CN103238268A - 协调调光器的兼容功能 - Google Patents

协调调光器的兼容功能 Download PDF

Info

Publication number
CN103238268A
CN103238268A CN2011800376688A CN201180037668A CN103238268A CN 103238268 A CN103238268 A CN 103238268A CN 2011800376688 A CN2011800376688 A CN 2011800376688A CN 201180037668 A CN201180037668 A CN 201180037668A CN 103238268 A CN103238268 A CN 103238268A
Authority
CN
China
Prior art keywords
dimmer
voltage
state
threshold value
dimmer voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800376688A
Other languages
English (en)
Other versions
CN103238268B (zh
Inventor
约翰·L·梅兰松
埃里克·J·金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Cirrus Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cirrus Logic Inc filed Critical Cirrus Logic Inc
Publication of CN103238268A publication Critical patent/CN103238268A/zh
Application granted granted Critical
Publication of CN103238268B publication Critical patent/CN103238268B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

一种系统和方法包括控制器,其配置成协调(i)调光器电流的低阻抗路径;(ii)开关模式功率转换的控制以及(iii)不活动状态,以例如允许调光器在交流(AC)电源电压的各个周期正常运行。在至少一个实施方式中,当调光器以调光器的输入设置所指示的适当相位角导通时,调光器正常运行,并且在导通的同时,避免过早地重置。在至少一个实施方式中,通过协调功能(i)、(ii)以及(iii),控制器控制与三端双向可控硅开关类型的调光器兼容的功率转换器系统。在至少一个实施方式中,响应于提供给功率转换器系统的由相位切割的整流输入电压所指示的特定调光水平,控制器协调功能(i)、(ii)以及(iii)。

Description

协调调光器的兼容功能
相关申请的交叉引用
根据35U.S.C.§119(e)以及37C.F.R.§1.78,本申请要求于2010年7月30日提交的美国临时申请第61/369,202号,题为“LED LightingMethods and Apparatuses”的优先权,通过引用将其全部内容结合于本文中。根据35U.S.C.§120以及37C.F.R.§1.78,本申请还要求于2011年7月29日提交的美国专利申请第13/194,808号,题为“CoordinatedDimmer Compatibility Functions”的优先权,通过引用将其全部内容结合于本文中。
技术领域
本发明总体上涉及电子领域,更具体地,涉及用于协调调光器兼容功能的方法和系统。
背景技术
电子系统使用调光器来修改传输给负载的输出功率。例如,在照明系统中,调光器将输入信号提供给照明系统,并且负载包括一个或多个光源,例如,一个或多个发光二极管(LED)或一个或多个荧光光源。调光器也可用于修改传输给其他类型的负载的功率,例如,一个或多个电机或一个或多个便携式电源。输入信号表示调光水平,其使照明系统调节传输给灯的功率,并且因此根据调光水平,提高或减小灯的亮度。具有多种不同类型的调光器。通常,调光器使用数字或模拟编码的调光信号,其表示所需要的调光水平。例如,某些模拟型调光器使用三端双向可控硅开关(“三端双向可控硅开关”)器件,来调制交流(“AC”)电源电压的每个周期的相位角。电源电压“调制相位角”通常还称为“截断”或“相位切割”电源电压。相位切割电源电压,促使提供给照明系统的电压快速地“打开”和“关闭”,从而控制传输给照明系统的平均功率。
图1描述了包括前沿调光器102的照明系统100。图2描述了与照明系统100相关联的示例性电压曲线200。参看图1和2,照明系统100从电压电源104中接收交流电源电压VSUPPLY。由电压波形202表示的电源电压VSUPPLY是例如美国的标称60Hz/110V线电压,或者欧洲的标称50Hz/220V线电压。前沿调光器相位切割电源电压VSUPPLY的每半个周期的前沿,例如,前沿204和206。由于电源电压VSUPPLY的每半个周期为电源电压VSUPPLY的180度,所以前沿调光器以大于0度并且小于180度的角度相位切割电源电压VSUPPLY。通常,前沿调光器102的电压相位切割范围为10度到170度。前沿调光器102可为任何类型的前沿调光器,例如,从Lutron Electronics,Inc.of Coopersberg,PA("Lutron")中可购买到的三端双向可控硅开关类型的前沿调光器。在2010年8月17日提交的题为Dimmer Output Emulation,发明人为John L.Melanson的美国专利申请号12/858,164的背景部分中,描述了三端双向可控硅开关类型的前沿调光器。
理想地,通过调制调光器输出电压VΦ_DIM的相位角,使得对于电源电压VSUPPLY的每半个周期,前沿调光器102有效地在TOFF时间段内,关闭恒流灯122,并且在TON时间段内,打开恒流灯。因此,理想地,调光器102根据调光器输出电压VΦ_DIM,有效地控制提供给恒流灯122的平均功率。然而,在多种情况下,前沿调光器102未理想地进行操作。例如,当恒流灯122汲取少量电流iDIM时,在电源电压VSUPPLY达到大致零伏之前,电流iDIM会过早地降低到保持电流值HC之下。当电流iDIM过早地降低到保持电流值HC之下时,三端双向可控硅开关类型的前沿调光器102过早地重置,即,过早地断开(即,关闭和停止导通),并且调光器电压VΦ_DIM会过早地降到零。如果调光器102在时间t3处重置,并且调光器电压VΦ_DIM在时间t3处降为0V,那么会发生示例性的过早重置。当调光器电压VΦ_DIM过早地降为零时,调光器电压VΦ_DIM不反映由可变电阻器114的电阻值所设定的预期调光值。交流二极管(“二端交流开关”)119、电容器118、电阻器116以及可变电阻器114形成重置三端双向可控硅开关106的定时电路116。此外,电流iDIM低于或接近保持电流值HC时,前沿调光器102的三端双向可控硅开关106会在电源电压VSUPPLY的半周期中,可重置并且然后多次导通,即,多次地断开(未导通)、重新接合(导通)、断开(未导通)并且反复如此。在电源电压VSUPPLY的单个半周期中,当调光器102重置并且然后一次或多次导通电源电压VSUPPLY时,发生“重置导通”顺序。
照明系统100包括电阻器、电感器、电容器(RLC)网络124,用于将调光器电压VΦ_DIM转换成大致恒定的电压,并且因此,以指定的调光器相位角将大致恒定的电流iOUT提供给恒流灯122。虽然实施时比较简单,但是RLC网络124效率较低,这是因为例如基于电阻器的功率损耗。此外,RLC网络124提供给调光器102的电抗负载可促使三端双向可控硅开关发生故障。
发明内容
在至少一个实施方式中,至功率转换器系统的调光器电压包括三种状态,所述状态源自:
A、调光器的调光器电压的大致零伏相交叉直至调光器电压的相位切割的前沿;
B、状态A的结束直至传输给负载的能量足以满足至少一个能量传输参数;以及
C、状态B的结束直至状态A的开始。
在本发明的一个实施方式中,一种设备包括控制器。所述控制器被配置成:
对于状态A,为调光器的调光器电流启用低阻抗路径,其中,低阻抗路径的阻抗足够低来保持调光器稳定的相位角;
对于状态B,
启用调光器电压的开关模式功率转换的控制;以及
控制开关模式功率转换,以将调光器电流保持为高于电流阈值;以及
对于状态C,进入不活动的状态,其中,在不活动的状态期间,低阻抗路径以及模式功率转换的控制被禁用。
在本发明的另一个实施方式中,一种方法包括:
对于状态A,为调光器的调光器电流启用低阻抗路径,其中,低阻抗路径的阻抗足够低来保持调光器稳定的相位角;
对于状态B:
启用调光器电压的开关模式功率转换的控制;以及
控制开关模式功率转换,以将调光器电流保持在阈值之上;以及
对于状态C,进入不活动的状态,其中,在不活动的状态期间,低阻抗路径以及模式功率转换的控制被禁用。
在本发明的又一个实施方式中,一种设备包括:
对于状态A,用于为调光器的调光器电流启用低阻抗路径的装置,其中,低阻抗路径的阻抗足够低来保持调光器稳定的相位角;
对于状态B:
用于启用调光器电压的开关模式功率转换的控制的装置;以及
用于控制开关模式功率转换以将调光器电流保持为高于阈值的装置;以及
对于状态C,用于进入不活动的状态的装置,其中,在不活动的状态期间,低阻抗路径以及模式功率转换的控制被禁用。
附图说明
通过参照附图,可更好地理解本发明,并且对于本领域的技术人员而言,其多个目标、特征以及优点是显而易见的。在这几幅图中使用相同的参考标号来表示相似或类似的部件。
图1(标记为现有技术)描述了包括前沿调光器的照明系统;
图2(标记为现有技术)描述了与图1的照明系统相关的示例性电压曲线;
图3描述了包括控制器的电子系统,该控制器通过协调粘连(glue)电路、调光器仿真器以及开关模式功率转换控制器的运行,来控制功率转换器系统;
图4描述了表示图3的电子系统的一个实施方式的电子系统;
图5描述了图4的电子系统的控制器运行协调工序;
图6描述了使用图5的控制器运行协调工序时,图4的电子系统中的示例性信号;
图7描述了图4的电子系统的不活动状态控制器的实施方式。
具体实施方式
在至少一个实施方式中,一种系统和方法包括控制器,其被配置成协调(i)调光器电流的低阻抗路径;(ii)开关模式功率转换的控制;以及(iii)不活动状态,以例如允许调光器在交流(AC)电源电压的各个周期正常运行的同时,降低调光器电流。在至少一个实施方式中,当调光器以调光器输入设定所指示的适当相位角导通并且在导通的同时,避免过早地重置时,调光器正常运行。在至少一个实施方式中,通过协调运行(i)、(ii)以及(iii),控制器控制与三端双向可控硅开关类型的调光器兼容的功率转换器系统。在至少一个实施方式中,响应于由提供给功率转换器系统的相位切割的整流输入电压所指示的特定调光水平,控制器协调运行(i)、(ii)以及(iii)。在至少一个实施方式中,调光水平改变时,控制器调节运行(i)、(ii)以及(iii)的协调,从而功率转换器系统针对每个调光水平为负载提供恒流。在至少一个实施方式中,在控制器的控制下进行操作的系统减少基于电阻器的功率损耗,同时提供在三端双向可控硅开关类型的调光器和接收调光水平的恒流的负载之间的兼容性。
在至少一个实施方式中,调光器生成电压,该电压被整流并且作为调光器输出电压被提供给功率转换器系统。调光器输出电压包括三种状态。在至少一个实施方式中,这三种状态具有顺序性并且未重叠,即,这三种状态一个接一个地发生并且时间上不重叠。在至少一个实施方式中,到功率转换器系统的调光器输出电压包括三种状态,所述状态为:
A、调光器的调光器输出电压的大致零伏交叉至调光器输出电压的相位切割的前沿;
B、状态A端至传输给负载的能量足以满足至少一个能量传输参数;以及
C、状态B端至状态A的开始。
调光器输出电压的其他实施方式可具有例如额外的状态。状态A、B、以及C可再次分为子状态。
在至少一个实施方式中,考虑到上述三种状态时,电子系统的控制器被配置成如下协调运行(i)、(ii)以及(iii):
对于状态A,为调光器的调光器电流启用低阻抗路径,其中,低阻抗路径的阻抗足够低来保持调光器的稳定相位角;
对于状态B,启用调光器输出电压的开关模式功率转换的控制,其中,开关模式功率转换的控制将调光器电流保持在阈值之上;以及
对于状态C,进入不活动的状态,其中,在不活动的状态期间,低阻抗路径以及模式功率转换的控制被禁用。
图3描述了包括控制器302的电子系统300,该控制器通过例如协调低阻抗路径状态控制器310、开关模式功率转换控制器312以及不活动状态控制器314的运行,来控制功率转换器系统304,从而提供调光器306和负载308之间的兼容性,因此,例如,调光器306正常运行。在至少一个实施方式中,功率转换器系统304包括开关功率转换器318,其将调光器306的调光器电压VΦ_DIM转换成调整的输出电压VLINK。功率转换器系统304还为负载308提供电流iOUT。负载308可为任何负载,包括具有一个或多个发光二极管(LED)的灯。在至少一个实施方式中,电流iOUT为针对调光器306的调光水平的大致恒流。“调光水平的大致恒流”表示,对于特定的调光水平,电流iOUT具有大致恒定的值。调光器306可为任何类型的调光器,例如,与图1的调光器102相同的三端双向可控硅开关类型的调光器。在至少一个实施方式中,调光器306为“智能调光器”,其包括三端双向可控硅开关类型的电源电压相位切割电路。“智能调光器”表示一类调光器,其包括微处理器以控制各种功能,例如,设定调光水平。
在至少一个实施方式中,控制器302通过限制调光器306过早地重置并且支持给定调光水平下稳定相位角切割以防止对于所设定的调光水平以错误的相位角进行相位切割,来支持调光器306的正常操作。在至少一个实施方式中,控制器302还提供与调光器306所设定的调光器水平对应的恒定输出电流iOUT。“错误的”相位角例如为与计时器115所设定的相位角不同的相位角,这在例如电容器121(图1)过早地放电的情况下发生。对于使用较小的输出电流iOUT的负载,例如,一个或多个发光二极管,尤其在较低的调光水平,负载所使用的输出电流iOUT不足以支持三端双向可控硅开关类型的调光器306的正常操作。
在至少一个实施方式中,控制器302启用低阻抗路径状态控制器310,以在从调光器306的调光器电压VΦ_DIM的大致零伏交叉至调光器电压VΦ_R的相位切割前沿,将低阻抗电流路径316提供给调光器306。如随后参照图6所描述的,调光器电压VΦ_R的零交叉发生在调光器电压VΦ_R大致达到0V时,调光器电压VΦ_R的每个周期的终端。在至少一个实施方式中,调光器电压VΦ_R的电压值小于或等于0+的零交叉电压阈值VZC_TH时,调光器电压VΦ_R大致达到0V。零交叉电压阈值的特定值为设计选择问题,并且在至少一个实施方式中,为5V。电流路径316的特定阻抗值为设计选择问题。在至少一个实施方式中,电流路径316的阻抗值足够低以允许足够的调光器电流iDIM流过调光器306,从而为调光器306提供稳定的相位角,即,防止调光器306在错的相位角度处导通(fire)。在至少一个实施方式中,在调光器电压VΦ_R的零交叉处,启用低阻抗路径316,这支持调光器306在给定调光水平下切割的相位角的一致定时。因此,调光器306在给定的调光水平切割的相位角保持一致。在至少一个实施方式中,将低阻抗电流路径316提供给调光器306,防止调光器电流iDIM降低到三端双向可控硅开关类型的调光器306的保持电流(HC)值之下。
在电源电压VSUPPLY的相位切割端,控制器302禁用粘连电路302,并且粘连电路302释放低阻抗电流路径316,即,低阻抗电流路径316被禁用或被置于高阻抗状态下,以实质上防止电流流过电流路径316。在相位切割端,控制器302启用开关模式功率转换控制器,并且开关模式功率转换控制器312生成控制信号CS,以控制由功率转换器系统304进行的功率转换。在至少一个实施方式中,控制器302检测链路电压VLINK,并且在链路电压VLINK大于链路电压阈值时,控制器302禁用开关模式功率转换控制器312。链路电压阈值的特定值为设计选择问题。在至少一个实施方式中,链路电压阈值被设定为,链路电压VLINK可保持为大致直流值。在至少一个实施方式中,开关模式功率转换控制器312将调光器电流iDIM保持在某个水平,使得在从调光器电压VΦ_R的相位切割前沿至传输给负载308的能量足以满足至少一个能量传输参数(例如,链路电压VLINK高于目标链路电压VLINK_TARGET),调光器306保持在导通状态下,并且调光器306一直处于导通状态,直到电源电压VSUPPLY发生零交叉,从而调光器306不被过早地重置。过早地重置还会造成调光器306进行相位切割时具有不稳定性,并且因此,促使调光器306以错误的相位角切割电源电压VSUPPLY
在至少一个实施方式中,当控制器302禁用开关模式功率转换控制器312时,控制器302启用不活动状态控制器314。在至少一个实施方式中,不活动状态控制器314促使调光器电流iDIM降低到大致0A,并且确定调光器电压VΦ_R的零交叉。在至少一个实施方式中,不活动状态控制器314确定零交叉,从而在零交叉处,低阻抗路径状态控制器310可启用低阻抗路径316,并且支持调光器306进行的稳定相位切割角,从而调光器306在给定的调光水平下保持稳定。在至少一个实施方式中,不活动状态控制器314生成仿真的调光器电压VΦ_DIM,以例如确定调光器电压VΦ_R的零交叉。在至少一个实施方式中,不活动状态控制器314通过启用电流路径316来释放与调光器电压VΦ_DIM成反比的电流,来生成仿真的调光器电压。在至少一个实施方式中,不活动状态控制器314将释放的电流成形为,仿真的调光器电压接近实际的调光器电压VΦ_DIM。术语“确定”及其派生词考虑分析确定、通过观察进行检测、或分析确定和通过观察进行检测的组合。
图4描述了表示电子系统300的一个实施方式的电子系统400。电子系统400包括控制器402,并且控制器402包括低阻抗路径状态控制器404、开关模式功率转换控制器406以及不活动状态控制器408。控制器402协调低阻抗路径状态控制器404、开关模式功率转换控制器406以及不活动状态控制器408。控制器402表示控制器302的一个实施方式。低阻抗路径状态控制器404表示低阻抗路径状态控制器310的一个实施方式。开关模式功率转换控制器406表示开关模式功率转换控制器312的一个实施方式,并且不活动状态控制器408表示不活动状态控制器314的一个实施方式。
电子系统400包括功率转换器系统410,用于将调光器电压VΦ_DIM转换成调整的大致直流输出电压VLINK,用于负载308。电压电源412通过串联连接的三端双向可控硅开关类型的调光器414,将交流(AC)输入电压VSUPPLY提供给全桥二极管整流器416。在至少一个实施方式中,调光器414与调光器306(图3)相同。电压电源412例如为公用设施,并且交流电源电压VSUPPLY为例如美国标称的60Hz/110V线电压或者欧洲标称的50Hz/220V线电压。调光器414提供调光器电压VDIM。在至少一个实施方式中,调光器414为前沿调光器,并且在调光器414生成大约0到100%之间的调光水平时,调光器电压VΦ_DIM具有前沿相位切割。全桥整流器416将整流的交流调光器电压VΦ_R提供给功率转换器系统410。因此,调光器电压VΦ_R表示调光器电压VΦ_DIM的整流形式。
电容器418将整流的调光器电压VΦ_R中的高频分量滤除。电容器418和420建立分压器,以为源极跟随器场效应晶体管(FET)422设置栅极偏压Vg。电阻器407减少流过二极管426的峰值电流。在至少一个实施方式中,电容器418和420的特定电容值为设计选择问题。在至少一个实施方式中,电容器418的电容为22-47nF,并且电容器420的电容为47nF。二极管424防止栅极电流ig被导向到参考电压VREF,例如,接地参考。通过二极管426将栅极电流ig导向到源极跟随器FET422的栅极,其中二极管防止栅极电流ig进行反向电流流动。齐纳二极管428将源极跟随器FET422的栅极钳位到栅极电压Vg
FET422的栅极偏压Vg减去源极电压VS,超过FET422的阈值电压。在启用功率转换器系统410的过程中,FET422导向电流iR通过二极管430,以将电容器432充电到操作电压VDD。在至少一个实施方式中,启用后,辅助电源434为控制器402提供操作电压VDD。在2011年3月31日提交的题为“Multiple Power Sources for a Switching Power ConverterController”、发明人为John L.Melanson和Eric J.King,专利权人为CirrusLogic,Inc.美国专利申请号13/077,421(本文中称为“Melanson I”)中描述了示例性辅助电源434。Melanson I的全文以引用的方式并入本文中。
电容器432的电容例如为10μF。在启用时,电容器432两端的操作电压VDD等于齐纳电压VZ减去FET422的阈值电压VT422减去二极管430两端的二极管电压Vd,即,启用时,VDD=VZ-VT422-Vd。FET422为高压FET,其还用于控制升压型开关功率转换器436,并且FET422的阈值电压VT422例如大约为3V。
图5描述了控制器运行协调工序500,其表示控制器402(图4)协调低阻抗路径状态控制器404、开关模式功率转换控制器40以及不活动状态控制器408的运行并且从而提供调光器414和负载308之间的兼容性所使用的处理的一个实施方式。图6描述了控制器402使用控制器运行协调工序500时,电子系统400中的调光器电压VΦ_R和调光器电流iDIM的示例性信号和状态。在至少一个实施方式中,控制器402包括存储器(未示出),其包括执行控制器运行协调工序500的一个或多个操作的代码。在至少一个实施方式中,控制器402还包括处理器(未示出),其连接至存储器并且执行代码,因此执行控制器运行协调工序500的操作。在至少一个实施方式中,使用模拟、数字、模数、和/或微处理器元件的任意组合,来执行控制器运行协调工序500。特定的实施方式为设计选择问题。
参看图4、图5和图6,在至少一个实施方式中,在调光器电压VΦ_R的最初的零交叉处,在状态A的开始,启用控制器运行协调工序500。在至少一个实施方式中,大致在整流的调光器电压VΦ_R的每个零交叉处,例如在每个零交叉的0-5V内,控制器402开始进行操作502。操作502启用低阻抗路径状态控制器404。当启用低阻抗路径状态控制器404时,FET422导通,并且FET422的漏源阻抗非常低,例如,几欧姆。此外,整流的输入电流iR的频率较低,从而电感器438的阻抗较低。因此,电流iDIM的低阻抗路径的整个阻抗为几欧姆,例如,在0到100欧姆之间。
在至少一个实施方式中,对于整流的输入电压VΦ_R的一新周期而言,操作502开始于零交叉602,其为状态A的开始。当操作502开始时,整流的输入电压VΦ_R小于操作电压VDD加上二极管430的正向偏压。因此,反向偏置二极管430,并且源节点407处的源电压VS大致等于节点444处的整流的调光器电压VΦ_R。启用的低阻抗路径状态控制器404将源电压VS保持在大约0V,并且通过电感器438和FET422产生低阻抗电流路径403以用于整流的输入电流iR进行流动。因此,在状态A期间,电源电流iSUPPLY为由非零调光器电流iDIM表示的非零。因此,在操作502期间,电源电流iSUPPLY继续流入调光器414中,以在至少一个实施方式中,稳定给定调光水平下调光器414的每个周期的相位切割角。
在操作502中,在启用低阻抗路径状态控制器404时,控制器运行协调工序500执行操作506。操作506确定低阻抗路径状态控制器404是否已经检测到整流的调光器电压VΦ_R的前沿,例如,前沿604。如果还未检测到整流的输入电压VΦ_R的上升沿,那么调光器414依然相位切割电源电压VSUPPLY,并且没有电压可用于提高链路电压VLINK。因此,操作502继续启用低阻抗路径状态控制器404。在2010年8月17日提交的题为Dimmer Output Emulation,发明人为John L.Melanson,专利权人为CirrusLogic,Inc.的美国专利申请号12/858,164(在本文中称为“Melanson I”)中,描述了用于检测相位切割(包括检测整流的调光器电压VΦ_R的前沿)的一种示例性系统和方法,并且其全文以引用的方式并入本文中。在2011年3月31日提交的题为Dimmer Detection,发明人为Robert T.Grisamore、Firas S.Azrai、Mohit Sood、John L.Melanson以及Eric J.King,专利权人为Cirrus Logic,Inc.的美国专利申请号13/077,483(在本文中称为GrisamoreI)中,描述了用于检测整流的调光器电压VΦ_R的前沿的另一种示例性系统和方法,并且其全文也以引用的方式并入本文中。
如果检测到调光器电压VΦ_R的前沿,那么操作508禁用低阻抗路径状态控制器404。当检测到调光器电压VΦ_R的前沿时,状态A结束,并且状态B开始。在状态B开始时,操作510启用开关模式功率转换控制器406。开关模式功率转换控制器406通过生成开关控制信号CS以调节链路电压VLINK,来控制开关功率转换器436,例如,如2009年6月30日提交的题为Cascode Configured Switching Using At Least One LowBreakdown Voltage Internal,Integrated Circuit Switch To Control At LeastOne High Breakdown Voltage External Switch,发明人为John L.Melanson,专利权人为Cirrus Logic,Inc.的美国专利申请号12/496,457中所述,该申请的全文以引用的方式并入本文中。当开关模式功率转换控制器406生成开关控制信号CS,以促使FET422导通时,输入电流iR流入电感器438,以提高电感器438两端的电压。当开关模式功率转换控制器406生成开关控制信号CS,以促使FET422停止导通时,输入电流iR提高链路电容器440两端的链路电压。二极管442防止电流从链路电容器440流入电感器438或FET422。在操作510期间,调光器电流iDIM大致恒定,例如,如608处的调光器电流iDIM所示。
当在操作510中启用开关模式功率转换控制器406时,操作512确定传输给负载308的能量是否大于能量传输参数ETTH或调光器电压VΦ_R是否小于调光器阈值电压VΦ_R_TH。在至少一个实施方式中,操作512通过确定自从状态B开始的时间量,来确定从调光器414传输的能量是否大于能量传输参数ETTH。如果时间超过特定的阈值,那么调光器414已经将足够的能量传输给功率转换器系统410。在至少一个实施方式中,该时间量足以允许电容器121(图1)放电,从而调光器414在调光器电压VΦ_R的周期间一致地操作。示例性时间量为100-300μs。在至少一个实施方式中,能量传输参数ETTH为目标链路电压VLINK_TARGET。在这个实施方式中,操作512通过确定链路电压VLINK是否大于目标链路电压VLINK_TARGET以确定是否充分地使链路电容器440升压,来确定从调光器414传输的能量是否大于能量传输参数ETTH。如果链路电压VLINK不大于目标链路电压VLINK_TARGET,则在调光器电压VΦ_R大于整流的调光器阈值电压VΦ_R_TH的情况下,应进一步提高链路电压VLINK。在至少一个实施方式中,如果调光器电压VΦ_R小于调光器阈值电压VΦ_R_TH,那么调光器电压VΦ_R太低而不能有效地将能量从电压电源412传输给负载308。
因此,如果还未将充足的能量传输给负载308或整流的调光器电压VΦ_R大于整流的调光器阈值电压VΦ_R_TH,那么操作510继续启用开关模式功率转换控制器406,并且因此继续提高链路电压VLINK
在操作512中,如果已经将充足的能量传输给负载308或整流的调光器电压VΦ_R小于整流的调光器阈值电压VΦ_R_TH,那么操作515使开关模式功率转换控制器406停止提高链路电压VLINK,状态B结束,状态C开始,并且操作516启用不活动状态控制器408。“不活动”状态控制器408本非本身不活动。在至少一个实施方式中,不活动状态控制器408使调光器电流iDIM降低到大约0A,并且确定调光器电压VΦ_R的零交叉和前沿。
整流的调光器电流iR与整流的调光器电压VΦ_R成反比。在状态C中,当启用不活动状态控制器408时,不活动状态控制器408控制整流的调光器电流iR的流动,以使得对于整流的调光器电压VΦ_R的周期中链路电压VLINK小于目标链路电压VLINK_TARGET时至检测到整流的调光器电压VΦ_R的前沿之后的这部分,节点444处的电压仿真实际的整流调光器电压VΦ_R。当不活动状态控制器408仿真整流的调光器电压VΦ_R时,不活动状态控制器408有效地将功率转换器系统410和调光器414隔离,并且仿真的调光器输出电压VΦ_R允许功率转换器系统410和负载308在正常的模式中运行,这相当于调光器414理想地继续导通直到电源电压VSUPPLY达到大约0V的情况。结合图7并且在Melanson I中描述了示例性不活动状态控制器408。
操作518确定整流的输入电压VΦ_R是否处于或接近下一个零交叉,例如,零交叉606。如果整流的输入电压VΦ_R不处于或不接近下一个零交叉,那么不活动状态控制器408继续生成仿真的调光器电压VΦ_R。如果整流的输入电压VΦ_R处于或接近下一个零交叉,那么操作520禁用不活动状态控制器408,并且控制器运行协调工序500返回到操作502并且重复。
启用/禁用状态610描述了启用和禁用低阻抗路径状态控制器404、开关模式功率转换控制器406以及不活动状态控制器408的时间。逻辑1表示启用,逻辑0表示禁用。因此,启用/禁用状态608描述了控制器402可如何协调低阻抗路径状态控制器404、不活动状态控制器408以及开关模式功率转换控制器406的运行的一个实施方式。
不活动状态控制器408可实施为数字、模拟、或模数电路。图7描述了不活动状态控制器700,其表示不活动状态控制器408的一个实施方式。不活动状态控制器700部分用作控制电流iR的电流源。不活动状态控制器700包括下拉电路702,用于在调光器414的三端双向可控硅开关断开之后,下拉电流iR;以及保持或“粘连”电路704,用于将仿真的调光器输出电压VΦ_R保持为大致0V,直到三端双向可控硅开关106在调光器电压VDIM的下个半周期内接通。
在至少一个实施方式中,由于电源电压VSUPPLY为余弦波,并且电流iR与仿真的调光器输出电压VΦ_R的衍生物直接相关,那么电流iR和电源电压VSUPPLY的半个周期的仿真调光器输出电压VΦ_R之间的理想关系为四分之一正弦波。然而,电流iR和仿真的调光器输出电压VΦ_R之间的线性减小关系为接近于四分之一正弦波。电流iR和仿真的调光器输出电压VΦ_R的关系,促使功率转换器系统410生成椭圆形仿真调光器输出电压VΦ_R,其为相位切割的电源电压VSUPPLY的近似值。
通常,下拉电路702创建电流iR和仿真的调光器输出电压VΦ_R之间的线性下降关系。下拉电路702包括运算放大器705,其包括正相输入端“+”,用于接收下拉参考电压VREF_PD。在仿真的调光器输出电压VΦ_R端711和节点712处的电压VB之间具有分压器R1和R2的反馈回路,该反馈回路创建电压VB和仿真的调光器输出电压VΦ_R之间的相反关系。因此,在仿真的调光器输出电压VΦ_R降低时,运算放大器705驱动n沟道金属氧化物半导体场效应晶体管(NMOSFET)708的栅极,以增大电压VB,使得反相端“-”的电压VA与正相输入端“+”的参考电压VREF_PD匹配。同样,在仿真的调光器输出电压VΦ_R增大时,运算放大器705驱动n沟道金属氧化物半导体场效应晶体管(NMOSFET)708的栅极,以降低电压VB,使得反相端“-”的电压VA继续与正相输入端“+”的参考电压VREF_PD匹配。
NMOSFET706的栅极处的电压VDRIVE将NMOSFET706保持在饱和模式。在至少一个实施方式中,电压VDRIVE为+12V。电阻器714两端的电压VB确定电流iR的值,即,iR=VB/R3,并且“R3”为电阻器714的电阻值。因此,电流iR随着电压VB正向变化,因此与仿真的调光器输出电压VΦ_R成反比地变化。通过下拉电路702的拓扑,根据式子[Error!Bookmark not defined.],电压VB与参考电压VREF_PD相关:
V B = V REF _ PD · R 1 + R 2 R 1 - R 2 · V Φ _ R R 1 [ Error ! Bookmarknotdefined . ]
R1为电阻器707的电阻值,R2为电阻器709的电阻值。如果R1>>R2,那么电压VB由式子[Error!Bookmark not defined.]表示:
V B ≈ V REF _ PD - R 2 · V Φ _ R R 1 [ Error ! Bookmarknotdefined . ]
由于iR=VB/R3,所以根据式子[Error!Bookmark not defined.],如果R1为10MΩ,R2为42kΩ,并且R3为1kΩ,那么iR由式子[Error!Bookmarknot defined.]表示:
i R ≈ 0.8 ( 1 - V Φ _ R 190 ) mA [ Error ! Bookmarknotdefined . ]
一旦下拉电路702将仿真的调光器输出电压VΦ_R降低为粘连下拉参考电压VREF_GL,那么粘连电路704将仿真的调光器输出电压VΦ_R保持为阈值或低于阈值,例如,接近0V,直到三端双向可控硅开关106接通并且提高仿真的调光器输出电压VΦ_R。粘连参考电压VREF_GL表示结合图3中所讨论的零交叉电压阈值VZC_TH的一个实施方式。粘连电路704的比较器716比较仿真的调光器输出电压VΦ_R和粘连参考电压VREF_GL。粘连参考电压VREF_GL的特定值为设计选择问题。在至少一个实施方式中,电压VREF_GL被设定为,使得电压VΦ_R接近0V时,粘连电路704将电压VΦ_R保持为大约0V。在至少一个实施方式中,将粘连参考电压VREF_GL设为5V。由于NMOSFET706在饱和模式下进行操作,所以节点710处的电压大约等于仿真的调光器输出电压VΦ_R。当仿真的调光器输出电压VΦ_R大于粘连参考电压VREF_GL时,比较器716的输出电压VCOMP为逻辑0。在至少一个实施方式中,将比较器输出电压VCOMP作为信号GLUE_ENABLE直接传送给开关718的控制端。开关718可为任何类型的开关,并且例如为NMOSFET。当比较器输出电压VCOMP为逻辑0时,开关718断开,并且NMOSFET720和722也断开。比较器输出电压VCOMP从逻辑1转变成逻辑0,这表示所确定出的调光器电压VΦ_R的零交叉,零交叉由控制器运行协调工序500(图5)的操作518使用。
当仿真的调光器输出电压VΦ_R从大于转换成小于粘连参考电压VREF_GL时,比较器输出电压VCOMP从逻辑0变成逻辑1。比较器输出电压VCOMP从逻辑0变成逻辑1,这表示所确定出的调光器电压VΦ_R的前沿,该前沿由控制器运行协调工序500(图5)的操作506使用。当比较器输出电压VCOMP为逻辑1时,NMOSFET720和722导通。NMOSFET720和722被配置为共用同一个栅极端724的电流镜。电流源726生成通过NMOSFET720镜像的粘连电流iQLUE。在至少一个实施方式中,仿真的调光器输出电压VΦ_R小于粘连参考电压VREF_GL时,电流iR大约等于粘连电流iQLUE。在至少一个实施方式中,将粘连电流iQLUE设为足够大的值,以将仿真的调光器输出电压VΦ_R保持为大约0V,直到调光器414的三端双向可控硅开关再次接通。在至少一个实施方式中,粘连电流iQLUE至少与调光器414(图4)的保持电流值HC一样大,例如,250mA。因此,在下拉电路702将仿真的调光器输出电压VΦ_R降低为粘连参考电压VREF_GL至三端双向可控硅开关106接通并且提高仿真的调光器输出电压VΦ_R时的时间段内,粘连电路704从功率转换器系统410汲取稳态粘连电流iQLUE,以将仿真的调光器输出电压VΦ_R保持在或低于阈值电压,例如,大约0V。
在至少一个实施方式中,粘连电路704还包括下拉、粘连逻辑(“P-G逻辑”)728。P-G逻辑728生成信号GLUE_ENABLE,以控制开关718的导通。P-G逻辑728的特定功能为设计选择问题。例如,在至少一个实施方式中,P-G逻辑728启用和禁用粘连电路704。在至少一个实施方式中,为了启用和禁用粘连电路704,P-G逻辑728确定调光器输出电压VΦ_DIM是否包含任何相位切割,例如,如Grisamore I中所述。如果调光器输出电压VΦ_DIM并不表示任何相位切割,那么P-G逻辑728通过生成GLUE_ENABLE信号,禁用粘连电路704,使得无论比较器输出电压VCOMP的值为多少,开关718都不导通。在至少一个实施方式中,P-G逻辑728包括计时器(未示出),其确定比较器输出电压VCOMP改变逻辑状态的频率。如果逻辑状态变化之间的时间与相位切割不一致,那么P-G逻辑728禁用粘连电路704。此外,在Melanson I中描述了不活动状态控制器700的示例性论述。确定调光器电压VΦ_R的零交叉的特定系统和方法为设计选择问题。美国临时专利申请号61/410,269描述了用于确定调光器电压VΦ_R的零交叉的另一个示例性系统和方法。2010年11月4日提交的题为“Digital Resynthesis of Input Signal Dimmer Compatibility”,发明人为JohnL.Melanson和Eric J.King,律师代理申请案号为1883-EXL的美国临时专利申请号61/410,269以引用的方式并入本文中。
因此,电子系统包括控制器,其协调粘连电路、调光器仿真器以及开关模式功率转换控制器的运行,以提供调光器和负载之间的兼容性。
虽然已经详细描述实施方式,但是应理解的是,在不背离所附权利要求书所限定的本发明的精神和范围的情况下,可对其进行各种变化、替换和变更。

Claims (34)

1.一种设备,其中,至功率转换器系统的调光器电压包括以下三种状态:
D、调光器的调光器电压的接近零伏交叉直至所述调光器电压的相位切割前沿;
E、状态A的结束直至传输给负载的能量足以满足至少一个能量传输参数;以及
F、状态B的结束直至状态A开始,
所述设备包括:
控制器,被配置成:
对于状态A,启用用于所述调光器的调光器电流的低阻抗路径,其中,所述低阻抗路径的阻抗足够低来保持所述调光器的稳定相位角;
对于状态B,
启用所述调光器电压的开关模式功率转换的控制;以及
控制所述开关模式功率转换,以将所述调光器电流保持为高于电流阈值;以及
对于状态C,进入不活动的状态,其中,在所述不活动的状态期间,所述低阻抗路径以及所述模式功率转换的控制被禁用。
2.根据权利要求1所述的设备,其中,所述至少一个能量传输参数包括链路电压阈值,以确定传输给负载的能量足以满足能量传输参数的时间,所述控制器被进一步配置成至少执行以下处理:
确定链路电压小于所述链路电压阈值的时间,其中,所述链路电压小于所述链路电压阈值时,足够的能量被传输给负载。
3.根据权利要求1所述的设备,其中,状态B进一步包括状态A的结束直至传输给负载的能量足以满足至少第一能量传输参数以及直至从所述调光器传输的能量足以满足至少第二能量传输参数。
4.根据权利要求1所述的设备,其中,所述第二能量传输参数为所述调光器传导电源电压的时间量。
5.根据权利要求1所述的设备,其中,所述控制器被进一步配置成至少执行以下处理:
确定所述调光器电压的相位切割前沿的发生。
6.根据权利要求5所述的设备,其中,所述控制器被进一步配置成至少执行以下处理:
当所述链路电压低于所述链路阈值电压值并且确定所述调光器电压的相位切割前沿时,禁用用于所述调光器电流的所述低阻抗路径。
7.根据权利要求1所述的设备,其中,所述控制器被配置成:
启用所述调光器电压的模式功率转换的控制;
确定开关功率转换器的链路电压大于链路电压阈值的时间;
确定所述调光器电压小于调光器电压阈值的时间;
当所述链路电压大于所述链路电压阈值并且所述调光器电压小于所述调光器电压阈值时,禁用开关模式功率转换;以及
禁用所述开关模式功率转换之后,进入所述不活动状态。
8.根据权利要求1所述的设备,其中,所述控制器被配置成:
进入所述不活动状态;
确定所述调光器电压与所述调光器电压的接近零伏交叉对应的时间;以及
所述调光器电压与所述调光器电压的接近零伏交叉对应时,启用用于所述调光器电流的所述低阻抗路径。
9.根据权利要求1所述的设备,其中,所述控制器被配置成:
a、启用用于所述调光器电流的所述低阻抗路径;
b、确定链路电压小于第一链路电压阈值的时间;
c、确定所述调光器电压的相位切割前沿的发生;
d、当所述链路电压低于所述链路阈值电压值并且确定所述调光器电压的相位切割前沿时,禁用用于所述调光器电流的所述低阻抗路径;
e、启用所述调光器电压的模式功率转换的控制;
f、确定开关功率转换器的链路电压大于链路电压阈值的时间;
g、确定所述调光器电压小于调光器电压阈值的时间;
h、当所述链路电压大于所述链路电压阈值并且所述调光器电压小于所述调光器电压阈值时,禁用开关模式功率转换;
i、在禁用所述开关模式功率转换之后,进入所述不活动状态;
j、确定所述调光器电压与所述调光器电压的接近零伏交叉对应的时间;以及
k、在所述调光器电压与所述调光器电压的接近零伏交叉对应时,启用用于所述调光器电流的所述低阻抗路径。
10.根据权利要求9所述的设备,其中,所述控制器被配置成对于所述调光器电压的每个周期重复b到k,其中,所述调光器电压被整流。
11.根据权利要求1所述的设备,其中,所述负载包括一个或多个发光二极管。
12.根据权利要求1所述的设备,进一步包括与所述控制器耦接的升压型开关功率转换器,其中,所述开关模式功率转换器的控制包括所述升压型开关功率转换器的控制。
13.根据权利要求1所述的设备,
其中,所述控制器包括调光器电压仿真器,并且所述调光器输出仿真器被配置成使功率转换器系统生成仿真的调光器电压,其中,所述仿真的调光器电压仿真调光器电压的周期的一部分。
14.根据权利要求1所述的设备,其中,所述调光器包括用于交流的三极管(三端双向可控硅开关)。
15.根据权利要求1所述的设备,其中,所述调光器电压为整流的调光器电压。
16.根据权利要求1所述的设备,其中,所述电流阈值足以防止过早地重置调光器。
17.一种方法,其中,至功率转换器系统的调光器电压包括以下三种状态:
A、调光器的所述调光器电压的接近零伏交叉直至所述调光器电压的相位切割前沿;
B、状态A的结束直至传输给负载的能量足以满足至少一个能量传输参数;以及
C、状态B的结束直至状态A开始,
所述方法包括:
对于状态A,启用用于所述调光器的调光器电流的低阻抗路径,其中,所述低阻抗路径的阻抗足够低来保持所述调光器的稳定相位角;
对于状态B:
启用所述调光器电压的开关模式功率转换的控制;以及
控制所述开关模式功率转换,以将所述调光器电流保持为高于阈值;以及
对于状态C,进入不活动的状态,其中,在所述不活动的状态期间,所述低阻抗路径以及所述模式功率转换的控制被禁用。
18.根据权利要求17所述的方法,其中,所述至少一个能量传输参数包括链路电压阈值,所述方法进一步包括:
确定链路电压小于所述链路电压阈值的时间,其中,当所述链路电压小于所述链路电压阈值时,足够的能量被传输给负载。
19.根据权利要求17所述的方法,其中,状态B进一步包括状态A的结束直至传输给负载的能量足以满足至少第一能量传输参数以及直至从所述调光器传输的能量足以满足至少第二能量传输参数。
20.根据权利要求17所述的方法,其中,所述第二能量传输参数为所述调光器传导电源电压的时间量。
21.根据权利要求17所述的方法,进一步包括:
确定所述调光器电压的相位切割前沿的发生。
22.根据权利要求21所述的方法,进一步包括:
检测所述调光器电压的相位切割前沿的发生。
23.根据权利要求21所述的方法,进一步包括:
当所述链路电压低于所述链路阈值电压值并且确定所述调光器电压的相位切割前沿时,禁用用于所述调光器电流的所述低阻抗路径。
24.根据权利要求17所述的方法,进一步包括:
启用所述调光器电压的模式功率转换的控制;
确定开关功率转换器的链路电压大于链路电压阈值的时间;
确定所述调光器电压小于调光器电压阈值的时间;
当所述链路电压大于所述链路电压阈值并且所述调光器电压小于所述调光器电压阈值时,禁用开关模式功率转换;以及
在禁用所述开关模式功率转换之后,进入所述不活动状态。
25.根据权利要求17所述的方法,进一步包括:
进入所述不活动状态;
确定所述调光器电压与所述调光器电压的接近零伏交叉对应的时间;以及
当所述调光器电压与所述调光器电压的接近零伏交叉对应时,启用用于所述调光器电流的所述低阻抗路径。
26.根据权利要求17所述的方法,进一步包括:
a、启用用于所述调光器电流的所述低阻抗路径;
b、确定链路电压小于第一链路电压阈值的时间;
c、确定所述调光器电压的相位切割前沿的发生;
d、当所述链路电压低于所述链路阈值电压值并且确定所述调光器电压的相位切割前沿时,禁用用于所述调光器电流的所述低阻抗路径;
e、启用所述调光器电压的模式功率转换的控制;
f、确定开关功率转换器的链路电压大于链路电压阈值的时间;
g、确定所述调光器电压小于调光器电压阈值的时间;
h、当所述链路电压大于所述链路电压阈值并且所述调光器电压小于所述调光器电压阈值时,禁用开关模式功率转换;
i、在禁用所述开关模式功率转换之后,进入所述不活动状态;
j、确定所述调光器电压与所述调光器电压的接近零伏交叉对应的时间;以及
k、在所述调光器电压与所述调光器电压的接近零伏交叉对应时,启用用于所述调光器电流的所述低阻抗路径。
27.根据权利要求26所述的方法,进一步包括:
对于所述调光器电压的每个周期重复b到k,其中,所述调光器电压被整流。
28.根据权利要求17所述的方法,其中,所述负载包括一个或多个发光二极管。
29.根据权利要求17所述的方法,进一步包括:
控制开关模式功率转换以将所述调光器电流保持为高于阈值,包括控制升压型开关功率转换器的开关模式功率转换。
30.根据权利要求17所述的方法,进一步包括:
其中,通过使功率转换器系统生成仿真的调光器电压,来确定所述调光器电压的零伏交叉,其中,所述仿真的调光器电压仿真所述调光器电压的周期的一部分。
31.根据权利要求17所述的方法,其中,所述调光器包括用于交流的三极管(三端双向可控硅开关)。
32.根据权利要求17所述的方法,其中,所述调光器电压为整流的调光器电压。
33.根据权利要求17所述的方法,其中,所述电流阈值足以防止过早地重置调光器。
34.一种设备,其中,至功率转换器系统的调光器电压包括以下的三种状态:
A、调光器的所述调光器电压的接近零伏交叉直至所述调光器电压的相位切割前沿;
B、状态A的结束直至传输给负载的能量足以满足至少一个能量传输参数;以及
C、状态B的结束直至状态A开始,
所述设备包括:
对于状态A,启用用于所述调光器的调光器电流的低阻抗路径的装置,其中,所述低阻抗路径的阻抗足够低来保持所述调光器的稳定相位角;
对于状态B:
用于启用所述调光器电压的开关模式功率转换的控制的装置;以及
用于控制开关模式功率转换以将调光器电流保持为高于阈值的装置;以及
对于状态C,进入不活动的状态的装置,其中,在所述不活动的状态期间,所述低阻抗路径以及所述模式功率转换的控制被禁用。
CN201180037668.8A 2010-07-30 2011-07-29 协调调光器的兼容功能 Active CN103238268B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US36920210P 2010-07-30 2010-07-30
US61/369,202 2010-07-30
US13/194,808 US8610364B2 (en) 2010-07-30 2011-07-29 Coordinated dimmer compatibility functions
PCT/US2011/046027 WO2012016221A2 (en) 2010-07-30 2011-07-29 Coordinated dimmer compatibility functions
US13/194,808 2011-07-29

Publications (2)

Publication Number Publication Date
CN103238268A true CN103238268A (zh) 2013-08-07
CN103238268B CN103238268B (zh) 2016-11-30

Family

ID=

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110139432A (zh) * 2019-05-09 2019-08-16 矽诚科技股份有限公司 低耗电的载波控制发光二极管灯及其灯串
CN110418469A (zh) * 2018-12-06 2019-11-05 矽力杰半导体技术(杭州)有限公司 Led调光控制电路和方法以及led驱动模块
US11683869B2 (en) 2019-05-09 2023-06-20 Semisilicon Technology Corp. Light-emitting diode light string control system using carrier signal control and signal control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070182338A1 (en) * 2006-01-20 2007-08-09 Exclara Inc. Current regulator for modulating brightness levels of solid state lighting
CN101171890A (zh) * 2005-05-09 2008-04-30 皇家飞利浦电子股份有限公司 使用双向可控硅调光器进行调光的方法和电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101171890A (zh) * 2005-05-09 2008-04-30 皇家飞利浦电子股份有限公司 使用双向可控硅调光器进行调光的方法和电路
US20070182338A1 (en) * 2006-01-20 2007-08-09 Exclara Inc. Current regulator for modulating brightness levels of solid state lighting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王晓: "可调光照明系统的相位控制调光", 《无锡轻工大学学报》, vol. 19, no. 4, 31 July 2000 (2000-07-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418469A (zh) * 2018-12-06 2019-11-05 矽力杰半导体技术(杭州)有限公司 Led调光控制电路和方法以及led驱动模块
CN110418469B (zh) * 2018-12-06 2023-06-09 矽力杰半导体技术(杭州)有限公司 Led调光控制电路和方法以及led驱动模块
CN110139432A (zh) * 2019-05-09 2019-08-16 矽诚科技股份有限公司 低耗电的载波控制发光二极管灯及其灯串
US11085620B2 (en) 2019-05-09 2021-08-10 Semisilicon Technology Corp. Carry-signal controlled LED light with low power consumption and LED light string having the same
US11683869B2 (en) 2019-05-09 2023-06-20 Semisilicon Technology Corp. Light-emitting diode light string control system using carrier signal control and signal control method thereof
US11725808B2 (en) 2019-05-09 2023-08-15 Semisilicon Technology Corp. Carry-signal controlled LED light with low power consumption and LED light string having the same

Also Published As

Publication number Publication date
US20120025724A1 (en) 2012-02-02
CN103038989B (zh) 2016-10-26
LT2599203T (lt) 2018-02-26
EP2599200B1 (en) 2019-01-09
EP3346593A1 (en) 2018-07-11
EP3346593B1 (en) 2019-09-11
WO2012016221A2 (en) 2012-02-02
NO2599203T3 (zh) 2018-04-14
EP2599203B1 (en) 2017-11-15
WO2012016221A3 (en) 2012-03-29
US20120025608A1 (en) 2012-02-02
US8729811B2 (en) 2014-05-20
SI2599203T1 (en) 2018-05-31
US8749173B1 (en) 2014-06-10
US20120025733A1 (en) 2012-02-02
US9660547B1 (en) 2017-05-23
CN103038989A (zh) 2013-04-10
EP2599203A2 (en) 2013-06-05
WO2012016207A1 (en) 2012-02-02
US8610364B2 (en) 2013-12-17
US10263532B2 (en) 2019-04-16
PT3346593T (pt) 2019-11-20
ES2659732T3 (es) 2018-03-19
DK3346593T3 (da) 2019-12-02
PL2599203T3 (pl) 2018-06-29
DK2599203T3 (en) 2018-02-26
EP2599200A1 (en) 2013-06-05
HRP20192211T1 (hr) 2020-02-21
ES2758731T3 (es) 2020-05-06
US9240725B2 (en) 2016-01-19
US20150162838A1 (en) 2015-06-11
PL3346593T3 (pl) 2020-02-28
PT2599203T (pt) 2018-02-19

Similar Documents

Publication Publication Date Title
CN103314639B (zh) 防止调光器提前重置的装置和方法
EP3346593B1 (en) Coordinated dimmer compatibility functions
Rand et al. Issues, models and solutions for triac modulated phase dimming of LED lamps
EP2356532B1 (en) Current ripple reduction circuit for leds
US20100141178A1 (en) Dimmer control leakage pull down using main power device in flyback converter
US20100141177A1 (en) Dimmer-controlled leds using flyback converter with high power factor
CN106664764B (zh) Led驱动电路、led电路和驱动方法
CN103748965A (zh) 响应于调光器的输出对一个或者多个led的光输出的控制
CN103636292B (zh) 照明器的控制装置和方法
KR101708656B1 (ko) 전력선을 이용한 통신장치와 이를 이용한 엘이디 조명시스템
CN103857148A (zh) 用于led照明装置的供电设备以及使用该供电设备的led照明设备
AU2017314486B2 (en) A signalling method for dimmers controlling a load
EP2534928B1 (en) Dimmer circuit for electronic loads
JP6546200B2 (ja) 電力線を用いたled照明システム
TWI479942B (zh) 用於固態照明之適應性電流調整
EP3095182B1 (en) Two-wire load control device for low-power loads
TWI555438B (zh) 用於固態照明之適應性電流調整
CN103238268B (zh) 协调调光器的兼容功能
US20230189409A1 (en) Light-emitting diode lamp illumination system, and dimmer and light-emitting diode lamp thereof
KR101155668B1 (ko) 광원들을 구동하기 위한 컨버터 디바이스, 관련된 방법과 컴퓨터 프로그램 물건
CN106105391A (zh) 照明装置
CN112770447A (zh) 基于电力线的通信装置以及采用该通信装置的led照明系统
KR20160101710A (ko) 전력선을 이용한 통신장치와 이를 이용한 엘이디 조명시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160128

Address after: The city of Eindhoven in Holland

Applicant after: Koninkl Philips Electronics NV

Address before: American Texas

Applicant before: Cirrus Logic, Inc.

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170314

Address after: The city of Eindhoven in Holland

Patentee after: KONINKL PHILIPS NV

Address before: The city of Eindhoven in Holland

Patentee before: Koninkl Philips Electronics NV

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: Eindhoven

Patentee after: Signify Holdings Ltd.

Address before: The city of Eindhoven in Holland

Patentee before: PHILIPS LIGHTING HOLDING B.V.

CP03 Change of name, title or address