CN102137754A - 碳纳米管加强的纳米复合物 - Google Patents

碳纳米管加强的纳米复合物 Download PDF

Info

Publication number
CN102137754A
CN102137754A CN2008801309960A CN200880130996A CN102137754A CN 102137754 A CN102137754 A CN 102137754A CN 2008801309960 A CN2008801309960 A CN 2008801309960A CN 200880130996 A CN200880130996 A CN 200880130996A CN 102137754 A CN102137754 A CN 102137754A
Authority
CN
China
Prior art keywords
cnt
carbon fiber
composite
epoxy
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008801309960A
Other languages
English (en)
Inventor
茅东升
Z·彦尼夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanotech Holdings Inc
Original Assignee
Applied Nanotech Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Nanotech Holdings Inc filed Critical Applied Nanotech Holdings Inc
Publication of CN102137754A publication Critical patent/CN102137754A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Abstract

碳纳米管(CNT)很长,所以在预浸渍体制备过程中它们不能在碳纤维之间贯穿,将它们缩短,避免它们被碳纤维滤出。这导致与纯环氧树脂相比,机械性质明显提高(挠曲强度和挠曲模量)。

Description

碳纳米管加强的纳米复合物
本申请是美国专利申请序列号11/757,272的部分继续,后者要求美国临时专利申请序列号60/819,319和60/810,394的优先权,所有这些申请都通过参考结合于此。本申请是美国专利申请序列号11/693,454的部分继续,后者要求美国临时申请序列号60/788,234和60/810,394的优先权,所有这些申请都通过参考结合于此。本申请是美国专利申请序列号11/695,877的部分继续,后者要求美国临时申请序列号60/789,300和60/810,394的优先权,所有这些申请都通过参考结合于此。
背景技术
自从在1991年首次观察到碳纳米管(CNT)以来,碳纳米管已经成为大量研究的重点(S.Iijima,“石墨碳的螺旋状微管(Helical microtubules of graphitic carbon)”,Nature 354,56(1991))。许多研究者已经报导了这种新形式碳的不寻常的物理和机械性质。单壁CNT(SWNT)的直径通常为0.5-1.5纳米,而双壁CNT(DWNT)的直径为1-3纳米,多壁CNT(MWNT)的直径为5-100纳米。碳纳米管独特的电子性质、优于金刚石的热传导性,以及劲度、强度和回弹性优于目前任何材料的机械性质,使得CNT给基础新材料体系的开发提供了极大的机会。特别是CNT杰出的机械性质(E>1.0TPa,拉伸强度为50GPa)以及低密度(1-2.0克/厘米3)使得人们对于CNT加强复合材料的开发非常感兴趣(Eric W.Wong,Paul E.Sheehan,Charles M.Lieber,″纳米棒和纳米管的纳米束机械性质:弹性,强度和韧性(Nanobeam Mechanics:Elasticity,Strength,and Toughness of Nanorods and Nanotubes)″,Science 277,1971(1997))。CNT是目前地球上已知最强的材料。与MWNT相比,SWNT和DWNT是更有前景的用于复合物的加强材料,这是因为它们具有更高的表面积和纵横比。表1列出了SWNT、DWNT和MWNT的表面积和纵横比。
表1
问题是CNT在生长时通常相当长(从数微米到超过100μm),而且最接近纤维之间的距离非常小,所以它们难以穿透到纤维加强塑料(FRP)的基质中。例如,对于单向碳纤维或织物加强的环氧复合物,碳纤维的含量约为60体积%,因此最接近的碳纤维之间的间距约为1微米(假设碳纤维的直径为7-8μm,密度约为1.75-1.80克/厘米3,环氧基质的密度为1.2克/厘米3)。用于制备复合物的玻璃纤维和其它类型纤维也是如此。CNT可加强聚合物树脂,以改进强度和模量之类的机械性质,但是CNT不能加强FRP,因为在FRP制备过程中它们被纤维滤出。
附图简要说明
图1说明依据本发明实施方式的纳米复合物的制备方法;
图2显示MWNT的SEM数字图像;
图3A-3C分别显示MWNT加强的环氧树脂、DWNT加强的环氧树脂和SWNT加强的环氧树脂的断裂表面的SEM数字图像;
图4A显示DWNT加强的CFRP的断裂表面的SEM数字图像,显示在碳纤维之间无DWNT贯穿;
图4B显示DWNT加强的CFRP的断裂表面的SEM数字图像,显示DWNT被滤出到预浸渍体的端层;
图5A-5C分别显示缩短的MWNT、DWNT和SWNT的SEM数字图像;和
图6A-6C分别显示MWNT加强的CFRP、DWNT加强的CFRP和SWNT加强的CFRP的断裂表面的SEM数字图像。
发明详述
短到2微米或比2微米更短的CNT能在纤维之间贯穿,因此明显提高FRP的机械性质。
在本发明的一个实施方式中,给出该实施方式的详细例子,从而更好地说明本发明。
环氧树脂,SWNT,DWNT,MWNT和硬化剂
从日本阿瑞斯洼公司(Arisawa Inc.,Japan)获得环氧树脂(双酚A)。还从该公司获得硬化剂(双氰胺),用于使环氧纳米复合物固化。从比利时的纳农塞公司(Nanocyl,Inc.,Belgium)获得SWNT、DWNT和MWNT。CNT可以纯化到>90%的碳含量。但是,原始CNT或用羧酸或胺之类的官能团官能化的CNT同样也可以。CNT的长度约为5-20μm。图2显示MWNT的SEM数字图像。除了环氧树脂外,也可以采用其它热固性材料,例如聚酰亚胺、酚醛塑料、氰酸酯和双马来酰亚胺,或热塑性材料,例如尼龙。
图1显示了制备依据本发明实施方式的环氧/CNT纳米复合物的工艺流程示意图。所有组分在70℃的真空烘箱中干燥16小时,以除去水分。对于各树脂,CNT的装载量可以为1.0重量%。将CNT放入丙酮中(101),在步骤102中用微流仪(可从微流公司(Microfluidics Co.)购得,型号为Y110)分散。微流仪使用高压物流,这些物流以超高的速率在精确限定的微米尺寸通道中碰撞。对产品的剪切力和冲击力的共同作用产生均匀的分散体。随后CNT/丙酮作为凝胶形成(103),结果使CNT良好地分散在丙酮溶剂中。但是,也可以采用其它方法,例如超声法或高剪切混合法。还可以使用表面活性剂将CNT分散在溶液中。然后在步骤104中,将环氧树脂加入CNT/丙酮凝胶,产生环氧/CNT/丙酮溶液105,然后在70℃的浴中超声处理1小时(步骤106),产生环氧/CNT/丙酮悬浮液107。在步骤108中,在70℃以1400转/分钟的速率搅拌混合处理半小时,将CNT进一步分散在环氧树脂中,产生环氧/CNT/丙酮凝胶109。然后在步骤110中,以4.5重量%的比率将硬化剂加入环氧/CNT/丙酮凝胶109中,在70℃搅拌1小时。在步骤112中,将所得凝胶111在70℃的真空烘箱中脱气48小时。然后将材料113在160℃固化2小时。为了测试材料113,随后将材料倒入特氟隆模中,在抛光处理115后表征样品的机械性质(挠曲强度和挠曲模量)。
上述树脂(环氧/CNT/硬化剂)在70℃脱气48小时后,也可以用于通过热熔法制备FRP。碳纤维(从托里工业公司(Toray Industries,Inc.)购得,型号T700-12k)可用于制备预浸渍体。“预浸渍体”(或“预浸渍材料”)是本领域已知的用于表示″预浸渍的″复合纤维的术语。这些纤维的形式可以是编织状的,或者是单向的。它们含有一定量的基质材料,用于在制造过程中将它们粘结在一起,并且将它们与其它组分粘结在一起。预浸渍体可存储在冷却区域中,因为活化大多在加热条件下才发生。因此,预浸渍体复合结构的形成通常需要烘箱或高压釜使其固化。
首先,将CNT加强的环氧树脂涂布在隔离纸上。然后,通过用CNT加强的环氧树脂薄膜浸渍单向碳纤维来得到预浸渍体。将碳纤维的体积控制在60%。预浸渍体的面积重量为180克/米2
纳米复合物的机械性质
表2显示了CNT加强的环氧树脂以及再用单向碳纤维加强的样品的机械性质(挠曲强度和挠曲模量)。可以看出,在树脂形式时,与纯(neat)环氧树脂相比,机械性质明显提高(挠曲强度的提高都在30%以上,挠曲模量的提高至少达到10%)。但是,在碳纤维加强的聚合物(CFRP)形式中,与纯环氧CFRP相比,CNT加强的CFRP的两种机械性质都没有提高。
表2
Figure BPA00001328494900041
然后,可使用扫描电子显微镜(SEM)来检测树脂和CFRP样品中CNT的分散性。在树脂形式中,所有CNT加强的环氧样品表现出极佳的CNT分散(参见图3A-3C)。但是,CNT被单向碳纤维滤出到预浸渍体的端层(参见DWNT加强的环氧CFRP的图4A-4B)。这是因为CNT很长,而最接近的碳纤维之间的间距只有约1微米,所以CNT不能在碳纤维之间贯穿。这也是树脂中CNT加强并不能转移到CFRP中的原因。
CNT的缩短以及环氧树脂和CFRP的加强
因为CNT很长,所以在预浸渍体制备过程中它们不能在碳纤维之间贯穿,必需将它们缩短,避免被碳纤维滤出。可将MWNT、DWNT和SWNT与浓酸混合物(HNO3∶H2SO4=3∶1)混合,在120℃搅拌4小时。使用滤纸(聚碳酸酯滤纸,具有2微米孔,以滤出酸)过滤CNT。然后,可用离子化水洗涤CNT 4-5次,在50℃的真空烘箱中干燥12小时。图5A-5C分别显示缩短到小于2微米长度的MWNT、DWNT和SWNT的SEM图像。
表3显示缩短的CNT加强的环氧树脂以及再用单向碳纤维加强的样品的机械性质(挠曲强度和挠曲模量)。可以看出,在树脂形式时,与纯环氧树脂相比,机械性质明显提高(挠曲强度的提高都在30%以上,挠曲模量的提高至少达到10%),与上述较长的CNT加强的环氧树脂类似。在CFRP形式中,与纯环氧CFRP相比,两种性质都提高。例如,与纯环氧CFRP相比,SWNT加强的CFRP的挠曲强度提高17%。
表3
Figure BPA00001328494900051
然后,可使用扫描电子显微镜(SEM)来检测CFRP样品中CNT的分散性。如图6A-6C所示,缩短的MWNT、DWNT和SWNT在碳纤维之间贯穿并良好分散。

Claims (7)

1.一种复合材料,其包含碳纳米管、聚合物和碳纤维,其中所述碳纳米管的平均长度小于2微米。
2.如权利要求1所述的复合材料,其特征在于,所述聚合物是热固性塑料或热塑料。
3.如权利要求2所述的复合材料,其特征在于,所述热固性塑料选自下组:聚酰亚胺、酚醛塑料、氰酸酯和双马来酰亚胺。
4.如权利要求1所述的复合材料,其特征在于,所述碳纳米管未官能化。
5.如权利要求1所述的复合材料,其特征在于,所述碳纳米管用羧酸官能团或胺官能团官能化。
6.如权利要求1所述的复合材料,其特征在于,所述碳纳米管用胺官能团官能化。
7.如权利要求1所述的复合材料,其特征在于,所述碳纤维是单向碳纤维。
CN2008801309960A 2008-07-25 2008-09-30 碳纳米管加强的纳米复合物 Pending CN102137754A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/180,359 US8283403B2 (en) 2006-03-31 2008-07-25 Carbon nanotube-reinforced nanocomposites
US12/180,359 2008-07-25
PCT/US2008/078306 WO2010011234A1 (en) 2008-07-25 2008-09-30 Carbon nanotube-reinforced nanocomposites

Publications (1)

Publication Number Publication Date
CN102137754A true CN102137754A (zh) 2011-07-27

Family

ID=41570534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801309960A Pending CN102137754A (zh) 2008-07-25 2008-09-30 碳纳米管加强的纳米复合物

Country Status (7)

Country Link
US (2) US8283403B2 (zh)
EP (1) EP2315661A4 (zh)
JP (1) JP5568553B2 (zh)
KR (1) KR20110048525A (zh)
CN (1) CN102137754A (zh)
TW (1) TW201005012A (zh)
WO (1) WO2010011234A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778424A (zh) * 2016-04-22 2016-07-20 武汉理工大学 一种碳纳米管、碳纤维协同改性环氧树脂复合材料及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454295B2 (en) 1998-12-17 2008-11-18 The Watereye Corporation Anti-terrorism water quality monitoring system
US9056783B2 (en) * 1998-12-17 2015-06-16 Hach Company System for monitoring discharges into a waste water collection system
US8958917B2 (en) * 1998-12-17 2015-02-17 Hach Company Method and system for remote monitoring of fluid quality and treatment
US20110125412A1 (en) * 1998-12-17 2011-05-26 Hach Company Remote monitoring of carbon nanotube sensor
US8920619B2 (en) 2003-03-19 2014-12-30 Hach Company Carbon nanotube sensor
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US20110027603A1 (en) * 2008-12-03 2011-02-03 Applied Nanotech, Inc. Enhancing Thermal Properties of Carbon Aluminum Composites
US20100310447A1 (en) * 2009-06-05 2010-12-09 Applied Nanotech, Inc. Carbon-containing matrix with functionalized pores
US20110147647A1 (en) * 2009-06-05 2011-06-23 Applied Nanotech, Inc. Carbon-containing matrix with additive that is not a metal
DE102010040040A1 (de) * 2010-08-31 2012-03-01 Sgl Carbon Se Verstärktes Epoxidharz
CN102120882B (zh) * 2011-01-12 2012-07-25 同济大学 碳纳米管及功能化碳纤维增强双马来酰亚胺树脂复合材料的制备方法
US10023702B2 (en) 2011-09-02 2018-07-17 Bae Systems Plc Curable monomers
WO2013133941A1 (en) * 2012-03-06 2013-09-12 Applied Nanotech Holdings, Inc. Carbon nanotube reinforced nanocomposites
US10370506B2 (en) 2012-03-29 2019-08-06 Mitsubishi Chemical Corporation Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and producing method
DE102012212290A1 (de) * 2012-07-13 2014-01-16 Siemens Aktiengesellschaft Polymere Faserverbunde modifiziert mit einwandigen Kohlenstoffnanoröhren
US10758936B2 (en) 2015-12-08 2020-09-01 The Boeing Company Carbon nanomaterial composite sheet and method for making the same
US9972420B2 (en) 2015-12-08 2018-05-15 The Boeing Company Carbon nanotube shielding for transmission cables
US10093041B2 (en) 2016-04-11 2018-10-09 The Boeing Company Conductive pre-impregnated composite sheet and method for making the same
US20180305866A1 (en) * 2017-04-20 2018-10-25 Otis Elevator Company Fire-resistant synthetic tension members
US11244775B2 (en) * 2018-12-11 2022-02-08 Universities Space Research Association Physically unclonable all-printed carbon nanotube network
US20220235191A1 (en) * 2019-06-25 2022-07-28 The Trustees Of Indiana University Fibers, prepreg materials, compositions, composite articles, and methods of producing composite articles
CN111320841B (zh) * 2020-01-08 2022-08-26 浙江宝旌炭材料有限公司 一种芳纶纤维/碳纳米管复合增强碳纤维树脂预浸料
CN112980026A (zh) * 2021-03-09 2021-06-18 山东非金属材料研究所 一种碳纳米管改性纤维增强热固性树脂基预浸料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150524A1 (en) * 1997-03-07 2002-10-17 William Marsh Rice University Methods for producing composites of single-wall carbon nanotubes and compositions thereof
US20060270790A1 (en) * 2005-05-26 2006-11-30 Brian Comeau Carbon-nanotube-reinforced composites for golf ball layers
CN101012329A (zh) * 2007-02-07 2007-08-08 黄德欢 一种碳纳米管/聚丙烯复合材料的制备方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846245B2 (ja) 1980-06-25 1983-10-15 日本黒鉛工業株式会社 表面潤滑性に優れたプラスチツク成形品の製造方法
US5096556A (en) * 1990-06-25 1992-03-17 Ppg Industries, Inc. Cationic microgels and their use in electrodeposition
US5565505A (en) * 1993-06-30 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
WO1995018165A1 (en) * 1993-12-27 1995-07-06 Henkel Corporation Self-dispersing curable epoxy resins and coatings
US5604269A (en) * 1993-12-27 1997-02-18 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5565506A (en) * 1994-03-01 1996-10-15 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US5854313A (en) * 1994-09-28 1998-12-29 Takeda Chemical Industries, Ltd. Fine particles of high heat resistant polymer and epoxy esters
US5750595A (en) * 1994-12-29 1998-05-12 Henkel Corporation Self-dispersing curable epoxy resin dispersions and coating compositions made therefrom
US6140045A (en) * 1995-03-10 2000-10-31 Meso Scale Technologies Multi-array, multi-specific electrochemiluminescence testing
US6066448A (en) * 1995-03-10 2000-05-23 Meso Sclae Technologies, Llc. Multi-array, multi-specific electrochemiluminescence testing
US5719201A (en) * 1995-03-30 1998-02-17 Woodbridge Foam Corporation Superabsorbent hydrophilic isocyanate-based foam and process for production thereof
US5569715A (en) * 1995-07-24 1996-10-29 Basf Corporation Process for obtaining hydrophobically modified emulsion polymers and polymers obtained thereby
US5969030A (en) * 1995-07-24 1999-10-19 Basf Corporation Waterborne coating compositions containing hydrophobically modified emulsions
EP0755946A3 (en) * 1995-07-24 1997-10-01 Basf Corp Method for the preparation of hydrophobic emulsion polymers, the polymers thus obtained and the aqueous coating compositions containing these polymers
US5760108A (en) * 1996-10-22 1998-06-02 Henkel Corporation Self-dispersing curable epoxy resin esters, dispersions thereof and coating compositions made therefrom
US5719210A (en) 1996-11-26 1998-02-17 Henkel Corporation Self-dispersing curable epoxy resins, dispersions made therewith, and coating compositions made therefrom
US6770583B2 (en) * 1997-03-14 2004-08-03 The United States Of America As Represented By The Secretary Of The Navy Transistion metal containing ceramic with metal nanoparticles
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
EP1818358A1 (en) * 1999-12-07 2007-08-15 William Marsh Rice University Oriented nanofibers embedded in polymer matrix
US7073201B2 (en) * 2001-09-21 2006-07-11 Denki Kagaku Kogyo Kabushiki Kaisha Aqueous Adhesive
JP3948217B2 (ja) * 2000-06-05 2007-07-25 昭和電工株式会社 導電性硬化性樹脂組成物、その硬化体、及びその成形体
AU2001273451A1 (en) * 2000-07-14 2002-01-30 Board Of Control Of Michigan Technological University Wood-based composite board and method of manufacture
US20030151030A1 (en) * 2000-11-22 2003-08-14 Gurin Michael H. Enhanced conductivity nanocomposites and method of use thereof
WO2002062899A1 (en) * 2001-02-05 2002-08-15 Toray Industries, Inc. Carbon fiber reinforced resin composition, molding material and molded article therefrom
CA2442273A1 (en) * 2001-03-26 2002-10-03 Eikos, Inc. Carbon nanotubes in structures and repair compositions
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US6808939B2 (en) * 2001-06-29 2004-10-26 Igen International, Inc. ECL labels having improved non-specific binding properties, methods of using and kits containing the same
US6680016B2 (en) * 2001-08-17 2004-01-20 University Of Dayton Method of forming conductive polymeric nanocomposite materials
US20050127329A1 (en) * 2001-08-17 2005-06-16 Chyi-Shan Wang Method of forming nanocomposite materials
US6524777B1 (en) * 2001-08-30 2003-02-25 Eastman Kodak Company Method of activating a protective layer on a photographic element employing an organic solvent in the wash solution
US20030099798A1 (en) * 2001-11-29 2003-05-29 George Eric R. Nanocomposite reinforced polymer blend and method for blending thereof
US6846345B1 (en) * 2001-12-10 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Synthesis of metal nanoparticle compositions from metallic and ethynyl compounds
JP2003201388A (ja) * 2002-01-08 2003-07-18 Toray Ind Inc エポキシ樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
US7162302B2 (en) * 2002-03-04 2007-01-09 Nanoset Llc Magnetically shielded assembly
US6864418B2 (en) * 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
JP4241070B2 (ja) 2002-02-12 2009-03-18 東レ株式会社 樹脂組成物およびその製造方法
JP4196567B2 (ja) 2002-02-14 2008-12-17 東レ株式会社 炭素繊維強化樹脂組成物、成形材料およびその成形品
US20040038251A1 (en) * 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
US7223811B2 (en) 2002-03-20 2007-05-29 Facultes Universitaires Notre-Dame De La Paix Nanocomposite: products, process for obtaining them and uses thereof
US7153903B1 (en) 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
ES2305513T3 (es) * 2002-07-15 2008-11-01 HENKEL AG & CO. KGAA Dispersion epoxi autodepositante modificada con monomero etilicamente modificado.
US7094367B1 (en) * 2002-08-13 2006-08-22 University Of Florida Transparent polymer carbon nanotube composites and process for preparation
JP4480368B2 (ja) 2002-09-13 2010-06-16 大阪瓦斯株式会社 ナノスケールカーボンを含有する樹脂組成物、導電性ないし制電性樹脂成形体、導電性ないし制電性樹脂コーティング組成物及び帯電防止膜及びこれらの製造法
JP3735651B2 (ja) * 2002-10-08 2006-01-18 独立行政法人 宇宙航空研究開発機構 カーボンナノファイバー分散樹脂繊維強化複合材料
US6800946B2 (en) * 2002-12-23 2004-10-05 Motorola, Inc Selective underfill for flip chips and flip-chip assemblies
JP4342929B2 (ja) 2002-12-26 2009-10-14 昭和電工株式会社 導電性組成物用炭素質材料及びその用途
DE10312494A1 (de) * 2003-03-20 2004-10-07 Association pour la Recherche et le Développement des Méthodes et Processus Industriels (Armines) Kohlenstoff-Nanostrukturen und Verfahren zur Herstellung von Nanoröhren, Nanofasern und Nanostrukturen auf Kohlenstoff-Basis
US7537803B2 (en) * 2003-04-08 2009-05-26 New Jersey Institute Of Technology Polymer coating/encapsulation of nanoparticles using a supercritical antisolvent process
US7300958B2 (en) * 2003-05-20 2007-11-27 Futaba Corporation Ultra-dispersed nanocarbon and method for preparing the same
EP2368932B1 (en) * 2003-06-16 2014-01-15 William Marsh Rice University Fabrication of carbon nanotube reinforced polymer composites
WO2005012171A2 (en) 2003-07-28 2005-02-10 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites
JP4772676B2 (ja) 2003-08-21 2011-09-14 レンセラール ポリテクニック インスティチュート 制御された電気特性を有するナノコンポジット
JP4403265B2 (ja) 2003-09-05 2010-01-27 国立大学法人信州大学 粉体の混合方法
US7262266B2 (en) * 2003-10-24 2007-08-28 William Marsh Rice University Copolymerization of polybenzazoles and other aromatic polymers with carbon nanotubes
US7005550B1 (en) * 2004-01-22 2006-02-28 The United States Of America As Represented By The Secretary Of The Air Force Arylcarbonylated vapor-grown carbon nanofibers
JP4546749B2 (ja) 2004-03-09 2010-09-15 帝人テクノプロダクツ株式会社 導電性芳香族ポリアミド樹脂組成物及びそれを用いてなる導電性芳香族ポリアミド樹脂成形体
US7862624B2 (en) * 2004-04-06 2011-01-04 Bao Tran Nano-particles on fabric or textile
US7296576B2 (en) * 2004-08-18 2007-11-20 Zyvex Performance Materials, Llc Polymers for enhanced solubility of nanomaterials, compositions and methods therefor
US7078683B2 (en) * 2004-10-22 2006-07-18 Agilent Technologies, Inc. Nanowire target support and method
JP4931168B2 (ja) 2005-01-06 2012-05-16 国立大学法人名古屋大学 高純度2層〜5層カーボンナノチューブの製造方法
US20060216508A1 (en) 2005-03-24 2006-09-28 3M Innovative Properties Company Polymer nanocomposite having surface modified nanoparticles and methods of preparing same
TWI267220B (en) * 2005-05-24 2006-11-21 Univ Tsinghua Manufacturing process of high gas permeability-resistance and heat-resistance conductive polymer composite bipolar plate for fuel cell
US20090039308A1 (en) * 2005-07-22 2009-02-12 Iouri Kuzmich Gounko Nanocomposite polymers
US20070023839A1 (en) * 2005-07-27 2007-02-01 International Business Machines Corporation Finfet gate formed of carbon nanotubes
JP2007126637A (ja) * 2005-10-03 2007-05-24 Toray Ind Inc 樹脂組成物、樹脂硬化物、プリプレグおよび繊維強化複合材料
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US20080152913A1 (en) * 2006-12-22 2008-06-26 3M Innovative Properties Company Method of making compositions including particles
US20100158193A1 (en) * 2008-12-22 2010-06-24 Bates Mark C Interventional Devices Formed Using Compositions Including Metal-Coated Nanotubes Dispersed In Polymers, And Methods Of Making And Using Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020150524A1 (en) * 1997-03-07 2002-10-17 William Marsh Rice University Methods for producing composites of single-wall carbon nanotubes and compositions thereof
US20060270790A1 (en) * 2005-05-26 2006-11-30 Brian Comeau Carbon-nanotube-reinforced composites for golf ball layers
CN101012329A (zh) * 2007-02-07 2007-08-08 黄德欢 一种碳纳米管/聚丙烯复合材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778424A (zh) * 2016-04-22 2016-07-20 武汉理工大学 一种碳纳米管、碳纤维协同改性环氧树脂复合材料及其制备方法
CN105778424B (zh) * 2016-04-22 2019-05-24 武汉理工大学 一种碳纳米管、碳纤维协同改性环氧树脂复合材料及其制备方法

Also Published As

Publication number Publication date
JP5568553B2 (ja) 2014-08-06
EP2315661A1 (en) 2011-05-04
KR20110048525A (ko) 2011-05-11
WO2010011234A1 (en) 2010-01-28
EP2315661A4 (en) 2013-01-09
US20130059947A1 (en) 2013-03-07
JP2011529113A (ja) 2011-12-01
US8283403B2 (en) 2012-10-09
US20090035570A1 (en) 2009-02-05
TW201005012A (en) 2010-02-01

Similar Documents

Publication Publication Date Title
CN102137754A (zh) 碳纳米管加强的纳米复合物
Goh et al. Directed and on‐demand alignment of carbon nanotube: a review toward 3D printing of electronics
Wang et al. Electrospun nanofiber: Emerging reinforcing filler in polymer matrix composite materials
Thostenson et al. Nanocomposites in context
Qian et al. Carbon nanotube-based hierarchical composites: a review
Wang et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites
Green et al. Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior
Qiu et al. Carbon nanotube integrated multifunctional multiscale composites
Warrier et al. The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix
Li et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer
Bilisik et al. Carbon nanotubes in carbon/epoxy multiscale textile preform composites: A review
Jiménez-Suárez et al. Influence of the functionalization of carbon nanotubes on calendering dispersion effectiveness in a low viscosity resin for VARIM processes
CN104277421A (zh) 一种多组元改性碳纤维增强环氧树脂复合材料的制备方法
Zhang et al. Carbon and polymer nanofiber reinforcements in polymer matrix composites: processing and applications
Randjbaran et al. Reasons of Adding Carbon Nanotubes into Composite Systems-Review Paper.
Islam et al. Prospects and challenges of nanomaterial engineered prepregs for improving interlaminar properties of laminated composites––a review
Buyuknalcaci et al. Carbon nanotube-based nanocomposites for wind turbine applications
US9193837B1 (en) Reinforced nancomposites and method of producing the same
CA2647727A1 (en) Carbon nanotube-reinforced nanocomposites
US20220235191A1 (en) Fibers, prepreg materials, compositions, composite articles, and methods of producing composite articles
Farahani et al. Manufacturing composite beams reinforced with three-dimensionally patterned-oriented carbon nanotubes through microfluidic infiltration
Zeng et al. Tunable mechanical properties of MWCNT–glass fiber fabric reinforced epoxy composites by controlling MWCNTs dispersing conditions
Zeng et al. Effect of ultrasonic-assisted impregnation parameters on the preparation and interfacial properties of MWCNT/glass-fiber reinforced composites
Zanjani et al. Effect of nanomaterials/nanofibers on the structure and properties of fiber-reinforced composites
Kausar Poly (bisphenol A-co-epichlorohydrin) and Nanodiamonds/Poly (azo-pyridine)/Polyamide/Multi-walled Carbon Nanotube-based Nanofiber Nanocomposites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110727