CN102405431B - 自动聚焦方法和自动聚焦设备 - Google Patents

自动聚焦方法和自动聚焦设备 Download PDF

Info

Publication number
CN102405431B
CN102405431B CN201080017649.4A CN201080017649A CN102405431B CN 102405431 B CN102405431 B CN 102405431B CN 201080017649 A CN201080017649 A CN 201080017649A CN 102405431 B CN102405431 B CN 102405431B
Authority
CN
China
Prior art keywords
light
sample
optical
detector element
jiao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080017649.4A
Other languages
English (en)
Other versions
CN102405431A (zh
Inventor
P·辛
S·亨斯勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Finetek USA Inc
Original Assignee
Sakura Finetek USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200910012292 external-priority patent/DE102009012292A1/de
Priority claimed from DE102009012293A external-priority patent/DE102009012293A1/de
Application filed by Sakura Finetek USA Inc filed Critical Sakura Finetek USA Inc
Publication of CN102405431A publication Critical patent/CN102405431A/zh
Application granted granted Critical
Publication of CN102405431B publication Critical patent/CN102405431B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/245Devices for focusing using auxiliary sources, detectors
    • G02B21/247Differential detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification

Abstract

本发明是基于一种自动聚焦方法,其中来自光源(12)的光被聚焦在样品(6)中的测量光焦(52)处并且从该处被反射,并且反射光在两条光径(48,50)中被引导穿过光学系统(22)到达至少两个检测器元件(72,74)上。为了实现在样品上的快速精确的自动聚焦,提出在不同程度地反射光的样品(6)的各层中移动测量光焦(52),并且检测器元件(72,74)被设置成在这种情况下使得由各个检测器元件(72,74)登记的辐射属性是不同的,并且按照与所述分布相关的方式设定聚焦位置。

Description

自动聚焦方法和自动聚焦设备
技术领域
本申请涉及一种自动聚焦方法,其中把来自光源的光聚焦在样品中的测量光焦处并且从该处被反射,反射光在两条光径中被引导穿过光学系统和至少一个孔径到达至少两个检测器元件上。
背景技术
已知有两种用于在样品处自动聚焦显微镜的方法:
-测量样品的位置或者样品与参考点的距离,其中通过干涉仪检查从样品反射的光的模式(pattern)、强度等等。
-检查样品图像的对比度、分辨率、自相关或者相衬。
在显微镜检查中,样品通常由将要分析的样品材料构成,其被施加到透明试样载玻片上并且利用纤薄的透明盖片覆盖。对于样品材料的位置测量常常导致测量样品的层界面上的其中一个反射平面的位置。由于空气/盖片界面层处的反射比样品材料上的界面层处的反射强很多,因此空气/盖片反射通常会盖过样品材料上的界面层处的反射,其更适合于自动聚焦。
从US 6,130,745可以获知测量样品上方或下方的强反射层的位置,以及根据样品(其被设置在距所述反射层的已知距离处)的厚度给出关于样品材料位置的结论。但是通常在所描述的样品的情况下使用高分辨率系统时,(例如盖片或试样载玻片的)层厚度的容差大于成像系统的景深,并且利用这种方法并不总能保证聚焦。
本发明的目的是公开一种自动聚焦方法,利用该方法可以在快速且精确地聚焦在样品的反射层上方面调节光学系统(例如显微镜)。
发明内容
所述目的是通过在开头提到的该类方法实现的,其中,根据本发明,在不同程度地反射光的样品的各层中移动测量光焦,并且检测器元件被设置成在这种情况下使得由各个检测器元件登记的辐射属性分布(profile)彼此不同,并且按照与所述分布相关的方式设定聚焦位置。由于所登记的辐射分布的不同分布,可以找到样品中的特别显著的一层(例如反射界面)的位置并且聚焦在其上,或者聚焦在被设置于与之相距已知距离处的目标焦平面上。
表面(例如界面)在下面也被视为层。其中一层有利地是界面。各条光径至少部分地适当彼此分离,其特别在所述光学系统中彼此分离。所述分离是通过各条光径之间的阴影区域而适当地实现的。所述阴影可以通过光阑产生。
所述分布可以通过测量光焦的几个位置处的点状测量来检测,所述几个位置通过各条光径适当地分离。反射光的辐射属性可以是辐射强度。经过调节的聚焦位置是所期望的聚焦位置,在该位置处所述光学系统被关于样品适当地设置成使得对于样品的图像采集产生所期望的图像。
此外,由于本发明的原因,可以指定所述光径的光学路径长度。在这种情况下,可以测量从样品到检测器前方的光阑的光学路径长度。各条光径的光学路径长度被适当地选择成不同的。由此可以通过对于各条光径的光学路径长度分别进行分析并且聚焦在其上或者聚焦在被设置于与之相距已知距离处的目标焦平面上而生成针对所选反射/散射样品结构的偏差信号。反射光的一层可以是反射和/或散射样品结构,并且可以特别是一个界面层,特别是与样品材料相邻的界面层或界面。
所述自动聚焦方法是一种用于把光学系统自动聚焦在例如样品内的所期望的聚焦位置或目标焦平面上的方法。如果聚焦在目标焦平面上,则所述光学系统可以在检测器或摄影机被适当设置在其中的像平面内形成设置在该处的对象的锐利图像。在自动聚焦之后,可以借助于摄影机来描绘样品。
所述样品可以是为检查准备的样品材料,为之施加样品的载玻片以及覆盖样品的盖片。对于自动聚焦光透明的层结构(其中自动聚焦光的反射或散射入射到其层界面上)同样适用。在针对聚焦的层之后,所述样品对于自动聚焦光无须具有任何透明度。在这里描述的界面层处的反射/散射还可能是由于所述材料中的反射/散射粒子层或缺陷层而导致的。可以对所述层界面进行预处理(例如镜像),以便增强用于自动聚焦系统的信号。
目标焦平面是样品内的平面,光学系统应当聚焦在其上,或者应当从该处把所期望的聚焦位置移在与之相距预定距离。目标焦平面适当地是入射光在其上反射的反射平面。其可以是样品内的一个界面层,例如玻璃/样品材料界面的平面。类似地,可以利用样品本身上的散射。
被引导到各条光径的光适当地源自共同光源,其中不仅最初发出辐射的材料而且还有反射层、孔径等等都被称作光源。通常使用一维光源或二维光源。两条光径适当地彼此对称地形成,并且被设置成特别对光学系统的光轴对称。
光源(特别是点状或者线性或条状的或者由几个光点构成)通过光学器件被聚焦在样品中的测量光焦处。在样品中可以通过这种方式对其进行描绘。测量光焦通常是点状的,但是取决于光源的形状也可以替换地是一维或二维的,并且例如包括几个点。测量光焦有利地位于正被聚焦的光学系统的对焦处或者其对焦附近。光学系统的对焦可以是焦平面。光学系统在位于该光学系统的对焦处的对象的像平面内形成锐利图像。测量光焦还有可能位于与光学系统的对焦相距预设距离处。这样就可以在反射平面(例如盖片/样品材料的界面层)上调节测量光焦,其中光学系统的对焦例如位于与样品材料中的界面层相距20μm处。
入射在样品上的一部分光被反射。在下面可以将反射和/或散射理解为“反射”。反射光的层可以是反射和/或散射层。在下面提到反射时,其中意图包括散射。
围绕光学系统的光轴适当地对称引导两条光径。所述光径有利地在不同方向上照在样品上,从而其反射在不同方向上被辐射,因此可以很容易地对其彼此分开进行分析。如果入射光径的角度被选择成使得相邻层的反射不会彼此重叠,则这样便于检测层结构中的单独各层。如果散射层被用来确定焦点位置,则在检测路径中应当首先发生光径分离。
自动聚焦系统的光有利地具有不同于可被用来检查样品或形成样品图像的光的频率。光属性适当地是光强度。
所述光学系统可以是显微镜。其具有通常与样品在其中延伸的样品平面垂直对准的光轴。
光源与反射层之间或者反射层与检测器之间的光径可以被称作照射路径或检测路径。因此,自动聚焦光径由照射路径和检测路径构成。现在在照射路径和检测路径二者中以及在全部两条(sic)路径中都可能产生光学路径长度差。下面将描述检测路径的实现。
由各个检测器前方的至少一个(特别是对应的)光阑对所述路径进行光学路径长度测量。由于各条光径在光阑处的与波长有关的位置,因此有可能得出关于系统的光学路径长度的结论。下面描述一种可能的实现方式。
检测器元件被设置成使得由各个检测器元件登记的辐射属性例如关于光学系统的元件(例如关于光阑)彼此不同。光学系统的所述元件可以是(例如紧接地处在检测器元件前方的)光阑、分束器、镜子或其他适当元件。
如果来自一条光径的光在样品的两个叠层上被反射,则来自一层的光(例如到检测器或检测器前方的光阑)的光径或光学路径长度长于来自另一层的光径或光学路径长度。因此,来自两层的(例如去到检测器元件的)两条光径可能是不同的。所述光径适当地延伸从而使其在检测器元件前方的光阑处以不同方式被阻挡,举例来说,如果一条光径被完全阻挡或部分地阻挡,则另一条光径被部分地阻挡或完全不被阻挡。这样就有可能在没有来自另一层的另一条光径的情况下单独检测各条光径。
通过检测器元件前方的光阑适当地掩蔽来自样品上方的玻璃/空气界面的主要反射,同时将测量光焦移动穿过不同程度地反射光的下方各层。这样来自这些层的光就可以穿过光阑。这样就可以检测到其反射比玻璃/空气界面层弱很多的各层。
光阑或其孔径被有利地设置在光学系统的像平面内,即由光学系统聚焦的对象被投影到的平面内。所述孔径可以是光源的像。
根据测量光焦的形状,将反射自测量光焦的光适当地投影在光阑的平面内。光阑被有利地设置成使其允许在测量光焦处反射的来自全部两条光径的光穿过,特别是以均等的程度穿过。这样光阑就完全地或者关于两条光径不对称地适当阻挡在测量光焦上方和下方反射的光。
孔径被适当地设置成不是按照通常那样围绕光学系统的光轴,而是对于光轴不对称,特别是对于两条光径在孔径位置处的光轴不对称。具体来说,其被完全设置在光轴外部。这样就有可能通过简单的方式在测量光焦的不同位置处实现对于一条或另一条光径的选择以便进行单独的分析。
如果连续地检测到分布的话则可以实现特别精确的聚焦。
在本发明的一个有利实施例中,光学系统的对焦被调节成使得各个检测器元件的信号具有彼此固定的比例。在各个检测器元件上的入射光具有固定比例的情况下,可以通过简单的方式检测到各条光径之间的对称位置从而检测到目标焦平面。如果信号强度相等的话甚至可以更加简单地实现这一点。各条路径的路径长度差被选择成使得当各个信号被叠加时,所述信号在一个侧面(flank)重叠,从而具有交点。各个信号在该交点处的强度相等。借助于差分信号的过零,可以通过简单的方式检测到各个信号的相同强度。
本发明的另一个实施例借助于检测器元件的信号来检测光学系统的对焦的目标位置,并且借助于所检测到的目标位置通过致动器来调节对焦。目标位置可以是由致动器输出的位置,例如各个检测器元件的信号在该处相等的位置。还有可能仅仅把这一调节用作预调节。或者例如作为精度调节,可以设想通过调节处理到达目标位置,其中检测器信号被用作调节输入信号,并且用于控制致动器的信号被用作调节输出信号。
如果对检测器元件进行校准从而使其信号强度(这是由界面层反射的光导致的)相同的话,则可以实现简单可靠的自动聚焦。这样就在反射层或者反射光的层中适当地调节聚焦位置。或者可以按照针对性方式对检测器元件进行调节,从而使其信号强度不同,以便例如实现有针对性的偏焦量。
如果将测量光焦穿过目标焦平面朝向样品/空气界面移动并且把样品/空气界面的反射用于粗略指向,则在搜索目标聚焦位置或目标焦平面时可以获得良好的指向。
为了检查样品,可能必须在不同位置处检查例如其是否大于显微镜的视场。为此,在第一检查之后,将其垂直于光学系统的光轴移动并且随后重新检查。在这样的移动之后可以实现快速的自动聚焦,[这是因为]在把样品垂直于光学系统的光轴移动之后检查检测器元件的信号,以便检查关于在目标焦平面上的粗略调节仍然有效的可信性。如果存在可信性,则有可能省掉耗时的完整重新聚焦。所述可信性可以是不能被超出的信号差的极限值。此外,可信性测试还可以被用于进行粗略调节,从而如果存在可信性的话,则只需要再进行精细调节。
本发明的另一个有利实施例规定光源具有被投影在样品中的光模式。所述光模式可以是一维、二维或三维的,并且被适当地投影在样品内的与光学系统的光轴垂直的平面中。在这种情况下,从分别通过各条光径分开的光模式的几个模式点检测到反射光。其结果是,可以从几个模式点的几个目标位置检测到目标焦平面例如关于光轴的倾斜。这样生成的信号可以被利用来调节自动聚焦。
此外,本发明针对一种具有光学系统的自动聚焦设备,所述光学系统用于把光聚焦在样品中的测量光焦处,并且用于把从该处反射的光引导穿过孔径到达至少两个检测器元件上。
本发明提出,所述自动聚焦设备包括致动器和控制装置,其用于通过致动器移动光学系统的元件或样品,从而使得在样品的不同程度地反射光的各层中移动测量光焦,其中检测器元件被设置成使得在这种情况下,由各个检测器元件登记的辐射属性的分布不同,并且所述控制装置被提供来评估测量光焦的几个位置处的所述分布。
在光学系统的所述元件相对于样品移动的情况下,所述致动器可以相对于固定参考点(例如地面)移动所述元件或样品。
所述控制装置被有利地设计成控制其中一个、几个或所有前面提到的处理步骤。
所述自动聚焦设备有利地包括测量系统,其被提供来特别按照非光学方式检测光学系统的所述元件与样品的距离或者与之有关的距离。一旦光学地找到聚焦位置,就可以利用所述另外的测量系统测量所述距离并且在对于样品的照射期间保持所述距离。
已经知道使用具有颜色灵敏检测器的彩色摄影机来产生彩色图像。颜色灵敏检测器通常被限制到三种颜色。当使用Bayer模式时,像素分别由一个蓝色、一个红色和两个绿色灵敏检测器单元构成,所有中间颜色都由其信号构成。由于每个像素需要四个检测器单元,因此这种类型的颜色检测器的分辨率较低。
已经知道用于结合高颜色分辨率实现高图像分辨率的线谱仪。对对象进行逐线扫描,其中利用通过棱镜将线的图像在光谱上展开,从而产生该线的三维图像。按照这种方式,逐线地采集并保存三维图像,并且组合各个单独的图像从而形成三维彩色图像。
已经知道相继移动检测器前方的几个彩色滤光器,从而在不同频率范围内相继地产生对象的几个图像。可以把各个镜头(shot)组合成一个超光谱图像。
本发明的一个目的是公开一种用于摄取对象图像的方法,利用所述方法可以产生高分辨率彩色图像。
可以通过一种摄取对象图像的方法来实现所述目的,其中通过光学系统把所述对象投影到检测器的几个检测器元件上,并且利用具有不同地滤光的几个滤光器区域的滤光器将所述图像分成不同地滤光的几个图像区域。根据本发明,提出特别是并排地把所述图像的各个经过不同地滤光的图像区域同时投影到检测器上。有可能省掉改变检测器前方的滤光器的步骤,并且还有可能快速相继摄取所述对象的镜头。
所述滤光器可以是光谱过滤器或偏振滤光器。其可以被设置成紧接地处在检测器前方或者被直接设置在检测器上。所述滤光器被适当地设置在光学系统的像平面内,其中在滤光器上可以容许光学系统的1/10焦距以作为与数学像平面的距离,并且可以将其视为仍然处在所述像平面内。所述滤光器可以是截止滤光器、干涉滤光器或吸收滤光器。各个滤光器区域在光谱滤光方面可以是不同的,从而使得各个图像区域在光谱上被不同地滤光。所述滤光器区域可以采用确定形式,例如条带、棋盘模式和/或微模式,其中各个滤光器区域具有小于100μm的长度和/或宽度。在其延展方面,各个滤光器区域适当地大于两个并且特别是大于10个检测器元件或像素。在空间上连续变化的滤光器特性同样是可能的。
所述检测器可以被设计成芯片,并且适当地在各个滤光器区域的所有光谱范围内都是灵敏的。其可以是CCD(电荷耦合器件)或CMOS传感器(互补金属氧化物半导体)。各个检测器元件被有利地设置成矩阵形式的二维格子。所述检测器被适当地设计成单色检测器,并且在所述结构化滤光器的光谱范围内是灵敏的。
滤光器区域的维度被有利地适配于检测器元件的维度,例如其中滤光器区域的宽度和/或长度分别是检测器的(例如mxn个检测器元件)的其中一个检测器元件的量的整数倍。所述滤光器被直接固定到检测器上,例如被直接固定在检测器芯片上,或者被直接布置在芯片的各个灵敏区域上。
各个滤光器区域适当地对应于样品图像或样品或样品容器的结构和/或组织。其可以与样品图像的规则结构节段一样大并且/或者具有其形状。
在本发明的一个有利实施例中,通过图像的图像模式从对象的一个镜头到下一个镜头移动滤光器区域,从而以几种光特性(特别是光谱)记录图像模式的每一点。这些数值被适当地分配给该点,并且可以被描绘和/或存储。在这种情况下,图像模式可以是整个图像或者一个图像节段。所述移动是相对移动,其中滤光器区域例如可以相对于检测器外罩静止并且移动图像模式,或者反之亦然。
在以几种光特性(例如颜色)获得每一点的多个镜头的情况下,可以从几个镜头构成彩色图像。由于滤光器被分成各个滤光器区域,因此当移动滤光器时,只要单个滤光器区域的一个维度尺寸中的较小移动就足够了,因此没有必要将整个滤光器从检测器移开以及将新的滤光器移到检测器。由于移动路径较短,因此可以非常快速地执行所述移动。
为了实现高光产出,有利的是把一个滤光器区域(可以为该滤光器区域分配样品图像相对于一个样品区域的检测器的移动)内的各个检测器元件的信号贡献累计在一个数值中。可以把样品区域的来自不同滤光器区域的所述累计数值组合成关于该样品区域的光特性的总体信息。
所述图像模式可以至少在滤光器区域到检测器的移动期间保持静止,从而使得滤光器区域相对于检测器移动。还有可能在检测器之上移动图像,从而使得滤光器区域相对于检测器静止。在检测器之上移动图像可以伴有光学系统或者光学系统的一部分相对于检测器的移动。另一种可能性时相对于光学系统移动滤光器和检测器,光学系统例如相对于摄影机外罩处于静止。一般来说,检测器、滤光器和光学系统这三个元件当中的一个或两个可以例如相对于摄影机外罩保持静止,而剩余的两个或剩余的一个元件则可以相对于其他元件移动。
所述光学系统有利地是显微镜的一部分,其外罩坚固地连接到试样台,在其上可以例如在可移动托盘上移动样品形式的对象,这特别是借助于机动化驱动以及通过控制装置进行位置控制而实现的。
有利的是相对于光学系统和滤光器移动对象,并且逐图像节段地分别在几个镜头中采集所述对象,其中各个图像节段中的滤光器区域的位置分别不发生改变。在这种情况下,光学系统可以静止在例如显微镜的外罩中,并且将对象与对象的光模式一起引导经过光学系统,其中在整个图像之上将各个图像节段与滤光器区域一起移动。
例如如果对象是细长形的,例如具有一行样品的形式,则有可能通过多个相继记录的图像区域来记录整个对象,其中在许多种颜色或每一种颜色中或者通过每一个滤光器区域记录对象的每一个像点。这样就有可能非常快速地产生整个对象的彩色图像。有可能省略将彩色滤光器相对于光学系统或者相对于检测器移动。因为常常通过致动器来引导用于摄取样品图像的设备以便实现样品沿着记录设备(例如显微镜)的受控移动,因此可以按照特别简单的方式将记录设备保持固定。
滤光器区域被适当地设计成条带,其从图像的一侧延伸到图像的相对侧,并且在其垂直于移动方向的纵向上对准。此外,从图像节段的一侧到图像节段的相对侧的延伸也是足够的。在这里可以通过特别简单的方式在滤光器的所有滤光器区域之上引导对象的每一个像点。
所述移动有利地使得从一个镜头到下一个镜头把像点移动一个滤光器区域的宽度。所述宽度适当地分别是几个像素。在这种情况下,较小的重叠区域(例如对应于所移动的致动器的双倍精度)是有意义的。
特别在非常令人感兴趣的图像节段的情况下,为了实现特别高的分辨率,有利的是从一次图像采集到下一次图像采集的移动小于一个图像像素。由于所述移动是在子像素范围内,因此可以计算子像素分辨率。
默认的移动有利地由控制装置指定,其特别独立地检测非常令人感兴趣的图像区域并且触发子像素移动。可以按照不同模式来实施所述移动,比如子像素模式,其中从一个镜头到下一个镜头的移动等于一个滤光器区域宽度的滤光器区域宽度模式,或者其中所述移动等于几个检测器像素的多像素模式。此外还有可能仅仅控制所描述的三种模式当中的两种。
在本发明的一个有利实施例中,滤光器是截止滤光器,其截止频率在滤光器的垂直于所述截止并且特别垂直于所述移动的空间分布中变化。这样,通过控制从一个镜头到下一个镜头的移动增量,可以从各个镜头控制整个图像的颜色分辨率。滤光器适当地连接到致动器和控制装置,其被用来控制滤光器的移动。
此外,还提出所述滤光器包括在图像的光学路径上相继设置的两个截止滤光器,其在分别垂直于所述截止(并且特别垂直于所述移动)的截止滤波器的空间分布中的截止频率随着彼此相反的频率响应而变化。利用关于彼此的截止滤光器的相应设置,从而可以生成一个空间透射窗口,可以通过朝向彼此移动所述截止滤光器而在空间以及光谱上扩大及缩小所述窗口。其结果是允许在所记录图像的频率和空间区域内获得高度可变性。
如果检测器具有在颜色灵敏度方面不同的几个检测器区段并且分别在一种颜色区域中是灵敏的,而且至少一个对应的滤光器区域被设置在每一个检测器区段前方,则可以实现检测器和滤光器的一种特别良好的光谱适配。这样有利地将其颜色区域适配于检测器的颜色区域,从而使得滤光器的各个颜色区域是不同的。所述适配得以实现有利地是在于滤光器区域的透射处在相应检测器区段的灵敏度范围内,而不是处在其中一个其他检测器区段的颜色区域内。
不同的检测器区段可以被设置成在空间上直接并排,例如被设置在检测器元件的衔接矩阵中,或者被设立成在空间上彼此分开,从而使得光学系统包括用于把对象的图像引导到几个检测器区段的一个或更多元件,比如二向色镜等等。各个检测器区段有利地被同步操作,从而在几个颜色通道中同时摄取检测器区段处的对象图像。
本发明的另一个有利实施例规定,各个滤光器区域具有不同的透射值,并且所述透射值分别被适配成记录检测器的特性,特别是被适配成利用各个检测器元件的不定光谱灵敏度实现均匀的图像曝光。这样就有可能实现特别良好的图像结果。所述适配可以通过各个滤光器区域的不同尺寸来实现。另一种可能性是将各个滤光器区域的不同频率透射宽度适配于检测器。因此,频率透射宽度在其中检测器灵敏度较低的频率范围内可以更大,并且在其中检测器灵敏度较高的频率范围内可以较小。
此外,还有可能把透射强度(即滤光器区域的阻尼)适配于检测器,从而与其他频率范围相比使得在其中检测器更加灵敏的频率范围内选择更高阻尼。
如果各个滤光器区域具有不同透射值并且把对于检测器元件的触发适配于遮蔽该检测器元件的滤光器区域的透射值,则同样可以实现高图像质量。因此如果一个滤光器区域与另一个滤光器区域相比具有高阻尼,则可以提升放大,并且可以延长积分时间或者可以合并各个像素。这就使得有可能在所有频率范围内实现均匀的图像曝光。如果一个滤光器区域的透射值特别高,则还有可能仅仅读出每隔一个像素。
对于各个检测器元件的不同触发有利地跟随各个滤光器区域在检测器之上的移动。举例来说,如果在检测器之上移动滤光器,则该移动可以被检测到,从而可以为每一个滤光器区域分配被该区域所覆盖的检测器元件。从而可以逐像素地将对于检测器元件的控制适配于各个所分别分配的滤光器区域。
此外,本发明还针对一种用于摄取对象的图像的设备,所述设备具有检测器(其具有几个检测器元件)、用于将对象投影到检测器上的光学系统以及滤光器(其具有不同地滤光的几个滤光器区域)。
如果滤光器被设置成使得对象图像的几个图像区域被同时投影到检测器上,则可以产生特别高分辨率的彩色图像,其中所述图像区域通过各个滤光器区域被不同地滤光。
所述设备包括控制装置,其被有利地提供来控制其中一个、几个或所有前面提到的处理步骤。
附图说明
下面将在附图中所描绘的示例性实施例的基础上更加详细地解释本发明。
附图示出:
图1是带有自动聚焦设备的显微镜的示意性表示。
图2是自动聚焦设备在样品上的光学路径或照射路径的示意性表示。
图3-图6是样品在两个检测器元件上的反射光学路径或检测路径。
图7是随着时间绘制的检测器元件信号和经过修改的操作距离的图示。
图8是具有差分信号的信号示意图。
图9是移动后的倾斜样品上的光点投影。
图10是静止的倾斜样品上的光源模式投影。
图11是通过半透明镜的光学路径分离。
图12是通过二向色镜的光学路径分离。
图13是指向样品的显微镜的示意性表示,其摄影机在检测器上具有滤光器。
图14是样品到三个检测器上的光学路径。
图15-18是在关于样品的四个不同位置处具有滤光器的检测器。
图19是在滤光器表面中具有连续迁移截止的截止滤光器的图示。
图20是从相继设置的两个截止滤光器得到的透射图。
图21是检测器的灵敏度图示。
具体实施方式
图1描绘了被集成到光学成像系统4中的自动聚焦设备2。在该具体实施例中,所述光学成像系统是用于对样品6中的生物材料进行荧光分析的显微镜。为此,光学成像系统4包括图像检测器8或摄影机,其连接到控制装置10以用于采集控制以及保存所摄取的图像,或者光学成像系统4包括目镜以用于直接观测样品。控制装置10是光学成像系统4以及自动聚焦设备2的一部分,并且被用来控制下面所描述的自动聚焦方法。
自动聚焦设备2包括光源12,其产生可用于所述自动聚焦方法的光。其还提供用于荧光分析的光,其中一般来说,更加适当的是光学成像系统4具有用于这一目的的另一个光源(未示出)。光源12具有例如LED(发光二极管)的发光器14以及用于对所辐射的光进行整形的光学器件16,其可以包括散光器。具有一定开口模式的光阑18生成有利地对于光学系统22的光轴20对称的一维或二维光源模式,光学系统22还可以包括除了光学器件16之外的附加光学元件24以及光学成像系统4的物镜26。还可以用空间上定义的光源来替代元件16和18。相当于孔径的装置28把从光源12到样品6的照射分离成几条光径,各条光径彼此分离地从装置28行进到样品6并且被带到样品6中的共同测量光焦(照射路径)。装置28可以被替换地附着在元件30与46之间的检测路径中(参见下文),特别当聚焦在分散对象上时尤其是这样。
来自光源12的光通过二向色镜或半透明镜的形式的两个分束器30、32被导向光学成像系统4的物镜26;所述光学成像系统被安装在显微镜外罩34中并且把光聚焦在样品6上。为此,物镜26具有例如透镜的光学元件36,其可以借助于致动器38按照受控方式沿着物镜26的光轴20移动。通过控制装置10实现对于光学元件36的位置并且从而是对于样品6中的对焦的控制。所述致动器本身可以包括独立的测距仪。
从样品6反射的光在相反方向上穿过物镜26,正如虚线箭头所表示的那样,并且一方面通过分束器32被引导到光学器件40和图像检测器8,另一方面通过分束器30和附加光学器件42被引导到检测器44,检测器44包括几个检测器元件(检测路径)。所述检测器元件可以是单独的传感器(例如光电二极管)或传感器格子。光学系统22的具有孔径46的光阑被设置在检测器44前方,其形状是根据光阑18的孔径确定的并且被设置在其中生成样品6(从而是投影在样品6上的光源模式)的图像的光学系统22的像平面内。光阑开口46可以包括一个或几个开口,并且在下面仅仅被记作孔径46。检测器44将其信号提供到控制装置10,控制装置10对所述信号进行评估并且将其用作控制或调节输入以用于控制致动器38。此外,所述控制装置可以处理致动器38的独立距离信号并且可选地将其用于进行调节。
图2示出了样品6上的两条光径48、50中的自动聚焦设备2的光学路径(照射路径)的示意性表示。在该示例性实施例中,光源12的光模式被简化到一个光点,其辐射穿过装置28的两个开口以便分离到光径48、50中。在如图1中所描绘的例如生成两个光点的光阑18的情况下,来自每一个光点的光被划分成两条光径48、50,正如图1中的装置28所表明的那样。
来自全部两条光径48、50的光被聚焦在样品6中的点状测量光焦52处,其可以具有光源的形状并且例如是点状的、对应于狭缝状光源的细长形或者具有其他可选形状。由于对于来自光源12的测量光的光和用于检查样品的光都被引导穿过物镜26,因此测量光焦52可以处在摄影机或光学成像系统4的对焦处,所述对焦可以是焦平面。但是测量光焦52也有可能从摄影机的对焦56移开预先已知的距离54。
典型的样品6包括试样载玻片58,其上施加生物样品材料60并且由纤薄透明的盖片62覆盖。该样品6在三个界面64、66、68上反射入射光,所述三个界面即强反射空气/玻璃界面64、强度低很多的反射玻璃/样品材料界面66以及样品材料/玻璃界面68(在下面不再进一步考虑),其中在非常纤薄的样品材料的情况下,信号产生来自界面66与68的组合。在这种情况下,玻璃/样品材料界面66形成在该第一示例性实施例中所描述的目标焦平面70,在该第一示例性实施例中应当通过所述自动聚焦方法来引导测量光焦52。
在图3-8的基础上描述为此实施的自动聚焦方法。图3-6以非常简化的方式示出了位于样品6上方的光学系统22和物镜26,所述样品只在界面64、66的基础上表明。检测器44在两个检测器元件72、74的基础上表示,所述检测器元件被设置在光轴20的全部两侧。在如图1中具有两个点光源的设置的情况下,将有四个检测器元件。检测器44前方的孔径46适当地具有与光源相同的形式,即在该示例性实施例中是点状或圆形。其被设置成其位置不对称地偏离光轴20,其中光轴20位于孔径46外部,即不穿过该孔径。
两条光径48、50的入射在样品6上的部分由细点描绘并且被导向测量光焦52,测量光焦52处在试样载玻片58中(即目标焦平面70下方),所述目标焦平面70与界面66完全相同。从不同界面64、66到孔径46或者到检测器元件72、74的不同光径以不同方式被描绘。从强反射界面64反射的主反射的光径由实线表示,并且由强度较低的反射界面66反射的光的光径由虚线表示。可以明显看出,首先,没有光或者只有可忽略的很少光在测量光焦52中反射,其次,由界面64、66反射的光错过孔径46,从而没有来自该处的光到达检测器元件72、74。
在图4中,样品6与图3中的描绘相比向下移动,正如箭头所表示的那样,从而测量光焦52相对于样品6向上移动。移动样品6等效于利用致动器38移动物镜26。在图4所描绘的样品6相对于物镜26的位置处,测量光焦52恰好位于界面66下方。由于孔径46对光轴20的不对称性,在该位置处,来自光径48的反射光穿过孔径46并且击中检测器元件72,而来自光径50的光则错过孔径46,从而检测器元件74保持被遮蔽。
对于样品6的进一步向下移动或者样品6中的测量光焦52进一步向上移动,测量光焦52到达界面层66和目标焦平面70,正如图5中所描绘的那样。全部两条光径48、50的反射在光阑和孔径46被设置在其中的像平面处交叉。由于光轴20外部的不对称孔径46,两条光径48、50都在很大程度上被遮蔽,但是由于光径48、50的平坦孔径而没有被完全遮蔽。全部两个检测器元件72、74分别接收很少的相同量的光,并且向控制装置10发送完全相同的信号。
图6对于样品6的进一步向下移动或者样品6中的测量光焦52的进一步向上移动示出了光径48、50。测量光焦52离开界面层66并且逼近界面层64,从而使得界面层66的反射(其只到达检测器元件74)继续被遮蔽,并且使得界面层64的反射穿过孔径46以更高强度落在检测器元件72上。
孔径46被设置在物镜26的像平面内。从测量光焦52反射的光穿过孔径46,即适当地以相等的程度来自全部两条光径48、50。在这种情况下,孔径46被设置成使得从测量光焦52上方或下方反射的光以不等的程度从两条光径48、50穿过孔径46。因此,对于检测器元件72、74的强度相等的照射意味着其中一个界面层64、66处在测量光焦处。在这种情况下,所述孔径的仅有的大小有利地使得来自与测量光焦52相距超过100μm的界面层64、66的光无法从任一条光径48、50穿过孔径46。
孔径46使得有可能根据光学路径长度而选择来自不同光径的光。类似地,根据其朝向检测器元件72、74的(多个)不同方向而使得有可能选择来自不同光径的光。
图7绘制出在如图3-6所描述的样品6中的测量光焦52的移动的情况下,检测器元件72的信号76和检测器元件74的信号78随着时间t的幅度。此外还关于信号76、78随着时间t绘制出测量光焦52的位置80在z方向上的移动,其中z方向平行于物镜26的光轴20。标记出四个时间点III、IV、V、VI,其对应于图3、4、5和6中的测量光焦52的位置80。
为了对样品6进行自动聚焦,首先接通自动聚焦光源12的发光器14,并且移动物镜26或其光学元件36(其可以通过致动器38移动到其初始位置,(附图中是在样品6的方向上完全向下)),从而使得测量光焦52位于样品6内,并且在该处其适当地位于试样载玻片58内。
现在移动致动器38,从而使得测量光焦52被完全移动穿过样品材料60并且穿过目标焦平面70。与此同时,连续记录检测器元件72、74的信号76、78,并且还适当地记录致动器38的位置信号。检测器元件72的信号76首先增大,随后又快速下降。随后检测器元件74的信号78增大又下降,二者都是根据如图4-6中所描述的光穿过孔径46的入射而发生的。
具体来说,信号76、78的侧面的相交位置(其在下面被称作目标位置)被记录,其中测量光焦52位于目标焦平面70内。该目标位置被控制装置10检测到,控制装置10连接到致动器38,致动器38向控制装置10连续发送其位置或者光学元件36的位置,或者在控制装置10的请求下发送。
同样地,首先是信号76并且随后是信号78的超出极限值g的急剧增大被取作测量光焦52正逼近强反射界面64并且从而位于目标焦平面70上方的标记和方向。测量光焦52的向上移动被停止。
现在可以根据所检测到的目标位置在一个简单处理步骤中对致动器38进行调节,并且非常迅速地对样品6进行聚焦。测量光焦52被调节到目标焦平面70,当测量光焦52位于显微镜4的对焦处时,该对焦从而也被调节到目标焦平面70。否则,所述对焦被调节到从目标焦平面70移开已知距离的所期望的平面。
如果测量光焦52的移动被反转,并且这一次将测量光焦52更加缓慢地引导到样品材料60中,则可以实现更加精确的聚焦,正如图7中所示出的那样。信号76的最大值再一次形成,并且通过把信号76、78调节到信号相等而将测量光焦52引导到目标焦平面70内。
可以开始一种替换方法,从而使得测量光焦52位于样品6上方并且从该处行进到样品6中。来自玻璃/空气界面层64的第一入射主反射被清楚地识别出。由于盖片62的厚度是已知的(例如170μm),因此可以将测量光焦52迅速地向下移动该厚度或略短的距离。随后可以降低移动速度并且进一步向下移动测量光焦52,直到信号76、78的强度相等为止。
下面将在图8的基础上解释基于信号76、78对目标位置的调节。从信号76、78之间的差形成(例如通过把信号76、78相减)差分信号82并且将其用作控制变量,其中过零84作为控制目标值。在过零84处,测量光焦52位于目标位置86处。为此有利地校准检测器44,从而使得当测量光焦52位于目标焦平面70内时,信号75、78相等。如果测量光焦52应当略微处在反射界面层66之外,则可以给出对于信号76、78的偏移量,或者可以或多或少地放大信号76、78。从而过零84就在z方向上移位。如果所述偏移量或放大与所述移位的关系是已知的,则可以相应地围绕界面66调节目标焦平面70,而无需改变关于图7和8描述的自动聚焦方法。可以在控制装置10的适当指令下,在自动聚焦方法之前或所述自动聚焦方法期间作为校准实施对于检测器44的相应调节。
在对于聚焦位置的调节或设定之后,关断发光器14,并且借助于致动器38的位置信号来调节或保持聚焦位置。这样做的优点在于,在摄影机的曝光期间不投影自动聚焦光模式。可选地,发光器14可以持续保持接通,并且根据差分信号82来实施所述调节。
现在可以记录样品6或样品材料60的图像,如果需要的话可以在几个z位置处记录。可以通过对致动器38进行相应的控制来逼近所述位置。还有可能通过其中一个或全部两个信号76、78的信号偏移来到达这些位置。
为了记录较大样品6的几个图像,在x-y方向88(即垂直于s轴或光轴20)上移动所述样品,正如图9中所表示的那样。在所述过程中可以保留聚焦。但是如果样品6是倾斜的,则测量光焦52在样品6内于z方向上滑移距离90。为了识别出这一点,在新的x-y位置处检查信号76、78的可信性。如果信号76、78不满足预期,也就是说其处于极限值之外,则像关于图7所描述的那样发起对于目标焦平面70的粗略定位。如果信号76、78是可接受的,则有可能直接开始调节,例如调节到过零84。
图10示出了光源模式在静止的倾斜样品6上的投影。在单个自动聚对焦光点的基础上,不可能检测到样品6是否关于光轴20倾斜。但是如果测量光焦52包括几个焦点92,例如其中将光模式投影到样品中的几个焦点92上,则可以分别通过至少两条光径来单独分析来自每一个焦点92的反射,正如前面所描述的那样。这样就有可能识别出分别地定位的目标焦平面与各个单独的焦点92不完全相同。可以输出错误信号,从而将样品6再次以直接的方式插入到其支座上。
图11和图12示出了替换的检测方案,其使用在光学系统22中没有分开的两条光学路径。在图11中,首先在光学系统22之后并且在检测器72、74之前的检测路径中借助于半透明镜94将光束分离。利用在检测器74、74前方对于镜子94不对称地设置的两个孔径46,检测所述略微不同的路径的距离信号。所述不对称性由孔径46垂直于镜子94的不同距离96、98示出。
在图12中,发光器14以两个不同频率(λ1,λ2)发出射线,所述射线在检测器72、74前方通过二向色镜200分离。又借助于孔径46生成所述距离信号。在这种情况下,如果光学系统22的折射率足以在空间上将如图12中所描绘的不同频率的光径分开所述两条光径在镜子100前方的距离,则孔径46可以对于二向色镜100对称地设置。
此外在图11和图12的示例性实施例中,通过光学装置使得根据光学路径长度选择来自不同光径的光成为可能,所述光学装置在这些情况下是半透明镜94或二向色镜100。类似地,根据朝向检测器元件72、74的不同方向选择来自不同光径的光成为可能。
图13示出了例如被设计成显微镜的光学成像系统102的示意性表示,其指向位于试样台104上的样品106。光学成像系统102包括光源108,借助于光学系统112和二向色镜114在(由实线箭头110表示的)光学路径中将其光束导向样品106。光学系统112包括物镜116,其可以借助于致动器18关于显微镜外罩120沿着所述光学路径的光轴122移动,以便对样品106进行聚焦。
由样品106反射或散射的射线在(由虚线箭头表示的)光学路径中被引导穿过二向色镜114和光学系统112的光学元件124(仅仅一般性地表示)进入到摄影机126中,摄影机126的特征在于带有滤光器130的检测器128。检测器128包括设置成二维矩阵的多个检测器元件132,所述检测器元件被设计成CCD元件并且附着在芯片上。滤光器130是具有几个滤光器区域134的光谱滤光器,所述滤光器区域在光谱滤光方面是不同的,其也被设置在所述芯片上并且位于直接处在检测器元件132前方的光学路径中。
试样台104连同样品106一起可以借助于致动器136垂直于物镜116的光轴122移动,正如箭头138所表示的那样,从而可以在样品106关于显微镜102的不同位置处摄取样品106的几个镜头。致动器136可以由显微镜12的控制装置140触发,从而可以把样品106从一个镜头到下一个镜头的行进距离调节到预定数值或者由控制装置计算的数值。控制装置140也可以是摄影机126的控制装置140或者摄影机126外部的显微镜102的附加控制装置。
由于控制装置140,可以作为针对致动器136的替换或补充来触发滤光器130的致动器142和/或检测器128的致动器144,从而可以触发滤光器区域134和/或检测器元件132,并且可以将其垂直于入射在摄影机126中的光学路径的光轴122相对于光学系统112移动。从而可以按照一种或更多种方式通过滤光器130和/或检测器128迁移样品16的对象的图像。
在图14中示出了具有几个检测器区段148、150、152的检测器146的一个替换实施例。下面的描述实质上被限制到与图13中的示例性实施例的差异,关于保持相同的特征和功能可以参照图13的示例性实施例。主要通过相同的附图标记来标识基本上没有发生改变的组件,并且采用未经提到的特征而不再对其进行描述。
两个二向色分束器154、156把由样品6反射的射线分在三个光谱范围内导向检测器区段148、150、152。检测器区段148、150、152分别在仅仅其中一个光谱范围内是灵敏的,或者比在其他光谱范围内更加灵敏。滤光器区域158、160、162分别被设置在检测器区段148、150、152前方,其中滤光器区域158、160、162仅仅在其中一个光谱范围内是透明的,或者比在其他光谱范围内更加透明。其光谱上的透明度被调节到为之所分配的对应检测器区段148、150、152。其中一个或所有滤光器区域158、160、162又可以被划分成在光谱滤光方面不同的子区域,正如图14中所示出的那样。由于划分成在光谱灵敏度方面不同的检测器区段148、150、152并且其具有在光谱滤光方面不同的对应滤光器区域158、160、162,因此可以在较宽光谱范围内实现特别高的光产出。
图15-18分别描绘了样品106、3x10个样品容器164(其也可以代表样品表面)的图像;可以设想分别包含相同或不同样品物质的甚至显著更多数目。样品容器164被设置成矩形矩阵并且被固定在试样台104上。待检对象166处在样品物质中。样品106显示出其整体及其对象的图像模式。
为了清楚起见,用虚线描绘检测器128及其11x15个矩形检测器元件132,而具有其5个条状滤光器区域134的滤光器134则用实线描绘。各条滤光器区域134被垂直于试样台的移动方向设置,所述移动方向由箭头138描绘。为了更好区分各种线,样品图像用点划线描绘。
图15示出了相对于彼此处于一定位置的检测器128和样品106的图像,其中图像由样品106构成,但不是下面所解释的第一个。所述图像代表具有五个图像区域的图像节段,其中包括内容的十二个样品容器164被完全描绘,三个样品容器164仅仅被部分地描绘。三个样品容器164分别由滤光器区域134描绘,因此处于其光谱范围内。滤光器区域134分别描绘所述图像节段的五个图像区域的其中之一。每一个滤光器区域134和每一个图像区域在这种情况下精确地重叠垂直于样品106的移动方向的三个检测器元件132,更一般来说是精确地重叠相等数目的检测器元件132。
对于下一个图像,样品106的图像被进一步移动滤光器区域134的宽度的距离,其中所述宽度是在样品106的移动方向上来看的。现在摄取样品106的另一个图像节段,其中该图像节段覆盖另一个样品节段和其他对象166。滤光器区域134在各个图像节段中的位置保持相同,但是相对于各个样品节段和对象166则不是这样。对于第二图像,在另一段光谱内(即以另一种颜色)描绘被再次描绘的样品容器164。
图17示出了又偏移了滤光器区域134的宽度的样品106,从而现在已被描绘三次的样品容器是在三段不同光谱内描绘的。按照这种方式,样品106的所有区域以及所有样品容器164被描绘的次数都至少与滤光器区域134的数目一样多(在所示的示例性实施例中是至少五次),因此每一个样品区域都在五段光谱内被记录。从这五个图像可以为每一个样品区域组合五色图像。为了将每一个样品区域描绘五次,在第一个镜头中只由一个滤光器区域134记录样品106,在第二个镜头中由两个滤光器区域134记录,等等。因此,图15示出了样品106的第五个镜头。
样品106是以其整体被描绘的,这是因为在检测器128上逐图像节段地描绘样品106,并且产生样品106和对象166的几个部分重叠的图像。在这种情况下,至少摄取与不同滤光器节段134的数目一样多的图像。例如由控制装置140从与不同滤光器节段134的数目一样多的重叠图像分别生成样品106或对象166的多色图像。
在这种情况下通过评估装置来评估各个镜头,所述评估装置可以是控制装置140,其通过信号连接到检测器128。这一处理识别出对象168何时具有特殊重要性并且应当以高分辨率来描绘。如果检测到这一要求,则从一个镜头到下一个镜头仅仅把样品106移动小于一个像素长度(即检测器元件132的长度),正如图18与图17相比较所示出的那样。在这种情况下,从一个镜头到下一个镜头逐子像素地将对象移过两个滤光器区域134之间的边界。可以从被处于子像素范围内的边界经过的区域中的各个镜头获得一定分辨率,从而可以在特别高的分辨率下描绘对象168。
作为针对样品106向显微镜102的移动的一种替换方案,可以相对于样品106以及例如相对于显微镜外罩120移动滤光器130和/或检测器128。
在另一个实施例中,可以把滤光器区域内的各个单独的检测器元件的电荷与样品检测器的图像一起逐像素地移位,并且只在一次或更多次移位之后才进行读出。或者可以为在样品图像于滤光器区域内的移位期间被分配给某一样品位置的电荷指定像素光谱值。这样就可以由样品在更长时间内累积通过光所生成的电荷。
图19示出了双图示,其中在x方向和y方向上描绘了滤光器170的滤光器表面。
z方向是光轴122进入摄影机126的方向。此外还描绘了滤光器170的吸收A。滤光器170的透射越高,吸收A就越小。在阴影区域中,吸收理想地接近100%,并且滤光器170不透明。滤光器170是具有带有特定波长λ的边沿172的截止滤光器。波长λ是边沿172在滤光器170的x方向上的位置的函数。边沿172的波长λ在滤光器中进一步靠右处高于进一步靠左处。在所描绘的实例中,每滤光器的距离的边沿波长改变在x方向上是恒定的。还可以设想与线性或非线性改变的其他关系。在滤光器170的情况下,在光谱滤光方面不同的数目众多或无限的滤光器区域的并排位置非常靠近或者无限靠近。
在使用滤光器170替代图15-18中的滤光器130时,在不同光谱内可以对每一个样品区域进行所需次数的描绘,因此样品106的总体图像的光谱分辨率取决于样品106从一个镜头到下一个镜头的移动路径。这样就可以自由选择总体图像的光谱分辨率。
如果相继设置具有相反边沿轮廓的两个截止滤波器174、176,正如图20中所示出的那样,则可以通过截止滤波器174、176相对于彼此的移动将透射窗口178在其空间延展Δx方面调节以及在其光谱延展Δλ方面调节。可以排除一些光谱范围并且可以调节光谱分辨率。
在图21中示出了将滤光器130适配于检测器128。在图21中,关于所登记的光的波长λ绘制出检测器128的灵敏度E的曲线图。灵敏度E是光的波长λ的函数,并且在波长λ1处小于波长λ2处。为了实现样品106在整个相关光谱范围内的各个镜头的尽可能均匀的曝光,滤光器130的透射滤光器区域134在波长λ1处透射的波长范围Δλ1大于滤光器130的透射滤光器区域134在波长λ2处的较小透射波长范围Δλ2
用于实现样品106在整个相关光谱范围内的各个镜头的尽可能均匀的曝光的另一种可能性是在位于其前方的滤光器区域134上对检测器元件132进行电子适配。在较低透射滤光器区域134的情况下,可以按照不同于被分配给较高透射滤光器区域134的检测器元件132的方式来触发被分配给所述较低透射滤光器区域134的检测器元件134。可以通过对于检测器元件312的增益和/或积分时间的不同调节来实现所述不同的触发。可以设想像素面元划分(binning),即组合两个或更多像素或检测器元件132,就像子采样那样,即每n个检测器元件132仅读出一个,其中n=1,2,3等等。可以由控制装置140进行相应的控制。
在一个特别有利的示例性实施例中,在对检测器元件132进行电子调节的情况下,考虑滤光器区域134在检测器元件132前方的位移。为此,例如必须通过来自其中一个致动器142、144的位置信号知道滤光器130关于检测器128的位置。
附图标记
2-自动聚焦设备
4-显微镜
6-样品
8-图像检测器
10-控制装置
12-光源
14-发光器
16-光学器件
18-光阑
20-光轴
22-光学系统
24-光学元件
26-物镜
28-装置
30-分束器
32-分束器
34-显微镜外罩
36-光学元件
38-致动器
40-光学器件
42-光学器件
44-检测器
46-孔径
48-光径
50-光径
52-测量光焦
54-距离
56-对焦
58-试样载玻片
60-样品材料
62-盖片
64-界面
66-界面
68-界面
70-目标焦平面
72-检测器元件
74-检测器元件
76-信号
78-信号
80-位置
82-差分信号
84-过零
86-目标位置
88-方向
90-距离
92-焦点
94-镜子
96-距离
98-距离
100-镜子
102-显微镜
104-试样台
106-样品
108-光源
110-箭头
112-光学系统
114-镜子
116-物镜
118-致动器
120-显微镜外罩
122-光轴
124-光学元件
126-摄影机
128-检测器
130-滤光器
132-检测器元件
134-滤光器区域
136-致动器
138-箭头
140-控制装置
142-致动器
144-致动器
146-检测器
148-检测器区段
150-检测器区段
152-检测器区段
154-镜子
156-镜子
158-滤光器区域
160-滤光器区域
162-滤光器区域
164-样品容器
166-对象
168-对象
170-滤光器
172-边沿
174-截止滤光器
176-截止滤光器
178-透射窗口
A-吸收
E-灵敏度
λ-波长
Δλ-波长范围
A-幅度
g-极限值
t-时间
z-光轴方向

Claims (14)

1.自动聚焦方法,其中,来自光源(12)的光被聚焦在样品(6)中的测量光焦(52)处并且从该处被反射,反射光在两条光径(48,50)中被引导穿过光学系统(22)到达至少两个检测器元件(72,74)上,
其特征在于,在不同程度地反射光的样品(6)的各层中移动测量光焦(52),并且反射光被引导穿过设置在光学系统(22)的光轴(20)之外的至少一个孔径(46),并且检测器元件(72,74)被设置成使得由各个检测器元件登记(72,74)的辐射属性分布彼此不同,并且按照与所述分布相关的方式设定聚焦位置。
2.根据权利要求1的方法,
其特征在于,从测量光焦(52)反射的来自全部两条光径(48,50)的光以相等的程度照在检测器元件(72,74)上。
3.根据权利要求1的方法,
其特征在于,从测量光焦(52)上方或下方反射的光以不相等的程度照在检测器元件(72,74)上。
4.根据权利要求1的方法,
其特征在于,通过光学装置根据不同的光学路径长度来选择从不同界面层(64,66)反射的光。
5.根据权利要求1的方法,
其特征在于,通过光学装置根据朝向检测器元件(72,74)的不同方向来选择从不同界面层(64,66)反射的光。
6.根据权利要求1的方法,
其特征在于,各条光径(48,50)通过被遮蔽区域彼此分离。
7.根据权利要求1的方法,
其特征在于,各条光径(48,50)中的光具有不同的光谱属性,并且各条光径(48,50)根据所述光谱属性在检测器元件(72,74)前方被分离。
8.根据权利要求1的方法,
其特征在于,所述分布被连续检测。
9.根据权利要求1的方法,
其特征在于,光学系统(22)的对焦被调节成使得各个检测器元件(72,74)的信号(76,78)彼此具有固定比例并且特别地具有相等的强度。
10.根据权利要求1的方法,
其特征在于,在反射光的界面层(66)上调节测量光焦(52),其后垂直于光学系统(22)的光轴(20)移动样品(6),并且随后检查检测器元件(72,74)的信号(76,78)关于在反射界面层(66)上仍然有效的粗略调节的可信性。
11.根据权利要求1的方法,
其特征在于,反射光被引导穿过在其形状方面对应于光源(12)的形状的至少一个孔径(46)。
12.根据权利要求1的方法,
其特征在于,光源(12)具有被投影在样品(6)中的一定光模式,其中检测分别通过光径(48,50)分开的反射自所述光模式的几个模式点的光。
13.根据权利要求12的方法,
其特征在于,从所述几个模式点的几个目标位置检测反射界面层(66)的倾斜。
14.自动聚焦设备(2),其具有用于把光聚焦在样品(6)中的测量光焦(52)处并且用于把反射自该处的光引导到至少两个检测器元件(72,74)上的光学系统(22),
其特征在于致动器(38)和控制装置(10),其用于通过致动器(38)相对于样品(6)移动光学系统(22)的元件(36),从而使得在样品(6)的不同程度地反射光的各层中移动测量光焦(52),并且反射光被引导穿过设置在光学系统(22)的光轴(20)之外的至少一个孔径(46),并且其中检测器元件(72,74)被设置成使得在这种情况下,由各个检测器元件(72,74)登记的辐射属性的分布不同,并且所述控制装置(10)被提供来评估测量光焦(52)的几个位置处的所述分布(72,74)。
CN201080017649.4A 2009-03-11 2010-03-11 自动聚焦方法和自动聚焦设备 Expired - Fee Related CN102405431B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102009012292.3 2009-03-11
DE200910012292 DE102009012292A1 (de) 2009-03-11 2009-03-11 Verfahren und Vorrichtung zum Aufnehmen eines Bilds eines Gegenstands
DE102009012293.1 2009-03-11
DE102009012293A DE102009012293A1 (de) 2009-03-11 2009-03-11 Autofokusverfahren und Autofokuseinrichtung
PCT/IB2010/000518 WO2010103389A1 (de) 2009-03-11 2010-03-11 Autofokusverfahren und autofokuseinrichtung

Publications (2)

Publication Number Publication Date
CN102405431A CN102405431A (zh) 2012-04-04
CN102405431B true CN102405431B (zh) 2015-09-16

Family

ID=42235509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080017649.4A Expired - Fee Related CN102405431B (zh) 2009-03-11 2010-03-11 自动聚焦方法和自动聚焦设备

Country Status (10)

Country Link
US (2) US9310598B2 (zh)
EP (1) EP2406679B1 (zh)
JP (1) JP5739351B2 (zh)
CN (1) CN102405431B (zh)
AU (1) AU2010222633B2 (zh)
BR (1) BRPI1011689B1 (zh)
CA (1) CA2755164C (zh)
DK (1) DK2406679T3 (zh)
ES (1) ES2617664T3 (zh)
WO (1) WO2010103389A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2755164C (en) * 2009-03-11 2014-02-25 Sensovation Ag Autofocus method and autofocus device
AU2013249513B2 (en) * 2012-04-17 2016-07-21 Alcon Inc. Stereoscopic beam splitter
DE102013103971A1 (de) 2013-04-19 2014-11-06 Sensovation Ag Verfahren zum Erzeugen eines aus mehreren Teilbildern zusammengesetzten Gesamtbilds eines Objekts
DE102013018547B4 (de) * 2013-11-05 2019-11-07 Wavelight Gmbh Einrichtung zur Ausrichtung eines Fokussierobjektivs
WO2015073897A2 (en) 2013-11-15 2015-05-21 Mikroscan Technologies, Inc. Geological scanner
US10007102B2 (en) 2013-12-23 2018-06-26 Sakura Finetek U.S.A., Inc. Microscope with slide clamping assembly
WO2016069794A1 (en) 2014-10-28 2016-05-06 Mikroscan Technologies, Inc. Microdissection viewing system
JP6482894B2 (ja) * 2015-02-19 2019-03-13 オリンパス株式会社 顕微鏡照明装置、及び、顕微鏡
CN105241853B (zh) 2015-09-07 2019-05-07 深圳市瀚海基因生物科技有限公司 一种全内反射荧光成像系统
AU2016338681A1 (en) * 2015-10-16 2018-05-17 Mikroscan Technologies, Inc. Systems, media, methods, and apparatus for enhanced digital microscopy
CN106051623A (zh) * 2016-07-21 2016-10-26 中导光电设备股份有限公司 一种多光谱led照明检测装置及其检测方法
DE102016122529A1 (de) 2016-11-22 2018-05-24 Carl Zeiss Microscopy Gmbh Mikroskop zur Abbildung eines Objekts
DE102016122528A1 (de) 2016-11-22 2018-05-24 Carl Zeiss Microscopy Gmbh Verfahren zum Steuern oder Regeln einer Mikroskopbeleuchtung
US11280803B2 (en) 2016-11-22 2022-03-22 Sakura Finetek U.S.A., Inc. Slide management system
US10477097B2 (en) * 2017-01-03 2019-11-12 University Of Connecticut Single-frame autofocusing using multi-LED illumination
NL2018857B1 (en) 2017-05-05 2018-11-09 Illumina Inc Systems and methods for improved focus tracking using a light source configuration
NL2018853B1 (en) 2017-05-05 2018-11-14 Illumina Inc Systems and methods for improved focus tracking using a hybrid mode light source
NL2018854B1 (en) * 2017-05-05 2018-11-14 Illumina Inc Systems and methodes for improved focus tracking using blocking structures
EP3396430B1 (en) * 2017-04-27 2023-08-16 Euroimmun Medizinische Labordiagnostika AG Optical scanning arrangement and method
JP2019079049A (ja) * 2017-10-24 2019-05-23 オリンパス株式会社 顕微鏡システム、観察方法、及び観察プログラム
US10247910B1 (en) 2018-03-14 2019-04-02 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscopic focus
US10146041B1 (en) 2018-05-01 2018-12-04 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscope focus
JP2022500632A (ja) * 2018-09-10 2022-01-04 フリューダイム カナダ インコーポレイテッド オートフォーカスサンプルイメージング装置及び方法
TW202109124A (zh) * 2019-05-08 2021-03-01 安盟生技股份有限公司 光學系統及其檢測方法
US11356594B1 (en) 2019-08-29 2022-06-07 Kla Corporation Tilted slit confocal system configured for automated focus detection and tracking
WO2021077075A1 (en) 2019-10-19 2021-04-22 SequLITE Genomics US, Inc. Virtual fiducials
CN113433682B (zh) * 2021-05-24 2022-12-02 南京工程学院 基于偏振差分图像的显微成像自动对焦装置及其方法
CN114112322A (zh) * 2021-10-21 2022-03-01 浙大宁波理工学院 一种基于差分共焦的显微镜焦点偏移测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620537A1 (fr) * 1987-09-14 1989-03-17 Micro Controle Dispositif optique a mise au point automatique et appareil optique comportant un tel dispositif
WO2005015120A2 (en) * 2003-08-08 2005-02-17 Wallac Oy Method and arrangement for focusing detection in an optical measurement and method and arrangement for migitating the effect of surface reflection
CN100353204C (zh) * 2003-04-29 2007-12-05 卡尔蔡斯耶拿有限公司 用于在样品成像时确定焦点位置的方法和装置

Family Cites Families (305)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191503092A (en) 1915-02-26 1916-02-28 William Langstaff An Improved Flying Machine.
US2051051A (en) 1931-07-04 1936-08-18 Lilienfeld Leon New cellulose derivatives and process of making same
US3309262A (en) 1963-12-03 1967-03-14 Container Corp Fluidized bed oxidation of waste liquors resulting from the digestion of cellulosic materials for paper making
GB1149064A (en) 1966-08-01 1969-04-16 Int Research & Dev Co Ltd Improvements in and relating to means for detecting malignant cells in human and animal tissue
US3765851A (en) 1970-12-14 1973-10-16 Chervon Res Co Gas production
US3762798A (en) 1971-07-01 1973-10-02 Hamilton Co Microscope stage
US3862909A (en) 1972-09-05 1975-01-28 Copeland Systems Inc Fluidized bed autogenous combustion and pyrolysis of aqueous effluents to prepare activated carbon
US4089989A (en) 1975-04-04 1978-05-16 White Ronald D Method for preparing microscope slides by rotating during coating
US4000417A (en) 1975-08-25 1976-12-28 Honeywell Inc. Scanning microscope system with automatic cell find and autofocus
FR2325953A1 (fr) 1975-09-29 1977-04-22 Thomson Brandt Senseur optique de focalisation et dispositif de focalisation comportant un tel senseur
US4148752A (en) 1976-04-09 1979-04-10 Bayer Aktiengesellschaft Production of activated carbon in a reactor having a lower static layer and an upper fluidized layer
JPS5661650A (en) 1979-10-24 1981-05-27 Omron Tateisi Electronics Co Analyzing device of cell
FR2504281A1 (fr) * 1981-04-16 1982-10-22 Euromask Appareil de projection a dispositif de mise au point
DE3219503C2 (de) * 1982-05-25 1985-08-08 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Vorrichtung zum selbsttätigen Fokussieren auf in optischen Geräten zu betrachtende Objekte
JPS5971018A (ja) 1982-10-15 1984-04-21 Ikegami Tsushinki Co Ltd 自動顕微鏡装置
US4684799A (en) 1983-09-19 1987-08-04 Ricoh Company, Ltd. Focus detection method involving cutting more than half of light beam reflected from disc
US4673988A (en) 1985-04-22 1987-06-16 E.I. Du Pont De Nemours And Company Electronic mosaic imaging process
US4760385A (en) 1985-04-22 1988-07-26 E. I. Du Pont De Nemours And Company Electronic mosaic imaging process
DE3527322A1 (de) * 1985-07-31 1987-02-12 Zeiss Carl Fa Autofokuseinrichtung fuer auflichtmikroskope
JPH0652263B2 (ja) 1985-12-10 1994-07-06 株式会社日立製作所 細胞分析装置
US4836667A (en) 1986-05-06 1989-06-06 Slidex Corporation Microscope
JPS63206793A (ja) 1987-02-19 1988-08-26 ブイ・エル・エス・アイ・テクノロジー・インク ビデオ・メモリ・インターフェース回路
US5216596A (en) 1987-04-30 1993-06-01 Corabi International Telemetrics, Inc. Telepathology diagnostic network
US4849177A (en) 1987-05-08 1989-07-18 Abbott Laboratories Reagent pack and carousel
US4965725B1 (en) 1988-04-08 1996-05-07 Neuromedical Systems Inc Neural network based automated cytological specimen classification system and method
ES2085854T3 (es) 1988-08-02 1996-06-16 Abbott Lab Metodo y dispositivo de produccion de datos de calibrado para analisis.
DE3828381C2 (de) * 1988-08-20 1997-09-11 Zeiss Carl Fa Verfahren und Einrichtung zur automatischen Fokussierung eines optischen Systems
US4984229A (en) * 1988-11-18 1991-01-08 Polaroid Corporation Autofocus system
US5180606A (en) 1989-05-09 1993-01-19 Wescor, Inc. Apparatus for applying a controlled amount of reagent to a microscope slide or the like
US4962264A (en) 1989-10-23 1990-10-09 Betz Laboratories, Inc. Methods for retarding coke formation during pyrolytic hydrocarbon processing
US5595707A (en) 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
JPH0447479A (ja) 1990-06-13 1992-02-17 Toshiba Corp 画像表示装置
US5546323A (en) 1990-10-10 1996-08-13 Cell Analysis Systems, Inc. Methods and apparatus for measuring tissue section thickness
US5367401A (en) 1990-11-23 1994-11-22 Perceptive Scientific Instruments, Inc. Microscope slide rotary stage
CA2077781A1 (en) 1991-09-23 1993-03-24 James W. Bacus Method and apparatus for automated assay of biological specimens
US5428690A (en) 1991-09-23 1995-06-27 Becton Dickinson And Company Method and apparatus for automated assay of biological specimens
US5655028A (en) 1991-12-30 1997-08-05 University Of Iowa Research Foundation Dynamic image analysis system
US5686960A (en) 1992-01-14 1997-11-11 Michael Sussman Image input device having optical deflection elements for capturing multiple sub-images
US5947167A (en) 1992-05-11 1999-09-07 Cytologix Corporation Dispensing assembly with interchangeable cartridge pumps
GB2273994A (en) 1992-12-18 1994-07-06 Morphometrix Inc Process microscopy system
US5793969A (en) 1993-07-09 1998-08-11 Neopath, Inc. Network review and analysis of computer encoded slides
JPH0772378A (ja) * 1993-09-02 1995-03-17 Nikon Corp 合焦装置
JP5161052B2 (ja) 2008-12-04 2013-03-13 オリンパス株式会社 顕微鏡システム、標本観察方法およびプログラム
US5561556A (en) 1994-04-21 1996-10-01 Compucyte Corporation Slide analysis system with slide having self contained microscope analysis information
JPH08237407A (ja) 1994-12-09 1996-09-13 Xerox Corp 画像タイルの相対的なアラインメントを見当合わせすると共に透視歪みを修正するための方法
US5790086A (en) 1995-01-04 1998-08-04 Visualabs Inc. 3-D imaging system
JP3357210B2 (ja) 1995-02-03 2002-12-16 株式会社日立国際電気 自動焦点検出方法
JP3201926B2 (ja) 1995-04-10 2001-08-27 株式会社日立製作所 走査電子顕微鏡
DE69621540T2 (de) 1995-09-14 2003-01-09 Hitachi Ltd Elektronenmikroskop
JPH0980138A (ja) 1995-09-14 1997-03-28 Hitachi Ltd Squidセンサ
US6091842A (en) 1996-10-25 2000-07-18 Accumed International, Inc. Cytological specimen analysis system with slide mapping and generation of viewing path information
US5737084A (en) * 1995-09-29 1998-04-07 Takaoka Electric Mtg. Co., Ltd. Three-dimensional shape measuring apparatus
JPH09133856A (ja) * 1995-11-07 1997-05-20 Nikon Corp 顕微鏡用自動焦点検出装置
US6718053B1 (en) 1996-11-27 2004-04-06 Chromavision Medical Systems, Inc. Method and apparatus for automated image analysis of biological specimens
EP1300713A3 (en) 1995-11-30 2004-11-03 Chromavision Medical Systems, Inc. Method and apparatus for automated image analysis of biological specimens
US6330349B1 (en) 1995-11-30 2001-12-11 Chromavision Medical Systems, Inc. Automated method for image analysis of residual protein
JPH09161068A (ja) 1995-12-12 1997-06-20 Furukawa Electric Co Ltd:The 画像撮影方法とそれを用いた画像編集装置
JPH09218354A (ja) 1996-02-13 1997-08-19 Olympus Optical Co Ltd 顕微鏡情報システム
US6078681A (en) 1996-03-18 2000-06-20 Marine Biological Laboratory Analytical imaging system and process
US6043475A (en) * 1996-04-16 2000-03-28 Olympus Optical Co., Ltd. Focal point adjustment apparatus and method applied to microscopes
US5696589A (en) * 1996-05-20 1997-12-09 Lockheed Martin Energy Systems, Inc. Optical caliper with compensation for specimen deflection and method
US5768033A (en) 1996-06-14 1998-06-16 Brock; Dennis Microscope assembly comprising a supported and movable specimen wheel and fine adjustment means
GB9614434D0 (en) 1996-07-10 1996-09-04 Fairfield Telepathology Limite Video display systems
US6404906B2 (en) 1997-03-03 2002-06-11 Bacus Research Laboratories,Inc. Method and apparatus for acquiring and reconstructing magnified specimen images from a computer-controlled microscope
US6272235B1 (en) 1997-03-03 2001-08-07 Bacus Research Laboratories, Inc. Method and apparatus for creating a virtual microscope slide
US6031930A (en) 1996-08-23 2000-02-29 Bacus Research Laboratories, Inc. Method and apparatus for testing a progression of neoplasia including cancer chemoprevention testing
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US5924074A (en) 1996-09-27 1999-07-13 Azron Incorporated Electronic medical records system
US6735531B2 (en) 1996-10-07 2004-05-11 Lab Vision Corporation Method and apparatus for automatic tissue staining
US5891619A (en) 1997-01-14 1999-04-06 Inphocyte, Inc. System and method for mapping the distribution of normal and abnormal cells in sections of tissue
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6008892A (en) * 1997-05-23 1999-12-28 Molecular Dynamics, Inc. Optical substrate for enhanced detectability of fluorescence
JPH10333054A (ja) 1997-05-30 1998-12-18 Yokogawa Electric Corp 共焦点顕微鏡
US6091075A (en) * 1997-06-04 2000-07-18 Hitachi, Ltd. Automatic focus detection method, automatic focus detection apparatus, and inspection apparatus
GB2331151B (en) 1997-11-05 2000-01-12 Robert John Johnston Slide staining system
US6198285B1 (en) 1997-11-28 2001-03-06 Hitachi Medical Corporation In-room MRI display terminal and remote control system
US6147797A (en) 1998-01-20 2000-11-14 Ki Technology Co., Ltd. Image processing system for use with a microscope employing a digital camera
US7396508B1 (en) 2000-07-12 2008-07-08 Ventana Medical Systems, Inc. Automated molecular pathology apparatus having independent slide heaters
US6855559B1 (en) 1998-09-03 2005-02-15 Ventana Medical Systems, Inc. Removal of embedding media from biological samples and cell conditioning on automated staining instruments
US6606413B1 (en) 1998-06-01 2003-08-12 Trestle Acquisition Corp. Compression packaged image transmission for telemicroscopy
US20040083085A1 (en) 1998-06-01 2004-04-29 Zeineh Jack A. Integrated virtual slide and live microscope system
US6205235B1 (en) 1998-07-23 2001-03-20 David Roberts Method and apparatus for the non-invasive imaging of anatomic tissue structures
US6226352B1 (en) 1998-09-08 2001-05-01 Veritas Pharmaceuticals, Inc. System and method for radiographic imaging of tissue
US6061176A (en) 1998-09-14 2000-05-09 Shih; Song Hsin Microscope system for observation and display of microcirculation at multiple body areas
DE19858456A1 (de) 1998-12-18 2000-07-06 Leica Microsystems Verfahren zum Auffinden, zur Aufnahme und gegebenenfalls zur Auswertung von Objektstrukturen
US6130745A (en) 1999-01-07 2000-10-10 Biometric Imaging, Inc. Optical autofocus for use with microtiter plates
US20030133009A1 (en) 1999-04-09 2003-07-17 Carl S Brown System and method for detecting with high resolution a large, high content field
JP2002541494A (ja) 1999-04-13 2002-12-03 クロマビジョン メディカル システムズ インコーポレイテッド 組織学的再構成と自動画像分析
US6847729B1 (en) 1999-04-21 2005-01-25 Fairfield Imaging Limited Microscopy
US7920163B1 (en) 1999-06-15 2011-04-05 Tessera International, Inc. Sealed, waterproof digital electronic camera system and method of fabricating same
US20020169512A1 (en) 1999-08-02 2002-11-14 Decode Genetics Ehf. Plate mover for crystallization data collection
AU2421101A (en) * 1999-11-16 2001-05-30 Agilent Technologies Inc. Confocal imaging
US7187810B2 (en) 1999-12-15 2007-03-06 Medispectra, Inc. Methods and systems for correcting image misalignment
DE10011211B4 (de) * 2000-03-08 2004-08-05 Pilz Gmbh & Co. Sicherheitsschaltgerät und Sicherheitsschaltgeräte-System
JP5179683B2 (ja) 2000-03-31 2013-04-10 株式会社ニコン 光学顕微鏡システム
US7738688B2 (en) 2000-05-03 2010-06-15 Aperio Technologies, Inc. System and method for viewing virtual slides
US7668362B2 (en) 2000-05-03 2010-02-23 Aperio Technologies, Inc. System and method for assessing virtual slide image quality
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US7098634B1 (en) 2003-02-21 2006-08-29 Lovoltech, Inc. Buck-boost circuit with normally off JFET
DE10024685A1 (de) * 2000-05-18 2001-11-22 Zeiss Carl Jena Gmbh Anordnung zur konfokalen Autofokussierung
DE10026392A1 (de) 2000-05-27 2001-11-29 Leica Microsystems Verfahren und Anordnung zur Kodierung von Livebildern in der Mikroskopie
WO2001092859A1 (en) 2000-06-02 2001-12-06 Medicometrics Aps Method and system for classifying a biological sample
US6898367B2 (en) 2000-06-17 2005-05-24 Leica Microsystems Heidelberg Gmbh Method and instrument for microscopy
JP2002031513A (ja) 2000-07-14 2002-01-31 Minolta Co Ltd 3次元測定装置
IL138123A0 (en) 2000-08-28 2001-10-31 Accuramed 1999 Ltd Medical decision support system and method
US7209287B2 (en) * 2000-09-18 2007-04-24 Vincent Lauer Confocal optical scanning device
US6678398B2 (en) 2000-09-18 2004-01-13 Sti Medical Systems, Inc. Dual mode real-time screening and rapid full-area, selective-spectral, remote imaging and analysis device and process
AU2001289914A1 (en) 2000-09-25 2002-04-02 Sensovation Ag Image sensor device, apparatus and method for optical measurements
US7292251B1 (en) 2000-10-06 2007-11-06 The Research Foundation Of State University Of New York Virtual telemicroscope
US7194118B1 (en) 2000-11-10 2007-03-20 Lucid, Inc. System for optically sectioning and mapping surgically excised tissue
JP2002150987A (ja) 2000-11-16 2002-05-24 Jeol Ltd 電子顕微鏡および電子顕微鏡における透過電子像撮影方法
US7171030B2 (en) 2000-11-30 2007-01-30 University Of Medicine & Denistry Of New Jersey Systems for analyzing microtissue arrays
US6466690C1 (en) 2000-12-19 2008-11-18 Bacus Res Lab Inc Method and apparatus for processing an image of a tissue sample microarray
US7155049B2 (en) 2001-01-11 2006-12-26 Trestle Acquisition Corp. System for creating microscopic digital montage images
US6993169B2 (en) 2001-01-11 2006-01-31 Trestle Corporation System and method for finding regions of interest for microscopic digital montage imaging
US20020176161A1 (en) 2001-03-12 2002-11-28 Olympus Optical Co., Ltd. Microscope system
DE10112639A1 (de) * 2001-03-16 2002-09-19 Zeiss Carl Jena Gmbh Mikroskop mit Autofokussiereinrichtung
US7864369B2 (en) 2001-03-19 2011-01-04 Dmetrix, Inc. Large-area imaging by concatenation with array microscope
US20030048931A1 (en) 2001-03-23 2003-03-13 Peter Johnson Quantification and differentiation of tissue based upon quantitative image analysis
JP2002296508A (ja) 2001-03-30 2002-10-09 Nikon Corp 顕微鏡システム
AU2002308651A1 (en) 2001-05-04 2002-11-18 Leberl, Franz, W. Digital camera for and method of obtaining overlapping images
DE10127284A1 (de) * 2001-06-05 2002-12-12 Zeiss Carl Jena Gmbh Autofokussiereinrichtung für ein optisches Gerät
US7071969B1 (en) 2001-09-27 2006-07-04 National Semiconductor Corporation Parameterized preview array for iterative image optimization in remote applications
US6847481B1 (en) 2001-10-26 2005-01-25 Ludl Electronics Products, Ltd. Automated slide loader cassette for microscope
US8346483B2 (en) 2002-09-13 2013-01-01 Life Technologies Corporation Interactive and automated tissue image analysis with global training database and variable-abstraction processing in cytological specimen classification and laser capture microdissection applications
US6998270B2 (en) 2001-11-26 2006-02-14 Lab Vision Corporation Automated tissue staining system and reagent container
JP4021183B2 (ja) * 2001-11-29 2007-12-12 オリンパス株式会社 合焦状態信号出力装置
JP2003248176A (ja) 2001-12-19 2003-09-05 Olympus Optical Co Ltd 顕微鏡画像撮影装置
US6978052B2 (en) 2002-01-28 2005-12-20 Hewlett-Packard Development Company, L.P. Alignment of images for stitching
US6778275B2 (en) 2002-02-20 2004-08-17 Micron Technology, Inc. Aberration mark and method for estimating overlay error and optical aberrations
AU2003217694A1 (en) 2002-02-22 2003-09-09 Bacus Research Laboratories, Inc. Focusable virtual microscopy apparatus and method
US20040090667A1 (en) * 2002-03-22 2004-05-13 Carl-Zeiss-Stiftung Trading As Carl Zeiss Microscopy system
JP3911185B2 (ja) 2002-04-05 2007-05-09 株式会社ニフコ 過給油防止バルブ
US6800249B2 (en) 2002-06-14 2004-10-05 Chromavision Medical Systems, Inc. Automated slide staining apparatus
JP4370554B2 (ja) * 2002-06-14 2009-11-25 株式会社ニコン オートフォーカス装置およびオートフォーカス付き顕微鏡
US7136518B2 (en) 2003-04-18 2006-11-14 Medispectra, Inc. Methods and apparatus for displaying diagnostic data
GB0216641D0 (en) 2002-07-18 2002-08-28 Univ Nottingham Image analysis method, apparatus and software
DE10234757B4 (de) * 2002-07-30 2004-08-26 Leica Microsystems Semiconductor Gmbh Autofokusmodul für Mikroskopbasierte Systeme
DE10240720A1 (de) 2002-09-04 2004-03-25 Carl Zeiss Jena Gmbh Kamera-Adapter für optische Geräte, insbesondere Mikroskope
JP2004101871A (ja) 2002-09-10 2004-04-02 Olympus Corp 顕微鏡画像撮影装置
JP3859574B2 (ja) 2002-10-23 2006-12-20 ファナック株式会社 3次元視覚センサ
DE10250569A1 (de) 2002-10-28 2004-05-13 Carl Zeiss Meditec Ag Ophthalmologisches Gerät und Verfahren zur Gerätepositionierung
DE10250100A1 (de) 2002-10-28 2004-05-13 Leica Microsystems Heidelberg Gmbh Mikroskopsystem und Verfahren zur Analyse und Auswertung von Mehrfachfärbungen eines mikroskopischen Objekts
KR100502414B1 (ko) 2002-11-22 2005-07-19 삼성전자주식회사 에이디에스엘 시스템의 에코 제거기 및 그것의 트레이닝방법
DE10255460B4 (de) 2002-11-25 2014-02-27 Carl Zeiss Meditec Ag Optisches Beobachtungsgerät mit Videovorrichtung
DE10255072A1 (de) 2002-11-25 2004-06-17 Sensovation Ag Verfahren zum Erfassen einer Eigenschaft mindestens eines Gegenstands
DE10259667B4 (de) 2002-12-18 2004-09-16 Lfk-Lenkflugkörpersysteme Gmbh Verfahren zur Vergrößerung des Bildfeldes einer Focal-Plane-Array-Kamera
US7648678B2 (en) 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
US7584019B2 (en) 2003-12-15 2009-09-01 Dako Denmark A/S Systems and methods for the automated pre-treatment and processing of biological samples
DE10300091A1 (de) 2003-01-04 2004-07-29 Lubatschowski, Holger, Dr. Mikrotom
US7046447B2 (en) * 2003-01-13 2006-05-16 Pc Mirage, Llc Variable focus system
GB2398196B (en) 2003-02-05 2005-06-01 Fairfield Imaging Ltd Microscope system and method
AU2003900780A0 (en) 2003-02-21 2003-03-13 Vision Biosystems Limited Analysis system and procedure
US7233340B2 (en) 2003-02-27 2007-06-19 Applied Imaging Corp. Linking of images to enable simultaneous viewing of multiple objects
US7116440B2 (en) 2003-02-28 2006-10-03 Aperio Technologies, Inc. Image processing and analysis framework
US7257268B2 (en) 2003-02-28 2007-08-14 Aperio Technologies, Inc. Systems and methods for image pattern recognition
US7633616B2 (en) 2003-06-02 2009-12-15 Sensovation Ag Apparatus and method for photo-electric measurement
US7756357B2 (en) 2003-07-01 2010-07-13 Olympus Corporation Microscope system for obtaining high and low magnification images
US7033026B2 (en) 2003-07-04 2006-04-25 Spector Robert T Method of and apparatus for diagnosing and treating amblyopic conditions in the human visual system
US20050025833A1 (en) * 2003-07-16 2005-02-03 Chaim Aschkenasy Pharmaceutical composition and method for transdermal drug delivery
US7196300B2 (en) * 2003-07-18 2007-03-27 Rudolph Technologies, Inc. Dynamic focusing method and apparatus
US7483554B2 (en) 2003-11-17 2009-01-27 Aureon Laboratories, Inc. Pathological tissue mapping
DE10342264C5 (de) 2003-09-12 2012-10-31 Leica Biosystems Nussloch Gmbh System zum eindeutigen Zuordnen von histologischen Kassetten und Objektträgern
US8473035B2 (en) 2003-09-15 2013-06-25 Beth Israel Deaconess Medical Center Medical imaging systems
KR20060115366A (ko) 2003-10-24 2006-11-08 더 유니버시티 오브 마이애미 간소화시킨 조직 가공
JP4124096B2 (ja) 2003-10-29 2008-07-23 株式会社ニコン 画像処理方法および画像処理装置、並びにプログラム
US20050094262A1 (en) 2003-11-05 2005-05-05 Visx, Incorporated Microscope magnification sensor
US20050112537A1 (en) 2003-11-20 2005-05-26 Ladder Publishing Co., Ltd. Mobile teaching aid with audiovisual amusement device
US7141802B2 (en) 2003-12-01 2006-11-28 Olympus Corporation Optical device and imaging method
DE10361150A1 (de) 2003-12-22 2005-07-21 Leica Microsystems Imaging Solutions Ltd. Mikroskopsystem und Verfahren zum Betreiben eines Mikroskopsystems
JP2005284136A (ja) 2004-03-30 2005-10-13 Olympus Corp 観察装置および観察装置の焦点合わせ方法
US20050221351A1 (en) 2004-04-06 2005-10-06 Affymetrix, Inc. Methods and devices for microarray image analysis
JP4576876B2 (ja) 2004-05-10 2010-11-10 株式会社ニコン 顕微鏡システム
US7232980B2 (en) * 2004-05-24 2007-06-19 Hamamatsu Photonics K.K. Microscope system
JP5134365B2 (ja) 2004-05-27 2013-01-30 アペリオ・テクノロジーズ・インコーポレイテッド 三次元仮想スライドを生成しかつ可視化するためのシステム及び方法
US7751048B2 (en) 2004-06-04 2010-07-06 California Institute Of Technology Optofluidic microscope device
JP4782391B2 (ja) * 2004-06-16 2011-09-28 オリンパス株式会社 顕微鏡システム
EP1771716A4 (en) 2004-06-29 2012-04-25 Dako Denmark As METHOD FOR PRE-TREATING AND STAINING A CARRIER DEVICE FOR A BIOLOGICAL SAMPLE
US7677289B2 (en) 2004-07-08 2010-03-16 President And Fellows Of Harvard College Methods and apparatuses for the automated production, collection, handling, and imaging of large numbers of serial tissue sections
US7623697B1 (en) 2004-07-28 2009-11-24 Genetix Corp. Linking of images to enable simultaneous viewing of multiple objects
JP2006039315A (ja) * 2004-07-28 2006-02-09 Hamamatsu Photonics Kk 自動焦点装置及びそれを用いた顕微鏡装置
JP4373872B2 (ja) 2004-07-30 2009-11-25 浜松ホトニクス株式会社 撮像装置及びそれを用いた顕微鏡装置
US7456377B2 (en) 2004-08-31 2008-11-25 Carl Zeiss Microimaging Ais, Inc. System and method for creating magnified images of a microscope slide
HUP0401802A2 (en) 2004-09-02 2006-03-28 3D Histech Kft Focusing method object carriers on fast-moving digitalization and object carrier moving mechanics, focusing optic, optical distance-measuring instrument
DE102004044626B4 (de) 2004-09-13 2008-11-20 Leica Microsystems Cms Gmbh Verfahren zur Untersuchung von Transportprozessen
JP2006084794A (ja) * 2004-09-16 2006-03-30 Olympus Corp 焦点位置制御機構付き観察装置
US8094914B2 (en) 2004-09-22 2012-01-10 Nikon Corporation Microscope system and image processing method used for observation of a specimen
US7253947B2 (en) 2004-10-07 2007-08-07 New York University Portable automated confocal microscope
WO2006058187A2 (en) * 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
US7760909B2 (en) 2005-01-12 2010-07-20 Brainlab Ag Video tracking and registering
US7301133B2 (en) * 2005-01-21 2007-11-27 Photon Dynamics, Inc. Tracking auto focus system
US7414709B2 (en) 2005-01-21 2008-08-19 Gemex Systems, Inc. Method and system for online evaluation of gemstones
JP2006259630A (ja) 2005-03-18 2006-09-28 Olympus Corp 顕微鏡用画像記録装置
JP2006292999A (ja) 2005-04-11 2006-10-26 Direct Communications:Kk スライド画像データ作成装置およびスライド画像データ
CA2504245A1 (en) 2005-04-11 2006-10-11 Meinan Machinery Works, Inc. Method of inspecting a broad article
JP2006343595A (ja) * 2005-06-09 2006-12-21 Sumitomo Osaka Cement Co Ltd 共焦点型検査装置
US7873193B2 (en) 2005-06-21 2011-01-18 Carl Zeiss Microimaging Gmbh Serial section analysis for computer-controlled microscopic imaging
US7756309B2 (en) 2005-07-27 2010-07-13 Bioimagene, Inc. Method and system for storing, indexing and searching medical images using anatomical structures of interest
JP4799088B2 (ja) 2005-09-06 2011-10-19 株式会社東芝 遠隔検査における作業位置計測方法およびその装置
JP4970869B2 (ja) 2005-09-12 2012-07-11 オリンパス株式会社 観察装置および観察方法
JP4915071B2 (ja) 2005-09-22 2012-04-11 株式会社ニコン 顕微鏡、およびバーチャルスライド作成システム
DE102005046638C5 (de) 2005-09-29 2024-02-15 Leica Microsystems Cms Gmbh Scanmikroskop und Verfahren zur Probenmanipulation mit einem Manipulationslichtstrahl in einem Scanmikroskop
US7433505B2 (en) 2005-11-01 2008-10-07 Ben Yoo Method of dental microscopic procedure
US7967057B2 (en) 2005-11-30 2011-06-28 Kobe Steel, Ltd. Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
US7433026B2 (en) 2005-12-20 2008-10-07 Cytyc Corporation Microscope with LED illumination source
US7297910B2 (en) * 2005-12-30 2007-11-20 General Electric Company System and method for utilizing an autofocus feature in an automated microscope
US7657070B2 (en) 2006-01-20 2010-02-02 Sakura Finetek U.S.A., Inc. Automated system of processing biological specimens and method
JP4636552B2 (ja) 2006-01-25 2011-02-23 セイコーインスツル株式会社 自動薄切装置
EP2267972A1 (en) 2006-02-21 2010-12-29 BrainLAB AG Computer network system and method for operating the network system screenshot and sourceshot control
US20070224699A1 (en) 2006-03-23 2007-09-27 Gates Jackson L X-ray visualizer, laser-beam operated micro-dissector, automated tissue processor
JP4878913B2 (ja) 2006-05-24 2012-02-15 オリンパス株式会社 顕微鏡システム、顕微鏡画像の合成方法、及びプログラム
US7840300B2 (en) 2006-05-31 2010-11-23 Robert Arthur Harker Full spectrum lapidary 3D image scanner and method
CN101467087A (zh) 2006-06-09 2009-06-24 维谷设备有限公司 对无限远校正显微镜进行自动聚焦的方法和装置
US8067245B2 (en) 2006-07-24 2011-11-29 Medica Corporation Automated microscope for blood cell analysis
JP2010500614A (ja) 2006-08-04 2010-01-07 イコニシス インコーポレーテッド 顕微鏡包囲体システム
US7659509B2 (en) 2006-10-31 2010-02-09 Agilent Technologies, Inc. System for scanning probe microscope input device
US20100093022A1 (en) 2006-11-28 2010-04-15 Kenneth Hayworth Methods and apparatus for providing and processing sliced thin tissue
WO2008069220A1 (ja) 2006-11-30 2008-06-12 Nikon Corporation 結像装置及び顕微鏡
JP5006062B2 (ja) 2007-02-05 2012-08-22 オリンパス株式会社 バーチャルスライド作成装置、バーチャルスライド作成方法およびバーチャルスライド作成プログラム
US8098956B2 (en) 2007-03-23 2012-01-17 Vantana Medical Systems, Inc. Digital microscope slide scanning system and methods
JP5053691B2 (ja) * 2007-04-13 2012-10-17 オリンパス株式会社 標本スキャナ装置、該装置による標本位置検出方法
US7769548B2 (en) 2007-05-10 2010-08-03 Illumina, Inc. Microarray analytical data stitching system and method
US8023714B2 (en) 2007-06-06 2011-09-20 Aperio Technologies, Inc. System and method for assessing image interpretability in anatomic pathology
HU0700409D0 (en) 2007-06-11 2007-08-28 3D Histech Kft Method and system for accessing a slide from a remote workstation
DE102007033793A1 (de) 2007-07-19 2009-01-22 Carl Zeiss Imaging Solutions Gmbh Verfahren und Vorrichtung zum mikroskopischen Untersuchen einer Probe, Computerprogramm und Computerprogrammprodukt
JP2009036969A (ja) 2007-08-01 2009-02-19 Nikon Corp カバーガラス、スライドガラス、プレパラート、観察方法、及び顕微鏡装置
US7859572B2 (en) 2007-08-06 2010-12-28 Microsoft Corporation Enhancing digital images using secondary optical systems
US8878923B2 (en) 2007-08-23 2014-11-04 General Electric Company System and method for enhanced predictive autofocusing
EP2051051B1 (en) 2007-10-16 2020-06-03 Cambridge Research & Instrumentation, Inc. Spectral imaging system with dynamic optical correction
EP2053377A1 (de) 2007-10-22 2009-04-29 MMI GmbH Verfahren und Vorrichtung zur dreimimensionalen Mikrodissektion
US8000562B2 (en) 2007-12-14 2011-08-16 Xerox Corporation Image downsampling for print job processing
JP5028249B2 (ja) 2007-12-25 2012-09-19 オリンパス株式会社 顕微鏡
ES2396607T3 (es) 2007-12-27 2013-02-22 Cytyc Corporation Sistema para barrer de forma controlable un espécimen citológico
JP4958807B2 (ja) 2008-01-24 2012-06-20 株式会社キーエンス 画像処理装置
JP5096955B2 (ja) 2008-02-14 2012-12-12 オリンパス株式会社 観察装置の制御方法および観察装置ならびに観察装置の制御プログラム
EP2110696B1 (en) 2008-04-15 2013-10-16 Sensovation AG Method and apparatus for autofocus
EP2288903A4 (en) 2008-05-16 2012-03-21 Biomedical Photometrics Inc IMAGING SYSTEM WITH OPTIMIZATION OF THE DYNAMIC RANGE
US7550699B1 (en) * 2008-06-20 2009-06-23 Marshall Daniel R Removal of unwanted reflections in autofocus systems
US8120642B2 (en) 2008-07-25 2012-02-21 Honeywell International Inc. Optical fingerprint acquisition
DE102009061014B4 (de) 2008-08-08 2012-03-01 Leica Biosystems Nussloch Gmbh Verfahren zum Herstellen von Dünnschnitten einer Probe mittels eines Mikrotoms
JP2010045615A (ja) 2008-08-13 2010-02-25 Olympus Corp 撮像装置および内視鏡システム
WO2010021744A1 (en) 2008-08-21 2010-02-25 California Institute Of Technology Microscope coupled tissue sectioning system
JP5380026B2 (ja) 2008-09-24 2014-01-08 シスメックス株式会社 標本撮像装置
DE102008049589A1 (de) 2008-09-30 2010-04-08 Carl Zeiss Smt Ag Optische Abbildungseinrichtung und Abbildungsverfahren für die Mikroskopie
WO2010042217A1 (en) 2008-10-09 2010-04-15 Sti Medical Systems, Llc Process for preserving three dimensional orientation to allow registering histopathological diagnoses of tissue
JP2010117705A (ja) 2008-10-14 2010-05-27 Olympus Corp バーチャルスライド作成システム用顕微鏡
US20100102571A1 (en) 2008-10-28 2010-04-29 Fu-Hung Yang Manpower Power Generator
KR100956785B1 (ko) 2008-10-31 2010-05-12 주식회사 하이닉스반도체 Dll 회로 및 그 제어 방법
TWM354738U (en) 2008-11-07 2009-04-11 Shanghai Microtek Technology Co Ltd Electronic device for biological microscopy
JP2010128062A (ja) 2008-11-26 2010-06-10 Olympus Corp バーチャルスライド用標本像取得装置
JP5024351B2 (ja) 2008-11-28 2012-09-12 株式会社ニコン 画像ファイル生成装置、カメラ、および画像ファイル生成プログラム
JP5301970B2 (ja) 2008-12-08 2013-09-25 オリンパス株式会社 顕微鏡用デジタルカメラシステム及び顕微鏡システム
JP5153599B2 (ja) 2008-12-08 2013-02-27 オリンパス株式会社 顕微鏡システム及び該動作方法
DK2389116T3 (en) 2009-01-22 2018-02-12 Biopath Automation Llc BIOPSY SUPPORT TO ORIENT TESTS FOR SECTION IN A MICROTOM
US8836948B2 (en) 2009-01-29 2014-09-16 The Regents Of The University Of California High resolution structured illumination microscopy
US20100201800A1 (en) 2009-02-09 2010-08-12 Olympus Corporation Microscopy system
US8537181B2 (en) 2009-03-09 2013-09-17 Ventana Medical Systems, Inc. Modes and interfaces for observation, and manipulation of digital images on computer screen in support of pathologist's workflow
DE102009012293A1 (de) 2009-03-11 2010-09-16 Sensovation Ag Autofokusverfahren und Autofokuseinrichtung
WO2010105015A2 (en) 2009-03-11 2010-09-16 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for microscopy tracking
CA2755164C (en) * 2009-03-11 2014-02-25 Sensovation Ag Autofocus method and autofocus device
JP5316161B2 (ja) 2009-03-27 2013-10-16 ソニー株式会社 観察装置
JP2010261794A (ja) 2009-05-01 2010-11-18 Seiko Instruments Inc 薄切片標本作製装置及び薄切片標本作製方法
JP5214538B2 (ja) 2009-05-25 2013-06-19 オリンパス株式会社 画像取得装置、画像合成方法、及び顕微鏡システム
US9810895B2 (en) 2009-05-29 2017-11-07 Olympus Corporation Biological observation apparatus
JP5336936B2 (ja) 2009-06-08 2013-11-06 オリンパス株式会社 撮像装置及び顕微鏡システム
US8304704B2 (en) * 2009-07-27 2012-11-06 Sensovation Ag Method and apparatus for autofocus using a light source pattern and means for masking the light source pattern
US8335374B2 (en) 2009-08-12 2012-12-18 Genetix Corporation Image segmentation
JP5393340B2 (ja) 2009-08-20 2014-01-22 オリンパス株式会社 撮像端末、表示端末、表示方法、及び撮像システム
US8463741B2 (en) 2009-09-04 2013-06-11 Omnyx, LLC Digital pathology system
US8077959B2 (en) 2009-09-30 2011-12-13 General Electric Company Stain-based optimized compression of digital pathology slides
JP4982544B2 (ja) 2009-09-30 2012-07-25 株式会社日立ハイテクノロジーズ 合成画像形成方法及び画像形成装置
WO2011049608A2 (en) 2009-10-19 2011-04-28 Bioimagene, Inc. Imaging system and techniques
JP5394887B2 (ja) 2009-10-29 2014-01-22 オリンパス株式会社 顕微鏡装置および顕微鏡観察方法
JP5498129B2 (ja) 2009-11-09 2014-05-21 オリンパス株式会社 バーチャル顕微鏡システム
EP2506451B1 (en) 2009-11-24 2016-05-04 Electronics and Telecommunications Research Institute Method for transmitting multiple frames using group control information in a mu-mimo based wireless communication system
DE102010007727A1 (de) 2010-02-12 2011-08-18 Leica Microsystems CMS GmbH, 35578 Vorrichtung nach Art eines Scan-Mikroskops, Vorrichtung in Form einer Baueinheit für ein Mikroskop und Verfahren und Vorrichtung zum optischen Abtasten einer oder mehrerer Proben
JP5555014B2 (ja) 2010-03-10 2014-07-23 オリンパス株式会社 バーチャルスライド作成装置
US8565503B2 (en) 2010-06-04 2013-10-22 Leica Biosystems Imaging, Inc. System and method to determine slide quality of a digitized microscope slide
TW201201392A (en) 2010-06-17 2012-01-01 Univ Feng Chia Semiconductor photosensing device
JP5537281B2 (ja) 2010-06-21 2014-07-02 オリンパス株式会社 顕微鏡装置および画像取得方法
US8839700B2 (en) 2010-06-23 2014-09-23 Tissuevision, Inc. Oscillating microtome with flexure drive
US10139613B2 (en) 2010-08-20 2018-11-27 Sakura Finetek U.S.A., Inc. Digital microscope and method of sensing an image of a tissue sample
JP2012065257A (ja) 2010-09-17 2012-03-29 Olympus Corp 顕微鏡用撮像装置
DE102010041794A1 (de) 2010-09-30 2012-04-05 Carl Zeiss Microlmaging Gmbh Mikroskopsystem, Mikroskopieverfahren und Computerprogrammprodukt
US8771978B2 (en) 2010-11-15 2014-07-08 Tissuevision, Inc. Systems and methods for imaging and processing tissue
JP5744905B2 (ja) 2010-11-19 2015-07-08 オリンパス株式会社 生体試料調製方法
US20120127297A1 (en) 2010-11-24 2012-05-24 Baxi Vipul A Digital microscopy with focus grading in zones distinguished for comparable image structures
US8388891B2 (en) 2010-12-28 2013-03-05 Sakura Finetek U.S.A., Inc. Automated system and method of processing biological specimens
US8476585B2 (en) 2011-03-02 2013-07-02 Gatan, Inc. Microtome utilizing a movable knife in a retardation field scanning electron microscope and a retardation field scanning electron microscope including the same
JP5766004B2 (ja) 2011-04-26 2015-08-19 倉敷紡績株式会社 薄切片試料作製装置及び薄切片試料作製方法
WO2012156862A1 (en) 2011-05-13 2012-11-22 Koninklijke Philips Electronics N.V. Generating a slicing scheme for slicing a specimen
US9217739B2 (en) 2011-06-02 2015-12-22 Dune Medical Devices Ltd. Tissue sampling for pathological study
GB201109999D0 (en) 2011-06-14 2011-07-27 Imec Sample holder
DE102011051278A1 (de) 2011-06-22 2012-12-27 Leica Microsystems Cms Gmbh Verfahren und lichtmikroskopische Einrichtung zur bildlichen Darstellung einer Probe
US20130076886A1 (en) 2011-09-27 2013-03-28 Olympus Integrated Technologies America, Inc. Automatic Focus and Sample Detection
US8827760B2 (en) 2011-11-28 2014-09-09 Carrie Park Ushibo Peripheral apparatus for positioning and using a portable electronic device
US20130140459A1 (en) 2011-12-01 2013-06-06 Gatan, Inc. System and method for sample analysis by three dimensional cathodoluminescence
US8725237B2 (en) 2012-03-19 2014-05-13 Genetic Innovations, Inc. Devices, systems, and methods for virtual staining
US9194775B2 (en) 2012-07-30 2015-11-24 Aspect Imaging Ltd. Guided slicing system for obtaining histological samples and methods thereof
BR112015003464B1 (pt) 2012-08-15 2022-01-18 Lucid, Inc Sistemas e processos para formação de imagens de tecido
JP2014066788A (ja) 2012-09-25 2014-04-17 Sony Corp 画面表示装置及び画面表示システム
US20140087411A1 (en) 2012-09-27 2014-03-27 University Of Southern California System and method for determining tumor invasiveness
DE102012219775A1 (de) 2012-10-29 2014-04-30 Carl Zeiss Microscopy Gmbh Einstelleinheit und Verfahren zum Einstellen eines Ablaufs zur automatischen Aufnahme von Bildern eines Objekts mittels einer Aufnahmevorrichtung und Aufnahmevorrichtung mit einer solchen Einstelleinheit
US9528915B2 (en) 2012-11-13 2016-12-27 Ues, Inc. Automated high speed metallographic system
US10007102B2 (en) 2013-12-23 2018-06-26 Sakura Finetek U.S.A., Inc. Microscope with slide clamping assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2620537A1 (fr) * 1987-09-14 1989-03-17 Micro Controle Dispositif optique a mise au point automatique et appareil optique comportant un tel dispositif
CN100353204C (zh) * 2003-04-29 2007-12-05 卡尔蔡斯耶拿有限公司 用于在样品成像时确定焦点位置的方法和装置
WO2005015120A2 (en) * 2003-08-08 2005-02-17 Wallac Oy Method and arrangement for focusing detection in an optical measurement and method and arrangement for migitating the effect of surface reflection

Also Published As

Publication number Publication date
CN102405431A (zh) 2012-04-04
CA2755164A1 (en) 2010-09-16
US20160216504A1 (en) 2016-07-28
US10495867B2 (en) 2019-12-03
DK2406679T3 (da) 2017-04-18
EP2406679A1 (de) 2012-01-18
AU2010222633A1 (en) 2011-10-06
EP2406679B1 (de) 2017-01-25
BRPI1011689A2 (pt) 2016-03-22
BRPI1011689B1 (pt) 2019-12-17
AU2010222633B2 (en) 2015-05-14
ES2617664T3 (es) 2017-06-19
US20120038979A1 (en) 2012-02-16
US9310598B2 (en) 2016-04-12
JP2012520478A (ja) 2012-09-06
WO2010103389A1 (de) 2010-09-16
JP5739351B2 (ja) 2015-06-24
CA2755164C (en) 2014-02-25

Similar Documents

Publication Publication Date Title
CN102405431B (zh) 自动聚焦方法和自动聚焦设备
CN104515469B (zh) 用于检查微观样本的光显微镜和显微镜学方法
US8643946B2 (en) Autofocus device for microscopy
US9366630B2 (en) Fluorescence imaging autofocus systems and methods
KR102213983B1 (ko) 고속 자동초점 시스템
CN101868320A (zh) 激光束加工
CN103038692A (zh) 基于差分测量的自动聚焦
KR102005621B1 (ko) 면역 크로마토크래피 신속 진단 키트 및 이를 이용한 검사 방법
JP5884021B2 (ja) マルチスペクトル撮像装置およびマルチスペクトル撮像方法
KR20010085896A (ko) 반도체 레이저를 기본요소로 한 감지 장치
US9958319B2 (en) Method and device for determining a critical angle of an excitation light beam
CN110785692B (zh) 用于拍摄图像的方法和显微镜系统
JPH0812046B2 (ja) 二段検出式非接触位置決め装置
JP2008139062A (ja) 分光測定装置よび分光測定方法
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
CN110542539A (zh) 一种光学镜头色差测量装置
CN115598105B (zh) 拉曼检测的对焦方法及对焦系统
Hegemann et al. Combined high-resolution imaging and spectroscopy system-a versatile and multi-modal metrology platform
JP2003195014A (ja) レーザビームの焦点とスリット開口との整合維持装置
KR20230099309A (ko) 가변 투과율 흡수 필터를 가지는 광 간섭 단층 촬영 장치
JP6146717B2 (ja) 検査装置、及び検査方法
WO2016150577A1 (en) Detector module

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150916

Termination date: 20210311

CF01 Termination of patent right due to non-payment of annual fee