CN102137878A - 可膨胀微球及其制造和使用方法 - Google Patents

可膨胀微球及其制造和使用方法 Download PDF

Info

Publication number
CN102137878A
CN102137878A CN200980133926.5A CN200980133926A CN102137878A CN 102137878 A CN102137878 A CN 102137878A CN 200980133926 A CN200980133926 A CN 200980133926A CN 102137878 A CN102137878 A CN 102137878A
Authority
CN
China
Prior art keywords
monomer
expended microsphere
polymeric layer
paper
microballoon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980133926.5A
Other languages
English (en)
Other versions
CN102137878B (zh
Inventor
洪耀良
K·K·莫汉
P·M·弗洛斯
马克·费根
克里斯托弗·D·安德森
布赖恩·博亚尔斯
埃里克·斯科特·丹尼尔斯
维多利亚·劳伦茨娅·迪莫涅
爱德华·戴维·苏多尔
安德鲁·克莱因
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nevamar Corp
Original Assignee
Nevamar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nevamar Corp filed Critical Nevamar Corp
Publication of CN102137878A publication Critical patent/CN102137878A/zh
Application granted granted Critical
Publication of CN102137878B publication Critical patent/CN102137878B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/08Homopolymers or copolymers of vinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • D21H21/54Additives of definite length or shape being spherical, e.g. microcapsules, beads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Abstract

本发明提供使用注入生长方法通过悬浮聚合形成的可膨胀微球。所述微球由包围发泡剂的、连续的、气体不可渗透壳构成。所述壳包括由主要单体形成的第一聚合物层和包括化学反应性单体和高Tg单体在内的第二层。为了形成所述微球,使所述主要单体在反应容器中聚合至约90%聚合,这时将次要单体加至反应容器中以促使聚合反应完全,所述次要单体为Tg至少为85℃的单体和化学反应性单体。因此,外层含有大量高Tg单体或化学反应性单体,所述化学反应性单体具有共价键合阳离子类物质的能力。所述微球可用于造纸工艺以增加纸体积。

Description

可膨胀微球及其制造和使用方法
相关申请的交叉引用
本申请涉及并要求2008年8月28日提交的、名称为“可膨胀微球及其制造和使用方法”的美国临时专利申请第61/190,354号的国内优先权,上述临时专利申请的全部内容在此通过引用特别地并入本文。
技术领域
本发明总体上涉及用于造纸工艺的可膨胀微球,更加具体而言,本发明涉及利用注入生长(shot growth)技术通过悬浮聚合形成的热可膨胀微球。本发明还提供包括可膨胀微球在内的组合物和纸张基材。
背景技术
存在于纸张基材中的昂贵的纤维素纤维的量部分决定了纸张基材的密度。因此,纸张基材中存在的大量的这些昂贵的纤维素纤维以高成本生成了更加致密的纸张基材,而纸张基材中存在的少量的纤维素纤维以低成本生成了较低密度的纸张基材。降低涂覆和/或未涂覆的纸产品、纸板和/或纸张基材的密度不可避免地使得产品成本降低。这种相互关系对于所有纸产品和纸张基材产品及其应用都是准确的,但是,在例如用于信封、折叠纸盒以及其他包装应用中的纸张基材方面尤其准确。用于这些封装和包装应用的基材具有特定的厚度或纸厚度(caliper)。
通过设定目标厚度来降低纸张基材的密度,只需要较少的纤维素纤维来实现目标厚度。除了降低生产成本之外,当纸张基材的密度降低时,实现并提高生产效率。这种生产效率至少部分由于降低了生产过程中对纸张基材的干燥要求(例如,时间、劳动力、资金等等)。
降低基底纸张基材的密度的例子包括使用下列方法:
●具有蓬松纤维的多部机器,例如BCTMP和在纸板层的中心的其他机械纤维;
●扩大压辊压力区用于降低除水过程中的致密化;和
●替换压光(calendering)技术,例如热软压光、热钢压光、蒸汽、靴式压光(shoe nip calendering)等等。
然而,这些潜在的方案所需的资金多成本高。因此,它们在经济方面是不可行的。
而且,即使实现了降低密度来降低上述方法的成本,从而生产具有目标厚度的纸张基材,那么仅当这些方法生产出具有可接受的光滑且可压缩的表面的纸张基材时,这些纸张基材才有用。目前,几乎没有潜在的低成本的方案来降低具有可接受的光滑度和可压缩性的纸张基材的密度以使得所述纸张基材显著降低了印刷墨斑并且具有可接受的光滑度。
低密度涂覆的和未涂覆的纸品、纸板和/或纸张基材从美学角度和经济学角度而言是极为理想的。不幸地是,目前的方法生产的基材印刷质量和/或可印刷性较差。此外,使用常规方法难以达到可接受的光滑度目标。
以较低的成本解决上述问题的一个方法是在纸张基材中利用可膨胀的微球。在下列美国专利和美国专利申请中发现了部分这些方法:第6,846,529号;第6,802,938号;第5,856,389号;第5,342,649号;第2008/0017338号;第2007/0044929号;第2007/0208093号;第2006/0000569号;第2006/0102307号;第2004/0065424号;第2004/0052989号;第2004/02749005号和第2001/0038893号。这些专利和专利申请中的每一个的内容在此通过引用特别地完整并入本文。
当将微球用于造纸工艺时,发现许多微球在得到的纸张基材中具有相对低的保留率。这就导致在造纸工艺中可膨胀微球随水流失,将可膨胀微球引入所得到的纸张基材中的效率较低。美国专利公开第2007/0044929号尝试通过生产相对于先前已知的基本可膨胀微球组合物具有少得多的负电荷的组合物来提高微球的保留率。
尽管尝试生产了较低密度且更蓬松的纸张基材,但是本领域中仍然需要更低成本且更有效的方案来降低密度并增加体积同时保持良好的性能特征,例如纸张基材的光滑度和印刷墨斑。
发明内容
本发明的目的是提供可膨胀的微球,所述可膨胀微球包括气体不可渗透壳,所述壳包裹了至少一种发泡剂。所述壳由包围所述发泡剂的第一聚合层和至少基本包裹所述第一聚合层的第二聚合层构成。所述第一聚合层可由聚合物形成,所述聚合物由含腈单体、丙烯酸酯单体、甲基丙烯酸酯单体、乙烯基酯和/或乙烯基卤化物单体形成。所述第二聚合层包括Tg至少为85℃的单体或化学反应性单体中的至少一种单体。在一种示范性的实施方式中,所述化学反应性单体向所述第二层提供功能基团,从而使得阳离子类物质共价键合于其上。在另一实施方式中,将高Tg单体并入所述第二层产生外层,所述外层相对于所述第一聚合层具有较高浓度的高Tg单体。所述可膨胀微球可具有Zeta电位,所述Zeta电位在pH约为9或更小、离子强度为10-6M至0.1M条件下大于或等于0mV。此外,所述微球可具有小的膨胀体积平均直径,其优选为小于约20μm。
本发明的另一目的是提供形成例如前段所述的可膨胀微球的方法。所述方法包括:(1)将选自含腈单体、丙烯酸酯单体、甲基丙烯酸酯单体、乙烯基酯、乙烯基卤化物单体及其组合的主要单体、至少一种发泡剂、交联单体、聚合引发剂以及稳定剂在反应容器中混合一段时间,所述一段时间足以达到使所述主要单体约90%聚合并形成包围所述发泡剂的第一聚合层,以及(2)将选自Tg至少为85℃的单体和化学反应性单体的次要单体加至反应容器中,从而形成第二聚合层,所述第二聚合层至少基本包围所述第一聚合层并且形成可膨胀微球。高Tg单体的添加或“注入(shot)”使所述第二聚合层中的高Tg单体的浓度超过所述第一聚合层中特定Tg单体的浓度。在另一实施方式中,添加作为“注入”单体的化学反应性单体以在所述第二层的外表面提供功能基团并且使得阳离子类物质共价连接。在至少一种示范性的实施方式中,盐、相分离剂(phase partitioner)、阻聚剂、酸和/或水可被加至反应容器中。此外,所述反应容器可由惰性气体来吹洗以除去顶部空间中不想要的氧。
本发明的又一目的是提供一种纸,所述纸包括纤维素纤维和上述可膨胀微球。所述纸可具有小于250SU的Sheffield平滑度和/或不大于6的2nd青色扫描墨迹斑点(scanning 2nd cyan print mottle),所述平滑度通过TAPPI测试法T538om-1来测量。在一种实施方式中,所述纸可被压光。
本发明的再一目的是提供组合物,所述组合物包括上述可膨胀微球和多种纤维素纤维。
本发明的优势在于微球具有内层和外层,功能化层可使用注入生长技术通过悬浮聚合来形成。
本发明的另一优势在于阳离子可共价地和/或非共价地键合至位于所述微球的第二层(外层)上的功能基团,从而调节所述微球的表面电荷并且生成改性的微球。
本发明的又一优势在于包括Tg至少为85℃的单体在内的具有内层和外层的微球可使用注入生长技术通过悬浮聚合来形成。
本发明的上述和其他目的,特征和优势通过结合下面的详细描述表现的更加完全。
具体实施方式
除非另有说明,本文使用的所有技术和科学术语具有如本领域普通技术人员通常所理解的相同的含义。虽然与本文所述的那些方法和材料类似或等同的任何方法和材料可用于本发明的实践或测试,但是本文描述了优选的方法和材料。本文引用的所有参考文献(包括公开的或相应的美国或外国专利申请)或授权的美国或外国专利或任何其他文献中的每一个通过引用完整并入本文,包括所有数据、表格、图和所引用的参考文献中所述的内容。
需要理解的是“热可膨胀微球”、“可膨胀微球”和“微球”可在本文中互换使用。此外,术语“第一层”和“第二层”可分别与术语“内层”和“外层”互换使用。术语“聚合物层”和“聚合层”也可互换使用。
本发明涉及使用注入生长技术通过悬浮聚合形成的热可膨胀微球。所述注入生长方法使得含有化学反应性单体的第二层(外层)形成或含高Tg单体的外层形成。所述微球理想地在外表面具有阳离子电荷以改善造纸工艺中微球的保留率。在一种或一种以上示范性的实施方式中,所述微球可具有键合于其上的阳离子类物质。本文所述的微球可用于常规造纸工艺以增加体积并降低所使用的纤维素纤维的量,从而降低与造纸工艺有关的生产成本。
所述热可膨胀微球由连续的、热塑性的、聚合的、气体不可渗透壳形成,在所述气体不可渗透壳内包裹了至少一种发泡剂。在示范性的实施方式中,可膨胀微球的聚合物壳具有第一聚合层(内层)和第二聚合层(外层)。所述第二层至少基本上包围或包裹所述第一层。需要理解的是词组“至少基本上包围”意在指所述第二层包围或几乎包围所述第一层。
本文所使用的术语“层”可以是所述微球的分离的、不同的或物理上分离的部分。“层”也可以不是所述微球分离的、不同的或物理上分离的部分。在一种实施方式中,两个“层”可具有相互穿插和/或彼此覆盖的部分。在另一实施方式中,“层”可以是单体产生连续的聚合壳的至少两个聚合阶段中的至少一个阶段的结果。在又一实施方式中,当存在至少两个“层”时,可以没有第一“层”结束和第二“层”起始的清楚的界限,反而,以起始浓度使用一系列主要单体的至少一个第一聚合阶段和以第二浓度使用一系列次要单体的至少一个第二聚合阶段使得从一个“层”向另一“层”过渡,所述起始浓度部分或全部被消耗,条件是所述次要单体与所述主要单体不同或所述第二浓度与所述起始浓度不同。
所述聚合物内层可由均聚物和/或共聚物形成,所述均聚物和/或共聚物通过乙烯系(ethylenically)不饱和单体的聚合获得。在示范性的实施方式中,所述聚合物内层由含腈单体、丙烯酸酯单体、甲基丙烯酸酯单体、乙烯基酯、乙烯基卤化物单体及其组合的聚合和/或共聚合来形成。含腈单体的合适的实例包括丙烯腈、甲基丙烯腈、α-氯代丙烯腈、α-乙氧基丙烯腈、富马二腈和巴豆腈。丙烯酸酯单体的非限定性的实例包括丙烯酸甲酯和丙烯酸乙酯。甲基丙烯酸酯单体的实例包括但不限于:甲基丙烯酸甲酯、甲基丙烯酸异冰片酯、甲基丙烯酸缩水甘油酯、甲基丙烯酸叔丁基氨基乙基酯和甲基丙烯酸乙酯。乙烯基或亚乙烯基卤化物单体的合适的实例包括氯乙烯和偏氯乙烯。乙烯基酯单体的非限定性实例包括醋酸乙烯酯和乙烯基吡啶。
在优选的实施方式中,所述聚合物内层由含腈单体(例如,丙烯腈(AN))、丙烯酸酯和/或甲基丙烯酸酯单体(例如,甲基丙烯酸甲酯(MMA))和乙烯基和/或亚乙烯基卤化物单体(例如,偏氯乙烯(VDC))的聚合和/或共聚合来形成。
乙烯基和/或亚乙烯基卤化物单体可以占单体总重量的至少50wt%的量存在于所述第一层中。在示范性的实施方式中,乙烯基和/或亚乙烯基卤化物单体的量可以为约55wt%至约95wt%、约60wt%至约90wt%以及优选地大于65wt%至小于85wt%。本文所使用的关于单体的词组“wt%”意指“占单体总重量的重量百分含量”。此外,需要理解的是本文记载的所有范围意在包括大范围内的所有子范围。
丙烯酸酯和/或甲基丙烯酸酯单体可以至少0.1wt%的量存在于所述第一层中。在示范性的实施方式中,存在于所述第一层中的丙烯酸酯和/或甲基丙烯酸酯的量为约0.5wt%至约10wt%、约1wt%至约8wt%和优选地约1.5wt%至约5wt%。
含腈单体可以至少1wt%的量存在于所述第一层中。在一种示范性的实施方式中,存在于所述第一层中的含腈单体的量为约5wt%至约40wt%、约8wt%至约35wt%以及优选地约10wt%至约30wt%。
所述聚合物内层还可包括一种或一种以上多官能团交联单体,所述单体具有使存在于所述第一聚合层内的单体交联的能力。合适的交联单体的实例包括但不限于:二乙烯基苯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、1,10-癸二醇二(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、三烯丙基甲醛三(甲基)丙烯酸酯、甲基丙烯酸烯丙基酯、三甲羟基丙烷三(甲基)丙烯酸酯、三丁二醇二(甲基)丙烯酸酯、PEG 200二(甲基)丙烯酸酯、PEG 400二(甲基)丙烯酸酯、PEG 600二(甲基)丙烯酸酯、3-丙烯酰氧基乙二醇单丙烯酸酯、三丙烯酰基甲醛、三烯丙基异氰酸酯和三烯丙基异氰尿酸酯。在至少一种示范性的实施方式中,所述交联单体是三烯丙基异氰酸酯。存在于所述第一层中的交联单体的量为至少0.05wt%。在一种或一种以上示范性的实施方式中,所述交联单体的量为占单体的总重量的约0.07wt%至5wt%、0.1wt%至4wt%以及优选地0.2wt%至3wt%。
此外,包括交联单体在内的形成所述第一层的单体(主要单体)的量使得所述单体的重均玻璃化转变温度(Tg)(就好像单体为其均聚形式)小于100℃、理想地小于95℃、更理想地小于90%℃以及最理想地小于85℃。所述第一聚合物层也可具有任何净电荷,但是理想地是具有负的净电荷。此外,所述第一层的单体的重均Tg理想地小于所述外层的单体的重均Tg。仅作为实例,如果所述第一次含有3wt%甲基丙烯酸甲酯(PMMA的Tg为105℃)、17wt%丙烯腈(PAN的Tg为95℃)和80wt%偏氯乙烯(PVC的Tg为81℃),那么根据该示范性的实施方式所述第一聚合层的单体的重均Tg为84.45℃。
此外,包括交联单体在内的形成所述第一层的单体(主要单体)存在于所述外层中是可能的,尽管这些单体的浓度和比例不同。
在一种示范性的实施方式中,所述外层包括Tg至少为85℃,优选地至少为90℃以及甚至更优选地为95℃的单体(次要单体)。具体而言,所述第二层可由这些高Tg单体组成的均聚物和/或共聚物来形成。如下面详细讨论的,在主要单体的聚合接近结束时加入高Tg单体生成外层,所述外层尤其当与所述第一层比较时,具有高浓度的高Tg单体。含有高Tg单体的外层(第二层)改善了微球的耐热性并且提高了微球的强度。合适的高Tg单体的非限定性的实例包括:丙烯腈(AN)单体、偏氯乙烯(VDC)、甲基丙烯酸甲酯(MMA)单体、四乙二醇二甲基丙烯酸酯单体(TEGDMA)、2,3-环氧丙基丙烯酸酯单体(EPA)和甲基丙烯腈单体(MAN)。在至少一种示范性的实施方式中,丙烯腈用作高Tg单体以生成由聚丙烯腈(PAN)形成的第二层。
在另一示范性的实施方式中,所述外层包括化学活性单体,所述化学活性单体可包括功能基团,聚合后所述功能基团保持化学活性并且这些功能基团存在于壳的外表面上。因此,这些化学活性单体能够产生表面鎓离子并且还可具有交联并改善所述外层强度的能力。在一种或一种以上实施方式中,用GMA或VBC功能化的微球可与亲核试剂(例如,0.16g二甲基硫或0.62g三甲基胺)在60℃条件下反应24小时以将表面功能基团转化为阳离子锍形式和阳离子铵形式(例如美国专利第4,056,501号、第4,002,586号和第3,936,890号中所公开的乳液聚合)。
所述外层中功能单体的并入可通过交联微球表面来改善颗粒的强度。所述单体上的功能基团具有共价键合于其上的阳离子类物质。当所述微球再分散于大量的水中时,甚至当所述微球分散于水中持续一段延长的时间段时,所述阳离子类物质有利于不被解吸附。所述反应性单体可包括甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸(MAA)、氯甲基苯乙烯(VBC)及其组合。在至少一种示范性的实施方式中,所述阳离子类物质是有机(鎓离子型)阳离子,例如,锍阳离子和铵阳离子。
所述第一和第二聚合层的组合净Zeta电位可以是负的、中性或正的,所述电位通过在pH为约9.0或更小、离子强度为约10-6M至0.1M条件下确定的净Zeta电位来测量。在一种实施方式中,所述聚合壳的净Zeta电位可以为-100mV至+500mV。优选地,所述净Zeta电位为大于或等于0至+500mV。在示范性的实施方式中,在pH约为9.0或更小、离子强度为10-6M至0.1M条件下,所述净Zeta电位为大于或等于0至+150mV,最优选地,所述净Zeta电位为+10mV至+130mV,所述电位通过分析和物理领域的技术人员已知的测量Zeta电位的标准和常规方法来测量,优选在室温条件下利用微电泳的方法。需要理解的是所述微球也可具有上述Zeta电位。美国专利公开第2007/0044929号描述了通过共价连接来调节所述微球的电荷的其他实施方式,该美国专利公开的全部内容通过引用并入本文。
所述微球中的发泡剂没有特别地限定并且可以是任何发泡剂,所述发泡剂在施用热能之后起作用以在所述微球的壳上提供内压,从而迫使所述微球膨胀。所述发泡剂可以是液体和/或气体。用于所述微球的合适的发泡剂的非限定性实例包括:低沸点烃类(例如,丙烷、n-戊烷、异戊烷、新戊烷、己烷、新己烷、丁烷、异庚烷、辛烷和异辛烷)和/或氯化烃类或氟化烃类(例如,氯甲烷、二氯甲烷、二氯乙烷、二氯乙烷、三氯乙烷和全氟烃类)。一种或一种以上发泡剂可存在于所述微球中。在示范性的实施方式中,所述发泡剂是异戊烷或n-丁烷。
所述可膨胀微球可包含任何合适量的发泡剂。在至少一种示范性的实施方式中,所述微球可包含占所述聚合物壳中所含的发泡剂和单体的总重量的至少5wt%且不超过50wt%的发泡剂。在其他示范性实施方式中,存在于所述微球中的发泡剂的量为约10wt%至约45wt%,并且优选地为约20wt%至约40wt%。
所述微球的第一层和第二层可以相同,但是理想地是化学上和/或物理上不等同。因此,即使当所述第一层和第二层包含相似的单体(如果不相同的话),所述层的物理性质可由于每层中所含的单体的比例不同而不同。进一步,诸如交联单体之类的添加剂单体的存在也可产生所述可膨胀微球的内层和外层之间的化学和物理差异。
所述可膨胀微球受关注的性质包括膨胀起始温度(To.e)、收缩起始温度(To.s)、最大膨胀体积和粒度。可膨胀微球开始膨胀的温度被认为是膨胀起始温度(To.e),它也可被称为Tstart。理想状况是,在本发明的微球中实现最大膨胀体积和窄的To.e、To.s以及粒度。To.e和To.s可通过热载物台(hot stage)显微镜来测定或用装有加热载物台的光学显微镜来测定。例如,含微球的样品可以每分钟10℃的速度来加热并且目测观察膨胀起始温度和收缩起始温度。所述微球的To.e可为约60℃至约105℃、约65℃至约100℃、约70℃至约98℃以及优选地约75℃至约95℃,所述微球的To.s大于约105℃、大于约110℃、大于约120℃以及优选地大于约130℃。
颗粒在110℃的最大膨胀体积(以V110表示)可通过将0.2g干燥的颗粒放置于50ml测试管中来测定。然后,将所述测试管浸入保持在110℃的油浴中。所述最大膨胀体积通过将测试管中膨胀的颗粒的体积与相同尺寸的刻度(已校准)测试管进行比较来记录。粒度分布使用Horiba LA-910激光光散射分析仪来测量。微球在110℃的最大膨胀体积(V110)可以为5ml至50ml、7ml至40ml、8ml至35ml以及优选为10ml至30ml。
最大膨胀体积(Tmax)可通过使用热机械分析仪(TMA;型号2940;TA Instruments)来测定。可测量TMA来监测压力载荷下的颗粒的膨胀。将5mg未膨胀的微粒均匀放置在铝样品盘上并用平的盖子盖上以防止未膨胀的颗粒粘附于膨胀探针或在膨胀过程中滑落到样品盘外侧。样品被放置在1N的压力载荷下并以每分钟5℃的速度从60℃加热至150℃。Tmax是发生最大膨胀时的温度。可膨胀微球可具有任何Tmax,但是,可膨胀微球的理想Tmax为约90℃至约100℃、约95℃至约135℃或约100℃至约120℃。
微球通过将发泡剂保留壳内部并在低温条件下减少收缩而具有改善的结构完整性。因此,实现对To.e和To.s曲线的改善对造纸而言更加有益,To.e和To.s曲线的改善导致以纸中较少量的微球更有效地使纸体积增大。
所述微球在膨胀阶段可具有体积平均直径,为约1μm至约100μm、优选地为约1μm至约50μm以及更优选地为约5μm至约40μm或为约10μm至约20μm。在示范性的实施方式中,所述微球的膨胀体积平均直径为小于约50μm、小于约30μm、小于约20μm、小于约17μm。本文使用的膨胀体积平均直径是指根据ISO13319:2000“Determination of Particle Size Distributions-Electrical Sensing Zone and Method”通过测量微球获得的值。
此外,所述微球的最大膨胀可为约1倍平均直径至约15倍平均直径,优选地为约1.5倍平均直径至约10倍平均直径,以及更优选地为约2倍平均直径至约5倍平均直径。所述微球还可具有最大膨胀体积,为约1倍起始体积(即,未膨胀的体积)至约100倍起始体积(即,未膨胀的体积),优选地为约5倍起始体积(即,未膨胀的体积)至50倍起始体积(即,未膨胀的体积),以及更优选地为约10倍起始体积(即,未膨胀的体积)至约35倍起始体积(即,未膨胀的体积)。
本发明的可膨胀微球可以任何方式来制备。一种本发明方法的实施方式在下面详细讨论。在该实施方式中,所述微球使用“注入生长”技术通过悬浮聚合来形成。本文中的“注入生长”可被定义为下述方法:第一系列单体(主要单体)发生聚合,直至所述第一系列单体基本上被消耗,加入一些第二单体或“注入量(shot)”第二单体以促使聚合反应完全。
在一种实施方式中,所述微球可具有数量级为约20μm的膨胀体积平均直径,在一种实施方式中,能够产生小于20μm的膨胀体积平均直径。虽然不希望受到任何具体理论的限制,但是假设稳定剂体系足以稳定聚合物分散体,从而充分控制聚合和聚合度并防止微球凝聚以实现微球具有用于造纸的最佳直径。没有充分稳定,决定了微球易于凝聚或生长在一起并且无法实现对聚合的控制。
当主要单体结合并形成聚合物时,微球内层成型并且随着聚合反应的进行而增厚。一段时间之后,以期望的浓度提供的起始系列单体整体或部分被消耗并且聚合反应能量降低。在反应中的这个临界点,将一些或“注入量(shot)”额外的单体(次要单体)加至反应体系,从而促使反应完全或基本完全。通过这种注入生长方法可添加多种次要单体,从而控制微球的形态和膨胀性。而且,“注入”单体能够对微球进行特殊调节用于期望的目的,例如造纸。
此外,注入生长方法提供了用于单体生长使其产生强度和/或功能性性质的方法。例如,高Tg单体可作为次要或“注入生长”单体添加,从而将高Tg单体以远远超过内层中特定Tg单体的浓度置于外层中。可选地,化学反应性单体可作为注入生长单体添加,从而在外层上提供功能基团并使得阳离子类物质共价连接。对形成微球的单体的组合进行选择以实现期望的性能水平,最优的收缩起始温度,最优的膨胀起始温度,最优的最大膨胀温度和最优的颗粒分布用于造纸以增加纸的体积。
“注入生长”聚合形成了具有聚合内层(即,第一层)和聚合物外层(即,第二层)的微球。为了形成根据本发明的微球,至少一种有机相与至少一种水相接触。所述水相和所述有机相可混合以形成悬浮液和/或分散体,和/或在水相中形成有机相液滴的体系。
有机相可包含任何量的任何上述单体,所述任何量适于实现可膨胀微球具有上述量的单一组合物和/或任何一种或一种以上上述性质和/或任何一种或一种以上上述特性。虽然用于所述第一聚合物层的任何上述单体可根据本发明来使用,以本文优选实施方式作为参考,其中,偏氯乙烯(VDC)、丙烯腈(AN)和甲基丙烯酸甲酯(MMA)是主要单体。
在一种实施方式中,将所述主要单体加至反应混合物中以使得乙烯基和/或亚乙烯基卤化物单体以不超过反应混合物的总重量的60wt%的量来添加,含腈单体以不超过反应混合物的总重量的10wt%的量来添加,丙烯酸酯和/或甲基丙烯酸酯单体以不超过反应混合物的总重量的2wt%的量来添加。
在一种实施方式中,已经发现除了聚合物更加可塑之外,具有较高VDC含量的微球由于残留单体的增塑作用显示出增大的膨胀体积。
有机相还可包含聚合引发剂。所述聚合引发剂是任何当有机相与水相结合时能够产生自由基的化学化合物。所述聚合引发剂可以任何合适的量来添加以促使聚合物壳的聚合完全并几乎耗尽所有存在于有机相中的单体。合适的聚合引发剂的非限定性实例包括2,2’-偶氮二异丁腈。此外,交联单体(例如,三烯丙基异氰尿酸酯(TAC))和发泡剂(例如,n-丁烷或异丁烷)包括在有机相内。
水相还包括水(优选去离子水)和稳定剂或稳定剂体系,所述稳定剂或稳定剂体系起稳定有机相液滴的作用。在一种或一种以上示范性的实施方式中,稳定剂体系包括稳定剂和聚电解质。用于水相的稳定剂的非限定性的实例包括含硅化合物、含铝化合物、硅胶、氧化铝和胶体氧化铝。聚电解质可以是阳离子聚电解质,例如聚乙烯基胺(PVAm),例如但不限于商品名为Lupamin(例如,Lupamin5095)商业上从BASF获得的那些阳离子聚电解质。虽然不希望受到任何具体理论的限制,认为聚电解质作为使稳定剂絮凝的促进剂起作用,从而驱动稳定剂至有机相/水相界面和/或液滴表面以更加有效地稳定液滴。因此,认为聚乙烯基胺形成具有硅颗粒的聚集体以使其更好地吸附于单体液滴上。在本发明的至少一种示范性的实施方式中,稳定剂体系包括硅胶和聚乙烯基胺。
此外,水相中包括盐以调节水相中的电解质浓度,因此稳定剂的疏水性保持在较高的水平。所述盐没有特殊限制,可选自:氯化钠、氯化钙和/或氯化铝。在示范性的实施方式中,氯化钠(NaCl)是水相中使用的盐。
诸如乙醇之类的相分离剂也可包括在水相中以降低油和水相之间的界面张力并改善发泡剂的相分离。此外,重铬酸钠或其他合适的阻聚剂可作为阻聚剂加入以抑制或甚至阻止水相中的聚合。
水相可具有任何pH,只要pH位于或接近所述稳定剂的等电点,这样当有机相和水相混合时增加了稳定剂稳定有机液滴的效力。理想地,pH是酸性pH。在示范性的实施方式中,pH小于5,优选地小于4。在至少一种示范性的实施方式中,pH为3.5。水相的pH可预先调节,即,在与有机相混合之前调节。此外,pH可用任何合适的酸来调节,例如盐酸。
根据一种示范性的实施方式有机相和水相的组分如表1所示。
表1
Figure BPA00001324962600131
有机相与水相优选地在低于发泡剂的沸点的温度条件下混合。在一种示范性的实施方式中,将有机相和水相在一个容器(例如,均化器或混合器)中均化,然后转移并密封在反应容器(例如,压力反应瓶)中。均化过程形成起始的油相液滴。因此,需要理解的是均化过程中的各种变化导致悬浮液中不同的液滴尺寸和聚合后不同的粒度。
在一种实施方式中,在加入悬浮液之前,所述反应瓶用惰性气体(例如,氩气)吹洗以从顶部空间除去氧。惊讶地发现氧(如果存在于反应容器中的话)作为阻聚剂起作用,并且单体的聚合不会开始直至氧被消耗。此外,由于引发剂含量降低(氧消耗一些引发剂自由基),单体的聚合速度可显著减慢。较低的聚合速度导致悬浮液凝聚,所述悬浮液凝聚由颗粒聚合太慢并且在聚合过程中彼此捕获引起。而且,不理想地,当氧存在时,由于氧诱导的聚集,最终的微球可为多孔的并且粒度分布可较宽。
在微球合成之后,过滤微球,洗涤(优选地使用去离子水洗涤)并干燥。如果,例如诸如异丁烷之类的较低蒸汽压的发泡剂用作发泡剂,干燥的微球含有在膨胀之前需要除去的残留的硅石网。为了除去硅外壳,可将干燥的微球分散于去离子水和过氧化氢中。然后,可将得到的浆状物混合和/或搅拌(例如,在反应容器中翻动)以破坏硅外壳。一旦过氧化氢处理完成,将微球再次洗涤以除去硅颗粒,并干燥。
另一实施方式中,有机相与水相在压力条件下(优选地用氩气吹洗)在单独的反应容器(例如,压力反应器)中混合。整个悬浮液在相同的反应容器中搅拌一段时间直至均化完全。因此,不像前述实施方式那样,不需要在均化后转移反应混合物。此外,在该示范性的实施方式中,n-丁烷可用作发泡剂。n-丁烷的使用排除了通过过氧化氢处理将残留硅从微球中除去的需要。因为n-丁烷具有高蒸汽压(n-丁烷的蒸汽压是异丁烷的蒸汽压的两倍),n-丁烷能够使微球膨胀,甚至当残留硅仍存在于微球表面时。另一方面,用诸如异丁烷之类的较低蒸汽压发泡剂形成的微球必须用过氧化氢处理来破坏覆盖了微球的硅网并从颗粒表面除去所述硅网。
在将均化的悬浮液密封在反应容器中之后,加热悬浮液,优选地以较低剪切速度连续混合一段时间直至聚合反应基本完全和/或引发剂被耗尽或大大减少,添加的单体还存在于反应混合物中。在一种示范性的实施方式中,聚合反应发生直至主要单体的聚合约90%完成。单体聚合的时间段根据期望的聚合外壳的性质和反应条件和/或参数而不同。所述时间段可小于或等于24小时,小于或等于17小时,或小于12小时。在示范性的实施方式中,聚合反应的时间不超过6小时或8小时。
在单体聚合基本完全(例如,约90%完全)和/或引发剂已衰竭之后,将“注入量”的额外的单体和/或引发剂加至聚合反应器中以促使反应完全并形成第二聚合物层。通过这种添加,完成了第一聚合物层的形成并开始形成第二聚合物层。次要单体(有或没有引发剂)的加入使得开始形成第二聚合物层,因为第二单体易于在第一聚合物层的表面上聚合。任何上述单体可用作次要单体,并且次要单体可与第一聚合物层中存在的单体相同或不同。因此,第二聚合物层可具有与第一聚合物层类似的化学和/或物理特性。理想地,第二层具有与第一聚合物层不同的化学和/或物理特性。
各种不同的单体可通过注入生长来加入以控制微球的形态和膨胀性特征。此外,反应容器中的“注入”单体也可用于增加颗粒表面的特定单体的浓度。根据一种实施方式,将至少一种具有高Tg(例如,Tg为至少85℃)的单体加至反应容器中作为“注入”单体。如上所讨论的,单体的Tg理想地为至少90℃,并且甚至更理想地为95℃。上述高Tg单体中的任何一个可用于形成第二层。
作为一个实施例,溶于丙烯腈(AN)的2,2’-偶氮二异丁腈可加至反应容器中作为引发剂“注入”注入生长方法中。因为单体主要在微球的表面反应,可加入相对少量的单体并仍然产生高水平的表面结合。加至反应容器中的丙烯腈的内含物在微球表面形成富含聚丙烯腈的第二层。认为丙烯腈单体中存在的双键产生了紧密且稳固的微球,所述微球已改善了强度特性。除了改善了微球的强度之外,加入的高Tg单体改善了微球的耐热性,增加了膨胀体积并提高了收缩起始温度。而且,高Tg单体产生了比第一层更坚固的第二层。
在另一实施方式中,注入生长技术可用于功能化颗粒表面。在该实施方式中,可将聚合之后保留了化学反应性的单体加至反应容器中。这些单体的非限定性的实例包括但不限于:甲基丙烯酸缩水甘油酯(GMA)、甲基丙烯酸(MAA)、氯甲基苯乙烯(VBC)及其组合。当使用上述实施方式时,单体主要在微球的表面(即,第一层的表面)反应,导致单体的反应性功能基团存在于第二层的外表面。需要理解的是在该阶段微球具有负电荷。
接下来,在第二层的表面上的功能基团可与诸如有机(鎓离子型)阳离子之类的阳离子反应,从而形成带正电荷的微球表面,所述微球表面比常规微球具有相对较多的阳离子。鎓离子型阳离子的实例包括锍阳离子和铵阳离子。阳离子与单体上的功能基团反应,从而阳离子共价键合至单体。得到的功能化的微球较常规微球具有相对较多的阳离子。因此,当将这些微球用于造纸时,这些微球能够更易于保留纤维网,从而通过使造纸者使用较少的微球达到期望的体积来提高这些微球的效力。
“注入”单体可在主要单体聚合6小时的情况下加入。在示范性的实施方式中,注入生长和随后的次要单体的聚合在主要单体的聚合开始之后8小时、12小时或17小时发生。
在一种实施方式中,可加入“注入”单体以使得高Tg单体或化学反应性单体的量为占原始反应混合物的总重量的约0.2wt%至5wt%。可加入的“注入”单体的量以使得高Tg单体或化学反应性单体的量为占反应混合物的总重量的至少0.3wt%、0.5wt%、0.75wt%、1.0wt%、1.25wt%、1.5wt%、1.75wt%、2.0wt%、2.25wt%、2.5wt%、2.75wt%、3.0wt%、3.25wt%、3.5wt%、3.75wt%、4.0wt%、4.25wt%、4.5wt%、4.75wt%和5wt%,包括任何和所有范围及其中的子范围。
在一种实施方式中,“注入”单体也可包含原始反应混合物中的其他反应物。在一种实施方式中,“注入”单体包含与原始反应混合物中使用的引发剂相同或不同的引发剂。在该注入中,可加入引发剂以使得引发剂的量为占原始反应混合物中所使用的引发剂的量的总重量的25wt%至200wt%。额外的引发剂可通过“注入”来添加以使得引发剂的量为占原始反应混合物中所使用的引发剂的量的总重量的25wt%、30wt%、35wt%、40wt%、45wt%、50wt%、55wt%、60wt%、65wt%、70wt%、75wt%、80wt%、85wt%、90wt%、95wt%、100wt%、110wt%、120wt%、130wt%、140wt%、150wt%、175wt%和200wt%,包括任何和所有范围及其中的子范围。
尽管本发明的微球可具有任何用途,示范性的用途是在常规造纸工艺中用于造纸。所述纸包括纤维素纤维网和上述微球。本文使用的术语“纸”意在包括薄板形式或网状形式的基于纤维素的产品的所有类型,包括但不限于:纸、纸板、纸张基材和厚纸板。本文使用的术语“纸”、“纸张基材”和“基材”可互换使用。所述纸可生产为单层纸或具有两层或两层以上的多层纸。此外,所述纸可被压光或不被压光。根据本发明的纸可含有占纸的总重量的1wt%至99wt%的纤维素纤维,理想地含有占纸的总重量的5wt%至95wt%的纤维素纤维。
存在于纸中的微球的量取决于基材的总重量和/或最终纸或纸板产品的总重量。纸张基材可含有占基材总重量的大于0.001wt%的微球,更加优选地含有占基材总重量的大于0.02wt%的微球,最优选地含有占基材总重量的大于0.1wt%的微球。而且,纸张基材可含有占基材总重量的小于20wt%的微球,优选地含有占基材总重量的小于10wt%的微球以及最优选地含有占基材总重量的小于5wt%的微球。
所述纸可含有二次纤维和/或原生纤维。二次纤维与原生纤维不同在于纤维已经过至少一次干燥处理。在一些实施方式中,至少一部分纤维素/纸浆纤维可由非木质草本植物来提供,包括但不限于:洋麻、大麻、麻、黄麻、亚麻、剑麻或马尼拉麻,虽然法律限制和其他因素可使大麻和其他纤维来源的使用不切实际和/或不可能。可使用漂白或未漂白的纸浆纤维。理想地,纤维素纤维的来源是软木材和/或硬木材。
进一步,所述纸包含的软木材纤维和/或硬木材纤维可通过物理和/或化学方法来改性。物理方法的实例包括但不限于:电磁和机械方法。用于电学改性的非限定性的方法包括涉及使纤维与诸如光和/或电流之类的电磁能量源接触的方法。用于机械改性的合适的方法包括涉及使无生命物体与纤维接触的方法。这些无生命物体的实例包括具有锋利的和/或钝的边缘的那些物体。这些方法还涉及例如切割、捏合、敲打和/或刺穿。
化学方法的实例包括常规的化学纤维改性方法,例如交联和在复合物上的沉积。这些纤维改性的实例可以是例如下列专利文献中所发现的那些纤维改性:6,592,717;6,592,712;6,582,557;6,579,415;6,579,414;6,506,282;6,471,824;6,361,651;6,146,494;H1,704;5,731,080;5,698,688;5,698,074;5,667,637;5,662,773;5,531,728;5,443,899;5,360,420;5,266,250;5,209,953;5,160,789;5,049,235;4,986,882;4,496,427;4,431,481;4,174,417;4,166,894;4,075,136;和4,022,965,这些专利的全部内容在此通过引用并入本文。进一步,纤维改性可在2005年2月19日提交的美国专利申请第60/654,712号(通过引用并入本文)中发现,所述改性可包括加入其中所述的光学光亮剂(即,OBA)。
在优选的实施方式中,任何上述纤维可被处理以具有高ISO光亮度。以这种方法处理的纤维的实例包括但不限于:2006年2月21日提交的名称为“具有 提高的光亮度的纸浆和纸(PULP AND PAPER HAVING INCREASED  BRIGHTNESS)”的美国专利申请第11/358,543号(该专利申请的全部内容通过引用并入本文)中所描述的那些纤维和2006年2月21日提交的名称为“具有 提高的光亮度的纸浆和纸(PULP AND PAPER HAVING INCREASED  BRIGHTNESS)”的PCT专利申请PCT/US06/06011(该专利申请的全部内容通过引用并入本文)中所描述的那些纤维。
当纸浆、纤维和/或纸可具有任何光亮度和/或CIE白度时,优选地,这些光亮度和/或CIE白度是如下所述的光亮度和/或CIE白度。根据本发明的实施方式纤维和/或纸浆和/或纸张基材可具有任何CIE白度,但是优选地具有大于70的CIE白度,更优选地具有大于100的CIE白度,甚至更优选地具有大于125的CIE白度,或甚至大于150的CIE白度。所述CIE白度可为125至200,优选地为130至200,以及最优选地为150至200。在纤维和由此所制造的纸中测量CIE白度和获得所述白度的实例可在例如美国专利第6,893,473号中发现,该美国专利的全部内容通过引用并入本文。
纤维、纸浆和/或纸可具有任何ISO光亮度,但是优选地大于80ISO光亮度点,更优选地大于90ISO光亮度点,最优选地大于95ISO光亮度点。ISO光亮度优选地可为80至100ISO光亮度点,更优选地为90至100ISO光亮度点,最优选地为95至100ISO光亮度点。在造纸纤维和由此制造的纸中测量ISO光亮度和获得所述光亮度的实例可在例如美国专利第6,893,473号中发现,该美国专利的全部内容通过引用全部并入本文。
根据本发明纸张基材可由造纸机制造具有任何基重。所述纸张基材可具有高或低的基重,包括基重为至少10lbs/3000平方英尺,优选地为至少20lbs/3000平方英尺至500lbs/3000平方英尺以及更优选地为至少40lbs/3000平方英尺至325lbs/3000平方英尺。当然,本领域技术人员可意识到这些重量往往转化为按1300平方英尺计。
根据本发明纸张基材可具有小于400Sheffield单位(SU)的Sheffield光滑度。然而,优选的Sheffield光滑度由最终产品纸张基材预期的用途来决定。优选地,纸具有小于350SU的Sheffield光滑度,优选地小于250SU以及更优选地小于200SU,Sheffield光滑度由TAPPI测试方法T 538om-1来测量。
纸可包括任选的物质,例如但不限于:助留剂、施胶剂、粘合剂、填充剂、增稠剂和防腐剂。填充剂的实例包括但不限于:粘土、碳酸钙、半水合硫酸钙和无水硫酸钙。优选的填充剂是碳酸钙且优选的形式是沉淀的碳酸钙。粘合剂的非限定性的实例包括:聚乙烯醇、Amres(碱性熟化阳离子树脂型)、Bayer Parez、多氯化物乳液、诸如羟乙基淀粉之类的改性淀粉、淀粉、聚丙烯酰胺、改性的聚丙烯酰胺、多元醇、多元醇羰基加和物、乙二醛/多元醇浓缩物、聚酰胺、表氯醇、乙二醛、乙二醛尿素、乙二醛、脂肪族聚异氰酸酯、异氰酸酯、1,6-六亚甲基二异氰酸酯、二异氰酸酯、聚异氰酸酯、聚酯、聚酯树脂、聚丙烯酸酯、聚丙烯酸酯树脂、丙烯酸酯和甲基丙烯酸酯。其他任选的物质包括但不限于硅酸盐,例如胶体和/或气溶胶。硅酸盐的合适的实例包括但不限于:硅酸钠和/或硅酸硼。任选的物质的其他实例是诸如水之类的溶剂。
本发明的纸张基材还可包含助留剂,所述助留剂选自:凝聚剂、絮凝剂和在容积内分散的截留剂以及提高多孔性的添加剂纤维素纤维(例如本发明的微球)。用于增大体积的添加剂助留剂在纸板中间占相当大的百分比,但在纸板外周并非如此。合适的助留剂通过凝聚、絮凝或截留分散的添加剂来起作用。凝聚包括沉淀起始分散的胶体颗粒。这种沉淀通过电荷中和或在颗粒表面形成高电荷密度来适当地实现。因为诸如细粒、纤维、粘土等之类的中性颗粒是阴离子型的,通过将阳离子物质加至整个体系来有利地实现凝聚。这些所选择的阳离子物质适当地具有高的荷质比。合适的凝聚剂包括无机盐,例如明矾或氯化铝及其聚合产物(例如,PAC或聚氯化铝或合成的聚合物);聚(二烯丙基二甲基氯化铵)(即,DADMAC);聚(二甲基胺)-co-表氯醇;聚乙撑亚胺;聚(3-丁烯基三甲基氯化铵);聚(4-乙烯基苄基三甲基氯化铵);聚(2,3-环氧丙基三甲基氯化铵);聚(5-异戊二烯基三甲基氯化铵)和聚(丙烯酰氧基乙基三甲基氯化铵)。其他合适的具有高荷质比的阳离子化合物包括所有聚锍化合物,例如由2-氯甲烷、1,3-丁二烯和二烷基硫化物加和制备的聚合物;通过胺反应制备的所有聚胺,所述胺例如乙烯基二胺、二乙烯基三胺、三乙烯基四胺或各种具有双卤代、双环氧或氯醇化合物的二烷基胺,所述双卤代、双环氧或氯醇化合物例如,1,2-二氯乙烷、1,5-二环氧己烷或表氯醇;所有胍聚合物,例如,胍与甲醛(带有聚胺或不带聚胺)的产物。优选地凝聚剂是分子量为约90,000至200,000的聚(二烯丙基二甲基氯化铵)(即,DADMAC)和分子量为约600至5,000,000的聚乙撑亚胺。本文应用的所有聚合物和共聚物的分子量是基于通常用于测量聚合体系的分子量的平均分子量。
适于制造纸板的另一有利的留滞体系是絮凝,所述絮凝基本上为通过带相反电荷的高分子量的大分子使颗粒桥接或连成网状。可选地,所述桥接可通过使用双聚合物体系来实现。用于单一添加剂方法的大分子包括阳离子淀粉(淀粉酵素和支链淀粉),阳离子聚丙烯酰胺,例如聚(丙烯酰胺)-co-二烯丙基二甲基氯化铵、聚(丙烯酰胺)-co-丙烯酰氧基乙基三甲基氯化铵;阳离子树胶、壳聚糖和阳离子聚丙烯酸酯。诸如淀粉和树胶之类的中性大分子通常用2,3-环氧丙基三甲基氯化铵处理表现为阳离子型,可使用的其他化合物例如2-氯乙基-二烷基胺、丙烯酰氧基乙基二烷基氯化铵、丙烯酰胺基乙基三烷基氯化铵等等。用于双聚合物方法的双添加剂是作为凝聚剂起作用且分子量高的阴离子大分子的那些化合物中的任何一种,例如,阴离子淀粉、CMC(羧甲基纤维素)、阴离子树胶、阴离子丙烯酰胺(例如,聚(丙烯酰胺)-co-丙烯酸)或均匀分散的胶体颗粒(例如,胶体硅、胶体氧化铝、膨润土或由Cytec Industries销售的聚合物微颗粒称为Polyflex)。诸如纤维素、淀粉和树胶之类的中性大分子通过用氯乙酸处理通常表现为阴离子型,但是可使用诸如磷酸化作用之类的其他方法。合适的絮凝剂是含氮有机聚合物,其分子量为约100,000至30,000,000。优选的聚合物的分子量为约10至20,000,000。最优选的聚合物的分子量为约12至18,000,000。合适的高分子量聚合物是聚丙烯酰胺、阴离子丙烯酰胺-丙烯酸酯聚合物、分子量为约500,000至30,000,000的阳离子丙烯酰胺共聚物和分子量为约500,000至2,000,000的聚乙撑亚胺。
用于保留纸中分散的添加剂的第三种方法是截留。该方法是在纤维网络中机械截留颗粒。截留通过使网状结构的形成最大化来适当地完成,例如通过在存在高分子量阴离子丙烯酰胺或高分子量聚氧乙烯的条件下来形成网状结构来完成截留。可选地,通过双添加剂(例如PEO和酚醛树脂)反应在网状结构中形成分子网。
任选的物质可分散贯穿纸张基材的横截面或者它们可更加集中在纸张基材的横截面的内部。进一步,诸如粘合剂和/或施胶剂(例如)之类的其他任选的物质可更加高度集中于纸张基材的横截面的外表面。更加具体而言,多数百分比的诸如粘合剂或施胶剂之类的任选的物质可优选地位于远离基材的外表面的位置,所述百分比等于或小于基材的总厚度的25%,更优选地为基材的总厚度的10%。局部化作为基材横截面的一小部分的诸如粘合剂/施胶剂之类的这些任选的物质的实例是例如,具有“I-横梁”结构的纸张基材并且可在名称为“含高表明施胶剂和低内部施胶剂的且具有高尺寸稳定性的纸张基材 (PAPER SUBSTRATES CONTAINING HIGH SURFACE SIZING AND LOW  INTERNAL SIZING AND HAVING HIGH DIMENSIONAL STABILITY)”的美国临时专利申请第60/759,629号中发现,该临时专利申请的全部内容通过引用并入本文。进一步的实例包括添加膨胀剂,其可在下列专利文献中发现,名称为“含膨胀剂、高表面施胶剂、低内施胶剂且具有高尺寸稳定性的纸张 基材(PAPER SUBSTRATES CONTAINING A BULKING AGENT,HIGH  SURFACE SIZING,LOW INTERNAL SIZING AND HAVING HIGH  DIMENSIONAL STABILITY)”的美国临时专利申请第60/759,630号,该临时专利申请的全部内容通过引用并入本文;以及名称为“具有改善的硬度和体 积的纸及其制备方法(PAPER WITH IMPROVED STIFFNESS AND BULK  AND METHOD FOR MAKING SAME)”的美国专利申请第10/662,699号,现公开为名称为“具有改善的硬度和体积的纸及其制备方法(PAPER WITH  IMPROVED STIFFNESS AND BULK AND METHOD FOR MAKING  SAME)”的美国专利公开第2004/0065423号,该专利申请的全部内容通过引用并入本文。
纸也可包含表面施胶剂,例如淀粉和/或改性淀粉和/或其功能等同物,其重量百分含量为占基材总重量的0.05wt%至20wt%并且优选地5wt%至15wt%。改性淀粉的实例包括例如:氧化淀粉、阳离子淀粉、乙基化淀粉、羟乙氧基化淀粉,等等。功能等同物的实例包括但不限于:聚乙烯醇、聚乙烯胺、藻酸盐、羧甲基纤维素,等等。
纸可通过使可膨胀微球与纤维素纤维接触来制造。所述接触还可在可接受的浓度水平条件下发生,这使得本发明的纸张基材含有任何上述量的纤维素和可膨胀微球。更具体而言,本申请的纸张基材可通过添加0.25lbs至20lbs的可膨胀微球/吨纤维素纤维来制造。此外,所述接触可在造纸过程中的任何时间发生,包括但不限于:厚坯(thick stock)、薄坯(thin stock)、网前箱(head box)和涂布机,优选的添加点是薄坯。添加点还包括成浆池、调浆箱和风扇式泵的吸入管。此外,纸也可通过使附加的任选物质与纤维素纤维接触来制造。所述接触也可在造纸过程中的任何时间发生,包括但不限于:厚坯、薄坯、网前箱、施胶机(size press)、水箱和涂布机。添加点还包括成浆池、调浆池和风扇式泵的吸入管。纤维素纤维、可膨胀微球和/或任选的成分可依次、连续和/或同时以任何组合彼此接触。纤维素纤维和可膨胀微球可以任何组合在添加前或在造纸过程中预混合。
纸可在含有一个或一个以上压辊的压榨部中被挤压。然而,可使用造纸领域通常已知的任何挤压方法。压辊可以是但不限于:单毛毯、双毛毯、滚轮和压榨机中延长的压辊。然而,可使用造纸领域通常熟知的任何压辊。
纸可在干燥部中干燥。可使用造纸领域通常已知的任何干燥方法。干燥部可包括和包含干燥罐、滚筒干燥、Condebelt干燥、IR或本领域已知的其他干燥方法和机械。纸张基材可被干燥以使其含有任何选择量的水。优选地,基材被干燥至含有小于或等于10%的水。
纸张基材可穿过施胶机,其中,造纸领域通常已知的任何施胶方法是可接受的。例如,所述施胶机可以是混合式施胶机(例如,倾斜、垂直、水平)或计量施胶机(例如,计量叶片、计量棒)。在施胶时,诸如粘合剂之类的施胶剂可与基材接触。任选地,这些相同的施胶剂可根据需要在造纸过程中的湿部(wet end)加入。在施胶之后,纸张基材可根据上述示范性的方法和造纸领域其他通常已知的干燥方法来干燥或者不干燥。纸张基材可被干燥以使其中含有任何选择的量的水。优选地,基材被干燥至含有少于或等于10%的水。
纸张基材可通过造纸领域任何通常已知的压光方法来压光。更具体而言,可使用例如湿式压光、干式压光、钢辊压光、热软压光或延长辊压光等中的一种。虽然不希望受理论限制,认为可膨胀微球的存在可降低并缓解对用于特定纸张基材的苛刻的压光方法和环境的要求,所述方法和环境基于所期望的用途。在压光过程中,基材可适于任何压辊压力。然而,优选的压辊压力可为5psi至50psi,更优选为5psi至30psi。
纸张基材可根据造纸领域中通常已知的任何精密抛光方法来精密抛光。精密抛光是涉及摩擦工艺以磨光纸张基材表面的方法。纸张基材可被精密抛光且与应用于其上的压光方法连续和/或同时进行或不与应用于其上的压光方法连续和/或同时进行。精密抛光方法的实例可在美国公开专利申请第2004/0123966号及其所引用的参考文献中发现,这些专利文献的全部内容通过引用并入本文。
在本发明的一种实施方式中,本发明的纸张基材可以是涂覆的纸张基材。因此,在该实施方式中,本发明的纸张基材还可包含至少一个涂层,任选地包括两个涂层和/或多个涂层。所述涂层可应用于纸板和/或基材的至少一个表面,包括两个表面。所述涂层还可穿透纸板和/或基材。所述涂层可含有粘合剂。所述涂层还可任选地含有颜料。所述涂层的其他任选的成分是表面活性剂、助分散剂和用于印刷组合物的其他常规添加剂。
所述涂层包括多层或单层,所述层具有根据需要的任何常规厚度且由标准方法(尤其是印刷方法)生产。例如,所述涂层可包含底部涂层和顶部涂层。所述底部涂层可包括例如,低密度热塑性颗粒并且任选地包括第一粘合剂。所述顶部涂层可包括例如,至少一种颜料并且任选地包括可与所述第一粘合剂相同或不同的第二粘合剂。所述底部涂层的颗粒和所述顶部涂层的至少一种颜料可分散于它们各自的粘合剂中。
虽然涂覆和未涂覆的纸张基材可具有任何Sheffiel光滑度,在一种或一种以上实施方式中,根据本发明的涂覆的纸张基材可具有小于50的Sheffiel光滑度,优选地具有小于30的Sheffiel光滑度,更优选地具有小于20的Sheffiel光滑度和最优选地具有小于15的Sheffiel光滑度,所述光滑度通过TAPPI测试方法T538om-1来测量。
虽然涂覆和未涂覆的纸张基材可具有任何Parker印刷光滑度(10kgf/cm2),在一种实施方式中,根据本发明的涂覆的纸张基材可具有小于或等于2的Parker印刷光滑度(10kgf/cm2),优选地具有小于1.5的Parker印刷光滑度(10kgf/cm2),更优选地具有小于1.3的Parker印刷光滑度(10kgf/cm2)和最优选地具有约1.0至0.5的Parker印刷光滑度(10kgf/cm2),所述Parker印刷光滑度(10kgf/cm2)通过TAPPI测试方法T 555om-99来测量。
根据本发明的涂覆的纸张基材可具有改善的印刷墨斑,如通过2nd青色墨斑扫描器所测试的。墨斑扫描器使用下述步骤来测定:各自的样品选自颜料涂覆的纸或纸板,所述纸或纸板在控制条件下印刷,所述条件是以1.35±0.05的反射密度使用青色套色油墨的通常商业胶版印刷生产条件。100%固体青色印刷反射图像被数字扫描并通过神经网络模型转换以产生印刷墨斑指数为0(完全均匀墨层没有墨斑)至10(由于在视觉反射密度或印刷区域的色彩方面墨斑随机不均匀,目测可观察到的,有缺陷的或可能不被接受)。来自2nd青色墨斑扫描仪体系的数据可与主观视觉感知(使用0至10来指导)相关或可转换为使用下列方程的Tobias协会的Tobias墨斑测试仪测量的等同的墨斑值,所述方程为:
Tobias=Scanner Mottle*8.8+188
描述程序的方法和建立上述方程的细节可在2004年9月20日提交的美国专利申请第10/945,306号中发现,该美国专利申请的全部内容通过引用并入本文。
在优选的实施方式中,本发明的涂覆和未涂覆的纸或纸板或纸张基材具有任何2nd青色扫描墨斑。然而,2nd青色扫描墨斑可为0至10,优选地不大于6,更优选地不大于5,最优选地不大于4。
本发明的涂覆的纸或纸板可使用已知的常规技术来制备。用于形成和使用涂料配方的方法和设备是纸和纸板领域熟知的。参见例如,G.A.Smook及其中引用的参考文献,将它们的全部内容通过引用并入本文。所有这些已知的方法可用于本发明的实践并且不会详细描述。例如,基本颜料的混合物、聚合或共聚合粘合剂以及任选的组分可溶于或分散于合适的液体介质中,优选水。
涂料配方可通过任何合适的技术应用于基材,所述任何合适的技术例如铸涂、刮刀涂布、空气刀涂布、棒涂布、滚轮涂布、凹版涂布、槽模涂布、喷涂、浸涂、Meyer棒涂布、逆转轮涂布、挤压涂布等等。此外,涂料组合物还可使用计量棒或其他计量技术施加在造纸机的施胶机上。在本发明优选的实施方式中,底部涂层涂料配方使用刮刀涂布机来施加,顶部涂层涂料配方使用刮刀涂布机或空气刀涂布机来施加。在最优选的实施方式中,底部涂层使用硬刮刀涂布机来施加,顶部涂层使用弯刮刀涂布机或空气刀涂布机来施加。
涂覆或未涂覆的纸在用涂料组合物处理后干燥。用于干燥用涂料组合物处理的纸或纸板网的方法和设备是纸和纸板领域熟知的。参见例如,上面引用的G.A.Smook及其中引用的参考文献。可使用任何常规干燥方法和设备,并且所述方法和设备是本领域技术人员认同的。因此,这些方法和设备不会在本文中详细描述。优选地,干燥之后,卷筒纸会具有等于或小于按重量计约10%的水分含量。干燥的纸或纸板筒中的水分含量优选地为按重量计约5%至约10%。
干燥之后,涂覆或未涂覆的纸可适于一种或一种以上干燥后步骤,例如上面引用的G.A.Smook(及其中引用的参考文献)中所描述的那些步骤。例如,卷筒纸可被压光以改善光滑度并改善印刷墨斑性能以及纸的其他性质,例如通过使涂覆的纸穿过由压光机形成的压辊。光泽压光机(相对于橡胶滚轮的镀铬钢滚轮)或热软光泽压光机(相对于复合聚合表面的镀铬钢表面)可用于使顶层涂覆的纸或纸板表面具有光泽。这些压光机所需的热量和压力的量取决于纸筒进入压辊的速度、滚轮的尺寸、滚轮组成和硬度、单位负载、顶部涂层和底部涂层重量、粗糙纸板下的粗糙度、涂料的粘合强度和涂料中存在的颜料的粗糙度。
基材和涂层通过任何常规涂层施加方法来彼此接触,包括浸入法。施加涂层的优选的方法是使用具有一个或一个以上涂布件(station)的在线涂布工艺。涂布件可以是造纸领域公知的任何涂布器具,例如,刷、棒、空气刀、喷雾、幕帘、刮刀、转移滚轮、逆向滚轮和/或铸涂方法以及它们的任何组合。
涂覆的基材可在干燥部干燥。可使用造纸和/或涂料领域中通常已知的任何干燥方法。所述干燥部可包括并含有IR、空气冲击干燥机和/或蒸汽加热干燥罐或涂料领域已知的其他干燥方法和机械。此外,涂覆的基材可根据造纸领域通常已知的任何磨光方法来磨光。这些磨光方法的实例包括一种或一种以上磨光配置,包括光泽压光机、软压辊压光机和/或延长压辊压光机。
本发明的上述造纸方法可加至任何常规造纸工艺和转化工艺中,包括摩擦、砂纸打磨、切割、划线、穿孔、点燃、压光、薄板磨光、转化、涂覆、层压、印刷等。优选的常规工艺包括那些适于生产能够用作涂覆和/或未涂覆纸产品、纸板和/或基材的纸张基材的工艺。
本发明的可膨胀微球可用于纸和/或纸板基材的领域的通常已知的任何用途和所有最终用途。这些最终用途包括纸产品和/或纸板包装和/或物品,包括那些在各自的基材中需要高和低基重的产品,所述产品可分别是从信封和表格至折叠箱。所述最终产品还可具有多层纸基材,例如瓦楞结构,其中至少一层含有本发明的可膨胀微球。
基于本发明通常所描述的,进一步理解可通过参考下面举例说明的特定实施例而获得,所述实施例仅以举例说明的目的而提供并不意于包括一切或限定本发明,除非另有说明。
实施例
实施例1:通过注入生长方法使用悬浮聚合来制备微球
1.制备水溶液
在250ml烧杯中,将100g去离子水加至7.4g氯化钠中。搅拌溶液直至氯化钠溶解。将6.25g重铬酸钠(2.5%水溶液)加至氯化钠溶液中并搅拌。连续搅拌2分钟。然后将5.5g乙醇加至该溶液中并搅拌2分钟。接下来,将5.25gLupamin
Figure BPA00001324962600251
5095(商业上从BASF获得的聚乙烯基胺)加至1000ml烧杯中。将137.5g去离子水加至聚乙烯基胺中并搅拌溶液约2分钟。将40.4g胶体硅放入单独的250ml烧杯中,将130g去离子水加至其中,并搅拌所得的溶液约2分钟。然后,将胶体硅溶液缓慢加至含聚乙烯基胺溶液的1000ml烧杯中并连续搅拌5分钟。5分钟后,将氯化钠/重铬酸钠/乙醇溶液加至1000ml烧杯中并搅拌。再连续搅拌5分钟。加入浓盐酸使水相的pH值为3.5,并再搅拌溶液5分钟。
2.沉淀有机相
将195.18g偏氯乙烯(VDC)加至冷却至-30℃的烧瓶中。将113.9g异丁烷加至冷却的烧瓶中。将得到的混合物倒入已用氩气吹洗过的大压力添加滴定管中并在冰箱中冷却。用于将混合物倒入滴定管中的漏斗用液氮冷却至使异丁烷的蒸发最小化。接着,将35.58g丙烯腈(AN)、2.6g 2,2’-偶氮二异丁腈(AIBN)、1.78g三烯丙基氰尿酸酯(TAC)、7.12g甲基丙烯酸甲酯(MMA)在室温下加至烧瓶中。振荡烧瓶使AIBN和TAC溶解。然后,将混合物倒入已用氩气吹洗过的小压力添加滴定管中。将小压力添加滴定管中的混合物通过加压的氩气转移至大压力滴定管中。存在于大滴定管中的有机相通过上下翻转滴定管10次来混合。
3.将有机相分散于水相中
将上述步骤1形成的水相加至已用氩气吹洗过的3-L反应器中。以1,500rpm的剪切速度搅拌反应器中的水相同时通过加压的氩气缓慢添加有机相(经过10分钟)。有机相完全加入之后,搅拌混合物15分钟。形成稳定的分散体。然后,将剪切速度降低至90rpm。
4.聚合反应
聚合反应通过在反应器中将混合物加热至60℃来引发。将反应温度维持在60℃持续12小时。聚合过程中反应器内的压力维持在约5bar至约8.5bar。聚合12小时之后,将1.25g AIBN的8.5g AN溶液通过使用小(250ml)压力添加滴定管和加压的氩气加至反应器中。将混合物的温度升高至70℃。使混合物反应8小时。在该8小时时间段内反应器内部的压力为约8.5bar至约10.5bar。
5.聚合后处理
8小时聚合时间段之后,将反应器冷却至室温并释放压力。将反应器内的混合物转移至2000ml烧杯中。然后,使用150μm计量网筛过滤混合物以除去任何粗凝结物。接着,使用常规真空过滤来过滤微球,所述常规真空过滤由漏斗、4级定性纸和连接至真空软管的过滤烧瓶组成。用去离子水洗涤微球三次。将过滤烧瓶中的滤液倒出并将漏斗中的微球干燥过夜。然后,称重干燥的微球,计算产率(占有机相和微球的重量的约86%)。
用于其他样品的类似的过程在表1中列出。与用于“注入生长”的AIBN和AN相同的量用于表1中的所有样品。与注入AN之前和之后相同的反应时间用于表2所列的所有样品,除了实施例10,实施例10在注入AN之前聚合8小时在注入AN之后聚合8小时,并且实施例13在注入AN之前聚合6小时在注入AN之后聚合7小时。
表2
有机相成分
Figure BPA00001324962600271
表3
水相成分
这些微球的粒度分布Malvern Mastersizer粒度分析仪来表征。表4列出了这些粒度分析的结果。
表4
微球的粒度
  样品   D(v,0.1)   D(v,0.5)   D(v,0.9)
  1   5.02   20.49   36.07
  2   9.91   20.22   38.5
  3   7.51   18.08   37.69
  4   6.13   20.84   40.96
  5   6.37   19.61   44.52
  6   12.78   23.96   39.63
  7   7.81   21.71   41.04
  8   7.13   20.76   38.99
  9   5.08   17.95   33.73
  10   4.72   19.09   24.21
  11   9.73   27.14   53.78
  12   7.45   24.17   42.66
  13   9.50   20.64   34.54
  14   7.2   21.59   44.37
实施例2:造纸工艺中的微球
生产含实施例1中所述的可膨胀微球的纸。通过将干燥微球加至用cowles搅拌器强烈搅拌的水中,实施例1中的微球的干燥样品形成了2%的浆状物。混合10分钟后,浆状物准备用于造纸机。
启动造纸机并生产目标基重为80g/m2的未涂覆的不含机械木浆的纸。纸浆混合为65/35混合的硬木牛皮纸浆/混合的软木牛皮纸浆。纸含有10%沉淀的碳酸钙填充物和15lb/T阳离子淀粉。以目标使用量80lb/T在施胶机上使用乙基化淀粉。
将实施例1中的微球以目标剂量15lb/T放入造纸机中。添加点为加入15lb/T阳离子淀粉之前。添加第一微球样品之后20分钟,造纸机已平衡并且在卷轴出收集样品纸。实施例1中所描述的所有14种样品微球以类似的方式添加至造纸机。然后在单张进纸压光机上压光纸样品以达到期望的光滑度。测量压光的纸上的基重、光滑度、硬度。以这种方法,比较含不同微球的纸的体积和硬度。与不用任何微球制造的纸相比,计算并记录纸体积增大。结果列于表5和表6。
表5
未压光的纸的结果
Figure BPA00001324962600291
表6
压光的纸的结果
Figure BPA00001324962600292
Figure BPA00001324962600301
实施例2中的结果说明实施例1中生产的所有微球表现出在250 Sheffield光滑度条件下、在未压光和压光条件下体积增大。
本发明申请已通过上面的一般性说明和相关的具体实施方式来描述。虽然本发明以被认为是优选的实施方式来举例说明,但是在概况的公开内容范围内可选择本领域技术人员已知的各种可选的实施方式。除了下面权利要求记载的内容,本发明没有另外的限定。

Claims (21)

1.一种可膨胀微球,所述可膨胀微球包括:
包裹了至少一种发泡剂的气体不可渗透壳,所述气体不可渗透壳包括:
包围所述至少一种发泡剂的第一聚合层;和
至少基本包裹所述第一聚合层的第二聚合层;并且
其中,所述第二聚合层包括选自Tg至少为85℃的单体和化学反应性单体中的至少一种单体。
2.如权利要求1所述的可膨胀微球,其中,所述第一聚合层包括由选自含腈单体、丙烯酸酯单体、甲基丙烯酸酯单体、乙烯基酯、乙烯基卤化物单体及其组合的单体形成的聚合物。
3.如权利要求2所述的可膨胀微球,其中,所述第一聚合层包括至少一种含腈单体、至少一种甲基丙烯酸酯单体和至少一种乙烯基卤化物单体。
4.如权利要求2所述的可膨胀微球,其中,所述至少一种单体的Tg小于85℃。
5.如权利要求2所述的可膨胀微球,其中,所述第一聚合层还包括交联单体。
6.如权利要求2所述的可膨胀微球,所述可膨胀微球还包括共价键合至所述第二聚合层的阳离子类物质。
7.如权利要求2所述的可膨胀微球,其中,与存在于所述第一聚合层中的Tg至少为85℃的单体的量相比,所述第二聚合层具有较大量的Tg至少为85℃的单体。
8.如权利要求1所述的可膨胀微球,其中,所述第一聚合层和所述第二聚合层共价连接。
9.如权利要求1所述的可膨胀微球,其中,所述可膨胀微球的膨胀体积平均直径为小于50微米。
10.如权利要求1所述的可膨胀微球,其中,所述可膨胀微球的膨胀起始温度为约60℃至约105℃。
11.如权利要求1所述的可膨胀微球,其中,所述可膨胀微球的收缩温度大于约105℃。
12.一种形成可膨胀微球的方法,所述方法包括:
将选自含腈单体、丙烯酸酯单体、甲基丙烯酸酯单体、乙烯基酯、乙烯基卤化物单体及其组合的主要单体、至少一种发泡剂、交联单体、聚合引发剂和稳定剂体系在反应容器中混合一段时间,所述一段时间足以达到使所述主要单体约90%聚合并且形成包围所述发泡剂的第一聚合层;和
将选自Tg至少为85℃的单体和化学反应性单体的次要单体加至所述反应容器中,从而形成至少基本包围所述第一聚合层的第二聚合层并且形成可膨胀微球。
13.如权利要求12所述的方法,其中,所述反应容器还包括选自盐、相分离剂、阻聚剂、酸和水的至少一种成分。
14.如权利要求12所述的方法,所述方法还包括:吹洗所述反应容器以除去氧。
15.如权利要求12所述的方法,所述方法还包括:将阳离子类物质加至所述微球中以使得所述阳离子类物质共价键合至所述第二聚合层。
16.一种包含权利要求1所述的可膨胀微球和多种纤维素纤维的组合物。
17.一种纸,所述纸包括:
纤维素纤维网;和
多种可膨胀微球,所述可膨胀微球包括:
包裹了至少一种发泡剂的气体不可渗透壳,所述气体不可渗透壳包括:
包围所述至少一种发泡剂的第一聚合层;和
至少基本包裹所述第一聚合层的第二聚合层,
其中,所述第二聚合层包括选自Tg至少为85℃的单体和化学反应性单体的至少一种单体。
18.一种制造纸张基材的方法,所述方法包括:
使多种纤维素纤维与至少一种权利要求1所述的可膨胀微球在网前箱之前或网前箱处、施胶机处或涂布机处接触。
19.一种增加纸张基材体积的方法,所述方法包括:
使多种纤维素纤维与至少一种如权利要求1所述的可膨胀微球在网前箱之前或网前箱处、施胶机处或涂布机处接触。
20.一种提高可膨胀微球在纤维素纤维的网络中的保留率的方法,所述方法包括:
使阳离子类物质与至少一种如权利要求1所述的可膨胀微球的第二层接触以形成改性的可膨胀微球,所述改性的可膨胀微球的Zeta电位比所述接触步骤之前的微球的Zeta电位高,所述Zeta电位在pH约为9或更小、离子强度为10-6M至0.1M的条件下测量;以及
使多种纤维素纤维与至少一种改性的可膨胀微球在网前箱之前或网前箱处、施胶机处或涂布机处接触。
21.一种可膨胀微球,所述可膨胀微球包括:
包裹至少一种发泡剂的气体不可渗透壳,所述气体不可渗透壳包括:
包围所述至少一种发泡剂的第一聚合层;和
至少基本包裹所述第一聚合层的第二聚合层,并且
其中,所述第二聚合层的重均Tg大于所述第一聚合层的重均Tg。
CN200980133926.5A 2008-08-28 2009-08-28 可膨胀微球及其制造和使用方法 Expired - Fee Related CN102137878B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US19035408P 2008-08-28 2008-08-28
US61/190,354 2008-08-28
PCT/US2009/055390 WO2010025383A1 (en) 2008-08-28 2009-08-28 Expandable microspheres and methods of making and using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410198039.9A Division CN104032622A (zh) 2008-08-28 2009-08-28 可膨胀的微球及其制造和使用方法

Publications (2)

Publication Number Publication Date
CN102137878A true CN102137878A (zh) 2011-07-27
CN102137878B CN102137878B (zh) 2014-06-18

Family

ID=41171021

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200980133926.5A Expired - Fee Related CN102137878B (zh) 2008-08-28 2009-08-28 可膨胀微球及其制造和使用方法
CN201410198039.9A Pending CN104032622A (zh) 2008-08-28 2009-08-28 可膨胀的微球及其制造和使用方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410198039.9A Pending CN104032622A (zh) 2008-08-28 2009-08-28 可膨胀的微球及其制造和使用方法

Country Status (4)

Country Link
US (3) US8382945B2 (zh)
EP (1) EP2328947A1 (zh)
CN (2) CN102137878B (zh)
WO (1) WO2010025383A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459671A (zh) * 2017-08-22 2017-12-12 成都新柯力化工科技有限公司 一种用于聚丙烯塑料发泡的改性膨胀微球及其制备方法
CN108531271A (zh) * 2018-04-11 2018-09-14 江苏捷达油品有限公司 一种节能自清洁型防锈乳化油及其制备方法和应用

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866906B2 (en) 2000-01-26 2005-03-15 International Paper Company Cut resistant paper and paper articles and method for making same
RU2243308C2 (ru) * 2000-01-26 2004-12-27 Интернэшнл Пэйпер Компани Изделия из картона низкой плотности
RU2330911C2 (ru) 2002-09-13 2008-08-10 Интернэшнл Пейпер Компани Бумага с улучшенной жесткостью и пухлостью и способ для ее изготовления
CN101137790A (zh) 2005-03-11 2008-03-05 国际纸业公司 含有可膨胀微球和离子化合物的组合物及其制造和使用方法
WO2010025383A1 (en) 2008-08-28 2010-03-04 International Paper Company Expandable microspheres and methods of making and using the same
FI126046B (fi) * 2009-04-20 2016-06-15 Elastopoli Oy Komposiittivälituote ja menetelmä sen muodostamiseksi
US8679296B2 (en) 2012-07-31 2014-03-25 Kimberly-Clark Worldwide, Inc. High bulk tissue comprising expandable microspheres
WO2014120172A1 (en) * 2013-01-31 2014-08-07 Empire Technology Development Llc Light weight structural materials
US10695235B2 (en) * 2013-11-27 2020-06-30 Kimberly-Clark Worldwide, Inc. Printed 3D-elastic laminates
US9624399B2 (en) * 2014-02-18 2017-04-18 Nd Industries, Inc. Method for microencapsulating blowing agents and related products
TWI713498B (zh) * 2015-03-24 2020-12-21 美商羅門哈斯公司 核-殼水性乳膠
BR112018017286B1 (pt) 2016-02-26 2022-08-02 Ecolab Usa Inc Método para tratar um processo de produção de papel de múltiplos estratos
DE102018127120B4 (de) * 2018-10-30 2020-10-08 Khs Gmbh Behälterbehandlungsvorrichtung
US11599170B2 (en) * 2020-06-01 2023-03-07 Dell Products L.P. Management of a thermally regulated structure of an information handling system
CN111808490B (zh) * 2020-07-17 2021-09-17 东莞市威一霸涂料有限公司 器件表面缺陷遮蔽方法
WO2022224224A2 (en) 2021-04-23 2022-10-27 Glatfelter Gernsbach Gmbh Foam-air laid combination and methods of use

Family Cites Families (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1117113A (en) 1913-10-04 1914-11-10 Solomon R Wagg Method of treating paper.
US1500207A (en) 1920-03-26 1924-07-08 C F Dahlberg Fiber board having ornamental surfaces
US1892873A (en) 1928-06-09 1933-01-03 William A Darrah Process of surfacing board and article therefor
BE530010A (zh) 1953-06-30
BE624231A (zh) 1961-11-02
US3359130A (en) 1963-11-12 1967-12-19 Papex Corp Double shelled foamable plastic particles
BE661981A (zh) 1964-04-03
US3357322A (en) 1965-01-12 1967-12-12 Lester D Gill Coated box and method of making
DE1619237A1 (de) 1966-05-11 1971-03-11 Bayer Ag Verfahren zur Herstellung von gegebenenfalls mit Deckschichten versehenen Formkoerpern
GB1148602A (en) 1966-09-26 1969-04-16 Steel Co Of Wales Ltd Improvements in and relating to the treatment of metals
US3515569A (en) 1966-11-21 1970-06-02 Dow Chemical Co Method of preparing smooth surfaced articles and articles provided by the method
US3615972A (en) 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
US3468467A (en) 1967-05-09 1969-09-23 Owens Illinois Inc Two-piece plastic container having foamed thermoplastic side wall
US3533908A (en) 1967-05-19 1970-10-13 Brown Co Porous paperboard sheet having plastic microspheres therein
BE758373A (fr) 1967-11-27 1971-05-03 Dow Chemical Co Procede de fabrication de papier
GB1283529A (en) 1968-12-20 1972-07-26 Courtaulds Ltd Process for making tubular filaments of regenerated cellulose
US3703394A (en) 1969-09-19 1972-11-21 Champion Int Corp Form board coated with a porous polymer film and a form oil,said film characterized by having solid particles distributed therethrough
US3611583A (en) 1970-05-28 1971-10-12 Dow Chemical Co Method for expanding and drying expandable microspheres
GB1311556A (en) 1970-10-28 1973-03-28 Dow Chemical Co Process of forming a paper containing gasfilled spheres of thermoplastic resins
DE2113216C3 (de) 1971-03-18 1982-04-08 Feldmühle AG, 4000 Düsseldorf Leichtgewichtiges Papier hoher Steifigkeit für Vervielfältigungsmaschinen und Verfahren zu seiner Herstellung
US3824114A (en) 1971-05-12 1974-07-16 Champion Int Corp Method of applying graft copolymer to cellulosic substrate and resultant article
US3785254A (en) 1971-05-26 1974-01-15 R Mann Insulated containers or the like
US3819470A (en) 1971-06-18 1974-06-25 Scott Paper Co Modified cellulosic fibers and method for preparation thereof
JPS545325B2 (zh) 1971-08-30 1979-03-15
GB1373788A (en) 1971-10-20 1974-11-13 Hercules Powder Co Ltd Sizing method and composition for use therein
US3842020A (en) 1971-11-08 1974-10-15 Dow Chemical Co Method of expanding a resole resin containing expandable thermoplastic microspheres and product obtained therefrom
US3819463A (en) 1971-11-17 1974-06-25 Dow Chemical Co Carpet and preparation thereof
US4108806A (en) 1971-12-06 1978-08-22 The Dow Chemical Company Thermoplastic expandable microsphere process and product
US3864181A (en) 1972-06-05 1975-02-04 Pratt & Lambert Inc Polymer foam compositions
US3740359A (en) 1972-07-10 1973-06-19 Dow Chemical Co Vinylidene chloride expandable microspheres
US4051277A (en) 1972-08-03 1977-09-27 Alton Box Board Company Rigid-when-wet paperboard containers and their manufacture
US4179546A (en) 1972-08-28 1979-12-18 The Dow Chemical Company Method for expanding microspheres and expandable composition
US3779951A (en) 1972-11-21 1973-12-18 Dow Chemical Co Method for expanding microspheres and expandable composition
US3914360A (en) 1973-04-23 1975-10-21 Dow Chemical Co Expansion of expandable synthetic resinous microspheres
US4044176A (en) 1973-07-12 1977-08-23 Pratt & Lambert, Inc. Graphic arts and graphic media
SE389696B (sv) 1973-10-26 1976-11-15 Kema Nord Ab Forfarande for framstellning av papper innehallande plastpartiklar
US4166894A (en) 1974-01-25 1979-09-04 Calgon Corporation Functional ionene compositions and their use
DK659674A (zh) 1974-01-25 1975-09-29 Calgon Corp
US3936890A (en) 1974-05-06 1976-02-10 Oberstein N Bio-disposable bag-type liner for bedpans and the like
US4040900A (en) 1974-05-20 1977-08-09 National Starch And Chemical Corporation Method of sizing paper
US4022965A (en) 1975-01-13 1977-05-10 Crown Zellerbach Corporation Process for producing reactive, homogeneous, self-bondable lignocellulose fibers
US4133688A (en) 1975-01-24 1979-01-09 Felix Schoeller, Jr. Photographic carrier material containing thermoplastic microspheres
US4006273A (en) 1975-02-03 1977-02-01 Pratt & Lambert, Inc. Washable and dry-cleanable raised printing on fabrics
US4056501A (en) 1975-04-21 1977-11-01 The Dow Chemical Company Cationic structured-particle latexes
US4002586A (en) 1975-04-21 1977-01-11 The Dow Chemical Company Method for preparing cationic latexes
US3945956A (en) 1975-06-23 1976-03-23 The Dow Chemical Company Polymerization of styrene acrylonitrile expandable microspheres
US4174417A (en) 1975-10-14 1979-11-13 Kimberly-Clark Corporation Method of forming highly absorbent fibrous webs and resulting products
US3998618A (en) 1975-11-17 1976-12-21 Sanders Associates, Inc. Method for making small gas-filled beads
GB1533434A (en) 1976-03-10 1978-11-22 Hercules Inc Sizing method and a sizing composition for use therein
US4243480A (en) 1977-10-17 1981-01-06 National Starch And Chemical Corporation Process for the production of paper containing starch fibers and the paper produced thereby
GB2015611B (en) 1978-03-06 1982-12-22 Mitsubishi Paper Mills Ltd Micro-capsule-incorporated fibrous sheet
US4242411A (en) 1978-05-25 1980-12-30 International Paper Company High crimp, high strength, hollow rayon fibers
US5212143A (en) 1978-08-28 1993-05-18 Torobin Leonard B Hollow porous microspheres made from dispersed particle compositions
US4237171A (en) 1979-02-21 1980-12-02 Fred C. Laage Insulated and moisture absorbent food container and method of manufacture
US4279794A (en) 1979-04-26 1981-07-21 Hercules Incorporated Sizing method and sizing composition for use therein
US4344787A (en) 1979-05-08 1982-08-17 Beggs James M Administrator Of Method and apparatus for producing gas-filled hollow spheres
DE2921011C2 (de) 1979-05-23 1981-04-23 Matsumoto Yushi-Seiyaku Co., Ltd., Yao, Osaka Verfahren zum Erzeugen eines Reliefs
US4241125A (en) 1979-07-10 1980-12-23 Reed International Limited Foam plastics sheet materials
US4233325A (en) 1979-09-13 1980-11-11 International Flavors & Fragrances Inc. Ice cream package including compartment for heating syrup
DE2951486C2 (de) 1979-12-20 1982-06-16 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Gegen Fälschungen und Verfälschungen geschütztes Sicherheitspapier und Verfahren zu seiner Herstellung
US4496427A (en) 1980-01-14 1985-01-29 Hercules Incorporated Preparation of hydrophilic polyolefin fibers for use in papermaking
US4323602A (en) 1980-05-14 1982-04-06 Roberts Consolidated Industries, Inc. Water repellent and preservative for wood products
SE436332B (sv) 1980-05-21 1984-12-03 Kema Nord Ab Skumkompositmaterial for framstellning av laminat samt dess anvendning som ytskikt pa treunderlag
US4385961A (en) 1981-02-26 1983-05-31 Eka Aktiebolag Papermaking
US4482429A (en) 1980-08-29 1984-11-13 James River-Norwalk, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
US4448638A (en) 1980-08-29 1984-05-15 James River-Dixie/Northern, Inc. Paper webs having high bulk and absorbency and process and apparatus for producing the same
FR2491514A1 (fr) 1980-10-08 1982-04-09 Du Pin Cellulose Papiers et cartons enduits et procede de fabrication
US4324753A (en) 1980-11-03 1982-04-13 Gill Robert A Method of producing an air laid paper web utilizing microencapsulated hydrogen bond promoting material
JPS57110439A (en) 1980-12-29 1982-07-09 Nihon Dixie Co Ltd Vessel made of heat insulating paper and its manufacture
SE439599B (sv) 1981-01-14 1985-06-24 Kema Nord Ab Sett att torka och expandera i vetska dispergerade, termoplastiska mikrosferer innehallande, flyktiga, flytande jesmedel
SE8100819L (sv) 1981-02-05 1982-08-06 Kema Nord Ab Hartsimpregnerat fiberkompositmaterial
US4431481A (en) 1982-03-29 1984-02-14 Scott Paper Co. Modified cellulosic fibers and method for preparation thereof
US4464224A (en) 1982-06-30 1984-08-07 Cip Inc. Process for manufacture of high bulk paper
SE8204595L (sv) 1982-08-05 1984-02-06 Kema Nord Ab Forfarande for framstellning av hartsimpregnerade fiberkompositmaterial
US4581285A (en) 1983-06-07 1986-04-08 The United States Of America As Represented By The Secretary Of The Air Force High thermal capacitance multilayer thermal insulation
SE453206B (sv) 1983-10-21 1988-01-18 Valmet Paper Machinery Inc Hygienpappersbana, forfarande for framstellning derav samt anvendning av expanderbara mikrosferer av termoplast vid framstellning av hygienpappersbana
US4548349A (en) 1984-04-03 1985-10-22 Whitey's Ice Cream Manufacturers, Inc. Protective sleeve for a paper cup
US4617223A (en) 1984-11-13 1986-10-14 The Mead Corporation Reinforced paperboard cartons and method for making same
NL8500242A (nl) 1985-01-29 1986-08-18 Firet Bv Werkwijze voor het vervaardigen van een vezelvlies waarin microbolletjes zijn opgenomen.
US4865875A (en) 1986-02-28 1989-09-12 Digital Equipment Corporation Micro-electronics devices and methods of manufacturing same
US4777930A (en) 1986-03-10 1988-10-18 Hartz Marvin E Disposable heat storage unit
US4781243A (en) 1986-12-11 1988-11-01 The Boeing Company Thermo container wall
US4722943A (en) 1987-03-19 1988-02-02 Pierce & Stevens Corporation Composition and process for drying and expanding microspheres
US4885203A (en) 1987-07-01 1989-12-05 Applied Ultralight Technologies, Inc. Lightweight fired building products
US4952628A (en) 1987-08-24 1990-08-28 E. I. Du Pont De Nemours And Company Barrier blends based on amorphous polyamide and ethylene/vinyl alcohol, unaffected by humidity
US5132061A (en) 1987-09-03 1992-07-21 Armstrong World Industries, Inc. Preparing gasket compositions having expanded microspheres
US4946737A (en) 1987-09-03 1990-08-07 Armstrong World Industries, Inc. Gasket composition having expanded microspheres
US4977004A (en) 1987-09-28 1990-12-11 Tropicana Products, Inc. Barrier structure for food packages
US4902722A (en) 1987-11-19 1990-02-20 Pierce & Stevens Corp. Expandable graphic art printing media using a syntactic foam based on mixture of unexpanded and expanded hollow polymeric microspheres
CN1017881B (zh) 1987-12-16 1992-08-19 库特·赫尔德·法布里肯特 制造木材板的设备和方法
US4898752A (en) 1988-03-30 1990-02-06 Westvaco Corporation Method for making coated and printed packaging material on a printing press
US5244541A (en) 1988-04-28 1993-09-14 Potlatch Corporation Pulp treatment methods
US4836400A (en) 1988-05-13 1989-06-06 Chaffey Wayne P Caulking method for forming a leak free cup
EP0348372B1 (en) 1988-06-23 1994-02-23 Casco Nobel Ab A process and a device for preparation of expanded thermoplastic microspheres
US4959395A (en) 1988-06-28 1990-09-25 The B. F. Goodrich Company Bulk polymerized molded products containing cycloolefin monoments with microencapsulated blowing agents
US5242545A (en) 1989-02-27 1993-09-07 Union Camp Corporation Starch treated high crush linerboard and medium
JPH0747644B2 (ja) 1989-05-19 1995-05-24 宇部興産株式会社 ポリアミド複合材料及びその製造方法
US4982722A (en) 1989-06-06 1991-01-08 Aladdin Synergetics, Inc. Heat retentive server with phase change core
US4986882A (en) 1989-07-11 1991-01-22 The Proctor & Gamble Company Absorbent paper comprising polymer-modified fibrous pulps and wet-laying process for the production thereof
US5209953A (en) 1989-08-03 1993-05-11 Kimberly-Clark Corporation Overall printing of tissue webs
US4956394A (en) 1989-12-12 1990-09-11 Thermal Products International Closed cell phenolic foam containing alkyl glucosides
US5160789A (en) 1989-12-28 1992-11-03 The Procter & Gamble Co. Fibers and pulps for papermaking based on chemical combination of poly(acrylate-co-itaconate), polyol and cellulosic fiber
US5049235A (en) 1989-12-28 1991-09-17 The Procter & Gamble Company Poly(methyl vinyl ether-co-maleate) and polyol modified cellulostic fiber
US5477917A (en) 1990-01-09 1995-12-26 The University Of Dayton Dry powder mixes comprising phase change materials
US5370814A (en) 1990-01-09 1994-12-06 The University Of Dayton Dry powder mixes comprising phase change materials
US5360420A (en) 1990-01-23 1994-11-01 The Procter & Gamble Company Absorbent structures containing stiffened fibers and superabsorbent material
US5126192A (en) 1990-01-26 1992-06-30 International Business Machines Corporation Flame retardant, low dielectric constant microsphere filled laminate
US5000788A (en) 1990-04-12 1991-03-19 Sprout-Bauer, Inc. Method for preparing starch based corrugating adhesives using waste wash water
US5266250A (en) 1990-05-09 1993-11-30 Kroyer K K K Method of modifying cellulosic wood fibers and using said fibers for producing fibrous products
US5125996A (en) 1990-08-27 1992-06-30 Eastman Kodak Company Three dimensional imaging paper
US5029749A (en) 1990-09-14 1991-07-09 James River Corporation Paper container and method of making the same
JP2927933B2 (ja) 1990-11-09 1999-07-28 松本油脂製薬株式会社 中空微粒子組成物
SE9003600L (sv) 1990-11-12 1992-05-13 Casco Nobel Ab Expanderbara termoplastiska mikrosfaerer samt foerfarande foer framstaellning daerav
CA2054533C (en) 1990-11-27 2002-04-16 Samuel Eugene Sherba Antimicrobial compositions comprising iodopropargyl butylcarbamate and 2-mercaptopyridine n-oxide and methods of controlling microbes
US5219875A (en) 1990-11-27 1993-06-15 Rohm And Haas Company Antimicrobial compositions comprising iodopropargyl butylcarbamate and 1,2-benzisothiazolin-3-one and methods of controlling microbes
US5101600A (en) 1990-12-24 1992-04-07 Armstrong World Industries, Inc. Phosphate ceramic backing blocks and their preparation
US5139538A (en) 1990-12-24 1992-08-18 Armstrong World Industries, Inc. Phosphate ceramic backing blocks and their preparation
US5271766A (en) 1991-01-11 1993-12-21 Adm Agri-Industries, Ltd. Starch-based adhesive coating
US5096650A (en) 1991-02-28 1992-03-17 Network Graphics, Inc. Method of forming paperboard containers
US5092485A (en) 1991-03-08 1992-03-03 King Car Food Industrial Co., Ltd. Thermos paper cup
US5792398A (en) 1991-06-12 1998-08-11 Glasis Holding Ab Hot pressing method of forming a composite laminate containing expanded thermoplastic particles
US5296024A (en) 1991-08-21 1994-03-22 Sequa Chemicals, Inc. Papermaking compositions, process using same, and paper produced therefrom
US5226585A (en) 1991-11-19 1993-07-13 Sherwood Tool, Inc. Disposable biodegradable insulated container and method for making
US5145107A (en) 1991-12-10 1992-09-08 International Paper Company Insulated paper cup
US5360825A (en) 1992-02-14 1994-11-01 Sony Corporation Pulp molding
US5499460A (en) 1992-02-18 1996-03-19 Bryant; Yvonne G. Moldable foam insole with reversible enhanced thermal storage properties
US5637389A (en) 1992-02-18 1997-06-10 Colvin; David P. Thermally enhanced foam insulation
FR2689530B1 (fr) 1992-04-07 1996-12-13 Aussedat Rey Nouveau produit complexe a base de fibres et de charges, et procede de fabrication d'un tel nouveau produit.
JP3659979B2 (ja) 1992-04-15 2005-06-15 松本油脂製薬株式会社 熱膨張性マイクロカプセルとその製法
EP0700237A1 (en) 1992-05-19 1996-03-06 AMP-Akzo LinLam VOF Thin core printed wire boards
JP3186835B2 (ja) 1992-05-28 2001-07-11 松本油脂製薬株式会社 熱膨張性マイクロカプセルおよびその製法と膨張方法
TW244340B (zh) 1992-07-21 1995-04-01 Akzo Nv
US5700560A (en) 1992-07-29 1997-12-23 Sumitomo Chemical Company, Limited Gas barrier resin composition and its film and process for producing the same
US5580624A (en) 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
JP2669767B2 (ja) 1992-11-05 1997-10-29 新明和工業株式会社 ゴミ吸引輸送装置
TW223613B (zh) 1992-11-05 1994-05-11 Shinmaywa Ind Ltd
JP2611612B2 (ja) 1992-11-18 1997-05-21 王子製紙株式会社 クッション性紙管
US5342649A (en) 1993-01-15 1994-08-30 International Paper Company Coated base paper for use in the manufacture of low heat thermal printing paper
FR2700952B1 (fr) 1993-01-29 1995-03-17 Oreal Nouvelles compositions cosmétiques ou dermopharmaceutiques sous forme de gels aqueux modifiés par addition de microsphères expansées.
US5674509A (en) 1993-02-09 1997-10-07 The Procter & Gamble Company Cosmetic compositions
US5454471A (en) 1993-03-24 1995-10-03 W. L. Gore & Associates, Inc. Insulative food container employing breathable polymer laminate
DE4312854A1 (de) 1993-04-21 1994-10-27 Feldmuehle Ag Stora Druckempfindliches Durchschreibepapier mit verbesserter Ölsperre
SE509662C2 (sv) 1993-04-29 1999-02-22 Tetra Laval Holdings & Finance Förpackningslaminat belagt med en vattenolöslig chitosanförening samt sätt att tillverka förpackningslaminatet
GB9311944D0 (en) 1993-06-10 1993-07-28 Hercules Inc Synthesis of alkyl ketene multimers (akm) and application for precision converting grades of fine paper
US5424519A (en) 1993-09-21 1995-06-13 Battelle Memorial Institute Microwaved-activated thermal storage material; and method
JP2824895B2 (ja) 1993-12-22 1998-11-18 株式会社日本デキシー 断熱性紙製容器及びその製造方法
TW259925B (zh) 1994-01-26 1995-10-11 Akzo Nobel Nv
US5478988A (en) 1994-01-28 1995-12-26 Thermionics Corporation Thermal exchange composition and articles for use thereof
FR2715700B1 (fr) 1994-02-03 1996-04-05 Fcb Insert destiné à être incorporé à un objet pour permettre sa préhension au moyen d'un dispositif à mandrin expansible.
US5685815A (en) 1994-02-07 1997-11-11 Hercules Incorporated Process of using paper containing alkaline sizing agents with improved conversion capability
US5363982A (en) 1994-03-07 1994-11-15 Sadlier Claus E Multi-layered insulated cup formed of one continuous sheet
SE508170C2 (sv) 1994-06-21 1998-09-07 Skf Ab Sätt och anordning vid montering av lager
US5965109A (en) 1994-08-02 1999-10-12 Molecular Biosystems, Inc. Process for making insoluble gas-filled microspheres containing a liquid hydrophobic barrier
SE510857C2 (sv) 1994-11-14 1999-06-28 Casco Products Ab Beläggningskomposition baserad på polyvinylkloridplastisol innehållande termoplastiska mikrosfärer
FR2727675A1 (fr) 1994-12-01 1996-06-07 Carlucci Pierre Antoine Composition pour la fabrication d'elements de construction isolants, alleges
US5601744A (en) 1995-01-11 1997-02-11 Vesture Corp. Double-walled microwave cup with microwave receptive material
US5662773A (en) 1995-01-19 1997-09-02 Eastman Chemical Company Process for preparation of cellulose acetate filters for use in paper making
US6034081A (en) 1995-05-30 2000-03-07 Buckman Laboratories International Inc Potentiation of biocide activity using an N-alkyl heterocyclic compound
US5674590A (en) 1995-06-07 1997-10-07 Kimberly-Clark Tissue Company High water absorbent double-recreped fibrous webs
US5520103A (en) 1995-06-07 1996-05-28 Continental Carlisle, Inc. Heat retentive food server
US5785817A (en) 1995-07-03 1998-07-28 Sony Corporation Moldable pulp material and method of manufacturing molded pulp product
US5607553A (en) 1995-08-29 1997-03-04 Westvaco Corporation Method and apparatus for finishing paper
US5667637A (en) 1995-11-03 1997-09-16 Weyerhaeuser Company Paper and paper-like products including water insoluble fibrous carboxyalkyl cellulose
GB2307487B (en) 1995-11-22 1999-03-17 Portals Ltd Process for producing security paper
US5856389A (en) 1995-12-21 1999-01-05 International Paper Solid thermoplastic surfacing material
CA2197696C (en) 1996-02-14 2001-05-15 Werner Froese Apparatus for producing wood-based pressed board
US5698688A (en) 1996-03-28 1997-12-16 The Procter & Gamble Company Aldehyde-modified cellulosic fibers for paper products having high initial wet strength
US5952068A (en) 1996-06-14 1999-09-14 Insulation Dimension Corporation Syntactic foam insulated container
US5759624A (en) 1996-06-14 1998-06-02 Insulation Dimension Corporation Method of making syntactic insulated containers
US5800676A (en) 1996-08-26 1998-09-01 Nitto Boseki Co., Ltd. Method for manufacturing a mineral fiber panel
US6379497B1 (en) 1996-09-20 2002-04-30 Fort James Corporation Bulk enhanced paperboard and shaped products made therefrom
US6419789B1 (en) 1996-10-11 2002-07-16 Fort James Corporation Method of making a non compacted paper web containing refined long fiber using a charge controlled headbox and a single ply towel made by the process
US5880435A (en) 1996-10-24 1999-03-09 Vesture Corporation Food delivery container
USH1704H (en) 1996-12-13 1998-01-06 Kimberly-Clark Worldwide, Inc. Modified cellulose fiber having improved curl
JPH10212690A (ja) 1997-01-23 1998-08-11 Oji Paper Co Ltd 低密度体
US6919111B2 (en) 1997-02-26 2005-07-19 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
US6740373B1 (en) 1997-02-26 2004-05-25 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
US6224954B1 (en) 1997-03-26 2001-05-01 Fort James Corporation Insulating stock material and containers and methods of making the same
US6416829B2 (en) 1997-06-06 2002-07-09 Fort James Corporation Heat insulating paper cups
US6146494A (en) 1997-06-12 2000-11-14 The Procter & Gamble Company Modified cellulosic fibers and fibrous webs containing these fibers
US6254725B1 (en) 1997-06-20 2001-07-03 Consolidated Papers, Inc. High bulk paper
US20030213544A1 (en) 1997-08-26 2003-11-20 Moller Plast Gmbh Long-fiber foam composite, automobile door using the long-fiber foam composite, and method for manufacturing the long-fiber foam composite
FI103417B (fi) 1997-09-16 1999-06-30 Metsae Serla Oyj Paperiraina ja menetelmä sen valmistamiseksi
IT1295100B1 (it) 1997-09-16 1999-04-30 Interplastica Srl Materiale sintetico e procedimento per la produzione dello stesso
FI107274B (fi) 1997-09-16 2001-06-29 Metsae Serla Oyj Menetelmä hienopaperin pohjapaperin valmistamiseksi
CA2216046A1 (en) 1997-09-18 1999-03-18 Kenneth Boegh In-line sensor for colloidal and dissolved substances
US6042936A (en) 1997-09-23 2000-03-28 Fibermark, Inc. Microsphere containing circuit board paper
US5884006A (en) 1997-10-17 1999-03-16 Frohlich; Sigurd Rechargeable phase change material unit and food warming device
EP1054034B2 (en) 1998-01-26 2007-12-12 Kureha Corporation Expandable microspheres and process for producing the same
JP4460768B2 (ja) 1998-02-24 2010-05-12 松本油脂製薬株式会社 熱膨張性マイクロカプセルとその製造方法及びその利用方法
CO5070714A1 (es) 1998-03-06 2001-08-28 Nalco Chemical Co Proceso para la preparacion de silice coloidal estable
US6139665A (en) 1998-03-06 2000-10-31 Fort James Corporation Method for fabricating heat insulating paper cups
US5938825A (en) 1998-05-21 1999-08-17 Troy Technology Corporation Inc. Stabilized antimicrobial compositions containing halopropynyl compounds
US6261679B1 (en) 1998-05-22 2001-07-17 Kimberly-Clark Worldwide, Inc. Fibrous absorbent material and methods of making the same
JP2000000084A (ja) 1998-06-15 2000-01-07 Japan Tobacco Inc 葉編み装置
US20010046574A1 (en) 1998-08-31 2001-11-29 Curtis James F. Barrier laminate with a polymeric nanocomposite oxygen barrier layer for liquid packaging
WO2000014333A1 (en) 1998-09-03 2000-03-16 Stora Kopparberg Bergslags Ab (Publ) Paper or paperboard laminate and method to produce such a laminate
US6391943B2 (en) 1998-09-04 2002-05-21 Trident International, Inc. High resolution pigment ink for impulse ink jet printing
US6287424B1 (en) 1998-09-22 2001-09-11 International Paper Company Method for finishing paperboard to achieve improved smoothness
US6454989B1 (en) 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US20010044477A1 (en) 1998-12-10 2001-11-22 Soane David S. Expandable polymeric microspheres, their method of production, and uses and products thereof
US6471824B1 (en) 1998-12-29 2002-10-29 Weyerhaeuser Company Carboxylated cellulosic fibers
KR20010100017A (ko) 1998-12-30 2001-11-09 로날드 디. 맥크레이 화학물질을 첨가하는 증기 폭발 처리
US6361651B1 (en) 1998-12-30 2002-03-26 Kimberly-Clark Worldwide, Inc. Chemically modified pulp fiber
ATE342302T1 (de) 1999-01-26 2006-11-15 Huntsman Int Llc Thermoplastische polyurethane
JP2000272062A (ja) 1999-03-23 2000-10-03 Kenzai Gijutsu Kenkyusho:Kk 伸縮継手用シート材およびその製造方法
JP4199366B2 (ja) 1999-03-25 2008-12-17 ミヨシ油脂株式会社 発泡性マイクロカプセルウェットケーキの分散化方法
DE19921592A1 (de) 1999-05-07 2000-11-09 Voith Sulzer Papiertech Patent Applikationsvorrichtung und -verfahren für eine Papiermaschine
US6592983B1 (en) 1999-06-18 2003-07-15 The Procter & Gamble Company Absorbent sheet material having cut-resistant particles and methods for making the same
US6225361B1 (en) 1999-07-28 2001-05-01 Akzo Nobel N.V. Expanded hollow micro sphere composite beads and method for their production
US6531183B1 (en) 1999-07-28 2003-03-11 Meadwestvaco Corporation Method of producing high gloss paper
US6228200B1 (en) 1999-09-09 2001-05-08 Belt Equipment, Inc. Belt press using differential thermal expansion
JP2001129919A (ja) 1999-11-04 2001-05-15 Kanegafuchi Chem Ind Co Ltd 積層板の連続製造方法
GB9926423D0 (en) 1999-11-09 2000-01-12 Cerestar Holding Bv Adhesive composition and application thereof in the preparation of paper and corrugating board
DE19956152C2 (de) 1999-11-23 2002-07-18 Schuller Gmbh Verfahren zum Herstellen eines Mehrschichtmaterials und Mehrschichtmaterial
US6221486B1 (en) 1999-12-09 2001-04-24 Zms, Llc Expandable polymeric fibers and their method of production
US20020104632A1 (en) 1999-12-16 2002-08-08 Graciela Jimenez Opacity enhancement of tissue products with thermally expandable microspheres
RU2243308C2 (ru) 2000-01-26 2004-12-27 Интернэшнл Пэйпер Компани Изделия из картона низкой плотности
US6866906B2 (en) 2000-01-26 2005-03-15 International Paper Company Cut resistant paper and paper articles and method for making same
US20060231227A1 (en) 2000-01-26 2006-10-19 Williams Richard C Paper and paper articles and method for making same
EP1134307B1 (en) 2000-03-16 2008-09-03 Kuraray Co., Ltd. Hollow fibers and manufacturing method of hollow fibers
GB2360781B8 (en) 2000-03-31 2005-03-07 Unigel Ltd Gel compositions
US6890636B2 (en) 2000-04-11 2005-05-10 Sordal Incorporated Thermally stable, non-woven, fibrous paper, derivatives thereof, and methods for manufacturing the same
JP4945079B2 (ja) 2000-04-28 2012-06-06 株式会社クレハ 熱発泡性マイクロスフェアー及びその製造方法
US6509384B2 (en) 2000-04-28 2003-01-21 Akzo Nobel N.V. Chemical product and method
US7232607B2 (en) 2000-04-28 2007-06-19 Kureha Corporation Thermally foamable microsphere and production process thereof
US7252882B2 (en) 2000-04-28 2007-08-07 Kureha Corporation Thermally foamable microsphere and production process thereof
US6352183B1 (en) 2000-05-19 2002-03-05 Great Spring Waters Of America, Inc. Bottled water delivery system
EP1297220B1 (en) 2000-06-27 2004-10-06 International Paper Company Method to manufacture paper using fiber filler complexes
US6582633B2 (en) 2001-01-17 2003-06-24 Akzo Nobel N.V. Process for producing objects
US20030032352A1 (en) 2001-03-22 2003-02-13 Yihua Chang Water-dispersible, cationic polymers, a method of making same and items using same
US7279071B2 (en) 2001-04-11 2007-10-09 International Paper Company Paper articles exhibiting water resistance and method for making same
EP1852552A1 (en) 2001-04-11 2007-11-07 International Paper Company Cut resistant paper and paper articles and method for making same
US6701637B2 (en) 2001-04-20 2004-03-09 Kimberly-Clark Worldwide, Inc. Systems for tissue dried with metal bands
MXPA03010759A (es) 2001-05-25 2005-09-08 Univ Lehigh Microesferas expandibles para aislamiento de espuma y metodos.
JP5044074B2 (ja) 2001-06-11 2012-10-10 株式会社クレハ 熱発泡性マイクロスフェアー及びその製造方法
JP4011972B2 (ja) 2001-06-29 2007-11-21 リケンテクノス株式会社 発泡性熱可塑性エラストマー組成物及びその製造方法
JP2003055454A (ja) 2001-08-10 2003-02-26 Hymo Corp ポリアルキレンイミン変性物。
FI20011722A0 (fi) 2001-08-28 2001-08-28 Raisio Chem Oy Menetelmä tärkkelyksen modifioimiseksi, tärkkelys ja sen käyttö
FR2833625B1 (fr) 2001-12-18 2004-03-05 Arjo Wiggins Dessin Et Papiers Papier couche possedant un toucher soyeux
US20030118816A1 (en) 2001-12-21 2003-06-26 Polanco Braulio A. High loft low density nonwoven webs of crimped filaments and methods of making same
JP4059674B2 (ja) 2002-01-15 2008-03-12 東芝電池株式会社 電池用絶縁リング挿入装置、及び電池の製造方法
US20030175497A1 (en) 2002-02-04 2003-09-18 3M Innovative Properties Company Flame retardant foams, articles including same and methods for the manufacture thereof
US20040123966A1 (en) 2002-04-11 2004-07-01 Altman Thomas E. Web smoothness improvement process
US6893473B2 (en) 2002-05-07 2005-05-17 Weyerhaeuser.Company Whitened fluff pulp
EP1508604B2 (en) 2002-05-24 2016-11-16 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microcapsule and use thereof
US6864297B2 (en) 2002-07-22 2005-03-08 University Of Southern California Composite foam made from polymer microspheres reinforced with long fibers
US7018509B2 (en) 2002-08-31 2006-03-28 International Paper Co. Elimination of alum yellowing of aspen thermomechanical pulp through pulp washing
CA2439354A1 (en) 2002-09-06 2004-03-06 Fort James Corporation Coated paperboards and paperboard containers having improved tactile and bulk insulation properties
RU2330911C2 (ru) 2002-09-13 2008-08-10 Интернэшнл Пейпер Компани Бумага с улучшенной жесткостью и пухлостью и способ для ее изготовления
US20040099391A1 (en) 2002-11-26 2004-05-27 Bob Ching Process for producing super high bulk, light weight coated papers
CN1417390A (zh) 2002-12-10 2003-05-14 扬州广瑞毛绒有限责任公司 九孔中空三维卷曲涤纶短纤的生产工艺
US7192989B2 (en) 2002-12-20 2007-03-20 Akzo Nobel N.V. Method and expansion device for preparing expanded thermoplastic microspheres
CN100429061C (zh) 2002-12-20 2008-10-29 阿克佐诺贝尔公司 用于预发泡热塑塑料微球的方法与装置
KR101081835B1 (ko) 2002-12-25 2011-11-09 마쓰모토유시세이야쿠 가부시키가이샤 열팽창성 마이크로캡슐, 발포성형물의 제조 방법 및발포성형물
US20040170836A1 (en) 2003-01-07 2004-09-02 The Procter & Gamble Company Hollow fiber fabrics
US20040249005A1 (en) 2003-02-11 2004-12-09 Anna Kron Microspheres
US7285576B2 (en) 2003-03-12 2007-10-23 3M Innovative Properties Co. Absorbent polymer compositions, medical articles, and methods
DE10326138A1 (de) 2003-06-06 2004-12-23 Basf Ag Verfahren zur Herstellung von expandierbaren thermoplastischen Elastomeren
JP4263539B2 (ja) 2003-06-16 2009-05-13 株式会社林技術研究所 熱可塑性樹脂の押出成形方法、押出成形物
CA2529139A1 (en) 2003-06-26 2004-12-29 Akzo Nobel N.V. Microspheres
KR100538690B1 (ko) 2003-07-16 2005-12-23 한국기계연구원 팽창 가능한 미세구와 고분자 세라믹 전구체로부터제조되는 고기공율 다공질 세라믹스 및 그 제조방법
JP4041056B2 (ja) 2003-11-13 2008-01-30 イチカワ株式会社 湿紙搬送用ベルト
CN1544737A (zh) 2003-11-17 2004-11-10 ���µ���֯��й������޹�˾ 一种弹性织带及其编织方法
JP3955612B2 (ja) 2003-11-19 2007-08-08 松本油脂製薬株式会社 熱膨張した微小球、その製造方法、熱膨張性微小球および用途
US20050221073A1 (en) 2004-04-02 2005-10-06 Der-Lin Liou Elastomeric foam article
US7361399B2 (en) 2004-05-24 2008-04-22 International Paper Company Gloss coated multifunctional printing paper
JP4095584B2 (ja) 2004-06-15 2008-06-04 本田技研工業株式会社 セラミック成形体及び金属基複合部材
US20060000569A1 (en) 2004-07-02 2006-01-05 Anna Kron Microspheres
CN101031686A (zh) 2004-07-14 2007-09-05 国际纸业公司 造纸方法
US20060042768A1 (en) 2004-08-27 2006-03-02 Brown James T Coated paper product and the method for producing the same
WO2006027805A1 (en) 2004-09-08 2006-03-16 Elachem S.R.L. Composition and process for the realization of low density expanded products
US20060060317A1 (en) 2004-09-20 2006-03-23 International Paper Company Method to reduce back trap offset print mottle
US20060099247A1 (en) 2004-11-10 2006-05-11 Byrd-Walsh, Llc. Liquid, gas and/or vapor phase delivery systems
US20060131362A1 (en) 2004-12-22 2006-06-22 Akzo Nobel N.V. Chemical composition and process
CA2601926C (en) 2005-02-19 2011-07-19 International Paper Company Pulp and paper having increased brightness
CN101137790A (zh) 2005-03-11 2008-03-05 国际纸业公司 含有可膨胀微球和离子化合物的组合物及其制造和使用方法
US8133353B2 (en) 2005-03-15 2012-03-13 Wausau Paper Corp. Creped paper product
ITVA20050025A1 (it) 2005-04-15 2006-10-16 Whirlpool Co Procedimento per la produzione di materiali polimerici espansi e materiale polimerico espanso ottenuto mediante tale procedimento
AR056478A1 (es) 2005-08-29 2007-10-10 Du Pont Suceptores de microondas con particulas poliméricas expandibles
WO2007032436A1 (ja) 2005-09-16 2007-03-22 Matsumoto Yushi-Seiyaku Co., Ltd. 熱膨張した微小球およびその製造方法
US7314661B2 (en) 2005-09-26 2008-01-01 Supreme Corq Llc Synthetic closures having improved physical properties
US7786181B2 (en) 2005-12-21 2010-08-31 Akzo Nobel N.V. Chemical composition and process
US8388809B2 (en) 2006-02-10 2013-03-05 Akzo Nobel N.V. Microspheres
US7956096B2 (en) 2006-02-10 2011-06-07 Akzo Nobel N.V. Microspheres
WO2007130690A2 (en) 2006-05-05 2007-11-15 International Paper Company Paperboard material with expanded polymeric microspheres
US20070287776A1 (en) 2006-06-08 2007-12-13 Akzo Nobel N.V. Microspheres
WO2010025383A1 (en) * 2008-08-28 2010-03-04 International Paper Company Expandable microspheres and methods of making and using the same
CN101392473B (zh) 2008-10-15 2010-10-06 岳阳纸业股份有限公司 一种高松厚度轻型纸及其抄造工艺
GB2468154B (en) 2009-02-27 2013-10-09 Ian Andrew Cheetham Displaying graphical information
US20130040121A1 (en) 2011-08-09 2013-02-14 International Paper Company Thermally Expandable Crimped Hollow Fibers and Methods of Using Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459671A (zh) * 2017-08-22 2017-12-12 成都新柯力化工科技有限公司 一种用于聚丙烯塑料发泡的改性膨胀微球及其制备方法
CN108531271A (zh) * 2018-04-11 2018-09-14 江苏捷达油品有限公司 一种节能自清洁型防锈乳化油及其制备方法和应用
CN108531271B (zh) * 2018-04-11 2021-01-22 江苏捷达油品有限公司 一种节能自清洁型防锈乳化油及其制备方法和应用

Also Published As

Publication number Publication date
WO2010025383A1 (en) 2010-03-04
US20130146241A1 (en) 2013-06-13
US20140174684A1 (en) 2014-06-26
US8679294B2 (en) 2014-03-25
EP2328947A1 (en) 2011-06-08
US8382945B2 (en) 2013-02-26
US20100051220A1 (en) 2010-03-04
CN104032622A (zh) 2014-09-10
CN102137878B (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
CN102137878B (zh) 可膨胀微球及其制造和使用方法
KR101329927B1 (ko) 팽창성 미소구체 및 이온성 화합물을 함유하는 조성물, 및 이의 제조 및 사용 방법
EP2622133B1 (en) Cellulose-reinforced high mineral content products and methods of making the same
EP3204554B1 (en) Method of increasing paper bulk strength by using a diallylamine acryamide copolymer in a size press formulation containing starch
CA2889747C (en) Method for treating a fibre stock for making of paper, board or the like and product
KR102546074B1 (ko) 입자 형태의 중합체 생성물 및 그의 용도
EP2920364B1 (en) Emulsification of alkenyl succinic anhydride with an amine-containing homopolymer or copolymer
CA2624451C (en) Temporary wet strength resin for paper applications
EP3204553B1 (en) Method of increasing paper strength
EP3449057B1 (en) Methods and compositions for enhancing sizing in papermaking process
AU2006227675A1 (en) Paper substrates useful in wallboard tape applications
CN111433408B (zh) 用于改善纸或板的生产中疏水性浆内施胶剂的保留的聚合物产品
CN107923127A (zh) 制备纸的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140618

Termination date: 20150828

EXPY Termination of patent right or utility model