沿结构的一个顶部表面的整个轮廓具有一个悬垂部分。此处使用的术语“悬垂部分”是指该结构的一部分突出于凹槽的侧壁。此处使用的术语“结构的一个顶部表面的整个轮廓”是指该结构的顶部表面的边缘。该结构的顶部表面可以被凹槽打断。顶部表面的边缘是结构和凹槽的顶部表面之间的边界。
根据一个实施例,每个凹槽侧壁和底壁之间是圆形或斜面的内角。
根据一个实施例,该平面反射层的材料是从包含ZnO,Al,Au,Pd,Cr,Cu,Ti和它们的组合的一组中选择;该平面反射层是一种导电材料;该平面反射层是一种金属;该平面反射层对任何波长可见光(即,从390至750纳米波长的光)有至少50%的反射率(即,入射的电磁能量被反射的比例);该平面反射层的厚度至少为5纳米;所有凹槽的平面反射层相连;该平面反射层功能性地将其上的入射光反射给该结构使得光被该结构吸收;和/或平面反射层功能性地作为光伏设备的电极。此处使用的术语“电极”是指用来和光伏设备建立电接触的导体。
根据一个实施例,该基板于该结构反面有一个平坦表面。
根据一个实施例,该平坦表面上有一个掺杂层和一个可选的金属层,该金属层和掺杂层形成欧姆接触。欧姆接触是具有一个线性和对称的电流-电压(IV)曲线的一个区域。
根据一个实施例,该平面反射层的总面积至少是该平坦表面的表面面积的40%。
根据一个实施例,该基板厚度至少是50微米。
根据一个实施例,该结构是排列成阵列的柱体;每个结构高度约为5微米,该结构的间距是从300纳米到15微米。
根据一个实施例,透明材料和结构的顶部表面具有同延表面;该透明材料对可见光基本透明,透光率至少有50%;该透明材料是一种导电材料;该透明材料是一种透明导电氧化物;该透明材料与平面反射层形成欧姆接触;和/或该透明材料功能性地作为光伏设备的电极。
根据一个实施例,该光伏设备进一步包括一个电极层和可选的耦合层,其中:电极层沉积位于透明材料和结构之上;电极层可以是和透明材料相同的材料或和透明材料不同的材料;该电极层对可见光基本透明,透光率至少有50%;该电极层是一种导电材料;该电极层为透明导电氧化物;该电极层功能性地作为光伏设备的电极;和/或该耦合层沉积位于电极层上和该结构的顶部表面上。此处使用的术语“耦合层”是指可以将光有效地导入结构的一层。
根据一个实施例,该光伏设备进一步包括一个钝化层和一个可选的耦合层,其中:该钝化层处于侧壁上和底壁的平面反射层下面;该结构的顶部表面没有钝化层;该钝化层有效的钝化侧壁和底壁;和/或该每个结构的顶部部分和底部部分具有不同的导电类型。此处使用的术语“钝化”和“钝化”是指消除悬键(即固定原子的非饱和化合价)的过程。
根据该实施例的一个实施例,该结构有以下的掺杂分布之一:(i)该底部部分是本征的并且顶部部分是p型;(ii)该底部部分是n型并且顶部部分是p型;(iii)该底部部分是本征的并且顶部部分是n型;(iv)该底部部分p型并且顶部部分是n型。
根据该实施例的一个实施例,该顶部部分高度为1微米至20微米;该钝化层厚度从1纳米至100纳米;该钝化层是从包含如下组成中所选的一种电绝缘材料:HfO2,SiO2,Si3N4,Al2O3,有机分子单层;该掺杂层有和顶部部分相反的导电类型;该掺杂层和底部部分电连接;该掺杂层、底部部分和顶部部分形成一个p-n或p-i-n结;该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或该结构折射率n1,该透明材料的折射率n2,该耦合层折射率n3,满足n1>n2和n1>n3的关系。
根据一个实施例,该光伏设备还包括一个交界层,其中:该交界层是一个掺杂半导体;该交界层沉积在侧壁上、底壁的平面反射层下面和该结构的一个顶端表面上;该交界层有效的钝化侧壁和底壁。
根据该实施例的一个实施例,该结构是掺杂半导体,该结构和交界层有相反的导电类型;或该结构是本征半导体。本征半导体,也称为非掺杂半导体或i型半导体,是一个没有任何显着掺杂物的非常纯的半导体。因此,电荷载体的数量是由材料本身而不是杂质数量来决定。本征半导体不大幅屏蔽外电场,因为本征半导体没有掺杂剂提供的移动电子或空穴。因此,可以通过一个外部电场更有效地消除和/或收集在本征半导体中通过光子所产生的电子和/或空穴。
根据该实施例的一个实施例,该交界层的厚度从5纳米至100纳米;该掺杂层有和交界层相反的导电类型;该掺杂层和每个结构电连接;该掺杂层、结构和交界层形成一个p-n或p-i-n结;;该包覆层厚度约175纳米;该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或该结构折射率n1、该透明材料折射率n2、该耦合层折射率n3满足n1>n2和n1>n3的关系。
根据一个实施例,该结构的每个顶部部分和底部部分具有不同的导电类型。
根据该实施例的一个实施例,该顶部部分和交界层具有相同的导电类型;该结构有以下的掺杂分布之一:(i)底部部分是本征的并且顶部部分是p型;(ii)底部部分是n型并且顶部部分是p型;(iii)底部部分是本征的并且顶部部分是n型;(iv)底部部分是p型并且顶部部分是n型。
根据该实施例的一个实施例,该交界层的厚度从5纳米至100纳米;该掺杂层有和交界层相反的导电类型;该掺杂层和每个结构底部部分电连接;该掺杂层、底部部分、顶部部分和交界层形成一个p-n或p-i-n结;该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或该结构折射率n1、该透明材料折射率n2、该耦合层折射率n3满足n1>n2和n1>n3的关系。
根据一个实施例,制造光伏设备的方法包括:使用半导体平板印刷技术在抗蚀剂层产生开口图案;通过蚀刻基板形成结构和凹槽;沉积平面反射层并且使得每个凹槽侧壁没有平面反射层。沉积透明材料使得每个凹槽被透明材料完全填充。此处使用的抗蚀剂层是指一薄层,其用于转移图案到抗蚀剂层沉积的基板上。抗蚀剂层可以通过半导体平板印刷形成(亚)微米级的临时的掩膜图案,在后续处理步骤中以保护底层基板的选定地区。抗蚀剂通常是给某个半导体平板印刷专门配方的聚合物或它的前体和其它小分子(如产生光酸的化学品)的专有混合物。光刻使用中的抗蚀剂被称为光致抗蚀剂。电子束光刻过程中使用的抗蚀剂被称为电子束抗蚀剂。半导体平板印刷技术可以是光刻,电子束光刻,全息光刻技术。光刻是在微细加工中使用的过程,可以有选择地删除一部分的薄膜或大部分基板。它利用光从光掩膜转移几何图案到基板上的感光化学抗蚀剂或简单的“抗蚀剂”。然后一系列化学处理将曝光图案刻到光致抗蚀剂下方的材料中。在复杂的集成电路中,例如一个现代化的CMOS,晶圆将最多50次通过光刻过程。电子束光刻是用一个电子束以图案模式扫描一个薄膜(称为抗蚀剂)覆盖的表面,(“暴光”该抗蚀剂)和选择性地去除抗蚀剂已暴光或者非暴光区域(“显影”)。光刻的目的是在抗蚀剂中建立非常小的结构,其在随后可以通常通过蚀刻转移到基板材料。该法被开发用于集成电路制造,也用于建立纳米技术构件。
根据一个实施例,制造光伏设备的方法进一步包括:将透明材料平坦化;在基板上涂布抗蚀剂层;显影(即选择性地去除抗蚀剂外露或非外露区域)该抗蚀剂层的图案;沉积一个掩膜层;和剥离抗蚀剂层。此处使用的一个掩膜层是指保护基板的底层部分不被蚀刻的一个层。
根据一个实施例,制造光伏设备的方法,进一步包括离子注入或沉积掺杂剂层。一个掺杂剂,也称为掺杂试剂,是(在非常低浓度)加入到一种物质中的一种微量杂质元素,以改变该物质的电性能或光学特性。离子注入过程是指一个材料的离子可以被注入到另一个固体中,从而改变了该固体的物理性质。离子注入是用在半导体设备制造和金属加工,以及材料科学研究的各种应用中。离子可以导致目标物的化学变化,因为它们可以是和目标物不同的元素或者诱发核嬗变,以及导致结构性变化,即目标物的晶体结构可以被能量碰撞传递损坏或甚至破坏。
根据一个实施例,该结构和凹槽是由深蚀刻和后继的各向同性蚀刻形成。深蚀刻是高度各向异性的过程,其用于在晶圆中创建深而且陡峭的孔和通常长宽比20∶1或更多的壕沟。一种示例深蚀刻是Bosch过程。Bosch过程,也称为脉冲或时间复用蚀刻,在两种模式之间反复交替来实现近乎垂直的结构:1.一个标准的近各向同性等离子体刻蚀,其中等离子体中含有从近乎垂直的方向攻击晶圆(对于硅,通常使用六氟化硫(SF6))的一些离子;2.沉积化学惰性钝化层(例如,C4F8气体源产生类似聚四氟乙烯的物质)。每个阶段持续几秒钟。钝化层使得整个基板被保护免受进一步的化学攻击,并防止进一步的蚀刻。然而,在蚀刻阶段,轰击基板的定向离子攻击在沟槽底部(但不沿侧面)的钝化层。他们碰撞和使其溅射,使得基板外露给化学蚀刻剂。这些蚀刻/沉积步骤重复多次,造成大量非常小的各向同性蚀刻步骤只发生在蚀刻坑底部的地方。举例而言,要蚀刻穿过0.5毫米的硅晶圆,需要100-1000个蚀刻/沉积步骤。两阶段的过程会导致侧壁波动幅度约100-500纳米。周期时间可以调整,短周期产生平滑的墙壁,和长周期产生较高的蚀刻率。各向同性蚀刻通过化学过程使用蚀刻剂物质非定向去除基板的材料。蚀刻剂可能是有腐蚀性的液体或被称为等离子体的化学活性电离气体。
根据一个实施例,制造光伏设备的方法还包括使用打印涂覆方法放置抗蚀剂层,该打印涂覆方法包括:将抗蚀剂层涂布到一个弹性材料辊轴;使辊轴在该表面滚动来转移抗蚀剂层到基板表面上,其中表面是持平的或有纹理的。根据一个实施例,该辊轴是聚二甲基硅氧烷。
根据一个实施例,制造光伏设备的方法还包括使用打印涂覆方法放置抗蚀剂层,该打印涂覆方法包括:将抗蚀剂层涂布到一个弹性材料印章上;使印章盖在该表面来转移抗蚀剂层到基板表面上,其中表面是持平的或有纹理的。根据一个实施例,该印章是聚二甲基硅氧烷。
根据一个实施例,一种将光转换为电能的方法包括:对光伏设备光照;从光伏设备引出电流。电流可以从平面反射层得出。
根据一个实施例,一个包括该光伏设备的光电检测器,其中该光电检测器在光照下可以功能输出电信号。
根据一个实施例,一个探测光的方法,包括对光伏设备光照,测量从光伏设备的电信号。该电信号可以是电流,电压,电导和/或电阻。
根据一个实施例,光伏设备从太阳光线产生直流电,可用于给设备供电或电池充电。光伏效应的一个实际应用是给轨道卫星和其它航天器供电,但今天大多数光伏组件使用于电网连接的发电。在这种情况下,需要一个交直流转换的转换器将直流电转换成交流电。离网供电给远程住所,快艇,休闲车,电动车,路边的紧急电话,遥感,管道阴极保护电源有一个较小的市场。在大多数光伏应用中,辐射是阳光,基于这个原因,该类设备被称为太阳能电池。在p-n结太阳能电池中,对材料的照明导致激发的电子和剩余的空穴在耗尽区域的内置电场中沿不同方向流动而产生电流。太阳能电池往往是电连接并作为一个模组封装。光伏模组通常在前面(阳光)侧有一层玻璃,使光线可以通过,同时保护半导体晶圆不受一些元素(雨,冰雹等)的影响。太阳能电池通常也串接成模组,创建额外电压。并行连接的太阳能电池会产生较高的电流。模组之间是串联或并联或两者兼而有之的方式相互关联的,来创建一个具有期望的直流电压和电流峰值的阵列。
根据一个实施例,光伏设备可以与建筑物连接:或集成到建筑物中,安装在建筑物上或安装在附近的地面上。光伏设备可后期加装到现有的建筑物中,通常是加在现有的屋顶结构的顶部或现有的墙壁上安装。另外,光伏设备可以与建筑物分开,但通过电缆连接给建筑物供电。光伏设备可以用来作为主要或辅助电源。光伏设备可以被纳入建筑物的屋顶或墙壁。
根据一个实施例,光伏设备还可以被用于太空应用,如卫星,宇宙飞船,空间站等。光伏设备可作为地面车辆、船舶(船)和火车使用的主要或辅助动力源。其它应用包括路牌,监控摄像机,泊车表,个人移动电子产品(如手机,智能手机,笔记本电脑,个人媒体播放器)。
具体实施例
图1A显示根据一个实施例的光伏设备100的截面原理图。该光伏设备100包括一个基板105,复数个基本上垂直于基板105的结构120,和结构120之间的一个或多个凹槽130,和一个电极层180。每个凹槽130被一透明材料140填充。每个凹槽130有一个侧壁130a和底壁130b。侧壁130a和底壁130b都有钝化层131。结构120的一个顶部表面120a没有钝化层131。底壁130b具有位于在钝化层131上的平面反射层132。侧壁130a没有任何平面反射层。每个结构120具有一个顶部部分121和一个底部部分122,该顶部部分121和该底部部分122有不同的导电类型。该透明材料140优选的与结构120的顶部表面120a有共沿表面。该光伏设备100进一步包括位于透明材料140和结构120上的一电极层180。此处使用的术语“不同的导电类型”是指该顶部部分121和该底部部分122不能是两个p型或两个n型。结构120可以有以下四种掺杂分布之一(即,掺杂量分布):(i)该底部部分122是本征的并且顶部部分121是p型;(ii)该底部部分122是n型并且顶部部分121是p类型;(iii)该底部部分122是本征的并且顶部部分121是n型;(iv)该底部部分122是p型并且顶部部分121是n型。该顶部部分121可以有沿顶部表面120a到底部部分122方向掺杂水平降低的一个掺杂分布。结构120是一单晶半导体材料。光伏设备100可以进一步包括一个位于电极层180上和顶部表面120a正上的耦合层160。
结构120可以包括任何合适的单晶半导体材料,如硅,锗,III-V族化合物材料(如砷化镓,氮化镓等),II-VI族化合物材料(如硒化镉,镉硫化物,碲化镉,氧化锌,硒化锌等),四元材料(如铜铟镓硒)。
结构120可以有任意截面形状。例如,结构120可以是截面为椭圆形、圆形、矩形、多边形的圆柱体或者棱柱形。结构120也可以是如图10所示的条状或网状。根据一个实施例,结构120是柱体,其直径从50纳米至5000纳米,高度从1000纳米至20000纳米,两个最接近柱体的中心到中心的距离是在300纳米至15000纳米之间。顶部部分121优选的高度是1微米至20微米。顶部部分121优选的掺杂浓度的梯度在顶部表面120a的掺杂水平最高。优选的,结构120具有沿结构120顶部表面120a的整个轮廓的悬垂部分124。
每个凹槽130侧壁130a和底壁130b之间优选的具有圆形或斜面内角。
该钝化层131可以是任何合适的绝缘材料,如HfO2,SiO2,Si3N4,Al2O3,有机分子单层等。该钝化层131可以是任何合适的厚度,例如从1纳米至100纳米。钝化层131有效钝化侧壁130a和底壁130b。
该平面反射层132可以是任何合适的材料,如ZnO,Al,Au,Ag,Pd,Cr,Cu,Ti,Ni和它们的组合等。该平面反射层132优选的是导电材料,更优选的是金属。对任何可见光波长,该平面反射层132优选的反射率至少是50%,更优选的反射率是至少70%,最优选的反射率是至少90%。该平面反射层132优选的厚度是至少为5纳米,更优选的厚度是至少为20纳米。优选的,平面反射层132在所有的凹槽130中连接。该平面反射层132功能性地将其上的入射光反射到结构120上就此使得光被结构120吸收。光伏设备接收光的电极表面往往不透明。任何入射到此类不透明电极上的入射光或者被反射远离光伏设备或者被不透明电极吸收,从而不利于发电。平面反射层132优选的功能性地作为光伏设备100的电极。
该透明材料140对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该透明材料140是一种导电材料。该透明材料140优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该透明材料140优选的与平面反射层132形成欧姆接触。该透明材料140优选的功能性地作为光伏设备100的电极。该透明材料140也可以是例如SiO2或者聚合物的一合适电绝缘材料。
该基板105优选的在结构120反面有平坦表面150。该平坦表面150上可以有一个与顶部部分121相反的导电类型的掺杂层151,即,如果顶部部分121是n型,掺杂层151是p型;如果顶部部分121是p型,掺杂层151是n型。该掺杂层151与每个结构120的底部部分122电连接。如果底部部分122是本征的,顶部部分121、底部部分122和掺杂层151形成一个p-i-n结。如果底部部分122是n型或p型,顶部部分121和底部部分122形成p-n结。该平坦表面150也可以有一个位于掺杂层151上的金属层152。该金属层152与掺杂层151形成欧姆接触。该基板105优选的厚度有至少50微米。优选的平面反射层132的总面积是平坦表面150表面区域的至少40%。
该电极层180可以是和透明材料140相同的材料或和透明材料140不同的材料。该电极层180对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该电极层180是一种导电材料。该电极层180优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该电极层180优选的与结构120的顶部部分121形成欧姆接触。该电极层180优选的功能性地作为光伏设备100的电极。
该耦合层160可以是和透明材料140相同的材料或和透明材料140不同的材料。如图5所示,该结构120的折射率n1、该透明材料140的折射率n2、耦合层160的折射率n3优选的满足n1>n2和n1>n3的关系,从而导致更多光线集中在结构120上。
在一个实施例中,该结构120是排成如矩形阵列,六角形阵列,方阵,同心环阵列的柱体。每个结构120高度约为5微米。结构120的间距是从300纳米到15微米。术语“间距”被定义为一个结构120到近邻结构120沿一个平行于基板105方向的距离。此处使用的术语“阵列”是指具有一个特定顺序的空间布置。
如图1B所示的制造光伏设备100的方法,根据一个实施例,包括以下步骤:
在步骤1000,提供具有掺杂层151和位于掺杂层151上外延层11的基板105。外延是在另一种晶体上生长具有确定方向的一种晶体的过程,其中该方向是由底层的晶体来确定。此处使用的术语“外延层”是指由外延生长的一个层。
在步骤1001,,离子注入掺杂外延层11的上层12。
在步骤1002,掺杂上层12上加抗蚀剂层14。该抗蚀剂层14可以用旋转涂布。该抗蚀剂层14可以是一个光致抗蚀剂或一个电子束抗蚀剂。
在步骤1003,执行半导体平板印刷。该抗蚀剂层14现在开口图案使得掺杂上层12外露。开口的形状和位置相对应于凹槽130的形状和位置。半导体平板印刷的分辨率是由所用的辐射波长限制。使用波长约248和193纳米的深紫外光(DUV)的光刻工具允许的最小特征尺寸约为50纳米。使用电子能量为1keV到50keV的电子束光刻工具允许的最小特征尺寸下降到几纳米。
在步骤1004,沉积一掩膜层15。沉积可以使用如热蒸发,电子束蒸发,溅射的一种技术。该掩膜层15可以是如Cr或A1金属,或者如SiO2或Si3N4的电介质。该掩膜层15的厚度可以由凹槽130的深度和蚀刻选择性(即,掩膜层15的蚀刻率和基板105的比例)来决定。
在步骤1005,剩余的抗蚀剂层14由一合适的溶剂剥离,或者由一抗蚀剂灰化剂灰化来去除任何其上的掩膜层15。该抗蚀剂层14的开口中还有部分掩膜层15得以保留。部分的掺杂上层12现在通过保留的掩膜层15外露。
在步骤1006,该掺杂上层12外露部分和直接位于其下的外延层11部分被深蚀刻至所需的深度(例如,1至20微米),然后被各向同性蚀刻直到外延层11部分外露出来,来形成具有悬垂部分124的结构120和具有斜面内角的凹槽130。每个结构120现在包括是掺杂上层12的一部分的顶部部分121,和是外延层11的一部分的底部部分122。深蚀刻包括交替沉积和蚀刻步骤,并可能导致凹槽130侧壁上130a的“开切口形”,即侧壁130a并不平滑。该侧壁130a可以通过热退火或浸泡到一个如氢氧化钾(KOH)的蚀刻剂然后漂洗来平滑化。深蚀刻可以使用如C4F8和SF6气体。
在步骤1007,钝化层131共形的(即各向同性)沉积到凹槽130的表面和保留掩膜层15的顶部表面15a。一个共形层,如钝化层131,是覆盖了形态凹凸不平的表面并有一个基本均匀厚度的一个层。该钝化层131可用一个如电镀,化学气相沉积法或原子层沉积的合适的技术来沉积。
在步骤1008,一个抗蚀剂层16被有选择性地涂覆,使得该凹槽侧壁130a和底壁130b没有抗蚀剂层16,并且钝化层131的顶部表面131a被抗蚀剂层16完全覆盖。该抗蚀剂层16可以用一个合适的方法有选择性地施加,如下文根据一个实施例详细描述的打印涂覆方法。
在步骤1009,一金属层17各向异性沉积(即非共形)使得抗蚀剂层16和底壁130b是由金属层17覆盖,而侧壁130a没有金属层17。该金属层17可以由一个合适的技术,如热蒸发,电子束蒸发来沉积。该金属层17可以是任何合适的金属,例如铝。
在步骤1010,该抗蚀剂层16可以用合适的溶剂去除或用抗蚀剂灰化剂灰化以去除其上的任何金属层17。该钝化层131的顶部表面131a现在外露出来。
在步骤1011,该钝化层131的顶部表面131a用一个合适的技术,如离子铣、干法刻蚀、溅射来选择性地去除,而保留凹槽130的侧壁130a和底壁130b上的钝化层131完好。保留掩膜层15的顶部表面15a现在外露出来。底壁130b上的金属层17保护下方的钝化层131不被去除。
在步骤1012,该保留掩膜层15和该金属层17用合适的蚀刻剂和一个合适的如湿蚀刻法技术来去除。现在结构120的顶部表面120a外露出来。
在步骤1013,一个抗蚀剂层18被有选择性地涂覆,使得该凹槽侧壁130a和底壁130b没有抗蚀剂层18,并且结构120的顶部表面120a被抗蚀剂层18完全覆盖。抗蚀剂层18可以用一个合适的方法有选择性地涂覆,如下文根据一个实施例详细描述的打印涂覆方法。
在步骤1014,平面反射层132各向异性沉积(即非共形),使得抗蚀剂层18和底壁130b是由平面反射层132覆盖,而侧壁130a没有平面反射层132。平面反射层132可以由一个合适的技术,如热蒸发,电子束蒸发来沉积。该平面反射层132可以是任何合适的金属,例如银。
在步骤1015,该抗蚀剂层18可以用合适的溶剂剥离或用抗蚀剂灰化剂灰化以去除其上的任何平面反射层132。该结构120的顶部表面120a现在外露出来。
在步骤1016,该透明材料140沉积使得平面反射层132、钝化层131和顶部表面120a被完全覆盖,并且凹槽130被完全填充。该透明材料140可用一个合适的技术,如电镀、化学气相沉积法或原子层法来沉积。
在步骤1017,该透明材料140可用一个合适的技术,如化学机械抛光/平坦(CMP)被平坦化,使得透明材料140和结构120的顶部表面120a形成共沿表面,并且顶部表面120a外露。
在步骤1018,该电极层180可以由一个合适的技术如热蒸发,电子束蒸发或溅射来沉积到透明材料140和顶部表面120a上。之后该耦合层160可以由一个合适的技术如溅射,热蒸发,电子束蒸发来沉积到电极层180上。
在步骤1019,该金属层152被沉积到掺杂层151上。
该方法可以进一步包括一个或多个热退火步骤。
图2A显示了根据又一实施例的一光伏设备200截面原理图。该光伏设备200包括一个基板205,复数个基本垂直于基板205的结构220,和结构220之间的一个或多个凹槽230和一电极层280。每个凹槽230被透明材料240填充。每个凹槽230有一侧壁230a和一底壁230b。每个凹槽230的侧壁230a和底壁230b和结构220的顶部表面220a上具有沉积的交界层231。该交界层231是一种掺杂半导体。该底壁230b具有沉积在交界层231上的平面反射层232。该侧壁230a没有任何平面反射层。该结构220是一种单晶半导体材料。该结构220可以是一种本征半导体或掺杂半导体。如果结构220是一掺杂半导体,该结构220和交界层231有相反的导电类型,即,如果结构220是p型,交界层231是n型;如果结构220是n型,交界层231是p型。该透明材料240优选的与结构220的顶部表面220a具有共沿表面。该光伏设备200可以进一步包括透明材料240和结构220上方的电极层280。该光伏设备200可以进一步包括位于电极层280上的并且位于顶部表面220a正上方的耦合层260。
该结构220可以包括任何合适的单晶半导体材料,如硅,锗,III-V族化合物材料(如砷化镓,氮化镓等),II-VI族化合物材料(如硒化镉,镉硫化物,碲化镉,氧化锌,硒化锌等),四元材料(如铜铟镓硒)。
该结构220可以有任何截面形状。例如,该结构220可以是截面为椭圆形、圆形、矩形、多边形的圆柱体或者棱柱形状。该结构220也可以是如图9所示的条状,或如图10所示的网状。根据一个实施例,结构220是柱体,其直径从50纳米至5000纳米,高度从1000纳米至20000纳米,两个最接近柱体的中心到中心的距离是在300纳米至15000纳米之间。优选的,结构220具有沿结构220顶部表面220a的整个轮廓的悬垂部分224。
每个凹槽230侧壁230a和底壁230b之间优选的具有圆形或斜面内角。
该交界层231优选的厚度从5纳米至100纳米。该交界层231有效地钝化结构220的表面。
该平面反射层232可以是任何合适的材料,如ZnO,Al,Au,Ag,Pd,Cr,Cu,Ti,Ni和它们的组合等。该平面反射层232优选的是导电材料,更优选的是金属。对任何可见光波长,平面反射层232优选的反射率至少是50%,更优选的反射率是至少70%,最优选的反射率是至少90%。平面反射层232优选的厚度是至少为5纳米,更优选的厚度是至少为20纳米。优选的,平面反射层232在所有的凹槽230中连接。该平面反射层232功能性地将其上的入射光反射到结构220上就此使得光被结构220吸收。平面反射层232优选的功能性地作为光伏设备200的电极。
该透明材料240对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该透明材料240是一种导电材料制成。该透明材料240优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该透明材料240优选的与交界层231形成欧姆接触。该透明材料240优选的与平面反射层232形成欧姆接触。该透明材料240优选的功能性地作为光伏设备200的电极。该透明材料140也可以是例如SiO2或者聚合物的一合适电绝缘材料。
该基板205优选的在结构220反面有一平坦表面250。该平坦表面250上可以有一个与交界层231相反的导电类型的掺杂层251,即,如果交界层231是n型,掺杂层251是p型,如果交界层231是p型,掺杂层251是n型。该掺杂层251与每个结构220电连接。如果结构220是本征的,交界层231、结构220和掺杂层251形成一个p-i-n结。如果结构220是n型或p型,交界层231和结构220形成p-n结。该平坦表面250也可以有一个位于掺杂层251上的金属层252。该金属层252与掺杂层251形成欧姆接触。该基板205优选的厚度有至少50微米。优选的平面反射层232的总面积是平坦表面250表面区域的至少40%。
该电极层280可以是和透明材料240相同的材料或和透明材料240不同的材料。该电极层280对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该电极层280是一种导电材料制成。该电极层280优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该电极层280优选的与交界层231形成欧姆接触。该电极层280优选的功能性地作为光伏设备200的电极。
该耦合层260可以是和透明材料240相同的材料或和透明材料240不同的材料。如图5所示,该结构220的折射率n1、该透明材料240的折射率n2、耦合层260的折射率n3优选的满足n1>n2和n1>n3的关系,从而导致更多光线集中在结构220上。
在一个实施例中,该结构220是排成如矩形阵列,六角形阵列,方阵,同心环的阵列的柱体。每个柱体高度约为5微米。结构220的间距是从300纳米到15微米。
如图2B所示的制造光伏设备200的方法,根据一个实施例,包括以下步骤:
在步骤2000,提供具有掺杂层251和位于掺杂层251上的外延层21的基板205。
在步骤2001,外延层21上涂覆抗蚀剂层24。该抗蚀剂层24可以用旋转涂布。该抗蚀剂层24可以是一个光致抗蚀剂或电子束抗蚀剂。
在步骤2002,执行半导体平板印刷。该抗蚀剂层24现在开口图案使得外延层21外露。开口的形状和位置相对应于凹槽230的形状和位置。半导体平板印刷的分辨率是由所用的辐射波长限制。使用波长约248和193纳米的深紫外光(DUV)的光刻工具允许的最小特征尺寸约为50纳米。使用电子能量为1keV到50keV的电子束光刻工具允许的最小特征尺寸下降到几纳米。
在步骤2003,沉积掩膜层25。可以使用如热蒸发,电子束蒸发,溅射的一种技术沉积。该掩膜层25可一是如Cr或Al金属,或者,如SiO2或Si3N4的电介质。该掩膜层25的厚度可以由凹槽230的深度和蚀刻选择性(即,掩膜层25的蚀刻率和基板205的比例)来决定。
在步骤2004,剩余的抗蚀剂层24由一合适的溶剂剥离,或者由一抗蚀剂灰化剂灰化来去除任何其上的掩膜层25。抗蚀剂层24的开口中还有部分掩膜层25得以保留。部分的外延层21现在通过保留掩膜层25外露。
在步骤2005,该外延层21外露部分被深蚀刻至所需的深度(例如,1至20微米),然后被各向同性蚀刻,来形成具有悬垂部分224的结构220和有斜面内角的凹槽230。深蚀刻包括交替沉积和蚀刻步骤,并可能导致凹槽230侧壁上230b的“开切口形”,即侧壁230b并不平滑。该侧壁230b可以通过热退火或浸泡到一个如氢氧化钾(KOH)的蚀刻剂然后漂洗来平滑化。深蚀刻可以使用如C4F8和SF6气体。
在步骤2006,用一合适的例如用合适蚀刻剂的湿蚀刻、离子铣、溅射法来去除掩膜层25。该结构220的顶部表面220a外露出来。
在步骤2007,一掺杂剂层22共形的(即各向同性)沉积到凹槽230的表面和结构220的顶部表面220a。该掺杂剂层22可用一个如电镀、化学气相沉积法或原子层沉积的合适的技术来沉积。该掺杂剂层22可以包括任何合适的材料,如三甲基硼烷、三异丙基硼烷((C3H7)3B)、三乙氧基硼烷((C2H5O)3B,和/或三异丙基硼烷((C3H7O)3B)。更多细节,可以见2010年10月10日至10月15日的电化学学会的第218次会议中Bodokalkofen和Edmund P.Burte一个名为“氧化硼原子层沉积作为浅掺杂硅的掺杂源”的演示摘要,其在这里被全文纳入引用。
在步骤2008,一遮掩层23共形的(即各向同性)沉积到掺杂剂层22的表面。遮掩层23可用一个如电镀、化学气相沉积法或原子层沉积的合适的技术来沉积。遮掩层23可以是一合适的材料(例如氧化硅,氮化硅)和一个合适的厚度(例如,至少有10纳米,至少有100纳米,或至少有1微米),有效地防止掺杂剂层22在步骤2009中蒸发。
在步骤2009,该掺杂剂层22由热退火扩散到侧壁230b,底壁230a和顶部表面220a,就此形成交界层231。热退火可以在例如约850℃,10到30分钟,一个合适的气体(如氩气)中进行。
在步骤2010,该遮掩层23可以用合适的技术例如使用一个例如HF的合适蚀刻剂的湿蚀刻法去除。交界层231现在外露出来。
在步骤2011,一个抗蚀剂层26被有选择性地涂覆,使得该凹槽230侧壁230a和底壁230b没有抗蚀剂层26,并且交界层231的顶部表面231a被抗蚀剂层26完全覆盖。抗蚀剂层26可以用一个合适的方法有选择性地涂覆,如下文根据一个实施例详细描述的打印涂覆方法。
在步骤2012,该平面反射层232各向异性沉积(即非共形),使得抗蚀剂层26和底壁230b是由平面反射层232覆盖,而侧壁230a没有平面反射层232。平面反射层232可以由一个合适的技术,如热蒸发,电子束蒸发来沉积。平面反射层232可以是任何合适的金属,例如银。
在步骤2013,该抗蚀剂层26可以用合适的溶剂剥离或用抗蚀剂灰化剂灰化以去除其上的任何平面反射层232。交界层220的顶部表面231a外露出来。
在步骤2014,该透明材料240沉积使得平面反射层232、交界层231和顶部表面231a是完全覆盖,并且凹槽230被完全填充。该透明材料240可用一个合适的技术,如电镀、化学气相沉积法或原子层法来沉积。
在步骤2015,该透明材料240可用一个合适的技术如CMP被平坦化,使得透明材料240和结构220的顶部表面220a形成共沿表面,并且交界层231的顶部表面231a外露。
在步骤2016,该电极层280可以由一个合适的技术如热蒸发,电子束蒸发或溅射来沉积到透明材料240和顶部表面231a上。之后该耦合层260可以由一个合适的技术如溅射,热蒸发,电子束蒸发来沉积到电极层280上。
在步骤2017,该金属层252被沉积到掺杂层251上。
该方法可以进一步包括一个或多个热退火步骤。
图3A显示了根据又一实施例的光伏设备300截面示意图。该光伏设备300包括一个基板305,复数个基本垂直于基板305的结构320,和结构320之间的一个或多个凹槽330和一个电极层380。每个凹槽330被透明材料340完全填充。每个凹槽330有一侧壁330a和一底壁330b。每个凹槽330的侧壁330a和底壁330b和结构320的顶部表面320a上具有沉积的交界层331。该交界层331是一种掺杂半导体。底壁330b具有沉积在交界层331上的平面反射层332。侧壁330a没有任何平面反射层。每个结构320具有顶部部分321和底部部分322。该结构320可以有以下四种掺杂分布之一种(即,掺杂量分布):(i)该底部部分322是本征的并且顶部部分321是p型;(ii)该底部部分322是n型并且顶部部分321是p型;(iii)该底部部分322是本征的并且顶部部分321是n型;(iv)该底部部分322是p型并且顶部部分321是n型。该顶部部分321可以有沿顶部表面320a到底部部分322方向掺杂水平降低的一个掺杂分布。该结构320是一种单晶半导体材料。该结构320的顶部部分321和交界层331是相同的导电类型的半导体材料,即,如果顶部部分321是p型,交界层331是p型;如果顶部部分321是n型,交界层331是n型。该透明材料340优选的具有和结构320的顶部表面320a共沿的表面。光伏设备300可以进一步包括位于透明材料340和结构320上的电极层380。光伏设备300可以进一步包括电极层280上的并且位于顶部表面320a正上方的耦合层360。
该结构320可以包括任何合适的单晶半导体材料,如硅,锗,III-V族化合物材料(如砷化镓,氮化镓等),II-VI族化合物材料(如硒化镉,镉硫化物,碲化镉,氧化锌,硒化锌等),四元材料(如铜铟镓硒)。
该结构320可以有任何截面形状。例如,该结构320可以是截面为椭圆形、圆形、矩形、多边形的圆柱体或者棱柱形状。该结构320也可以是如图9所示的条状,或如图10所示的网状。根据一个实施例,结构320是柱体,其直径从50纳米至5000纳米,高度从1000纳米至20000纳米,两个最接近柱体的中心到中心的距离是在300纳米至15000纳米之间。该顶部部分321优选的高度是1微米至20微米。该顶部部分321优选的掺杂浓度的梯度在顶部表面320a的掺杂水平最高。优选的,结构320具有沿结构320顶部表面320a的整个轮廓的悬垂部分324。
每个凹槽330侧壁330a和底壁330b之间优选的具有圆形或斜面内角。
该交界层331优选的厚度从5纳米至100纳米。交界层331有效地钝化结构320的表面。
该平面反射层332可以是任何合适的材料,如ZnO,Al,Au,Ag,Pd,Cr,Cu,Ti,Ni和它们的组合等。该平面反射层332优选的是导电材料,更优选的是金属。对任何可见光波长,平面反射层332优选的反射率至少是50%,更优选的反射率是至少70%,最优选的反射率是至少90%。该平面反射层332优选的厚度是至少为5纳米,更优选的厚度是至少为20纳米。优选的,该平面反射层332在所有的凹槽330中连接。该平面反射层332功能性地将其上的入射光反射到结构320上就此使得光被结构320吸收。该平面反射层332优选的功能性地作为光伏设备300的电极。
该透明材料340对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该透明材料340是一种导电材料制成。该包覆层340优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该透明材料340优选的与交界层331形成欧姆接触。该透明材料340优选的与平面反射层332形成欧姆接触。该透明材料340优选的功能性地作为光伏设备300的电极。该透明材料340也可以是例如SiO2或者聚合物的一合适电绝缘材料。
该基板305优选的在结构320反面有平坦表面350。该平坦表面350上可以有一个与交界层331相反的导电型的掺杂层351,即,如果交界层331是n型,掺杂层351是p型,如果交界层331是p型,掺杂层351是n型。该掺杂层351与每个结构320的底部部分322电连接。如果底部部分322是本征的,交界层331、顶部部分321和底部部分322与掺杂层351形成一个p-i-n结。如果底部部分322是n型或p型,交界层331和顶部部分321和底部部分322形成p-n结。该平坦表面350也可以有一个位于掺杂层351上的金属层352。该金属层352与掺杂层351形成欧姆接触。该基板305优选的厚度有至少50微米。优选的平面反射层332的总面积是平坦表面350表面区域的至少40%。
该电极层380可以是和透明材料340相同的材料或和透明材料340不同的材料。该电极层380对可见光基本透明,优选的透光率至少有50%,更优选至少70%,最优选至少有90%。该电极层380是一种导电材料制成。该电极层380优选为透明导电氧化物,例如ITO(铟锡氧化物),AZO(铝掺杂氧化锌),ZIO(氧化锌铟),ZTO(锌锡氧化物)等。该电极层380优选的与交界层331形成欧姆接触。该电极层380优选的功能性地作为光伏设备300的电极。
该耦合层360可以是和透明材料340相同的材料或和透明材料340不同的材料。如图5所示,该结构320的折射率n1、该透明材料340的折射率n2、耦合层360的折射率n3优选的满足n1>n2和n1>n3的关系,从而导致更多光线集中在结构320上。
在一个实施例中,该结构320是排成如矩形阵列,六角形阵列,方阵,同心环的阵列的柱体。每个柱体高度约为5微米。该结构320的间距是从300纳米到15微米。术语“间距”被定义为一个结构320到近邻结构320沿一个平行于基板305方向的距离。
如图3B所示的制造光伏设备300的方法,根据一个实施例,包括以下步骤:
在步骤3000,提供具有掺杂层351和位于掺杂层351上的外延层31的基板305。
在步骤3001,,离子注入掺杂外延层31的上层32。
在步骤3002,掺杂上层32上涂覆抗蚀剂层34。蚀剂层34可以用旋转涂布。该抗蚀剂层34可以是一个光致抗蚀剂或电子束抗蚀剂。
在步骤3003,执行半导体平板印刷。该抗蚀剂层34现在开口图案使得掺杂上层32外露。开口的形状和位置相对应于凹槽330的形状和位置。半导体平板印刷的分辨率是由所用的辐射波长限制。使用波长约248和193纳米的深紫外光(DUV)的光刻工具允许的最小特征尺寸约为50纳米。使用电子能量为1keV到50keV的电子束光刻工具允许的最小特征尺寸下降到几纳米。
在步骤3004,沉积掩膜层35。可以使用如热蒸发、电子束蒸发,溅射的一种技术沉积。该掩膜层35可以是如Cr或Al金属,或者,如SiO2或Si3N4的电介质。掩膜层35的厚度可以由凹槽330的深度和蚀刻选择性(即,掩膜层35的蚀刻率和基板305的比例)来决定。
在步骤3005,剩余的抗蚀剂层34由一合适的溶剂剥离,或者由一抗蚀剂灰化剂灰化来去除任何其上的掩膜层35。抗蚀剂层34的开口中还有部分掩膜层35得以保留。部分的掺杂上层32现在通过保留掩膜层35外露。
在步骤3006,该掺杂上层32外露部分和直接位于其下的外延层31部分被深蚀刻至所需的深度(例如,1至20微米),然后被各向同性蚀刻直到外延层31部分外露出来,来形成具有悬垂部分324的结构320和具有斜面内角的凹槽330。每个结构320现在有掺杂上层32的一部分的顶部部分321,和外延层31的一部分的底部部分322。深蚀刻包括交替沉积和蚀刻步骤,并可能导致凹槽330侧壁上330b的“开切口形”,即侧壁330b并不平滑。该侧壁330b可以通过热退火或浸泡到一个如氢氧化钾(KOH)的蚀刻剂然后漂洗来平滑化。深蚀刻可以使用如C4F8和SF6气体。
在步骤3007,用一合适的例如用合适蚀刻剂的湿蚀刻、离子铣、溅射法来去除掩膜层35。结构320的顶部表面320a外露出来。
在步骤3008,掺杂剂层39共形的(即各向同性)沉积到凹槽330的表面和结构320的顶部表面320a。该掺杂剂层39可用一个如电镀、化学气相沉积法或原子层沉积的合适的技术来沉积。该掺杂剂层39可以包括任何合适的材料,如如三甲基硼烷,三异丙基硼烷((C3H7)3B),三乙氧基硼烷((C2H5O)3B,和/或三异丙基硼烷((C3H7O)3B)。更多细节,可以见2010年10月10日至10月15日的电化学学会的第218次会议中Bodokalkofen和Edmund P.Burte一个名为“氧化硼原子层沉积作为浅掺杂硅的掺杂源”的演示摘要,其在这里被全文纳入引用。
在步骤3009,一遮掩层33共形的(即各向同性)沉积到该掺杂剂层39的表面。该遮掩层33可用一个如电镀,化学气相沉积法或原子层沉积的合适的技术来沉积。该遮掩层33具有一合适的材料(例如氧化硅,氮化硅)和一个合适的厚度(例如,至少有10纳米,至少有100纳米,或至少有1微米),有效地防止掺杂剂层39在步骤3010中蒸发。
在步骤3010,该掺杂剂层39由热退火扩散到侧壁330b,底壁330a和顶部表面320a,就此形成交界层331。热退火可以在例如约850℃,10到30分钟,一个合适的气体(如氩气)中进行。
在步骤3011,遮掩层33可以用合适的技术例如使用例如HF的合适蚀刻剂的湿蚀刻法去除。该交界层331现在外露出来。
在步骤3012,一个抗蚀剂层36被有选择性地涂覆,使得该凹槽330侧壁330a和底壁330b没有抗蚀剂层36,并且交界层331的顶部表面331a被抗蚀剂层36完全覆盖。该抗蚀剂层36可以用一个合适的方法有选择性地涂覆,如下文根据一个实施例详细描述的打印涂覆方法。
在步骤3013,平面反射层332各向异性沉积(即非共形),使得抗蚀剂层36和底壁330b是由平面反射层332覆盖,而侧壁330a没有平面反射层332。该平面反射层332可以由一个合适的技术,如热蒸发,电子束蒸发来沉积。平面反射层332可以是任何合适的金属,例如银。
在步骤3014,该抗蚀剂层36可以用合适的溶剂剥离或用抗蚀剂灰化剂灰化以去除其上的任何平面反射层332。交界层320的顶部表面331a外露出来。
在步骤3015,透明材料340沉积使得平面反射层332、交界层331和顶部表面331a是完全覆盖,并且凹槽330被完全填充。透明材料340可用一个合适的技术,如电镀、化学气相沉积法或原子层法来沉积。
在步骤3016,该透明材料340可用一个合适的技术如CMP被平坦化,使得透明材料340和结构320的顶部表面320a形成共沿表面,并且交界层331的顶部表面331a外露。
在步骤3017,该电极层380可以由一个合适的技术如热蒸发,电子束蒸发或溅射来沉积到透明材料340和顶部表面331a上。之后该耦合层360可以由一个合适的技术如溅射、热蒸发、电子束蒸发来沉积到电极层380上。
在步骤3018,金属层352沉积到掺杂层351上。
该方法可以进一步包括一个或多个热退火步骤。
图6显示了示例光伏设备100,200或300的俯视横截面视图,其中为清楚起见未显示透明材料140/240/340,电极层180/280/380和耦合层160/260/360。图7显示了光伏设备100,200或300的示例透视图,其中为清楚起见未显示透明材料140/240/340,电极层180/280/380和耦合层160/260/360。
在步骤1008,1013,2011和3012中使用的打印方法的一实施例包括:将抗蚀剂层420涂布到一个弹性材料如聚二甲基硅氧烷(PDMS)的辊轴410上;使辊轴410在表面405a滚动来转移抗蚀剂层420转移到基板405的表面405a。表面405a是持平的或有纹理的。在滚动辊轴410时,表面405a可以面向上或向下。
在步骤1008,1013,2011和3012中使用的打印方法的又一实施例包括:将抗蚀剂层420涂布到一个弹性材料如聚二甲基硅氧烷(PDMS)的印章430上;使印章430盖在表面405a上来转移抗蚀剂层420到基板405的表面405a。表面405a是持平的或有纹理的。在滚动辊轴410时,表面405a可以面向上或向下。
如图11B所示,光伏设备100,200或300可以进一步包括一通孔599,其位于透明材料140,240或340中并且夹于电极层180,280或380和平面反射层132,232或332之间,其中该至少一通孔599是一导电材料,优选的是一透明导电材料(例如ITO,AZO等),并且该至少一通孔599和电极层180,280或380和平面反射层132,232或332电连接。如图11A所示,该通孔599可以通过蚀刻一凹槽598得到,该凹槽穿透电极层180,280或380和透明材料140,240或340,直到平面反射层132,232或332被外露,然后再填充凹槽598得到通孔599。如图12A和图12B所示,该通孔599可以是任何合适的形状,例如辊形或者长块形。
一个电力转换成光的方法包括:对光伏设备100,200或300光照;使用平面反射层132,232或332将光线反射到结构120,220或320上;使用结构120,220或320吸收光线并将光转换为电;从光伏设备100,200或300引出电流。如图8A-8C所示,电流可以从光伏设备100,200或300的金属层152和平面反射层132或金属层152和电极层180,金属层252和或平面反射层232,金属层352和平面反射层332分别引出。
一个光电检测器,根据一个实施例,包括光伏设备100,200或300,其中光电检测器当被光照时功能性地输出电信号。
一个光检测方法包括:对光伏设备100,200或300光照;测量光伏设备100,200或300的电信号。电信号可以是电流、电压、电导和/或电阻。当测量电信号时,一个偏置电压可被分别加在光伏设备100,200或300的结构120,220和320上。
此处已披露的各个方面和实施方案之外,其它方面和实施方案对于那些在本领域的技术人员也是显而易见的。此处已披露的各个方面和实施方案是为了说明的目的,并不是要限制范围,真正发明范围和精神在下面的权利要求中表述。

Claims (45)

1.一个光伏设备,具有将光能转化为电能的操作性,其包括一个基板,复数个基本垂直于基板的结构,和结构之间的一个或多个凹槽,每个凹槽具有一个侧壁和一个底壁,和位于每个凹槽底壁上的一个平面反射层,其中该结构包含一种单晶半导体材料;其中每个凹槽的侧壁没有平面反射层;并且每个凹槽被一透明材料填充。
2.如权利要求1所述的该光伏设备,其中单晶半导体材料是从包含硅,锗,III-V族化合物材料,II-VI族化合物材料,与四元材料的一组中所选。
3.如权利要求1所述的该光伏设备,其中该结构是圆柱体或棱柱形,其截面是从包含椭圆形,圆形,长方形和多边形截面,条状,或网状的一组中所选。
4.如权利要求1所述的该光伏设备,其中该结构是柱体,其直径从50纳米至5000纳米,其高度从1000纳米至20000纳米,两个最接近柱体的中心到中心的距离是在300纳米至15000纳米之间。
5.如权利要求1所述的该光伏设备,其中该结构沿结构的一个顶部表面的整个轮廓具有一个悬垂部分。
6.如权利要求1所述的该光伏设备,其中每个凹槽侧壁和底壁之间是圆形或斜面的内角。
7.如权利要求1所述的该光伏设备,其中该平面反射层的材料是从包含ZnO,Al,Au,Ag,Pd,Cr,Cu,Ti,Ni和它们的组合的一组中选择。
8.如权利要求1所述的该光伏设备,其中该平面反射层是一种导电材料。
9.如权利要求1所述的光伏设备,其中该平面反射层是一种金属。
10.如权利要求1所述的光伏设备,其中该平面反射层对任何波长可见光有至少50%的反射率。
11.如权利要求1所述的光伏设备,其中该平面反射层的厚度至少为5纳米。
12.如权利要求1所述的光伏设备,其中该平面反射层功能性地将其上的入射光反射给该结构使得光被该结构吸收。
13.如权利要求1所述的光伏设备,其中所有凹槽的平面反射层相连。
14.如权利要求1所述的光伏设备,其中该平面反射层功能性地作为光伏设备的电极。
15.如权利要求1所述的光伏设备,其中该基板于该结构反面有一个平坦表面。
16.如权利要求15所述的光伏设备,其中该平坦表面上有一个掺杂层和位于其上的一个可选的金属层,该金属层和掺杂层形成欧姆接触。
17.如权利要求15所述的光伏设备,其中该平面反射层的总面积至少是该平坦表面的表面面积的40%。
18.如权利要求1所述的光伏设备,其中该基板厚度至少是50微米。
19.如权利要求1所述的光伏设备,其中该结构是排列成阵列的柱体;每个结构高度约为5微米;该结构的间距是从300纳米到15微米。
20.如权利要求16所述的光伏设备,其中:
该透明材料和该结构的顶部表面具有同延表面;
该透明材料对可见光基本透明,透光率至少有50%;
该透明材料是一种导电材料;
该透明材料是一种电绝缘材料;
该透明材料是一种透明导电氧化物;
该透明材料与平面反射层形成欧姆接触;和/或
该透明材料功能性地作为光伏设备的电极。
21.如权利要求20所述的光伏设备,进一步包含一个电极层和一个可选的耦合层,其中:
该电极层沉积位于透明材料和结构之上;
该电极层可以是和透明材料相同的材料或和透明材料不同的材料;
该电极层对可见光基本透明,透光率至少有50%;
该电极层是一种导电材料;
该电极层是一种透明导电氧化物;
该电极层功能性地作为光伏设备的电极;和/或
该耦合层沉积位于电极层上和该结构的顶部表面上。
22.如权利要求21所述的光伏设备,进一步包含一钝化层,其中:
该钝化层处于侧壁上,和底壁的平面反射层下面;该结构的顶部表面没有钝化层;该钝化层有效的钝化侧壁和底壁;和/或每个结构的顶部部分和底部部分具有不同的导电类型。
23.如权利要求22所述的光伏设备,其中该结构有以下的掺杂分布之一:
(i)该底部部分是本征的并且顶部部分是p型;
(ii)该底部部分是n型并且顶部部分是p类型;
(iii)该底部部分是本征的并且顶部部分是n型;
(iv)该底部部分是p型并且顶部部分是n型。
24.如权利要求22所述的光伏设备,其中:
该顶部部分高度为1微米至20微米;
该钝化层厚度从1纳米至100纳米;
该钝化层是从包含如下组成中所选的一种电绝缘材料:HfO2,SiO2,Si3N4,Al2O3,有机分子单层;
该掺杂层有和顶部部分相反的导电类型;
该掺杂层和底部部分电连接;
该掺杂层、底部部分和顶部部分形成一个p-n或p-i-n结;
该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或
该结构折射率n1、该透明材料折射率n2、该耦合层折射率n3满足n1>n2和n1>n3的关系。
25.如权利要求21所述的光伏设备,还包括一个交界层,其中:
该交界层是一个掺杂半导体;
该交界层在侧壁上、底壁的平面反射层下面和该结构的一个顶端表面上;该交界层有效的钝化侧壁和底壁。
26.如权利要求25所述的光伏设备,其中:
该结构是一种掺杂半导体并且该结构和交界层有相反的导电类型;或
该结构是一种本征半导体。
27.如权利要求25所述的光伏设备,其中:
该交界层的厚度从5纳米至100纳米;
该掺杂层有和交界层相反的导电类型;
该掺杂层和每个结构电连接;
该掺杂层、结构和交界层形成一个p-n或p-i-n结;
该包覆层厚度约为175纳米;
该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或
该结构折射率n1、该透明材料折射率n2,该耦合层折射率n3满足n1>n2和n1>n3的关系。
28.如权利要求25所述的光伏设备,其中:
该每个结构的顶部部分和底部部分具有不同的导电类型。
29.如权利要求28所述的光伏设备,其中:
该顶部部分和交界层具有相同的导电类型;并且
该结构有以下的掺杂分布之一:
(i)底部部分是本征的并且顶部部分是p型;
(ii)底部部分是n型并且顶部部分是p型;
(iii)底部部分是本征的并且顶部部分是n型;
(iv)底部部分是p型并且顶部部分是n型。
30.如权利要求28所述的光伏设备,其中:
该交界层的厚度从5纳米至100纳米;
该掺杂层有和交界层相反的导电类型;
该掺杂层和每个结构底部部分电连接;
该掺杂层、底部部分、顶部部分和交界层形成一个p-n或p-i-n结;
该耦合层是和包覆层的材料相同或和包覆层的材料不同;和/或
该结构折射率n1、该透明材料折射率n2、该耦合层折射率n3满足n1>n2和n1>n3的关系。
31.如权利要求21所述的光伏设备,进一步包括一通孔,其位于透明材料中并且夹于电极层和平面反射层之间,其中该至少一通孔是一导电材料,并且该至少一通孔和电极层和平面反射层电连接。
32.制造一光伏设备的方法,该光伏设备包括复数个基本垂直于基板的结构,和结构之间的一个或多个凹槽,每个凹槽具有一个侧壁和一个底壁,每个凹槽底壁上具有一个平面反射层,并且每个凹槽被一透明材料填充,该方法包括:
使用半导体平板印刷技术在一抗蚀剂层产生开口图案,开口图案的位置和形状相对应于结构的位置和形状;
通过蚀刻基板形成结构和凹槽;
在底壁上沉积平面反射层,并且使得每个凹槽侧壁没有平面反射层;
沉积透明材料,使得每个凹槽被透明材料完全填充。
33.权利要求32的方法,进一步包括:
将该透明材料平坦化;
在基板上涂布抗蚀剂层;
显影该抗蚀剂层的图案;
沉积一个掩膜层;和
剥离该抗蚀剂层。
34.权利要求32的方法,还包括离子注入或沉积一个掺杂剂层。
35.权利要求32的方法,其中该结构和凹槽是由深蚀刻和后继的各向同性蚀刻形成。
36.权利要求32的方法,还包括使用打印涂覆方法涂覆抗蚀剂层,该打印涂覆方法包括:
将抗蚀剂层涂布到一个弹性材料辊轴;使辊轴在该表面滚动来转移抗蚀剂层到基板表面上,其中该表面是持平的或有纹理的。
37.权利要求36的方法,其中该辊轴是聚二甲基硅氧烷。
38.权利要求32的方法,还包括使用打印涂覆方法涂覆抗蚀剂层,该打印涂覆方法包括:
将抗蚀剂层涂布到一个弹性材料印章上;使印章盖在该表面来转移抗蚀剂层到基板表面上,其中该表面是持平的或有纹理的。
39.权利要求38的方法,其中该印章是聚二甲基硅氧烷。
40.一种将光转换为电能的方法包括:
对光伏设备光照,其中该光伏设备具有复数个基本垂直于基板的结构,和结构之间的一个或多个凹槽,每个凹槽具有一个侧壁和一个底壁,每个凹槽底壁上具有一个平面反射层;并且每个凹槽被一透明材料填充;
使用该平面反射层将光线反射到该结构上;
使用该结构吸收光线并将光转换为电流;
从该光伏设备引出电流。
41.权利要求40的方法,其中该电流从平面反射层引出。
42.一个光电检测器,包括如权利要求1所述光伏设备,其中该光电检测器当被光照时功能性地输出一电信号。
43.一个光检测方法包括:
对如权利要求1所述的光伏设备光照;
测量该光伏设备的电信号。
44.权利要求43的方法,其中该电信号是电流、电压、电导和/或电阻。
45.权利要求43的方法,其中一个偏置电压被加在该光伏设备的结构上。
CN201180066970.6A 2010-12-30 2011-12-29 基于纳米线阵列的太阳能接收装置 Expired - Fee Related CN103348486B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/982,269 2010-12-30
US12/982,269 US9299866B2 (en) 2010-12-30 2010-12-30 Nanowire array based solar energy harvesting device
PCT/US2011/067712 WO2012092417A1 (en) 2010-12-30 2011-12-29 Nano wire array based solar energy harvesting device

Publications (2)

Publication Number Publication Date
CN103348486A true CN103348486A (zh) 2013-10-09
CN103348486B CN103348486B (zh) 2017-04-26

Family

ID=46379920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180066970.6A Expired - Fee Related CN103348486B (zh) 2010-12-30 2011-12-29 基于纳米线阵列的太阳能接收装置

Country Status (5)

Country Link
US (2) US9299866B2 (zh)
KR (1) KR101537020B1 (zh)
CN (1) CN103348486B (zh)
TW (1) TW201246579A (zh)
WO (1) WO2012092417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960884A (zh) * 2017-04-26 2017-07-18 黄晓敏 点阵式光电探测器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150075599A1 (en) * 2013-09-19 2015-03-19 Zena Technologies, Inc. Pillar structured multijunction photovoltaic devices
US20160111562A1 (en) * 2008-09-04 2016-04-21 Zena Technologies, Inc. Multispectral and polarization-selective detector
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8580664B2 (en) * 2011-03-31 2013-11-12 Tokyo Electron Limited Method for forming ultra-shallow boron doping regions by solid phase diffusion
US8569158B2 (en) 2011-03-31 2013-10-29 Tokyo Electron Limited Method for forming ultra-shallow doping regions by solid phase diffusion
FR3004006B1 (fr) 2013-03-28 2016-10-07 Aledia Dispositif electroluminescent a nanofils actifs et nanofils de contact et procede de fabrication
CN103413859B (zh) * 2013-06-27 2016-03-16 友达光电股份有限公司 太阳能电池与其制作方法
US10158034B2 (en) 2014-06-27 2018-12-18 Intel Corporation Through silicon via based photovoltaic cell
KR102276913B1 (ko) 2014-08-12 2021-07-13 삼성전자주식회사 광 다이오드를 가지는 광전 변환 소자 및 광 신호 수신 유닛
US9899224B2 (en) 2015-03-03 2018-02-20 Tokyo Electron Limited Method of controlling solid phase diffusion of boron dopants to form ultra-shallow doping regions
KR101976935B1 (ko) * 2016-08-03 2019-08-28 한양대학교 산학협력단 전극 구조체 및 그 제조 방법
WO2018078642A1 (en) 2016-10-24 2018-05-03 Indian Institute Of Technology, Guwahati A microfluidic electrical energy harvester
KR101915891B1 (ko) * 2017-05-08 2018-11-06 재단법인대구경북과학기술원 혼돈 나노와이어
US11398355B2 (en) 2019-10-01 2022-07-26 Seoul National University R&Db Foundation Perovskite silicon tandem solar cell and method for manufacturing the same
KR102574926B1 (ko) * 2019-10-01 2023-09-06 서울대학교산학협력단 페로브스카이트 실리콘 탠덤 태양전지 및 이의 제조 방법
CN111933748A (zh) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 背入射式日盲紫外探测器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107439A1 (en) * 2002-06-12 2003-12-24 Rwe Schott Solar, Inc. Photovoltaic module with light reflecting backskin
US20080149944A1 (en) * 2006-12-22 2008-06-26 Qunano Ab Led with upstanding nanowire structure and method of producing such
US20090194160A1 (en) * 2008-02-03 2009-08-06 Alan Hap Chin Thin-film photovoltaic devices and related manufacturing methods
US20090260687A1 (en) * 2008-04-03 2009-10-22 Samsung Electronics Co., Ltd. Solar cell
CN100568516C (zh) * 2006-10-04 2009-12-09 国际商业机器公司 P-i-n半导体二极管及其形成方法
CN103201858A (zh) * 2010-11-12 2013-07-10 立那工业股份有限公司 具有反射镜和光学包覆层的柱体结构光伏设备

Family Cites Families (469)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4292512A (en) 1978-06-19 1981-09-29 Bell Telephone Laboratories, Incorporated Optical monitoring photodiode system
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
US4316048A (en) 1980-06-20 1982-02-16 International Business Machines Corporation Energy conversion
FR2495412A1 (fr) 1980-12-02 1982-06-04 Thomson Csf Systeme de transmission d'informations a modulation directe de la lumiere a liaison optique a bande passante etendue vers les frequences basses et le continu
US4394571A (en) 1981-05-18 1983-07-19 Honeywell Inc. Optically enhanced Schottky barrier IR detector
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4531055A (en) 1983-01-05 1985-07-23 The United States Of America As Represented By The Secretary Of The Air Force Self-guarding Schottky barrier infrared detector array
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
US4638484A (en) 1984-11-20 1987-01-20 Hughes Aircraft Company Solid state laser employing diamond having color centers as a laser active material
JPS61250605A (ja) 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp 導光路付きイメ−ジフアイバ
US4827335A (en) 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
JPH0721562B2 (ja) 1987-05-14 1995-03-08 凸版印刷株式会社 カラ−フイルタ
US4857973A (en) 1987-05-14 1989-08-15 The United States Of America As Represented By The Secretary Of The Air Force Silicon waveguide with monolithically integrated Schottky barrier photodetector
US4876586A (en) 1987-12-21 1989-10-24 Sangamo-Weston, Incorporated Grooved Schottky barrier photodiode for infrared sensing
US5071490A (en) 1988-03-18 1991-12-10 Sharp Kabushiki Kaisha Tandem stacked amorphous solar cell device
JPH0288498A (ja) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd ダイヤモンドレーザ結晶およびその作製方法
FR2633101B1 (fr) 1988-06-16 1992-02-07 Commissariat Energie Atomique Photodiode et matrice de photodiodes sur hgcdte et leurs procedes de fabrication
US5081049A (en) 1988-07-18 1992-01-14 Unisearch Limited Sculpted solar cell surfaces
US5311047A (en) 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US4990988A (en) 1989-06-09 1991-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laterally stacked Schottky diodes for infrared sensor applications
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
JP2809826B2 (ja) 1990-06-29 1998-10-15 三菱電機株式会社 半導体装置の製造方法
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US5391896A (en) 1992-09-02 1995-02-21 Midwest Research Institute Monolithic multi-color light emission/detection device
EP0611981B1 (de) 1993-02-17 1997-06-11 F. Hoffmann-La Roche Ag Optisches Bauelement
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5471515A (en) 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (ja) 1995-09-14 2000-08-21 日本電気株式会社 完全密着型イメージセンサ及びその製造方法
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
US5943463A (en) 1996-06-17 1999-08-24 Sharp Kabushiki Kaisha Color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (ja) 1996-06-27 1999-07-12 日本電気株式会社 固体撮像装置およびその製造方法
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
WO1998046344A1 (en) 1997-04-17 1998-10-22 De Beers Industrial Diamond Division (Proprietary) Limited Sintering process for diamond and diamond growth
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US6013871A (en) 1997-07-02 2000-01-11 Curtin; Lawrence F. Method of preparing a photovoltaic device
US5900623A (en) 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
KR100250448B1 (ko) 1997-11-06 2000-05-01 정선종 실리콘나이트라이드 막을 이용한 실리콘 나노 구조의형성 방법
US5880495A (en) 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
CA2319550A1 (en) 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
TW417383B (en) 1998-07-01 2001-01-01 Cmos Sensor Inc Silicon butting contact image sensor chip with line transfer and pixel readout (LTPR) structure
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
AU3511400A (en) 1999-03-01 2000-09-21 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP4242510B2 (ja) 1999-05-06 2009-03-25 オリンパス株式会社 固体撮像素子およびその駆動方法
US20020071468A1 (en) 1999-09-27 2002-06-13 Sandstrom Richard L. Injection seeded F2 laser with pre-injection filter
JP3706527B2 (ja) 1999-06-30 2005-10-12 Hoya株式会社 電子線描画用マスクブランクス、電子線描画用マスクおよび電子線描画用マスクの製造方法
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
JP2002057359A (ja) 2000-06-01 2002-02-22 Sharp Corp 積層型太陽電池
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US7132668B2 (en) 2000-06-26 2006-11-07 University Of Maryland MgZnO based UV detectors
WO2002004999A2 (en) 2000-07-10 2002-01-17 Massachusetts Institute Of Technology Graded index waveguide
WO2002013958A2 (en) 2000-08-11 2002-02-21 General Electric Company High pressure and high temperature production of diamonds
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
KR100862131B1 (ko) 2000-08-22 2008-10-09 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 반도체 나노와이어 제조 방법
JP2002151715A (ja) 2000-11-08 2002-05-24 Sharp Corp 薄膜太陽電池
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
US7038183B2 (en) 2000-12-21 2006-05-02 Stmicroelectronics N.V. Image sensor device comprising central locking
KR100831291B1 (ko) 2001-01-31 2008-05-22 신에쯔 한도타이 가부시키가이샤 태양전지 및 태양전지의 제조방법
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
JP3809342B2 (ja) 2001-02-13 2006-08-16 喜萬 中山 受発光プローブ及び受発光プローブ装置
WO2002069623A1 (fr) 2001-02-28 2002-09-06 Sony Corporation Dispositif d'entree d'images
EP1374309A1 (en) 2001-03-30 2004-01-02 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
US7109517B2 (en) * 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
FR2832995B1 (fr) 2001-12-04 2004-02-27 Thales Sa Procede de croissance catalytique de nanotubes ou nanofibres comprenant une barriere de diffusion de type alliage nisi
US6987258B2 (en) 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
US6720594B2 (en) 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
US7426965B2 (en) 2002-01-14 2008-09-23 China Petroleum & Chemical Corporation Power transmission unit of an impactor, a hydraulic jet impactor and the application thereof
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US7192533B2 (en) 2002-03-28 2007-03-20 Koninklijke Philips Electronics N.V. Method of manufacturing nanowires and electronic device
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
FI20020964A0 (fi) 2002-05-22 2002-05-22 Nokia Corp Menetelmä satelliittitietoliikennejärjestelmän ohjaamiseksi, ajoitusyksikkö ja ajoitusyksikön ohjausyksikkö
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
US7253017B1 (en) 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
EP1516368B1 (fr) 2002-06-25 2008-01-23 Commissariat A L'energie Atomique Imageur
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US6794671B2 (en) 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
WO2004010552A1 (en) 2002-07-19 2004-01-29 President And Fellows Of Harvard College Nanoscale coherent optical components
US6781171B2 (en) 2002-07-19 2004-08-24 Dongbu Electronics Co., Ltd. Pinned photodiode for a CMOS image sensor and fabricating method thereof
EP2399970A3 (en) 2002-09-05 2012-04-18 Nanosys, Inc. Nanocomposites
JP3672900B2 (ja) 2002-09-11 2005-07-20 松下電器産業株式会社 パターン形成方法
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
JP2004128060A (ja) 2002-09-30 2004-04-22 Canon Inc シリコン膜の成長方法、太陽電池の製造方法、半導体基板及び太陽電池
WO2004031746A1 (en) 2002-10-02 2004-04-15 Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
DE60333715D1 (de) 2002-10-30 2010-09-23 Hitachi Ltd Verfahren zur Herstellung funktioneller Substrate, die kolumnare Mikrosäulen aufweisen
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
WO2004054001A2 (en) 2002-12-09 2004-06-24 Quantum Semiconductor Llc Cmos image sensor
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
FR2850882B1 (fr) 2003-02-11 2005-03-18 Eurecat Sa Passivation de catalyseur d'hydroconversion sulfure
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
JP4144378B2 (ja) 2003-02-28 2008-09-03 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7339110B1 (en) 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) * 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
US20070025504A1 (en) 2003-06-20 2007-02-01 Tumer Tumay O System for molecular imaging
US7265037B2 (en) 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US7416911B2 (en) 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
DE102004031950A1 (de) 2003-06-26 2005-02-10 Kyocera Corp. Halbleiter/Elektroden-Kontaktstruktur und eine solche verwendendes Halbleiterbauteil
US7170001B2 (en) * 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) * 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
US6927432B2 (en) 2003-08-13 2005-08-09 Motorola, Inc. Vertically integrated photosensor for CMOS imagers
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7019402B2 (en) 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
JP2005142268A (ja) 2003-11-05 2005-06-02 Canon Inc 光起電力素子およびその製造方法
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (de) 2003-12-18 2005-06-02 Tesa Ag Optischer Datenspeicher
KR20060121225A (ko) 2003-12-22 2006-11-28 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 반도체 나노와이어의 세트를 제조하는 방법, 전기 장치 및그 제조 방법, 광 유도 에칭을 위한 장치
US20070196239A1 (en) 2003-12-22 2007-08-23 Koninklijke Philips Electronics N.V. Optical nanowire biosensor based on energy transfer
TW200527668A (en) 2003-12-23 2005-08-16 Koninkl Philips Electronics Nv Method of manufacturing and semiconductor device comprising a pn-heterojunction
KR20060109956A (ko) 2003-12-23 2006-10-23 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 이종접합을 포함하는 반도체 장치
US7647695B2 (en) 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
US7052927B1 (en) 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (ja) 2004-02-03 2005-09-15 Sharp Corp 太陽電池
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
JP2005251804A (ja) 2004-03-01 2005-09-15 Canon Inc 撮像素子
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
TWI312583B (en) 2004-03-18 2009-07-21 Phoseon Technology Inc Micro-reflectors on a substrate for high-density led array
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
TWI244159B (en) 2004-04-16 2005-11-21 Ind Tech Res Inst Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowire
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
CN102351169B (zh) 2004-04-30 2013-11-27 纳米系统公司 纳米线生长和获取的体系和方法
JP4449565B2 (ja) 2004-05-12 2010-04-14 ソニー株式会社 物理量分布検知の半導体装置
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
US7557367B2 (en) 2004-06-04 2009-07-07 The Board Of Trustees Of The University Of Illinois Stretchable semiconductor elements and stretchable electrical circuits
JP2006013403A (ja) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール、その製造方法およびその修復方法
US7427798B2 (en) 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
FR2873492B1 (fr) 2004-07-21 2006-11-24 Commissariat Energie Atomique Nanocomposite photoactif et son procede de fabrication
WO2006013890A1 (ja) 2004-08-04 2006-02-09 Matsushita Electric Industrial Co., Ltd. コヒーレント光源
US20060027071A1 (en) 2004-08-06 2006-02-09 Barnett Ronald J Tensegrity musical structures
US7713849B2 (en) 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
CN102759466A (zh) 2004-09-15 2012-10-31 英特基因有限公司 微流体装置
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (de) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Strahlungsdetektor
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100745595B1 (ko) 2004-11-29 2007-08-02 삼성전자주식회사 이미지 센서의 마이크로 렌즈 및 그 형성 방법
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7342268B2 (en) 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
US8115093B2 (en) 2005-02-15 2012-02-14 General Electric Company Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same
JP2006261235A (ja) 2005-03-15 2006-09-28 Toshiba Corp 半導体装置
KR100688542B1 (ko) 2005-03-28 2007-03-02 삼성전자주식회사 수직형 나노튜브 반도체소자 및 그 제조방법
WO2006110341A2 (en) 2005-04-01 2006-10-19 North Carolina State University Nano-structured photovoltaic solar cells and related methods
US7326915B2 (en) 2005-04-01 2008-02-05 Em4, Inc. Wavelength stabilization for broadband light sources
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
KR101145146B1 (ko) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 박막트랜지스터와 그 제조방법
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TWI429066B (zh) 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (de) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Antriebsvorrichtung zum linearen Bewegen von länglichen Körpern
KR20080036995A (ko) 2005-07-22 2008-04-29 니폰 제온 가부시키가이샤 그리드 편광자 및 그 제조법
DE602005005985T2 (de) 2005-07-29 2009-05-28 Interuniversitair Microelektronica Centrum Wellenlängenempfindlicher Photondetektor mit länglichen Nanostrukturen
US7683407B2 (en) 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (ko) 2005-08-14 2007-08-22 삼성전자주식회사 희토류 금속이 도핑된 투명 전도성 아연산화물의나노구조를 사용한 탑에미트형 질화물계 백색광 발광소자및 그 제조방법
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
EP1949451A4 (en) 2005-08-22 2016-07-20 Q1 Nanosystems Inc NANOSTRUCTURE AND THIS IMPLEMENTING PHOTOVOLTAIC CELL
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
WO2007120175A2 (en) 2005-08-24 2007-10-25 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
US7649665B2 (en) 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7634162B2 (en) 2005-08-24 2009-12-15 The Trustees Of Boston College Apparatus and methods for nanolithography using nanoscale optics
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
EP1933817B1 (en) 2005-09-13 2014-03-12 Affymetrix, Inc. Encoded microparticles
US7608823B2 (en) 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
US7585474B2 (en) 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN1956223A (zh) 2005-10-26 2007-05-02 松下电器产业株式会社 半导体装置及其制造方法
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
EP1952304A4 (en) 2005-11-08 2014-10-08 Gen Atomics DEVICE AND METHOD FOR USE IN FLASH DETECTION
JP2007134562A (ja) 2005-11-11 2007-05-31 Sharp Corp 固体撮像装置およびそれの製造方法
US7728277B2 (en) 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US20070107773A1 (en) 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US7960251B2 (en) 2005-12-01 2011-06-14 Samsung Electronics Co., Ltd. Method for producing nanowires using a porous template
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
JP2007158119A (ja) 2005-12-06 2007-06-21 Canon Inc ナノワイヤを有する電気素子およびその製造方法並びに電気素子集合体
JP2007184566A (ja) 2005-12-06 2007-07-19 Canon Inc 半導体ナノワイヤを用いた半導体素子、それを用いた表示装置及び撮像装置
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (ja) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 画像処理回路及び画像処理方法
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
KR100767629B1 (ko) 2006-01-05 2007-10-17 한국과학기술원 높은 광감도를 갖는 cmos 이미지 센서 및 이의 제조방법
JP4952227B2 (ja) 2006-01-06 2012-06-13 富士通株式会社 微粒子サイズ選別装置
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007201091A (ja) 2006-01-25 2007-08-09 Fujifilm Corp 固体撮像素子の製造方法
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
AU2007313096B2 (en) 2006-03-10 2011-11-10 Unm Rainforest Innovations Pulsed growth of GaN nanowires and applications in group III nitride semiconductor substrate materials and devices
TW200742425A (en) 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
KR20070101917A (ko) 2006-04-12 2007-10-18 엘지전자 주식회사 박막형 태양전지와 그의 제조방법
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US8599301B2 (en) 2006-04-17 2013-12-03 Omnivision Technologies, Inc. Arrayed imaging systems having improved alignment and associated methods
US7582857B2 (en) 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
TWI297223B (en) 2006-04-25 2008-05-21 Gigno Technology Co Ltd Package module of light emitting diode
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
JP5060740B2 (ja) 2006-05-26 2012-10-31 シャープ株式会社 集積回路装置およびその製造方法、ならびに表示装置
WO2008057629A2 (en) 2006-06-05 2008-05-15 The Board Of Trustees Of The University Of Illinois Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
US20080044984A1 (en) 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
JP4321568B2 (ja) 2006-08-29 2009-08-26 ソニー株式会社 固体撮像装置および撮像装置
JP2008066497A (ja) 2006-09-07 2008-03-21 Sony Corp 受光装置および受光装置の製造方法
CN101140637A (zh) 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 电子订单转工单的系统及方法
JP2010503981A (ja) 2006-09-19 2010-02-04 クナノ アーベー ナノスケール電界効果トランジスタの構体
US7361989B1 (en) 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
JP4296193B2 (ja) 2006-09-29 2009-07-15 株式会社東芝 光デバイス
JP5116277B2 (ja) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
KR100772114B1 (ko) 2006-09-29 2007-11-01 주식회사 하이닉스반도체 반도체 소자의 제조방법
KR101545219B1 (ko) 2006-10-12 2015-08-18 캄브리오스 테크놀로지즈 코포레이션 나노와이어 기반의 투명 도전체 및 그의 응용
WO2008147431A2 (en) 2006-10-12 2008-12-04 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
US7427525B2 (en) 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
KR101232179B1 (ko) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 박막 패턴의 제조장치 및 방법
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR100993056B1 (ko) 2006-12-05 2010-11-08 주식회사 엘지화학 프리 패턴된 기판을 이용한 고해상도 잉크젯 인쇄 방법 및이 방법에 의해 제조된 도전성 기판
JP4795214B2 (ja) 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド ワイヤーグリッド偏光子及びその製造方法
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
EP2126986B1 (en) 2006-12-22 2019-09-18 QuNano AB Led with upstanding nanowire structure and method of producing such
US8208776B2 (en) 2007-01-10 2012-06-26 Nec Corporation Optical control device
KR100830587B1 (ko) 2007-01-10 2008-05-21 삼성전자주식회사 이미지 센서 및 이를 이용한 이미지 표시 방법
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
WO2008094517A1 (en) 2007-01-30 2008-08-07 Solasta, Inc. Photovoltaic cell and method of making thereof
US20090104160A1 (en) 2007-02-01 2009-04-23 Moraga Biotechnology Corporation Mobilization of Stem Cells After Trauma and Methods Therefor
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
KR20080079058A (ko) 2007-02-26 2008-08-29 엘지전자 주식회사 박막형 태양전지 모듈과 그의 제조방법
US8440997B2 (en) 2007-02-27 2013-05-14 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
WO2008112764A1 (en) 2007-03-12 2008-09-18 Nantero, Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (sv) 2007-03-27 2010-02-02 Qunano Ab Nanostruktur för laddningslagring
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) * 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
EP2143141A4 (en) 2007-04-18 2011-04-13 Invisage Technologies Inc MATERIAL SYSTEMS AND METHOD FOR OPTOELECTRONIC ARRANGEMENTS
ATE545036T1 (de) 2007-04-19 2012-02-15 Oerlikon Solar Ag Testausrüstung für automatisierte qualitätskontrolle von dünnschicht-soalrmodulen
US7719688B2 (en) 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
CN101675522B (zh) 2007-05-07 2012-08-29 Nxp股份有限公司 光敏器件以及制造光敏器件的方法
TW200915551A (en) 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (ja) 2007-05-15 2008-11-27 Sony Corp 固体撮像装置とその製造方法および撮像装置
KR100901236B1 (ko) 2007-05-16 2009-06-08 주식회사 동부하이텍 이미지센서 및 그 제조방법
KR101426941B1 (ko) 2007-05-30 2014-08-06 주성엔지니어링(주) 태양전지 및 그의 제조방법
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
KR101547711B1 (ko) 2007-06-19 2015-08-26 큐나노 에이비 나노와이어-기반 태양 전지 구조
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
US7586077B2 (en) 2007-07-18 2009-09-08 Mesa Imaging Ag Reference pixel array with varying sensitivities for time of flight (TOF) sensor
EP2171761A4 (en) 2007-07-19 2011-11-02 California Inst Of Techn STRUCTURES OF ORDERED NETWORKS OF SEMICONDUCTORS
US8154127B1 (en) 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US8090225B2 (en) 2007-08-01 2012-01-03 Silverbrook Research Pty Ltd Interactive handheld scanner
JP5285880B2 (ja) 2007-08-31 2013-09-11 シャープ株式会社 光電変換素子、光電変換素子接続体および光電変換モジュール
WO2009030980A2 (en) 2007-09-06 2009-03-12 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
WO2009042901A1 (en) 2007-09-28 2009-04-02 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
KR101608953B1 (ko) 2007-11-09 2016-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 광전 변환 장치 및 그 제조 방법
FR2923602B1 (fr) 2007-11-12 2009-11-20 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a thermometre a nanofil et procede de realisation
FR2923651A1 (fr) 2007-11-13 2009-05-15 Commissariat Energie Atomique Procede de realisation d'une jonction pn dans un nanofil, et d'un nanofil avec au moins une jonction pn.
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
WO2009067668A1 (en) 2007-11-21 2009-05-28 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (ko) 2007-12-11 2014-04-16 삼성전자주식회사 Cmos 이미지 센서
KR101000064B1 (ko) 2007-12-18 2010-12-10 엘지전자 주식회사 이종접합 태양전지 및 그 제조방법
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
US9009573B2 (en) 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
JP2011512670A (ja) 2008-02-15 2011-04-21 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 価数補償吸着層領域を備える光検出器およびその製造方法
US20090266418A1 (en) 2008-02-18 2009-10-29 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
CN101527327B (zh) 2008-03-07 2012-09-19 清华大学 太阳能电池
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
WO2009114768A1 (en) 2008-03-14 2009-09-17 Albonia Innovative Technologies Ltd. Electrostatic desalination and water purification
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
KR101448152B1 (ko) 2008-03-26 2014-10-07 삼성전자주식회사 수직 포토게이트를 구비한 거리측정 센서 및 그를 구비한입체 컬러 이미지 센서
JP4770857B2 (ja) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 半導体装置
CN102084467A (zh) 2008-04-14 2011-06-01 班德加普工程有限公司 制作纳米线阵列的方法
KR20090109980A (ko) 2008-04-17 2009-10-21 한국과학기술연구원 가시광 대역 반도체 나노선 광센서 및 이의 제조 방법
WO2009135078A2 (en) 2008-04-30 2009-11-05 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
KR101435519B1 (ko) 2008-07-24 2014-08-29 삼성전자주식회사 광 포커싱 구조를 가진 이미지 센서
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
US8198796B2 (en) 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
US8198706B2 (en) 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
JP2010040672A (ja) 2008-08-01 2010-02-18 Oki Semiconductor Co Ltd 半導体装置およびその製造方法
CN102171836B (zh) 2008-08-14 2013-12-11 布鲁克哈文科学协会 结构化柱电极
US20100139747A1 (en) * 2008-08-28 2010-06-10 The Penn State Research Foundation Single-crystal nanowires and liquid junction solar cells
CN102144298B (zh) 2008-09-04 2013-07-31 昆南诺股份有限公司 纳米结构的光电二极管
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US20130112256A1 (en) 2011-11-03 2013-05-09 Young-June Yu Vertical pillar structured photovoltaic devices with wavelength-selective mirrors
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US7646943B1 (en) 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
EP2332175B1 (en) 2008-09-09 2015-08-26 Vanguard Solar, Inc. Solar cells and photodetectors with semiconducting nanostructures
KR101143706B1 (ko) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 나노전자 소자
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
WO2010039631A1 (en) 2008-09-30 2010-04-08 The Regents Of The University Of California Photonic crystal solar cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) * 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) * 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
US20100104494A1 (en) 2008-10-24 2010-04-29 Meng Yu-Fei Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure/High-Temperature Annealing
FR2937791B1 (fr) 2008-10-24 2010-11-26 Thales Sa Dispositif d'imagerie polarimetrique optimise par rapport au contraste de polarisation
WO2010062644A2 (en) 2008-10-28 2010-06-03 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
KR20110098910A (ko) * 2008-11-14 2011-09-02 밴드갭 엔지니어링, 인크. 나노 구조 소자
JP5380546B2 (ja) 2008-11-26 2014-01-08 マイクロリンク デバイセズ, インク. エミッタ層に接触する裏面バイアを備えた太陽電池
KR20100063536A (ko) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 발광 장치 및 이 발광 장치를 광원으로 사용하는 표시 장치
US20110272014A1 (en) 2008-12-19 2011-11-10 Mathai Sagi V Photovoltaic Structure And Method Of Fabication Employing Nanowire In Stub
KR20100079058A (ko) 2008-12-30 2010-07-08 주식회사 동부하이텍 이미지센서 및 그 제조방법
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
TWI425643B (zh) 2009-03-31 2014-02-01 Sony Corp 固態攝像裝置及其製造方法、攝像裝置和抗反射結構之製造方法
JP2012523365A (ja) 2009-04-09 2012-10-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光起電力セル用の導体中に使用されるガラス組成物
WO2010119916A1 (en) 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
WO2010126519A1 (en) 2009-04-30 2010-11-04 Hewlett-Packard Development Company Photonic device and method of making same
US20100282314A1 (en) 2009-05-06 2010-11-11 Thinsilicion Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US8809672B2 (en) 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (ja) 2009-05-29 2014-05-28 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
US8211735B2 (en) * 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
KR101245037B1 (ko) 2009-06-10 2013-03-18 씬실리콘 코포레이션 반도체 다층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법
US8823848B2 (en) 2009-06-11 2014-09-02 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
KR101139458B1 (ko) 2009-06-18 2012-04-30 엘지전자 주식회사 태양전지 및 그 제조방법
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US8319309B2 (en) 2009-08-28 2012-11-27 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing of the same
KR101067114B1 (ko) 2009-09-08 2011-09-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
KR101058593B1 (ko) 2009-09-08 2011-08-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
KR101051578B1 (ko) 2009-09-08 2011-07-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
US20110084212A1 (en) 2009-09-22 2011-04-14 Irvine Sensors Corporation Multi-layer photon counting electronic module
WO2011047359A2 (en) 2009-10-16 2011-04-21 Cornell University Method and apparatus including nanowire structure
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
US20120006390A1 (en) 2009-12-08 2012-01-12 Yijie Huo Nano-wire solar cell or detector
WO2011074457A1 (ja) 2009-12-15 2011-06-23 ソニー株式会社 光電変換素子および光電変換素子の製造方法
JP5608384B2 (ja) 2010-02-05 2014-10-15 東京エレクトロン株式会社 半導体装置の製造方法及びプラズマエッチング装置
US8816324B2 (en) 2010-02-25 2014-08-26 National University Corporation Hokkaido University Semiconductor device and method for manufacturing semiconductor device
US9263612B2 (en) 2010-03-23 2016-02-16 California Institute Of Technology Heterojunction wire array solar cells
EP2556542A1 (en) 2010-04-09 2013-02-13 Platzer-Björkman, Charlotte Thin film photovoltaic solar cells
US8194197B2 (en) * 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
TWI409963B (zh) 2010-05-07 2013-09-21 Huang Chung Cheng 同軸奈米線結構的太陽能電池
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication
US8878055B2 (en) 2010-08-09 2014-11-04 International Business Machines Corporation Efficient nanoscale solar cell and fabrication method
US9231133B2 (en) 2010-09-10 2016-01-05 International Business Machines Corporation Nanowires formed by employing solder nanodots
WO2012043736A1 (ja) 2010-09-30 2012-04-05 三菱マテリアル株式会社 太陽電池の反射防止膜用組成物、太陽電池の反射防止膜、太陽電池の反射防止膜の製造方法、及び太陽電池
WO2012088481A2 (en) 2010-12-22 2012-06-28 California Institute Of Technology Heterojunction microwire array semiconductor devices
SG185248A1 (en) 2011-05-05 2012-11-29 Agency Science Tech & Res A photodetector and a method of forming the same
US20120318336A1 (en) 2011-06-17 2012-12-20 International Business Machines Corporation Contact for silicon heterojunction solar cells
US9331220B2 (en) 2011-06-30 2016-05-03 International Business Machines Corporation Three-dimensional conductive electrode for solar cell
US9406824B2 (en) 2011-11-23 2016-08-02 Quswami, Inc. Nanopillar tunneling photovoltaic cell
US20130220406A1 (en) 2012-02-27 2013-08-29 Sharp Kabushiki Kaisha Vertical junction solar cell structure and method
JP6353845B2 (ja) 2012-10-26 2018-07-04 グロ アーベーGlo Ab ナノワイヤled構造の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107439A1 (en) * 2002-06-12 2003-12-24 Rwe Schott Solar, Inc. Photovoltaic module with light reflecting backskin
CN100568516C (zh) * 2006-10-04 2009-12-09 国际商业机器公司 P-i-n半导体二极管及其形成方法
US20080149944A1 (en) * 2006-12-22 2008-06-26 Qunano Ab Led with upstanding nanowire structure and method of producing such
US20090194160A1 (en) * 2008-02-03 2009-08-06 Alan Hap Chin Thin-film photovoltaic devices and related manufacturing methods
US20090260687A1 (en) * 2008-04-03 2009-10-22 Samsung Electronics Co., Ltd. Solar cell
CN103201858A (zh) * 2010-11-12 2013-07-10 立那工业股份有限公司 具有反射镜和光学包覆层的柱体结构光伏设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960884A (zh) * 2017-04-26 2017-07-18 黄晓敏 点阵式光电探测器

Also Published As

Publication number Publication date
CN103348486B (zh) 2017-04-26
TW201246579A (en) 2012-11-16
US20160211394A1 (en) 2016-07-21
KR20130113512A (ko) 2013-10-15
US20120168613A1 (en) 2012-07-05
US9299866B2 (en) 2016-03-29
WO2012092417A1 (en) 2012-07-05
KR101537020B1 (ko) 2015-07-16

Similar Documents

Publication Publication Date Title
CN103201858B (zh) 具有反射镜和光学包覆层的柱体结构光伏设备
CN103348486A (zh) 基于纳米线阵列的太阳能接收装置
US20130112256A1 (en) Vertical pillar structured photovoltaic devices with wavelength-selective mirrors
CN105814695A (zh) 纳米结构多结光伏器件
KR101539047B1 (ko) 광기전력 변환 소자 및 그의 제조방법
CN101517740B (zh) 非平面太阳能电池的单片集成电路
US7339110B1 (en) Solar cell and method of manufacture
CN103077978B (zh) 太阳能电池结构、光生伏打模块及对应的工艺
US20070232057A1 (en) Method for forming thin film photovoltaic interconnects using self-aligned process
CN103531654A (zh) 多结光伏装置
CN103855236A (zh) 多结多头光伏器件
TW201424017A (zh) 具有高轉換效率之光伏打元件
CN109314152A (zh) 太阳能电池及其制造方法以及太阳能电池模块
CN101651163A (zh) 薄膜型太阳能电池及其制造方法
US20160020347A1 (en) Bifacial photovoltaic devices
JP2005079143A (ja) 結晶シリコンおよびこれを用いた光電変換装置
KR101397024B1 (ko) 광전소자의 제조방법
KR20190116079A (ko) 태양전지 및 그 제조 방법
CN101969081A (zh) 光电二极管装置的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170426

Termination date: 20171229