CN102725902A - 低降级的相稳定性经掺杂氧化锆电解质组合物 - Google Patents

低降级的相稳定性经掺杂氧化锆电解质组合物 Download PDF

Info

Publication number
CN102725902A
CN102725902A CN2011800069355A CN201180006935A CN102725902A CN 102725902 A CN102725902 A CN 102725902A CN 2011800069355 A CN2011800069355 A CN 2011800069355A CN 201180006935 A CN201180006935 A CN 201180006935A CN 102725902 A CN102725902 A CN 102725902A
Authority
CN
China
Prior art keywords
oxide
mole
composition
zirconia
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800069355A
Other languages
English (en)
Other versions
CN102725902B (zh
Inventor
塔德·阿姆斯特朗
伊马德·埃·巴塔韦
马丁·加诺塞克
马诺杰·皮莱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bloom Energy Corp
Original Assignee
Bloom Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bloom Energy Corp filed Critical Bloom Energy Corp
Publication of CN102725902A publication Critical patent/CN102725902A/zh
Application granted granted Critical
Publication of CN102725902B publication Critical patent/CN102725902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种包含阴极电极、固体氧化物电解质及阳极电极的固体氧化物燃料电池SOFC。所述电解质及/或电极组合物包含利用以下稳定的氧化锆:(i)氧化钪、(ii)氧化铈,及(iii)氧化钇及氧化镱中的至少一者。所述组合物在850℃温度下4000小时之后,离子导电率的降级不大于15%。

Description

低降级的相稳定性经掺杂氧化锆电解质组合物
相关申请案的交叉参考
本申请案主张在2010年1月26日申请的第61/298,468号美国临时申请案的权利,所述临时申请案全文以引用的方式并入本文中。
技术领域
本发明大体上涉及燃料电池组件,且具体来说,涉及固体氧化物燃料电池电解质材料。
背景技术
燃料电池为可以高效率将储存于燃料中的能量转化成电能的电化学装置。电解槽电池为可利用电能还原给定物质(例如水)以产生燃料(例如氢气)的电化学装置。所述燃料电池及电解槽电池可包括以燃料电池及电解模式两者操作的可逆电池。
在高温燃料电池系统(例如固体氧化物燃料电池(SOFC)系统)中,氧化流通过燃料电池的阴极侧,而燃料流通过燃料电池的阳极侧。氧化流一般为空气,而燃料流可为烃类燃料,例如甲烷、天然气、戊烷、乙醇或甲醇。在介于650℃与950℃之间的典型温度下操作的燃料电池可将带负电的氧离子从阴极流物流输送到阳极流物流,其中所述离子与游离氢或烃分子中的氢结合形成水蒸气及/或与一氧化碳结合形成二氧化碳。来自带负电离子的过剩电子通过阳极与阴极之间完整的电路回到燃料电池的阴极侧,从而产生通过电路的电流流。固体氧化物可逆燃料电池(SORFC)系统在燃料电池或放电模式下由燃料及氧化剂产生电能与反应产物(即,氧化燃料)且在电解或充电模式下利用电能产生燃料与氧化剂。
经氧化钪稳定的氧化锆(SSZ)SOFC电解质材料显示高氧离子导电率。一般来说,氧化锆掺杂有介于8与11摩尔%之间的氧化钪(Sc2O3)以使立方相氧化锆在650到850℃的高SOFC操作温度下稳定。
然而,SSZ电解质材料存在两个问题:1)在约580℃下,其显示立方相转变成菱形相,及2)离子导电率随时间推移缓慢减小,这称为老化。
其它已显示与一种第二稀土氧化物共掺杂的SSZ将阻止立方相转变成菱形相。举例来说,10Sc1Ce氧化锆(10摩尔%Sc2O3-1摩尔%CeO2-氧化锆)及10Sc1Y(1摩尔%Sc2O3-1摩尔%Y2O3-氧化锆)为不显示立方相转变成菱形相的共掺杂的氧化锆组合物的实例。
然而,这两种氧化锆组合物仍发生老化(即,在800-850℃的SOFC操作温度下,离子导电率随时间推移缓慢减小)。虽然所述离子导电率随时间推移发生的老化降级的真实机理在科学文献中没有达成一致,但是,一种假说为立方相不稳定且缓慢分解为具有较低离子导电率的四方相。所得材料由占主要的立方相与四方相小区域(例如,2到5nm)的两相混合物组成。如图1及2所示,10Sc1Ce氧化锆可显示四方相的模糊超晶格以及氧化锆的立方萤石结构。
发明内容
本发明的一个实施例提供一种用于固体氧化物燃料电池的电解质及/或电极组合物,其包含利用以下稳定的氧化锆:(i)氧化钪、(ii)氧化铈,及(iii)氧化钇及氧化镱中的至少一者。优选氧化钇及氧化镱中至少一者的存在量大于0且等于或小于2.5摩尔%。
本发明的另一实施例提供一种用于固体氧化物燃料电池的经氧化钪稳定的氧化锆电解质组合物,其包括式(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0<x≤0.025;a+b=z;0≤z≤0.025;且x+z≥0.02。本发明的另一实施例提供一种用于固体氧化物燃料电池的经氧化钪稳定的氧化锆电解质组合物,其包括式(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0≤x≤0.0125;a+b=z,及0.0025≤z≤0.02;且x+z≤0.02。
本发明的另一实施例提供一种操作固体氧化物燃料电池的方法,所述固体氧化物燃料电池包括用氧化钪及氧化铈稳定的氧化锆电解质。所述方法包括操作固体氧化物燃料电池至少4000小时以使所述燃料电池的电解质的离子导电率的降级不大于15%。
附图说明
图1为现有技术10Sc1Ce氧化锆的对比增强的选区电子衍射图。立方氧化锆的晶带轴为<110>型。
图2为现有技术10Sc1Ce氧化锆的对比增强的选区电子衍射图。立方氧化锆的晶带轴为<112>型。
图3为展示经稳定的氧化锆电解质组合物的示范性及比较实例的离子导电率随时间变化的图。
图4为根据本发明实施例的固体氧化物燃料电池的剖面图,且图5为根据本发明实施例的SOFC堆叠的侧视剖面图。
具体实施方式
不希望受到特殊理论的约束,本发明者认为10Sc1Ce组合物为轻微低度掺杂且不完全稳定(即,稳定性不够),且因此倾向于由于在高温下立方相缓慢分解或转变成四方相而老化。
根据本发明第一实施例,SSZ组合物含有至少2摩尔%另一种稳定氧化物(例如氧化铈、氧化钇及/或氧化镱),以向所述SSZ组合物提供充足的稳定作用来减少或防止老化分解。所述稳定氧化物使SSZ的立方相稳定且因此阻止立方相转变成四方相。根据第二实施例,将氧化钇及氧化镱中的至少一者及氧化铈两者添加到SSZ组合物中以减少或防止老化分解。添加氧化钇及氧化镱中的至少一者及氧化铈两者使SSZ的立方相稳定且因此阻止立方相转变成四方相。这些实施例的一种示范性组合物为共掺杂有至少两种其它元素的氧化锆:10Sc1Ce1Y(10摩尔%Sc2O3-1摩尔%CeO2-1摩尔%Y2O3-氧化锆)。根据第三实施例,SSZ组合物的热膨胀系数(“CTE”)接近于具有SSZ电解质SOFC的燃料电池堆叠中使用的互连件的热膨胀系数。所述互连件可包括具有至少94重量%Cr、4到6重量%Fe及0到1重量%Y的铬合金互连件。在第三实施例的第一方面中,SSZ组合物含有总计大于0但小于2摩尔%的氧化铈、氧化钇及/或氧化镱,例如总计1到2摩尔%的氧化钇及/或氧化镱中的至少一者及氧化铈。通过略微减小氧化铈、氧化钇及/或氧化镱中至少一者的量,电解质的CTE增加,以致其与互连件的CTE相差10%或更小,例如5%或更小,例如0到1%,且不会降低电解质的稳定性或耐老化降级性。在第三实施例的第二方面中,以氧化镱替代氧化钇。认为以氧化镱替代氧化钇将增加电解质材料的CTE及离子导电率。因此,认为第三实施例的电解质组合物显示改善的寿命初期离子导电率、低降级及与Cr合金互连件的CTE相同或略微不同的较高CTE。SOFC堆叠中SOFC电解质与互连件之间的CTE差异减小将降低针对堆叠组件的热诱导应力及破坏。优选所有三个实施例中的电解质组合物的高度、宽度及厚度都是均匀的,而不是通过混合经氧化钇及氧化钪稳定的氧化锆粉末制成的经氧化钇及氧化钪稳定的氧化锆的非均匀复合物。
因此,本发明的第一实施例提供一种SOFC电解质组合物,其包括利用以下稳定的氧化锆:(i)氧化钪、(ii)氧化铈,及(iii)氧化钇及氧化镱中的至少一者。氧化钪的存在量可等于9到11摩尔%(例如10摩尔%),氧化铈的存在量可大于0(例如,至少0.5摩尔%)且等于或小于2.5摩尔%(例如1摩尔%),且氧化钇及氧化镱中的至少一者的存在量可大于0且等于或小于2.5摩尔%(例如1摩尔%)。
在第一实施例的一个方面中,氧化钇及氧化镱中的至少一者包括氧化钇。在第一实施例的另一方面中,氧化钇及氧化镱中的至少一者包括氧化镱。在第一实施例的又一方面中,氧化钇及氧化镱中的至少一者包括氧化钇及氧化镱两者。在这一方面中,氧化钇可占组合物的0.5到1.5摩尔%且氧化镱可占组合物的1.5到0.5摩尔%,以使氧化钇及氧化镱的总含量大于0.5摩尔%且小于2.5摩尔%。氧化钪的量大于氧化铈的量及氧化钇及氧化镱中的至少一者的量。氧化铈的量可等于、小于或大于氧化钇及氧化镱中的至少一者的量。
在本发明第二实施例中,稳定氧化物(例如氧化铈)的量为至少2摩尔%以向SSZ组合物提供充足的稳定作用来减少或避免老化。在此实施例中,氧化钇及/或氧化镱任选添加到组合物中且可省略。
因此,第一实施例及第二实施例两者中的SSZ电解质组合物可具有式(1):
(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b    (1),
其中w为约0.09到0.11,x为大于0到0.025,a与b的总和等于z,且z为0到0.025,且x加z的总和大于或等于0.02。换句话说,0.09≤w≤0.11;0<x≤0.025;a+b=z,且0≤z≤0.025;且x+z≥0.02。优选x在0.005到0.025范围内,z在0.005到0.025范围内,且x与z的总和大于或等于0.02且小于或等于0.03。换句话说,0.005≤x≤0.025;0.005≤z≤0.025;且0.02≤(x+z)≤0.03。更优选地,w=0.1;x=0.01;且z=0.01。因此,w可为约10摩尔%,x可为约1摩尔%,且z可为约1摩尔%。式(1)中,b可小于a(即b<a),a可小于b(即a<b),a可等于0(即a=0),b可等于0(即b=0),或a可等于b(即a=b)。
根据第三实施例,SSZ组合物具有接近于含SSZ电解质SOFC的燃料电池堆叠中使用的互连件的热膨胀系数的相对较高的热膨胀系数(“CTE”)。所述互连件可包括具有至少94重量%Cr、4到6重量%Fe及0到1重量%Y的铬合金互连件。在第三实施例的第一方面中,SSZ组合物含有总计大于0而小于2摩尔%的氧化钇及/或氧化镱中的至少一者及氧化铈。举例来说,SSZ组合物含有总计0.5到1.75摩尔%(例如总计0.5到1.5摩尔%,包含总计1到1.5摩尔%)的氧化钇及/或氧化镱中的至少一者及氧化铈。SSZ组合物可含有0.25到1.25摩尔%氧化铈,例如0.5到1摩尔%氧化铈,及0.25到1.25摩尔%(例如0.5到1摩尔%)的氧化钇、氧化镱或氧化钇与氧化镱的组合。在第三实施例的第二方面中,以氧化镱替代氧化钇以使组合物实质上不含氧化钇(例如,无法避免的微量氧化钇或小于0.1摩尔%氧化钇)。认为以氧化镱替代氧化钇可增加电解质材料的CTE及离子导电率。SSZ组合物可含有0到1.25摩尔%氧化铈,例如0.5到1摩尔%氧化铈,及0.25到2摩尔%(例如0.5到1摩尔%)氧化镱。如果SSZ组合物含有至少0.75摩尔%氧化镱,例如1到2摩尔%氧化镱,包含1到1.5摩尔%氧化镱,那么所述组合物可实质上不含氧化铈(例如,无法避免的微量氧化铈或小于0.1摩尔%氧化铈)。因此,在第三实施例的第二方面中,固体氧化物燃料电池的电解质组合物包括利用以下稳定的氧化锆:(i)存在量等于9到11摩尔%的氧化钪,及(ii)存在量等于1到2摩尔%的氧化镱。
因此,第三实施例的SSZ电解质组合物可具有式(2):
(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b    (2),
其中w为约0.09到0.11,x为0到0.0125,a为0到0.0125,b为0到0.02,a与b的总和等于z,且z为0.0025到0.02,且x加z的总和小于或等于0.02。换句话说,0.09≤w≤0.11;0≤x≤0.0125;a+b=z,且0.0025≤z≤0.02;且x+z≤0.02。优选地,在第三实施例的第一方面中,x在0.0025到0.0125范围内,例如为0.005到0.01,z在0.0025到0.0125范围内,例如为0.005到0.01,且x与z的总和大于或等于0.005且小于或等于0.0175,例如大于或等于0.01且小于或等于0.015。换句话说,0.0025≤x≤0.0125,例如0.005≤x≤0.01;0.0025≤z≤0.0125,例如0.005≤z≤0.01,且0.005≤(x+z)≤0.0175,例如0.01≤(x+z)≤0.015。更优选地,w=0.1;当z=0.005时,x=0.01,且当z=0.01时,x=0.005。因此,w可为约10摩尔%,x可为约0.5到1摩尔%,且z可为约0.5到1摩尔%。优选地,在第三实施例的第二方面中,x在0到0.0125范围内,例如为0.005到0.01,0≤a≤0.001(优选地,a=0),且b与z在0.0025到0.02范围内,例如为0.005到0.01,且x与z的总和大于或等于0.005且小于或等于0.02,例如为0.01到0.015。式(2)中,b可小于a(即b<a),a可小于b(即a<b),a可等于0(即a=0),b可等于0(即b=0),或a可等于b(即a=b)。优选a或b中仅有一者等于0。根据第三实施例的示范性组合物包含:
10Sc1Ce1Y(10摩尔%Sc2O3+1摩尔%CeO2+1摩尔%Y2O3),剩余部分为氧化锆;
10Sc1Ce0.5Y(10摩尔%Sc2O3+1摩尔%CeO2+0.5摩尔%Y2O3),剩余部分为氧化锆;
10Sc1Ce1Yb(10摩尔%Sc2O3+1摩尔%CeO2+1摩尔%Yb2O3),剩余部分为氧化锆;
10Sc1Ce0.5Yb(10摩尔%Sc2O3+1摩尔%CeO2+0.5摩尔%Yb2O3),剩余部分为氧化锆;
10Sc0.5Ce0.5Y(10摩尔%Sc2O3+0.5摩尔%CeO2+0.5摩尔%Y2O3),剩余部分为氧化锆;
10Sc0.5Ce0.5Yb(10摩尔%Sc2O3+0.5摩尔%CeO2+0.5摩尔%Yb2O3),剩余部分为氧化锆;
10Sc0.5Ce1Y(10摩尔%Sc2O3+0.5摩尔%CeO2+1摩尔%Y2O3),剩余部分为氧化锆;
10Sc0.5Ce1Yb(10摩尔%Sc2O3+0.5摩尔%CeO2+1摩尔%Yb2O3),剩余部分为氧化锆;及
10Sc1Yb(10摩尔%Sc2O3+1摩尔%Yb2O3),剩余部分为氧化锆。
电解质组合物的实施例具有0.14S/cm或更大,优选0.15S/cm或更大,例如0.16到0.17S/cm的高起始离子导电率。在空气中及/或在含H2环境中,于4000小时之后,本发明组合物的离子导电率随时间推移的降级可小于15%,例如为0到15%,例如为0到10%,包含1到5%。此离子导电率降级的最小化可归因于立方相的稳定化导致阻止立方相转变成四方相。此外,本发明实施例中至少一者提供一种电解质组合物,其中所述组合物在约25到850℃温度下不发生立方相转变成菱形相。换句话说,所述组合物在室温到约850℃下为立方体(即,所述组合物在室温到SOFC操作温度下保持立方相,而未随时间推移产生四方区域或转变成菱形相)。因此,在850℃温度下4000小时之后,本发明组合物的离子导电率的降级不大于15%。
举例来说,如图3所示,在850℃下随时间推移进行比较及示范性组合物样品的导电率测量。利用DC4点法通过范德堡(Van der Pauw)几何形状测量所述样品的导电率。所述样品是在具高温及受控气体环境的试验台中进行测试。在空气或氢气环境中,在850℃下进行测量。示范性样品包括利用10摩尔%氧化钪、1摩尔%氧化铈及1摩尔%氧化钇稳定的氧化锆组合物(“10Sc1Ce1Y”)。一种示范性样品的导电率测量是在氢气氛围中进行,且另一样品是在空气中进行。比较样品包括利用10摩尔%氧化钪及1摩尔%氧化铈稳定的氧化锆组合物(“10Sc1Ce”)。比较组合物的导电率是在空气及氢气氛围中测量。如图3所示,在4000小时之后,比较组合物10Sc1Ce随时间推移而经历显著的导电率降级,例如,降级大于约15%。然而,示范性组合物10Sc1Ce1Y在空气或氢气中4000小时之后离子导电率的降级不大于15%。
可利用本发明的实施例作为平面固体氧化物燃料电池的电解质层。换句话说,可利用所述组合物作为包括阳极及阴极的平面固体氧化物燃料电池的电解质层。优选将所述组合物用于电解质层支撑阳极及阴极的经电解质支撑的电池中。举例来说,图4说明根据本发明实施例的固体氧化物燃料电池1。电池1包含阳极电极3、固体氧化物电解质5及阴极电极7。电解质5可包括经稳定的氧化锆,例如,如上所述利用以下稳定的氧化锆:(i)氧化钪、(ii)氧化铈,及(iii)氧化钇及氧化镱中的至少一者。或者,电解质5可包括含式(1)及包含所述式的上述任何实施例的电解质组合物。
形成图4所示的经电解质支撑的平面SOFC 1的方法包含在平面固体氧化物电解质5的第一面上形成阴极电极7及在平面固体氧化物电极的第二面上形成阳极电极3。所述阳极及所述阴极可以任一顺序形成于电解质的相对面上。
如图4所示,阳极电极3可含有一层或多个子层。因此,阳极电极3可含有组成及镍含量各不同的第一部分13及第二部分23。举例来说,第一部分13位于电解质5与第二部分23之间。阳极电极的第一部分13可含有镍及陶瓷相,例如经稳定的氧化锆及/或经掺杂的氧化铈,例如经氧化钐掺杂的氧化铈。阳极电极的第二部分23也可含有镍及陶瓷相,例如经稳定的氧化锆及/或经掺杂的氧化铈,例如经氧化钐掺杂的氧化铈。第一部分13可含有比阳极电极的第二部分23低的含镍相与陶瓷相比率。阴极电极7可包括导电材料,例如导电钙钛矿材料,例如镧锶水锰矿(lanthanum strontium manganite,LSM)。还可使用其它导电钙钛矿(例如LSCo等),或金属(例如Pt)。所述阴极及阳极电极的组成、定向及配置可包括共同待决的第11/907,204号及第11/785,034号美国专利申请案中所论述的组成、定向及配置,所述申请案全文以引用的方式并入本文。
在本发明另一实施例中,包括利用氧化钇及氧化镱中的至少一者、氧化钪及氧化铈稳定的氧化锆的第一、第二及/或第三实施例的组合物可用于固体氧化物燃料电池的阳极电极、阴极电极或两种电极中。因此,第一、第二及第三实施例的组合物可用于SOFC阳极、阴极及电解质中的任一者、两者或所有三者中。在复合阳极及/或阴极电极中,使用第一、第二或第三实施例的经稳定的氧化锆作为固体氧化物离子导电相,而使用导电材料(例如金属,例如镍、铜、钴、铂、钯等,或其合金;或导电陶瓷,例如镧锶水锰矿(LSM)、镧锶辉钴矿(La,Sr)CoO3、镧锶钴铁氧体(La,Sr)(Co,Fe)O3等)作为导电相。复合电极(例如阳极或阴极)的固体氧化物离子导电相的离子导电率的降级会导致电极性能的降级。因此,相比含有降级速率较高的陶瓷材料的复合电极,含有具低离子导电率降级的固体氧化物离子导电相(例如10Sc1Ce1Y)的复合电极将显示较低降级。
举例来说,利用氧化钇及氧化镱中的至少一者、氧化钪及氧化铈稳定的氧化锆可用于单层或多层复合阳极电极中。举例来说,利用氧化钇及氧化镱中的至少一者、氧化钪及氧化铈稳定的氧化锆可用于上述阳极电极3的第一部分13及/或第二部分23中。阳极电极的第一部分13可含有镍及经稳定的氧化锆陶瓷相。阳极电极的第二部分23也可含有镍及经稳定的氧化锆陶瓷相。第一部分13可含有比阳极电极的第二部分23低的含镍相与陶瓷相比率。举例来说,阳极电极的第一部分13可含有5到30体积%的孔隙率及1到20体积%的镍相含量且剩余部分为经稳定的氧化锆陶瓷相。阳极电极的第二部分23可含有31到60体积%的较高孔隙率、21到60体积%的镍相含量且剩余部分为经稳定的氧化锆陶瓷相。所述含镍相可任选含有1到50原子%,例如5到30原子%的另一金属(例如钴及/或铜),且剩余部分为镍。
在另一实例中,阴极电极7可包括复合阴极,其含有10到70体积%的导电相(例如导电钙钛矿材料(例如LSM))且剩余部分为孔隙及经稳定的氧化锆离子导电相。
在本发明另一实施例中,一种操作固体氧化物燃料电池(例如,图4的燃料电池1)的方法包括操作所述燃料电池至少4000小时以使所述燃料电池的SSZ电解质的离子导电率的降级不大于15%。优选地,提供于电解质的阴极及阳极面上的电解质组合物在室温到约850℃下以及在空气及氢气环境中在850℃下操作至少4000小时之后为立方体(即,所述组合物在室温到SOFC操作温度下保持立方相,且在至少4000小时内未产生四方区域或转变成菱形相)。
燃料电池堆叠通常由呈平面元件、管或其它几何结构形状的多个SOFC 1构建。必须将燃料及空气提供到电化学活性表面,这一表面可极大。所述电池堆可包括多个平面或板状燃料电池。所述燃料电池可具有其它配置,例如管状。所述电池堆可为垂直定向堆叠,或所述燃料电池可水平堆叠或在介于垂直与水平之间的任何其它合适的方向上进行堆叠。如以上提及的第11/907,204号及第11/785,034号美国申请案所述,多个互连件是位于电池堆中,使得每一燃料电池位于两个互连件之间,且每一互连件充当气体隔板。
通常,如图5所示,将一个电池的燃料电极3电连接到相邻电池的空气电极7的互连件9还用作气流隔板9。所述气流隔板将流到电池堆中一个电池的燃料电极(即,阳极3)的燃料(例如烃类燃料)与流到所述电池堆中相邻电池的空气电极(即,阴极7)的氧化剂(例如空气)分隔开。隔板9含有介于凸缘(rib)10之间的气流通路或通道8。在此情况中,用作互连件的气流隔板是由导电材料制成或含有导电材料。可在阳极电极与互连件之间提供导电接触层,例如镍接触层。图5显示下层SOFC 1位于两块气体隔板9之间。
文中所用术语“燃料电池堆叠”意指共享燃料进口及排放通路或立管(riser)的多个堆叠的燃料电池。文中所用的“燃料电池堆叠”包含相异的电实体,其含有连接到电力调节设备及电池堆的电力(即,电)输出的两块端板。因此,在一些配置中,可由其它堆叠单独地控制来自此相异电实体的电力输出。文中所用术语“燃料电池堆叠”还包含所述相异电实体的一部分。举例来说,所述电池堆可共享相同的端板。在此情况中,所述电池堆共同地包括相异电实体,例如管柱。在此情况中,无法单独地对来自两个堆叠的电力输出进行控制。
出于说明及描述的目的,已呈现前述本发明的描述。其无意为详尽的或将本发明限制于所揭示的精确形式,且可根据以上教示作出或可由本发明的实施获得修改及变化。选择描述内容来解释本发明的原理及其实际应用。本发明的范围拟由所附权利要求书及其等效物界定。

Claims (29)

1.一种用于固体氧化物燃料电池的电解质组合物,其包括:
利用以下稳定的氧化锆:
(i)氧化钪;
(ii)氧化铈;及
(iii)存在量大于0且等于或小于2.5摩尔%的氧化钇及氧化镱中的至少一者。
2.根据权利要求1所述的组合物,其中所述氧化钪的存在量等于9到11摩尔%且所述氧化铈的存在量大于0且等于或小于2.5摩尔%。
3.根据权利要求2所述的组合物,其中氧化铈、氧化钇及氧化镱的总量以总计等于0.5及1.5摩尔%的量存在,所述氧化铈的存在量等于0.25到1.25摩尔%,且氧化铱及氧化镱中的一者的存在量等于0.25到1.25摩尔%。
4.根据权利要求3所述的组合物,其中氧化铈、氧化钇及氧化镱的总量以总计等于1及1.5摩尔%的量存在,所述氧化铈的存在量等于0.5到1摩尔%,且氧化钇及氧化镱中的一者的存在量等于0.5到1摩尔%。
5.根据权利要求1所述的组合物,其中所述氧化钇及氧化镱中的至少一者包括氧化钇。
6.根据权利要求1所述的组合物,其中所述氧化钇及氧化镱中的至少一者包括氧化镱。
7.根据权利要求1所述的组合物,其中氧化钪的量大于氧化铈的量及所述氧化钇及氧化镱中的至少一者的量,且所述氧化铈量等于、小于或大于所述氧化钇及氧化镱中的至少一者的量。
8.根据权利要求1所述的组合物,其中所述组合物在850℃温度下4000小时之后,离子导电率的降级不大于15%。
9.根据权利要求1所述的组合物,其中所述组合物在约25℃到850℃温度下不发生立方相到菱形相的转变且所述组合物在固体氧化物燃料电池中在空气或氢气环境中的至少一者中在850℃下操作至少4000小时之后,包括实质上不含四方相区域的立方相。
10.根据权利要求1所述的组合物,其中所述组合物用作包括阳极及阴极的平面固体氧化物燃料电池的电解质层,且所述电解质层支撑所述阳极及所述阴极。
11.一种用于固体氧化物燃料电池的经氧化钪稳定的氧化锆电解质组合物,其包括式(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0<x≤0.025;a+b=z;0≤z≤0.025;且x+z≥0.02。
12.根据权利要求11所述的电解质组合物,其中0.005≤x≤0.025;0.005≤z≤0.025;且0.02≤(x+z)≤0.03。
13.根据权利要求12所述的电解质组合物,其中:
w=0.1;x=0.01;及z=0.01;且
所述组合物包括含10摩尔%Sc2O3、1摩尔%CeO2及1摩尔%Y2O3的氧化锆。
14.根据权利要求11所述的电解质组合物,其中:
所述组合物在850℃温度下4000小时之后,离子导电率的降级不大于15%;
所述组合物在固体氧化物燃料电池中在空气或氢气环境中的至少一者中在850℃下操作至少4000小时之后,包括实质上不含四方相区域的立方相;且
所述组合物在约25℃到850℃的温度下不发生立方相到菱形相的转变。
15.根据权利要求11所述的组合物,其中所述组合物用作包括阳极及阴极的平面固体氧化物燃料电池的电解质层,且所述电解质层支撑所述阳极及所述阴极。
16.一种用于固体氧化物燃料电池的经氧化钪稳定的氧化锆电解质组合物,其包括式(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0≤x≤0.0125;a+b=z,及0.0025≤z≤0.02;且x+z≤0.02。
17.根据权利要求16所述的电解质组合物,其中0.0025≤x≤0.0125;0.0025≤z≤0.0125;且0.005≤(x+z)≤0.0175。
18.根据权利要求17所述的电解质组合物,其中0.005≤x≤0.01;0.005≤z≤0.01;0.01≤(x+z)≤0.015。
19.根据权利要求16所述的电解质组合物,其中所述组合物包括以下至少一者:
10摩尔%Sc2O3、1摩尔%CeO2、1摩尔%Y2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、1摩尔%CeO2、0.5摩尔%Y2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、1摩尔%CeO2、1摩尔%Yb2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、1摩尔%CeO2、0.5摩尔%Yb2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、0.5摩尔%CeO2、0.5摩尔%Y2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、0.5摩尔%CeO2、0.5摩尔%Yb2O3,剩余部分为氧化锆;
10摩尔%Sc2O3、0.5摩尔%CeO2、1摩尔%Y2O3,剩余部分为氧化锆;及
10摩尔%Sc2O3、1摩尔%Yb2O3,剩余部分为氧化锆。
20.根据权利要求16所述的电解质组合物,其中:
所述组合物在850℃温度下4000小时之后,离子导电率的降级不大于15%;
所述组合物在固体氧化物燃料电池中在空气或氢气环境中的至少一者中在850℃下操作至少4000小时之后,包括实质上不含四方相区域的立方相;且
所述组合物在约25℃到850℃的温度下不发生立方相到菱形相的转变。
21.根据权利要求16所述的组合物,其中:
所述组合物用作包括阳极及阴极的平面固体氧化物燃料电池的电解质层;
所述电解质层支撑所述阳极及所述阴极;
所述固体氧化物燃料电池位于固体氧化物燃料电池堆叠中邻近互连件,所述互连件包括至少94重量%Cr、4到6重量%Fe及0到1重量%Y;且
所述电解质的热膨胀系数与所述互连件的热膨胀系数相差1%或更小。
22.一种用于固体氧化物燃料电池的电解质组合物,其包括:
利用以下稳定的氧化锆:
(i)存在量等于9到11摩尔%的氧化钪;及
(ii)存在量等于1到2摩尔%的氧化镱。
23.一种固体氧化物燃料电池,其包括:
固体氧化物电解质;
阳极电极;及
阴极电极;
其中所述阳极电极及所述阴极电极中的至少一者包括含导电相及离子导电相的复合电极,所述离子导电相包括利用以下稳定的氧化锆:
(i)氧化钪;
(ii)氧化铈;及
(iii)存在量大于0且等于或小于2.5摩尔%的氧化钇及氧化镱中的至少一者。
24.根据权利要求23所述的燃料电池,其中所述阳极电极包括所述导电相包括镍的所述复合电极。
25.根据权利要求23所述的燃料电池,其中所述阴极电极包括所述导电相包括导电钙钛矿材料的所述复合电极。
26.根据权利要求23所述的燃料电池,其中所述经稳定的氧化锆电极组合物包括式(1):
(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0<x≤0.025;a+b=z;0≤z≤0.025;且x+z≥0.02;
或式(2):
(ZrO2)1-w-x-z(Sc2O3)w(CeO2)x(Y2O3)a(Yb2O3)b,其中0.09≤w≤0.11;0≤x≤0.0125;a+b=z,及0.0025≤z≤0.02;且x+z≤0.02。
27.根据权利要求23所述的燃料电池,其中所述电解质包括利用以下稳定的氧化锆:
(i)氧化钪;
(ii)氧化铈;及
(iii)存在量大于0且等于或小于2.5摩尔%的氧化钇及氧化镱中的至少一者。
28.一种操作包括利用氧化钪及氧化铈稳定的氧化锆电解质的固体氧化物燃料电池的方法,所述方法包括操作所述固体氧化物燃料电池至少4000小时以使所述燃料电池的电解质的离子导电率的降级不大于15%。
29.根据权利要求28所述的方法,其中所述电解质包括利用氧化钇及氧化镱中的至少一者、氧化钪及氧化铈稳定的氧化锆,其在所述固体氧化物燃料电池中在空气及氢气环境中的至少一者中在850℃下操作至少4000小时之后,包括实质上不含四方相区域的立方相。
CN201180006935.5A 2010-01-26 2011-01-19 低降级的相稳定性经掺杂氧化锆电解质组合物 Active CN102725902B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29846810P 2010-01-26 2010-01-26
US61/298,468 2010-01-26
PCT/US2011/021664 WO2011094098A2 (en) 2010-01-26 2011-01-19 Phase stable doped zirconia electrolyte compositions with low degradation

Publications (2)

Publication Number Publication Date
CN102725902A true CN102725902A (zh) 2012-10-10
CN102725902B CN102725902B (zh) 2016-01-20

Family

ID=44309204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180006935.5A Active CN102725902B (zh) 2010-01-26 2011-01-19 低降级的相稳定性经掺杂氧化锆电解质组合物

Country Status (7)

Country Link
US (3) US8580456B2 (zh)
EP (2) EP2529442B1 (zh)
JP (1) JP5323269B2 (zh)
CN (1) CN102725902B (zh)
AU (1) AU2011209829C1 (zh)
TW (1) TWI501937B (zh)
WO (1) WO2011094098A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236550A (zh) * 2013-04-22 2013-08-07 陕西煤业化工技术研究院有限责任公司 一种石墨烯改性的固体氧化物燃料电池镍基复合阳极材料及其制备方法
CN104638287A (zh) * 2015-01-28 2015-05-20 潮州三环(集团)股份有限公司 一种阳极支撑型固体氧化物燃料电池的制备方法
CN104798237A (zh) * 2012-11-20 2015-07-22 博隆能源股份有限公司 经掺杂氧化钪稳定的氧化锆电解质组合物
CN106463748A (zh) * 2014-05-26 2017-02-22 日本碍子株式会社 燃料电池
CN109312480A (zh) * 2016-06-17 2019-02-05 托普索公司 具有加热能力的soec系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2529442B1 (en) 2010-01-26 2018-10-03 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
JP6095692B2 (ja) * 2012-02-01 2017-03-15 カールトン・ライフ・サポート・システムズ・インコーポレイテッドCarleton Life Support Systems Incorpporated 完全安定化ジルコニア及び部分安定化ジルコニアから成る複合電解質
JP5890908B2 (ja) * 2012-09-26 2016-03-22 株式会社日本触媒 固体酸化物形燃料電池用電解質シート、電解質支持型セル、固体酸化物形燃料電池用単セル及び固体酸化物形燃料電池
KR101772264B1 (ko) * 2014-03-06 2017-08-29 주식회사케이세라셀 고효율 고체산화물 연료전지용 고 이온전도성 지르코니아 전해질
US9847545B2 (en) * 2014-03-06 2017-12-19 Kceracell Co., Ltd. Highly ionic conductive zirconia electrolyte for high-efficiency solid oxide fuel cell
TWI688154B (zh) 2014-11-12 2020-03-11 美商博隆能源股份有限公司 具有對固態氧化物燃料電池之退化有改善抗性之固態氧化物燃料電池陰極組合物
JP6422120B2 (ja) * 2015-02-19 2018-11-14 株式会社日本触媒 固体電解質材料
WO2017035621A1 (pt) * 2015-09-04 2017-03-09 Instituto Alberto Luiz Coimbra De Pós Graduação E Pesquisa De Engenharia – Coppe/Ufrj Sistema de teste para pilhas a combustível de alta temperatura de operação multicombustível, o qual permite a utilização direta de combustíveis carbonosos sem promover a deposição de carbono nos elementos de passagem de combustível.
US10458027B2 (en) * 2015-10-08 2019-10-29 Low Emission Resources Corporation Electrode-supported tubular solid-oxide electrochemical cell
KR102141266B1 (ko) * 2016-09-30 2020-08-04 주식회사 엘지화학 고체 산화물 연료전지의 전해질, 이를 포함하는 고체 산화물 연료전지, 상기 전해질용 조성물 및 상기 전해질의 제조방법
US11001915B1 (en) 2016-11-28 2021-05-11 Bloom Energy Corporation Cerium and cerium oxide containing alloys, fuel cell system balance of plant components made therefrom and method of making thereof
CN107244914B (zh) * 2017-05-10 2019-10-18 杭州而然科技有限公司 一种彩色氧化锆陶瓷
US10680251B2 (en) * 2017-08-28 2020-06-09 Bloom Energy Corporation SOFC including redox-tolerant anode electrode and system including the same
US11133511B2 (en) 2017-11-13 2021-09-28 Bloom Energy Corporation Method of providing a functionally graded composite layer for coefficient of thermal expansion compliance in solid oxide fuel cell stacks and system components
US10651479B2 (en) 2018-02-05 2020-05-12 Bloom Energy Corporation Method of recovering metal compounds from solid oxide fuel cell scrap
US11283085B1 (en) 2020-03-06 2022-03-22 Bloom Energy Corporation Low VOC ink compositions and methods of forming fuel cell system components using the same
CN115552058A (zh) * 2020-05-14 2022-12-30 博隆能源股份有限公司 用于固态氧化物电解电池的电解质材料
US11515543B1 (en) 2020-06-03 2022-11-29 Bloom Energy Corporation Aqueous fuel cell system component ink compositions and methods of forming fuel cell system components using the same
US20220190373A1 (en) 2020-12-14 2022-06-16 Bloom Energy Corporation Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
US20220231317A1 (en) 2021-01-15 2022-07-21 Bloom Energy Corporation Method of manufacturing solid oxide electrolyzer cells using a continuous furnace
US11824205B2 (en) 2021-01-18 2023-11-21 Bloom Energy Corporation Systems and methods for refurbishing fuel cell stack components
TW202315198A (zh) 2021-06-11 2023-04-01 美商博隆能源股份有限公司 具有層疊陽極及電解質層之固態氧化物燃料電池及其製造方法
US20230141938A1 (en) 2021-11-05 2023-05-11 Bloom Energy Corporation Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
EP4181242A3 (en) 2021-11-11 2023-05-31 Bloom Energy Corporation Ni-fe based cathode functional layers for solid oxide fuel cells
KR20230108232A (ko) 2022-01-10 2023-07-18 블룸 에너지 코퍼레이션 Sofc 및 soec용 전극의 최적화된 공정
CN114538922A (zh) * 2022-03-22 2022-05-27 北京理工大学 一种用于氧化锆的多主组元掺杂剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942349A (en) * 1995-03-15 1999-08-24 Ceramic Fuel Cells Limited Fuel cell interconnect device
US20040265663A1 (en) * 2003-06-30 2004-12-30 Badding Michael E Textured electrolyte sheet
US20060199057A1 (en) * 2005-03-04 2006-09-07 Toto Ltd. Solid oxide fuel cell
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Family Cites Families (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634204A (zh) 1962-06-27 1900-01-01
NL300914A (zh) 1962-11-23 1900-01-01
US4575407A (en) 1962-12-03 1986-03-11 Diller Isaac M Product and process for the activation of an electrolytic cell
CH594292A5 (zh) 1974-11-19 1978-01-13 Raffinage Cie Francaise
CA1117589A (en) 1978-03-04 1982-02-02 David E. Brown Method of stabilising electrodes coated with mixed oxide electrocatalysts during use in electrochemical cells
US4272353A (en) 1980-02-29 1981-06-09 General Electric Company Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby
US4459340A (en) 1982-04-30 1984-07-10 Board Of Trustees, Stanford University Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte
EP0275356B1 (en) 1984-10-23 1991-06-05 Mitsubishi Jukogyo Kabushiki Kaisha Solid electrolyte fuel cell and method for preparing it
US4925745A (en) 1985-03-29 1990-05-15 Institute Of Gas Technoloy Sulfur tolerant molten carbonate fuel cell anode and process
US4792502A (en) 1986-11-14 1988-12-20 International Fuel Cells Corporation Apparatus for producing nitrogen
US4913982A (en) 1986-12-15 1990-04-03 Allied-Signal Inc. Fabrication of a monolithic solid oxide fuel cell
US4847173A (en) 1987-01-21 1989-07-11 Mitsubishi Denki Kabushiki Kaisha Electrode for fuel cell
US4804592A (en) 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
US4898792A (en) 1988-12-07 1990-02-06 Westinghouse Electric Corp. Electrochemical generator apparatus containing modified high temperature insulation and coated surfaces for use with hydrocarbon fuels
US4917971A (en) 1989-03-03 1990-04-17 Energy Research Corporation Internal reforming fuel cell system requiring no recirculated cooling and providing a high fuel process gas utilization
US5302470A (en) 1989-05-16 1994-04-12 Osaka Gas Co., Ltd. Fuel cell power generation system
JPH03196465A (ja) 1989-12-25 1991-08-27 Yuasa Battery Co Ltd 燃料電池用固体電解質の製造方法
US4983471A (en) 1989-12-28 1991-01-08 Westinghouse Electric Corp. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths
US5034287A (en) 1990-04-23 1991-07-23 International Fuel Cells Corporation Fuel cell cooling using heat of reaction
CA2018639A1 (en) 1990-06-08 1991-12-08 James D. Blair Method and apparatus for comparing fuel cell voltage
US6592965B1 (en) 1990-07-06 2003-07-15 Igr Enterprises, Inc. Ductile ceramic composite electrolyte
US5169730A (en) 1990-07-25 1992-12-08 Westinghouse Electric Corp. Electrochemical cell apparatus having an exterior fuel mixer nozzle
US5047299A (en) 1990-07-25 1991-09-10 Westinghouse Electric Corp. Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser
US5143800A (en) 1990-07-25 1992-09-01 Westinghouse Electric Corp. Electrochemical cell apparatus having combusted exhaust gas heat exchange and valving to control the reformable feed fuel composition
US5162167A (en) 1990-09-11 1992-11-10 Allied-Signal Inc. Apparatus and method of fabricating a monolithic solid oxide fuel cell
US5290642A (en) 1990-09-11 1994-03-01 Alliedsignal Aerospace Method of fabricating a monolithic solid oxide fuel cell
US5256499A (en) 1990-11-13 1993-10-26 Allied Signal Aerospace Monolithic solid oxide fuel cells with integral manifolds
US5290323A (en) 1990-12-10 1994-03-01 Yuasa Corporation Manufacturing method for solid-electrolyte fuel cell
US5171645A (en) 1991-01-08 1992-12-15 Gas Research Institute, Inc. Zirconia-bismuth oxide graded electrolyte
JPH04292865A (ja) 1991-03-20 1992-10-16 Ngk Insulators Ltd 固体電解質型燃料電池
DE4114644A1 (de) 1991-05-04 1992-11-05 Abb Patent Gmbh Verfahren zur mechanischen verbindung von hochtemperaturbrennstoffzellen mit einem brennstoffzellentraeger
US5215946A (en) 1991-08-05 1993-06-01 Allied-Signal, Inc. Preparation of powder articles having improved green strength
JPH05294629A (ja) 1992-04-17 1993-11-09 Nippon Telegr & Teleph Corp <Ntt> 酸素イオン導伝体及び固体燃料電池
US5273837A (en) 1992-12-23 1993-12-28 Corning Incorporated Solid electrolyte fuel cells
JP3145522B2 (ja) 1993-01-18 2001-03-12 三菱重工業株式会社 固体電解質型燃料電池
US5368667A (en) 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
US5342705A (en) 1993-06-04 1994-08-30 Allied-Signal, Inc. Monolithic fuel cell having a multilayer interconnect
JP3064167B2 (ja) 1993-09-01 2000-07-12 三菱重工業株式会社 固体電解質燃料電池
US5589285A (en) 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
JP3196465B2 (ja) 1993-12-24 2001-08-06 三菱マテリアル株式会社 射出成形用金型
TW299345B (zh) 1994-02-18 1997-03-01 Westinghouse Electric Corp
JP3349245B2 (ja) 1994-03-04 2002-11-20 三菱重工業株式会社 固体電解質型燃料電池の製造方法
US5498487A (en) 1994-08-11 1996-03-12 Westinghouse Electric Corporation Oxygen sensor for monitoring gas mixtures containing hydrocarbons
DK112994A (da) 1994-09-29 1996-03-30 Haldor Topsoe As Fremgangsmåde til fremstilling af elektricitet i en intern reformet højtemperatur brændselscelle
US5441821A (en) 1994-12-23 1995-08-15 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
US5505824A (en) 1995-01-06 1996-04-09 United Technologies Corporation Propellant generator and method of generating propellants
US5601937A (en) 1995-01-25 1997-02-11 Westinghouse Electric Corporation Hydrocarbon reformer for electrochemical cells
FR2736343B1 (fr) 1995-07-03 1997-09-19 Rhone Poulenc Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
US5733675A (en) 1995-08-23 1998-03-31 Westinghouse Electric Corporation Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer
US5573867A (en) 1996-01-31 1996-11-12 Westinghouse Electric Corporation Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
US5741605A (en) 1996-03-08 1998-04-21 Westinghouse Electric Corporation Solid oxide fuel cell generator with removable modular fuel cell stack configurations
US5741406A (en) 1996-04-02 1998-04-21 Northerwestern University Solid oxide fuel cells having dense yttria-stabilized zirconia electrolyte films and method of depositing electrolyte films
FR2748740B1 (fr) 1996-05-15 1998-08-21 Rhone Poulenc Chimie Composition a base d'oxyde de cerium et d'oxyde de zirconium a haute surface specifique et a capacite elevee de stockage d'oxygene, procede de preparation et utilisation en catalyse
US5686196A (en) 1996-10-09 1997-11-11 Westinghouse Electric Corporation System for operating solid oxide fuel cell generator on diesel fuel
US5955039A (en) 1996-12-19 1999-09-21 Siemens Westinghouse Power Corporation Coal gasification and hydrogen production system and method
US6238816B1 (en) 1996-12-30 2001-05-29 Technology Management, Inc. Method for steam reforming hydrocarbons using a sulfur-tolerant catalyst
US5993989A (en) 1997-04-07 1999-11-30 Siemens Westinghouse Power Corporation Interfacial material for solid oxide fuel cell
CA2242176C (en) 1997-06-30 2009-01-27 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6013385A (en) 1997-07-25 2000-01-11 Emprise Corporation Fuel cell gas management system
US5922488A (en) 1997-08-15 1999-07-13 Exxon Research And Engineering Co., Co-tolerant fuel cell electrode
US5908713A (en) * 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
FR2770790B1 (fr) 1997-11-10 1999-12-10 Rhodia Chimie Sa Composition a support a base d'un oxyde de cerium, d'un oxyde de zirconium et d'un oxyde de scandium ou de terre rare et utilisation pour le traitement des gaz d'echappement
US6051125A (en) 1998-09-21 2000-04-18 The Regents Of The University Of California Natural gas-assisted steam electrolyzer
JP3777903B2 (ja) 1998-10-14 2006-05-24 三菱マテリアル株式会社 電極−電解質間に傾斜組成を持つ固体酸化物型燃料電池
US6228521B1 (en) 1998-12-08 2001-05-08 The University Of Utah Research Foundation High power density solid oxide fuel cell having a graded anode
JP2000281438A (ja) 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd ジルコニアシート及びその製法
US6403245B1 (en) 1999-05-21 2002-06-11 Microcoating Technologies, Inc. Materials and processes for providing fuel cells and active membranes
JP2000340240A (ja) 1999-05-31 2000-12-08 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びそれを用いた固体電解質型燃料電池
US6682842B1 (en) 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6329090B1 (en) 1999-09-03 2001-12-11 Plug Power Llc Enthalpy recovery fuel cell system
US6280865B1 (en) 1999-09-24 2001-08-28 Plug Power Inc. Fuel cell system with hydrogen purification subsystem
US6489050B1 (en) 1999-11-01 2002-12-03 Technology Management, Inc. Apparatus and method for cooling high-temperature fuel cell stacks
US6361892B1 (en) 1999-12-06 2002-03-26 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
EP1113518B1 (en) 1999-12-27 2013-07-10 Corning Incorporated Solid oxide electrolyte, fuel cell module and manufacturing method
US6451466B1 (en) 2000-04-06 2002-09-17 Utc Fuel Cells, Llc Functional integration of multiple components for a fuel cell power plant
US6630264B2 (en) 2000-05-01 2003-10-07 Delphi Technologies, Inc. Solid oxide fuel cell process gas sampling for analysis
US6835488B2 (en) 2000-05-08 2004-12-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with patterned electrolyte/electrode interface
WO2001091218A2 (en) 2000-05-22 2001-11-29 Acumentrics Corporation Electrode-supported solid state electrochemical cell
DE10026940A1 (de) 2000-05-30 2001-12-06 Creavis Tech & Innovation Gmbh Elektrochemische Zelle zur Oxidation organischer Verbindungen und elektrokatalytischer Oxidationsprozess
US6558831B1 (en) 2000-08-18 2003-05-06 Hybrid Power Generation Systems, Llc Integrated SOFC
EP1328984A2 (en) 2000-09-01 2003-07-23 Global Thermoelectric Inc. Anode oxidation protection in a high-temperature fuel cell
US6767662B2 (en) 2000-10-10 2004-07-27 The Regents Of The University Of California Electrochemical device and process of making
JP4771579B2 (ja) 2000-10-23 2011-09-14 東邦瓦斯株式会社 固体電解質型燃料電池
US6811913B2 (en) 2000-11-15 2004-11-02 Technology Management, Inc. Multipurpose reversible electrochemical system
WO2002056399A2 (en) 2001-01-12 2002-07-18 Global Thermoelectric Inc. Redox solid oxide fuel cell
US7294421B2 (en) 2001-02-07 2007-11-13 Delphi Technologies, Inc. Solid oxide auxiliary power unit reformate control
US6803141B2 (en) 2001-03-08 2004-10-12 The Regents Of The University Of California High power density solid oxide fuel cells
US20020127455A1 (en) 2001-03-08 2002-09-12 The Regents Of The University Of California Ceria-based solid oxide fuel cells
US6677070B2 (en) 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
US6623880B1 (en) 2001-05-29 2003-09-23 The United States Of America As Represented By The Department Of Energy Fuel cell-fuel cell hybrid system
AT4810U1 (de) 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
US6495279B1 (en) 2001-10-02 2002-12-17 Ford Global Technologies, Inc. Ultrahigh power density miniaturized solid-oxide fuel cell
US7067208B2 (en) 2002-02-20 2006-06-27 Ion America Corporation Load matched power generation system including a solid oxide fuel cell and a heat pump and an optional turbine
US20030196893A1 (en) 2002-04-23 2003-10-23 Mcelroy James Frederick High-temperature low-hydration ion exchange membrane electrochemical cell
US6854688B2 (en) 2002-05-03 2005-02-15 Ion America Corporation Solid oxide regenerative fuel cell for airplane power generation and storage
US6972161B2 (en) 2002-10-10 2005-12-06 Hewlett-Packard Development Company, L.P. Fuel cell assembly and method of making the same
CN1297026C (zh) 2002-10-11 2007-01-24 株式会社日本触媒 固体氧化物型燃料电池用电解质薄片及其制法
US6821663B2 (en) 2002-10-23 2004-11-23 Ion America Corporation Solid oxide regenerative fuel cell
WO2005017226A1 (en) 2003-01-10 2005-02-24 University Of Connecticut Coatings, materials, articles, and methods of making thereof
US7045238B2 (en) 2003-03-24 2006-05-16 Ion America Corporation SORFC power and oxygen generation method and system
US6924053B2 (en) 2003-03-24 2005-08-02 Ion America Corporation Solid oxide regenerative fuel cell with selective anode tail gas circulation
US7364810B2 (en) 2003-09-03 2008-04-29 Bloom Energy Corporation Combined energy storage and fuel generation with reversible fuel cells
US7482078B2 (en) 2003-04-09 2009-01-27 Bloom Energy Corporation Co-production of hydrogen and electricity in a high temperature electrochemical system
US7575822B2 (en) 2003-04-09 2009-08-18 Bloom Energy Corporation Method of optimizing operating efficiency of fuel cells
JP4986623B2 (ja) 2003-06-09 2012-07-25 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 固体酸化物型の燃料電池スタック及び燃料電池システム
CN102610840A (zh) 2003-06-09 2012-07-25 圣戈本陶瓷及塑料股份有限公司 熔凝氧化锆基的固体氧化物燃料电池
US20070082254A1 (en) 2003-08-06 2007-04-12 Kenichi Hiwatashi Solid oxide fuel cell
US7150927B2 (en) 2003-09-10 2006-12-19 Bloom Energy Corporation SORFC system with non-noble metal electrode compositions
US20060166070A1 (en) * 2003-09-10 2006-07-27 Ion America Corporation Solid oxide reversible fuel cell with improved electrode composition
US20070275292A1 (en) 2003-09-30 2007-11-29 Agustin Sin Xicola Solid Oxide Fuel Cell
US7618731B2 (en) 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
US7422810B2 (en) 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
CN1938892B (zh) 2004-03-31 2010-11-03 康宁股份有限公司 带有变化的有效面积大小的燃料电池
US20050227134A1 (en) 2004-04-13 2005-10-13 Ion American Corporation Offset interconnect for a solid oxide fuel cell and method of making same
KR100909120B1 (ko) * 2004-06-10 2009-07-23 테크니칼 유니버시티 오브 덴마크 고체 산화물 연료 전지
US7455925B2 (en) 2004-07-08 2008-11-25 Angstrom Power Incorporated Thin-layer fuel cell structure
WO2007001343A2 (en) 2004-08-20 2007-01-04 Ion America Corporation Nanostructured fuel cell electrode
JP5031187B2 (ja) * 2004-11-19 2012-09-19 東邦瓦斯株式会社 固体酸化物形燃料電池用燃料極および固体酸化物形燃料電池
CA2595854C (en) 2005-01-31 2015-04-14 Technical University Of Denmark Redox stable anode
US7601183B2 (en) 2005-02-02 2009-10-13 Technical University Of Denmark Method for producing a reversible solid oxide fuel cell
WO2006092912A1 (ja) 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
US7462412B2 (en) * 2005-03-04 2008-12-09 Toto Ltd. Solid oxide fuel cell
US20060216575A1 (en) 2005-03-23 2006-09-28 Ion America Corporation Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability
WO2006101136A1 (ja) 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. 固体酸化物形燃料電池用燃料極材料およびそれを用いた燃料極、並びに燃料電池セル
US7514166B2 (en) 2005-04-01 2009-04-07 Bloom Energy Corporation Reduction of SOFC anodes to extend stack lifetime
US8075746B2 (en) 2005-08-25 2011-12-13 Ceramatec, Inc. Electrochemical cell for production of synthesis gas using atmospheric air and water
US20090029195A1 (en) 2005-10-19 2009-01-29 Eidgenossische Technische Hochschule Zurich Thin film and composite element produced from the same
US7931990B2 (en) 2005-12-15 2011-04-26 Saint-Gobain Ceramics & Plastics, Inc. Solid oxide fuel cell having a buffer layer
US20070141422A1 (en) * 2005-12-16 2007-06-21 Saint-Gobain Ceramics & Plastics, Inc. Fuel cell component having an electrolyte dopant
US20070141444A1 (en) 2005-12-16 2007-06-21 Saint-Gobain Ceramics & Plastics, Inc. Fuel cell component having an electrolyte dopant
JP2007172846A (ja) 2005-12-19 2007-07-05 National Institute Of Advanced Industrial & Technology チューブ型電気化学リアクターセル及びそれらから構成される電気化学反応システム
JP2007265650A (ja) 2006-03-27 2007-10-11 National Institute Of Advanced Industrial & Technology 電気化学リアクターセル用マニフォールド、スタック及びそれらから構成される電気化学反応システム
CA2647414C (en) 2006-04-05 2012-10-30 Saint-Gobain Ceramics & Plastics, Inc. A sofc stack having a high temperature bonded ceramic interconnect and method for making same
US8216738B2 (en) 2006-05-25 2012-07-10 Versa Power Systems, Ltd. Deactivation of SOFC anode substrate for direct internal reforming
WO2008013783A2 (en) 2006-07-22 2008-01-31 Ceramatec, Inc. Efficient reversible electrodes for solid oxide electrolyzer cells
KR20080010737A (ko) 2006-07-28 2008-01-31 한국에너지기술연구원 고체산화물 연료전지 전해질용 입방정 스칸디아 안정화지르코니아와 그 제조 방법
CN101500943B (zh) 2006-08-17 2012-07-18 H.C.施塔克有限公司 氧化锆及其生产方法
US7968245B2 (en) 2006-09-25 2011-06-28 Bloom Energy Corporation High utilization stack
US7820332B2 (en) * 2006-09-27 2010-10-26 Corning Incorporated Electrolyte sheet with regions of different compositions and fuel cell device including such
US8748056B2 (en) 2006-10-18 2014-06-10 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
KR20090108053A (ko) 2006-12-28 2009-10-14 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 고체 산화물 연료전지를 위한 이중층 상호연결부
US20080254336A1 (en) 2007-04-13 2008-10-16 Bloom Energy Corporation Composite anode showing low performance loss with time
WO2008127601A1 (en) * 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite sofc electrolyte
CN101295792A (zh) 2007-04-24 2008-10-29 中国科学院大连化学物理研究所 一种固体氧化物燃料电池复合阳极及其制备方法
JP2009064641A (ja) 2007-09-05 2009-03-26 Toshiba Corp 固体酸化物電気化学セルの燃料極、その製造方法、及び固体酸化物電気化学セル
CN105206847B (zh) * 2007-11-13 2018-02-09 博隆能源股份有限公司 针对较长寿命和较高电力设计的电解质支撑型电池
KR100958514B1 (ko) 2007-12-12 2010-05-17 한국생산기술연구원 고체산화물 연료전지의 제조방법
KR100886239B1 (ko) 2007-12-12 2009-02-27 한국생산기술연구원 반응 부산물 발생 억제 방법 및 이를 이용한 고체산화물연료전지와 그 제조방법
CN101978544A (zh) 2008-01-30 2011-02-16 康宁股份有限公司 用于固体氧化物燃料电池装置的密封结构
JP4771261B2 (ja) 2008-02-27 2011-09-14 独立行政法人産業技術総合研究所 電気化学リアクターバンドル、スタック及びそれらから構成される電気化学反応システム
JP5317274B2 (ja) 2008-05-22 2013-10-16 独立行政法人産業技術総合研究所 電気化学リアクターユニット、それらから構成される電気化学リアクターモジュール及び電気化学反応システム
US8163353B2 (en) * 2008-07-08 2012-04-24 Siemens Energy, Inc. Fabrication of copper-based anodes via atmosphoric plasma spraying techniques
KR100966098B1 (ko) 2008-10-07 2010-06-28 한국에너지기술연구원 스칸디아가 치환 고용된 입방정 이트리아 안정화 지르코니아 및 이를 이용한 고체산화물연료전지
US8617763B2 (en) 2009-08-12 2013-12-31 Bloom Energy Corporation Internal reforming anode for solid oxide fuel cells
JP4972140B2 (ja) * 2009-10-09 2012-07-11 Agcセイミケミカル株式会社 スカンジア安定化ジルコニアおよびその製造方法
EP2529442B1 (en) 2010-01-26 2018-10-03 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
JP6215778B2 (ja) 2014-06-10 2017-10-18 有限会社近江蚊帳 蚊帳

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942349A (en) * 1995-03-15 1999-08-24 Ceramic Fuel Cells Limited Fuel cell interconnect device
US20040265663A1 (en) * 2003-06-30 2004-12-30 Badding Michael E Textured electrolyte sheet
US20060199057A1 (en) * 2005-03-04 2006-09-07 Toto Ltd. Solid oxide fuel cell
JP2008305804A (ja) * 2008-07-28 2008-12-18 Toho Gas Co Ltd 高イオン導電性固体電解質材料及びその製造方法、焼結体、固体電解質型燃料電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061274A (zh) * 2012-11-20 2019-07-26 博隆能源股份有限公司 经掺杂氧化钪稳定的氧化锆电解质组合物
TWI667841B (zh) * 2012-11-20 2019-08-01 美商博隆能源股份有限公司 經摻雜氧化鈧穩定之氧化鋯電解質組成物
CN110061274B (zh) * 2012-11-20 2022-09-06 博隆能源股份有限公司 经掺杂氧化钪稳定的氧化锆电解质组合物
CN104798237A (zh) * 2012-11-20 2015-07-22 博隆能源股份有限公司 经掺杂氧化钪稳定的氧化锆电解质组合物
US9515344B2 (en) 2012-11-20 2016-12-06 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
US10978726B2 (en) 2012-11-20 2021-04-13 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
US10381673B2 (en) 2012-11-20 2019-08-13 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
CN104798237B (zh) * 2012-11-20 2018-12-14 博隆能源股份有限公司 经掺杂氧化钪稳定的氧化锆电解质组合物
CN103236550A (zh) * 2013-04-22 2013-08-07 陕西煤业化工技术研究院有限责任公司 一种石墨烯改性的固体氧化物燃料电池镍基复合阳极材料及其制备方法
CN103236550B (zh) * 2013-04-22 2015-07-01 陕西煤业化工技术研究院有限责任公司 一种石墨烯改性的固体氧化物燃料电池镍基复合阳极材料及其制备方法
CN106463748B (zh) * 2014-05-26 2018-10-16 日本碍子株式会社 燃料电池
CN106463748A (zh) * 2014-05-26 2017-02-22 日本碍子株式会社 燃料电池
CN104638287A (zh) * 2015-01-28 2015-05-20 潮州三环(集团)股份有限公司 一种阳极支撑型固体氧化物燃料电池的制备方法
CN109312480A (zh) * 2016-06-17 2019-02-05 托普索公司 具有加热能力的soec系统
CN109312480B (zh) * 2016-06-17 2021-07-13 托普索公司 具有加热能力的soec系统

Also Published As

Publication number Publication date
US20110183233A1 (en) 2011-07-28
US9413024B2 (en) 2016-08-09
US8580456B2 (en) 2013-11-12
JP5323269B2 (ja) 2013-10-23
WO2011094098A2 (en) 2011-08-04
WO2011094098A3 (en) 2011-11-17
AU2011209829A1 (en) 2012-07-19
CN102725902B (zh) 2016-01-20
EP3432401A1 (en) 2019-01-23
EP2529442B1 (en) 2018-10-03
EP2529442A4 (en) 2015-05-27
US9799909B2 (en) 2017-10-24
AU2011209829C1 (en) 2016-09-01
JP2013518389A (ja) 2013-05-20
EP3432401B1 (en) 2020-08-12
US20140051010A1 (en) 2014-02-20
TW201136863A (en) 2011-11-01
US20160322663A1 (en) 2016-11-03
TWI501937B (zh) 2015-10-01
EP2529442A2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
CN102725902B (zh) 低降级的相稳定性经掺杂氧化锆电解质组合物
AU2011209829B2 (en) Phase stable doped zirconia electrolyte compositions with low degradation
Wachsman et al. Low-temperature solid-oxide fuel cells
JP4981239B2 (ja) 固体酸化物燃料電池の高性能陰極
CN101682068B (zh) 随时间展现低性能损失的复合阳极
Mahmood et al. High-performance solid oxide electrolysis cell based on ScSZ/GDC (scandia-stabilized zirconia/gadolinium-doped ceria) bi-layered electrolyte and LSCF (lanthanum strontium cobalt ferrite) oxygen electrode
US10749188B2 (en) SOFC cathode compositions with improved resistance to SOFC degradation
WO2008127601A1 (en) Heterogeneous ceramic composite sofc electrolyte
US20130143142A1 (en) Composite Solid Oxide Fuel Cell Electrolyte
EP3951018A1 (en) Solid oxide electrolysis cell, and method and system for operating same
EP2693545B1 (en) Fuel cell
He et al. Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells with stabilized zirconia electrolytes
JP7301768B2 (ja) 電気化学セル、電気化学セルスタックおよび電気化学セル用電解質
JP7428686B2 (ja) 電気分解耐性の空気側電極を含む固体酸化物形電解槽セル
US20230141938A1 (en) Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
Lin et al. Fabrication Of The Anode‐Supported Solid Oxide Fuel Cell With Composite Cathodes And The Performance Evaluation Upon Long‐Term Operation
JP2023146437A (ja) 電気化学セル用電極および電気化学セル

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant