CN101980760B - 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法 - Google Patents

使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法 Download PDF

Info

Publication number
CN101980760B
CN101980760B CN2009801110383A CN200980111038A CN101980760B CN 101980760 B CN101980760 B CN 101980760B CN 2009801110383 A CN2009801110383 A CN 2009801110383A CN 200980111038 A CN200980111038 A CN 200980111038A CN 101980760 B CN101980760 B CN 101980760B
Authority
CN
China
Prior art keywords
centrifugal compressor
compressor
motor
supply
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009801110383A
Other languages
English (en)
Other versions
CN101980760A (zh
Inventor
M·S·曼宁
J·斯莫拉雷克
A·阿布德瓦哈布
M·钱塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN101980760A publication Critical patent/CN101980760A/zh
Application granted granted Critical
Publication of CN101980760B publication Critical patent/CN101980760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

本发明提供了用于气体分离的系统和方法,其使用高速永磁变速电动机来使适用于变压吸附(PSA)或真空变压吸附(VPSA)过程中的离心式压缩机加速和减速。

Description

使用带有高速永磁电动机的离心式压缩机的PSA气体分离系统和方法
技术领域
本发明总体上涉及使用高速永磁电动机和离心式压缩机的气体分离方法和系统,所述电动机具有变频电动机转速控制器,离心式压缩机用于对这种系统内的吸附剂容器进行加压和/或抽空。
背景技术
把一种气体从与其它气体的混合物中分离出来是重要的工业过程。在这样的过程中,目的可能是获得富含特定气体的产品气体,或者是获得从特定气体中除去了不希望有的组分的产品。例如,存在工业规模的过程来分离空气以获得氮气、氧气和氩气以及用于空气预纯化。
更具体地说,可以利用吸附过程特别是变压吸附(PSA)型和真空变压吸附(VPSA)型的吸附过程来实现空气分离。在PSA和VPSA过程中,压缩空气被泵送经过吸附剂的固定床,该吸附剂对主要组分中的一种组分表现出吸附偏好,由此获得富含未被吸附(或较少被吸附)组分的流出产品流。与低温过程相比,用于空气分离的吸附过程需要相对简单的设备并且相对容易维护。然而,吸附过程的产品回收率通常比许多低温过程低。由于这个原因,对吸附过程的改进依然是重要目标。一种主要的改进方法是发现及开发出更好的吸附剂。一些这类吸附剂已经在给定的吸附过程中使循环时间变短。
持续存在对功率消耗较低的PSA和VPSA设备的需求。基本过程利用选择性吸附剂来除去气体混合物的至少一种成分,采用四个基本工序:(1)吸附、(2)减压、(3)吹扫、和(4)再加压。含有较易吸附成分和较不易吸附成分的气体混合物在预定(高)的吸附压力下经过能够选择性吸附较易吸附成分的至少一个吸附剂床。在此高压下离开吸附剂床的气流现在富含较不易吸附的成分,并且例如作为产品而被取走。当吸附剂床饱和吸附了容易吸附的成分时,此后将该吸附剂床减压到较低的解吸压力从而对容易吸附的成分进行解吸,然后使该气体从系统中排出。一些工艺可以包括另外的步骤,例如均衡化和产品加压。
常规的PSA和VPSA过程使用旋转型正排量式鼓风机进行吸附剂床中的气体加压或抽空。这些常规的旋转叶片鼓风机通常具有比离心式压缩机更低的效率和更高的维护费用,但是它们确实很好地适应了变压循环的振荡性质。图1示出VPSA循环的供给鼓风机压力需求的示例性压力变化曲线,图2示出VPSA循环的真空鼓风机压力需求的示例性压力变化曲线。旋转叶片鼓风机的涉及吸附过程的一个有吸引力的特征是功率消耗与系统压力需求成比例。鼓风机的理论功率消耗与系统压差成正比(即,在功率消耗与压力之间有线性关系)。这种对系统压力需求的线性功率响应,已使得旋转叶片鼓风机成为PSA和VPSA工业的备选压缩设备。然而,旋转叶片鼓风机会在系统中形成强烈的压力脉动。已知如果没有适当的缓减,来自旋转叶片鼓风机的压力脉动会引起对下游工艺设备的严重结构损坏。虽然脉动缓冲容器通常与旋转叶片鼓风机一起使用,但是它们并没有完全消除失谐(mismatch),并且在系统中一直存在着相当高的压力脉动水平。
在过去,已经为PSA和VPSA过程考虑了带有和不带有进口导叶(IGV)且带有变频驱动器(VFD)的定速离心式压缩机,这是因为与常规旋转叶片鼓风机相比它们有更高的效率。图3示出典型的常规离心式压缩机系统布置。通常需要带有润滑油系统11的变速箱10来把感应电动机(IM)12的低速转换成离心式压缩机1的高速,为了获得高效率,离心式压缩机需要以高速运转。为了在高度动态的变压循环中最有效地使用离心式压缩机,必须采用IGV、变速控制器或者这两者的组合。当PSA或VPSA循环压力偏离了定速离心式压缩机的设计压力条件时,级效率显著降低,尤其是在接近1的压力比下(壅塞)运行时。这导致在PSA或VPSA循环期间平均功率消耗增大以及压缩机总平均效率降低。然而,通过连续改变压缩机转速来匹配加压和抽空吸附剂床这两者的压头需求,理论上讲压缩机可以在从100%的设计转速到显著较低的转速下以它们的最高效率运行。现在功率消耗变得很小,因此相对于旋转叶片鼓风机而言,平均功率经济性和总循环效率得到显著改善。
但是,在过去不能成功应用这个技术。常规的带有和不带有IGV的定速离心式压缩机的使用并不理想,这是因为它们的有限工作范围。常规的变速离心式压缩机在使用IGV的情况下可具有改善的工作范围和改善的节能并且流量减小,但是不能迅速适应PSA或VPSA循环的瞬变流动状况(这归因于齿轮的大惯量和大的低速运转的IM转子)。
在现有技术中,已经为PSA和VPSA过程考虑了带有和不带有IGV且带有VFD的定速离心式压缩机。
2005年4月5日~7日的PWR2005 ASME Power会议论文集的A.Abdelwahab的《Design of A Moderate Speed-High Capacity CentrifugalCompressor with Application to PSA And VPSA Air SeparationProcesses(应用于PSA和VPSA空气分离过程的中速-大容量离心式压缩机的设计)》论述了使用带有进口导叶的中速直接联接的离心式压缩机的VPSA循环的基本原理。
近年来,PSA和VPSA过程已经出现了若干进步。这些进步中的一些包括:(a)顶吸附压力与底解吸压力的比值显著减小、和(b)循环时间的减少(通常小于一分钟)导致吸附剂存量的减少。影响PSA或VPSA工艺的总能量需求的重要因素是吸附压力与解吸压力的比值。供给空气压缩装置提供的床吸附期间的输送压力、以及抽空装置提供的解吸期间的吸气压力随着循环进程而持续变化。为了为例如此的循环实现尽可能最低的总功率消耗,希望供给压缩和抽空装置在大范围的压力比下以最高效率工作。
发明内容
本发明涉及高速永磁变速电动机在PSA或VPSA系统中的应用。通过允许系统装置以等于或超过当前PSA和VPSA系统和过程的循环时间(例如约30~35秒)的速率加速或减速,包含这种电动机的设计以最优效率运行。本发明更具体地说涉及气体分离方法和系统,例如PSA或VPSA系统,该系统具有其中容纳至少一个吸附剂床的至少一个容器。吸附剂床包括至少一种吸附剂材料。在一些实施例中,至少一个吸附剂床由至少一个供给压缩机循环地加压并且有时由至少一个真空压缩机进行抽空,所述至少一个供给压缩机或所述至少一个真空压缩机中的至少一个是由为变速运行而设计的相关联的高速永磁(PM)电动机所驱动的离心式压缩机。在这样的实施例中,不是离心式压缩机的压缩机可以是由感应电动机(IM)驱动的旋转叶片鼓风机。在本发明的一些实施例中,所述至少一个吸附剂床由被相关联的高速永磁变速电动机驱动的至少一个供给离心式压缩机循环地加压,并且由被相关联的高速永磁变速电动机驱动的至少一个真空离心式压缩机进行抽空。更具体地并且根据本发明,离心式供给压缩机和/或离心式真空压缩机由用于变速运行的直驱式高速永磁(PM)电动机所驱动,使得压缩机与高速永磁电动机的组合可以以当前PSA或VPSA系统和过程的短循环时间(例如,大约30秒)所要求的快速速率从低速加速到高速以及从高速减速到低速。
根据本发明的变速控制高速永磁电动机的使用,使得与常规感应电动机/变速箱系统相比在它们于PSA或VPSA过程中使离心式压缩机加速和减速的能力上有一个数量级的提高。使用根据本发明的高速永磁电动机允许消除对变速箱的需求,因此同样允许消除对润滑油系统的需求。因此可以将离心式压缩机支撑在无油轴承上。此外,在一些实施例中,由于消除了齿轮和轴承油摩擦损失、润滑油系统损失,并且提高了超前/滞后功率的能力,本发明所提出的驱动系统的效率预期会高出7个以上百分点。在一个假设的实例中,在对由感应电动机-变速箱装置与高速永磁变速电动机驱动的具有1250马力(HP)驱动系统的16″压缩机叶轮进行比较评估时,得出以下结论:(1)高速永磁(PM)电动机的转子极质量惯性矩约为感应电动机(IM)的1/6;(2)高速永磁电动机的转子惯量比感应电动机加上其相关联的变速箱(GB)系统的转子惯量低一个数量级以上;(3)永磁电动机和压缩机系统可以在大约2秒钟内从40%转速加速到全设计转速,然而感应电动机、变速箱和压缩机系统花费多一个数量级的时间(约31秒,这归因于系统之间显著的惯量差异);以及(4)关于减速,永磁电动机和压缩机系统可以在约2秒内从全设计转速减至40%转速。在这种情况下,预期最大制动功率与额定电动机功率相同。然而,如果需要更快地减速,那么可以通过如下文所述的动态制动来增加最大制动功率。通常用传统感应电动机系统不能实现当前PSA或VPSA系统的循环时间所需的快速减速,这归因于齿轮的大惯量和大的低速运转的感应电动机转子。
在本发明的优选实施例中,如本文中所论述,压缩机沿着最佳效率线运行。最佳效率线是在压缩机性能图上画出的线。如本文中所论述,压缩机性能图(各种转速下的压力比与质量流量/质量流量设计的关系曲线)由针对压缩机特定进口温度在各种转速下的等熵功系数而生成。最佳效率线代表与在不同的转速和工艺条件(压缩机进口压力、压缩机排出压力和压缩机进口温度)下压缩机工作曲线的全部最高效率点相对应的点的轨迹。通过沿着最佳效率线工作,就功率消耗而言,压缩机可以以其最大效率模式工作。性能图还可以采用由等熵功系数生成的查找表或参考表的形式。性能图和所得到的最佳效率线可以存储在可编程逻辑控制器(PLC)中并且与PSA和VPSA系统集成。
附图说明
为了对本发明及其优点有更完整的理解,应当参考下面的具体实施方式部分并且结合附图,其中:
图1是VPSA循环的供给鼓风机压力需求的示例性压力变化曲线的图示。
图2是VPSA循环的真空鼓风机压力需求的示例性压力变化曲线的图示。
图3是示出带有变速箱和感应电动机的离心式压缩机的示意图。
图4是示出根据本发明的带有直驱高速永磁变速电动机的离心式压缩机的示意图。
图5是示出根据本发明一个实施例的带有直驱高速永磁变速电动机和离心式压缩机的VPSA系统的示意图。
图6A是在不同压缩机马赫数下示例性压缩机等熵功系数与流量系数比(φ/φ设计)的关系曲线的图示。
图6B是通过对图6A中所使用压缩机的压缩机性能进行实验测量而获得的、在不同压缩机马赫数下示例性压缩机效率(η)与流量系数比(φ/φ )的关系曲线的图示。
图7是对应于特定进口温度的示例性压缩机性能图(各种转速下的压力比(PR)与质量流量/质量流量设计的关系曲线)的图示。
图8是在典型的VPSA循环上的示例性理论的-理想的供给压缩机响应的图示。
图9是在典型的VPSA循环上的示例性假设的-真实的供给压缩机响应的图示。
图10是在最低转速线处使用吸气节流阀的示例性压缩机性能图的图示。
具体实施方式
如上所述,本发明涉及高速永磁电动机在PSA或VPSA系统中的使用。本文所使用的关于永磁电动机的“高速”,是指永磁电动机能够在大于3600转/分钟的转速下工作。这种高速电动机的实际设计和转速能够根据要实施该永磁电动机所在的系统和过程而改变。本发明尤其涉及气体分离过程及系统,例如PSA或VPSA系统,该系统具有其中包含至少一个吸附剂床的至少一个容器。该吸附剂床包括至少一种吸附材料。在一些实施例中,所述至少一个吸附剂床由至少一个供给压缩机循环地加压,有时由至少一个真空压缩机进行抽空,所述至少一个供给压缩机或所述至少一个真空压缩机中的至少一个是由至少一个相关联的高速永磁(PM)变速电动机所驱动的离心式压缩机。在这样的实施例中,并非离心式压缩机的压缩机可以是由感应电动机(IM)驱动的旋转叶片鼓风机。在本发明的一些实施例中,所述至少一个吸附剂床由相关联的高速永磁电动机所驱动的至少一个供给离心式压缩机循环地加压,并且由相关联的高速永磁电动机所驱动的至少一个真空离心式压缩机进行抽空。更具体地,根据本发明,离心式供给压缩机和/或离心式真空压缩机由为变速工作而设计的相关联的直驱高速永磁(PM)电动机所驱动,使得压缩机与永磁电动机的组合可以以当前PSA或VPSA系统和过程的短循环时间(例如,大约30~35秒)所要求的快速速率,从低速加速到高速以及从高速减速到低速。因此本发明的装置使得压缩机能够响应于当前PSA和VPSA系统和过程的短循环时间特性。
亦如上文所论述,使用本发明的高速永磁电动机使得与常规感应电动机/变速箱系统相比在它们于PSA或VPSA过程中使离心式压缩机加速和减速的能力上有一个数量级的提高。使用本发明的永磁电动机可消除对变速箱的需求,因而同样可消除对润滑油系统的需求。因此可以将离心式压缩机支撑在无油轴承上。
本发明可以应用于气体分离过程和系统中,例如把气体(如空气)分离成氧气和氮气的PSA或VPSA过程,但不应被解释为限制性的。可以受益于使用本发明的压缩机-永磁电动机组合的其它气体分离过程,包括但不限于涉及气体(例如O2、N2、CO2、H2或氦气)回收的PSA和VPSA分离。
图4中示出适于根据本发明使用的示例性压缩机-直驱高速永磁变速电动机装置。该装置能够允许将离心式压缩机级用到PSA或VPSA循环中。更具体地,图4示出带有进口2和出口3的离心式压缩机1,进口2和出口3通向PSA或VPSA系统或自该系统中导出。如图4中进一步所示,离心式压缩机1附接到为变速运行而设计的高速永磁(PM)电动机4上,该电动机经由管路7电连接到变频驱动器5(VFD)。图4中的参考线6代表图3中的滑轨区域,主要因为除去了润滑油系统以及使用了尺寸小于感应电动机的永磁电动机所以不再需要该滑轨区域。
电动机4可以是为变速运行而设计的稀土高速永磁电动机或其它高速永磁电动机。这类电动机是市场上可买到的,具有高达约70,000转/分钟的工作转速。用于本发明的电动机的尺寸将视工艺类型和系统要求而变化。离心机的类型不应解释为限制性的。离心式压缩机1可以从能够在系统和工艺所需条件下运行的任何离心式压缩机中选择。变频驱动器(VFD)是已知的,并且它们是通过控制提供给电动机的电力频率来控制交流(AC)电动机转速的系统。
使用高速永磁变速电动机来驱动离心式压缩机,与常规感应电动机/变速箱系统相比,可在其于PSA或VPSA过程中使离心式压缩机加速和减速的能力上提供一个数量级的提高。此外,由于消除了齿轮和轴承油摩擦损失、润滑油系统损失,并且提高了超前/滞后功率的能力,预期本发明的驱动系统的效率高出7个以上的百分点。在一个假设的例子中,在对由感应电动机-变速箱装置与高速永磁变速电动机驱动时的具有1250HP驱动系统的16″压缩机叶轮进行比较评估时,得出以下结论:(1)永磁(PM)电动机的转子极质量惯性矩约为感应电动机(IM)的1/6;(2)高速永磁电动机的转子惯量比感应电动机加上其相关联的变速箱(GB)系统的转子惯量低一个数量级以上;(3)永磁电动机和压缩机系统可以在约2秒钟内从40%转度加速到全设计转速,然而感应电动机、变速箱和压缩机系统要花费多一个数量级的时间(大约31秒,这归因于系统之间显著的惯量差异);以及(4)在减速方面,永磁电动机和压缩机系统可以在2秒钟内从全设计转速减至40%的转速。在这种情况下,最大制动功率预期与额定电动机功率相同。
如果需要更快地减速,那么可以在需要快速停止的应用中用变频驱动器来获得动态制动(把能量供应给制动电阻)或者再生制动(把能量回馈到电力网中)。对永磁电动机系统可行的这种动态制动或再生制动的构思对于感应电动机系统则不可行,这归因于齿轮的大惯量以及大的低速运行的感应电动机转子。因此,当使用带有变频驱动器和感应电动机的齿轮传动离心式压缩机时,不能实现当前PSA和VPSA系统的短循环时间所需要的快速减速。
现在参见图5,图中示出根据本发明的一个实施例的VPSA系统。图5中所示的系统20包括供给压缩机22、吸附剂床单元40、和单级真空压缩机50,用以有效地产生以较低选择性被吸附的气体(例如,来自空气中的氧)。供给压缩机22和真空压缩机50中的至少一个是由高速永磁电动机所直接驱动的离心式压缩机。在优选实施例中,供给压缩机22和真空压缩机50都是由如本文所述的高速永磁电动机直接驱动。然而,应当认识到,在一些实施例中,供给压缩机22或真空压缩机50中只有一个可以由高速永磁电动机直接驱动。本领域技术人员亦应当认识到,对于PSA系统来说,真空鼓风机或压缩机并不像在VPSA系统中那样被使用。
再次参见图5,供给压缩机22包括单级离心式压缩机,该离心式压缩机由高速永磁电动机29直接驱动(即,无变速箱),具有用于吸入气体(如空气)的进口24,进口24引导加压气流经过供给空气后冷却器27然后经过排气歧管26流到相应的平行进口管路28、30。
相应的第一和第二加压控制阀32、34被铅封在(plumbed)相应管路的远端,以选择性地对吸附剂床单元40的相应部分进行加压。放气阀36连接到歧管26的中部,以选择性地使气流绕离床单元。通过可编程逻辑控制器(PLC)31根据与本发明方法的工艺步骤相对应的定时(timing)将这些阀排序。
再次参见图5,吸附剂床单元40包括双吸附剂床系统,具有相应底部42、44的床A和床B被布置在相应的第一和第二加压控制阀32、34的下游,呈交替平行布置。相应的顶部43、45提供用于连接产品供给机构60的方便接口,机构60包括单个产品稳压罐(surge tank)66。如上所述,根据本发明的替代系统可使用一个吸附剂床或两个以上的吸附剂床。
每个吸附剂床都被容纳在容器中,该容器优选为径流式类型的。径流式容器是已知的,并且包括气流的具有整体非对称截面的扩大的供给端。径流式容器适应大的气流范围,并且在气流方向上仅仅提供穿过吸附剂床的低压降(Dp)。径流式容器还为吸附剂床提供更均匀的流量分布,并且通常为受约束的吸附剂床提供扩大的进口面积。然而,应当注意的是,本发明中可以使用替代的流动容器,例如轴向床或水平床。
真空压缩机50被铅封到相应的第一减压控制阀52和第二减压控制阀54,这些阀连接到真空歧管56。这些阀以平行相对的关系被铅封到第一加压控制阀32和第二加压控制阀34。与加压阀相似,减压阀和放气阀也由PLC31排序。歧管终止于单级离心式真空压缩机50,压缩机50由为变速运行而设计的高速永磁电动机51所直接驱动,用于在根据本发明方法的预定循环步骤期间抽空相应的床A和床B。
正如可以从图5中认识到的,P1可以保持恒定(例如,在环境状态下),而P2将会响应于吸附剂床中的状态(在加压、减压期间以及在产品制造期间,P2可以变化或保持恒定)。当P2变化时,P2/P1的比值同样将发生变化。类似地,P4可以保持恒定(例如,在环境状态下),而P3将会响应于吸附剂床中的状态(在加压、减压期间以及在产品制造步骤期间,P3可以变化或保持不变)。当P3变化时,P4/P3的比值同样会发生变化。因此,供给压缩机与真空压缩机的压力比可以基于吸附剂床中的状态而变化或者保持恒定。给PLC31的有关压力比的反馈,可以允许压缩机运行转速进行适当调整。因此,通过连续改变压缩机转速来匹配加压和抽空吸附剂床的压头需求(head requirement,即压力比(PR),其由于加压和抽空吸附剂床而变化),压缩机可以在从100%设计转速到显著较低的转速下以接近它们的最高效率、优选地以它们的最高效率运行。这可以利用存储(即硬编码)在PLC中的信息、计算和性能图来实现,PLC然后发送信号给变频驱动器和相关联的永磁电动机。将会认识到,在图5中所示的用于制氧的示例性VPSA系统中,P4和P1能够处于或接近环境状态。
继续参见图5,产品供应机构60包括相应的第一产品出口阀62和第二产品出口阀64,它们布置在床A和B的相应顶部43、45的顶处,用以引导来自每个床的产品(例如氧气)流来吹扫另一个床、均衡另一个床中的压力、或者流到稳压罐66进行储存。介于稳压罐66与出口阀62、64之间的隔离阀68按照来自控制器的顺序指令与出口阀62、64协作,从而实现吹扫和/或均衡过程。
Smolarek等人的美国专利No.6,010,555中公开了对图5中所示VPSA系统的详细描述,该专利的全部内容通过引用并入本文。然而,在本发明中,美国专利No.6,010,555中所描述的旋转叶片鼓风机装置中的至少一个或这两个被由高速永磁变速电动机直接驱动的更高效的离心机所代替。优选地,美国专利No.6,010,555所描述的两个旋转叶片鼓风机都被更高效的离心机所代替,每个离心机由高速永磁变速电动机直接驱动。尽管美国专利No.6,010,555所描述的工艺条件可以保持类似于本发明,但是离心式压缩机的运行模式是非常不同的并在下文中加以解释。
图5中所示装置应当是示例性的,并且根据本发明可以实现各种其它装置(例如,一个容器或者两个以上的容器)。例如并且同时不应当解释为限制性的,可以使用本发明的压缩机-永磁电动机装置的其它系统包括例如在Smolarek等人的美国专利No.5,656,068、Baksh等人的美国专利申请公开No.2007/0095208、和Baksh等人的美国专利申请公开No.2008/0006151中所描述的那些。根据本发明,还可以使用其它替代的PSA或VPSA装置。
现在参见图6A,图中示出在不同机器马赫数下理想气体的示例性单级离心式压缩机的等熵功系数与流量系数比(φ/φ设计)的关系曲线。等熵功系数Q等熵是无量纲参数,并且可以按下式进行计算:
Figure BPA00001231605300101
(方程式1)
式中,Ti是进口温度,Cp是定压气体比热,γ等于Cp/Cv,其中Cv是定容气体比热,PR是级压力比,U尖端是按如下定义的压缩机叶轮片尖端速度:
Figure BPA00001231605300102
(方程式2)
式中,N是叶轮片的转速,单位为转/分钟,D是叶轮片的直径。机器马赫数M是无量纲参数且其定义为:
Figure BPA00001231605300103
(方程式3)
式中,R是理想气体定律常数。
流量系数φ是无量纲参数,其定义为:
φ = V s 2 π ND 3 (方程式4)
式中,Vs是压缩机吸气体积流率,其它所有术语均按上文定义。在方程式4中使用压缩机设计信息来确定φ设计
通过对压缩机性能的实验测量,而获得了图6A的在不同转速下压缩机等熵功系数(Q等熵)与流量系数比(φ/φ设计)的关系曲线、和图6B的在不同转速下效率(η)与流量系数比(φ/φ设计)的关系曲线。应当理解的是,可以使用工业标准来确定效率。为了说明如何使用这些曲线来使压缩机沿着其最佳效率线工作,首先从各种转速下针对压缩机特定进口温度的等熵功系数生成压缩机性能图(各种转速下的压力比与质量流量/质量流量设计的关系曲线)。
接着,利用来自图6B的信息在压缩机性能图上建立最佳效率线。它代表着与在不同转速和工艺条件下压缩机工作曲线的全部最高效率点相对应的点的轨迹。通过沿着这条线工作,就功率消耗而言,压缩机以其最大效率模式工作。这类性能图,连同它们的所得到的最佳效率线,能够在PSA或VPSA系统的PLC中以曲线或参考表的形式进行编程(即,硬编码)。
图7是示例性压缩机性能图的图示,其对应于特定进口温度(例如70°F)。如图7中所示的性能图族将针对压缩机在其进口处可能经历的温度而生成(基于供给压缩机的可变环境状态和真空压缩机的可变吸附剂床温度)。因此可以针对不同的进口温度生成类似的性能图。通过监测压缩机的进口压力和温度以及排出压力,适当的性能图可用于确定沿着压缩机最佳效率线运行所必需的压缩机转速。然而,存在远离性能图的最佳效率线的区域,在该区域中其效率显著低于旋转叶片鼓风机。因此,为了相对于旋转叶片鼓风机实现较高的效率,重要的是使离心式压缩机一直在其最佳效率线上或其附近运行。
理论上讲,离心式压缩机的效率可以比旋转叶片鼓风机的效率高15个点,但是这只是在把机器转速控制成基本满足(即,处于或接近)压头需求的情况下(即,遵循PSA或VPSA循环,并且在任何给定时间点都在其最佳效率下运转)。因此,根据本发明,变速运行的高速永磁电动机与离心式压缩机的共同使用,提供了这样的系统和过程,即该系统和过程不仅能够响应于当前PSA和VPSA系统和过程的短循环时间;而且这样的装置还使得过程效率与现有技术的旋转叶片鼓风机装置相比有显著提高。
下面的实例1和实例2是假设的例子,用于说明本发明。
实例1
图8是在典型的VPSA循环上的示例性理想供给压缩机响应的图示。例如,再次参见图5和图8,在VPSA循环中的任意时刻,温度T1、压力P1和P2、温度T2、以及压力P3和P4用典型的压力传感器或传送器进行测定,并且记录在设备的PLC31中。具体地并且为了说明的目的,着眼于在升压供给步骤期间的供给压缩机22(图8中的点A),控制系统用P2除以P1而计算出跨供给机的压力比(PR)。利用该计算出的压力比和进口温度T1,控制系统PLC31然后利用针对图7中的点A处所示的T1而生成的所得到的最佳效率线和压缩机性能图,来确定电动机/压缩机的运行速度(在这种情况下,电动机/压缩机的运行速度大约为67%的全速)。这个信息然后被传送给变频驱动器33,以指示压缩机22和电动机29以该转速运行。就离心式真空压缩机50和永磁电动机51而论,同样地完成类似的确定和传送。
实例2
在具有产品制造步骤的恒压供给期间(例如,见图8中的点B),进口温度T1以及用P2除以P1而获得的跨供给机的更新压力比作为输入,以便利用由在图7中的点B处所示的更新的T1而生成的最佳效率线以及压缩机性能图来确定电动机/压缩机的运行转速(100%全速)。然后这个信息被传送给变频驱动器33,以指示压缩机22和电动机29以该转速运行。就离心式真空压缩机50和永磁电动机51而论,同样地完成类似的确定和传送。
一般说来,跨压缩机的压力比会响应于系统压力变化而波动(例如,在吸附剂床的加压和抽空期间发生)。压缩机的转速连续地从100%的设计转速变化到显著较低的转速(例如,对于气动状态来说,40%是典型的低端),使得对于任何给定的压力比和进口温度,压缩机都是在其最佳效率点处运行。所得到的压缩机流率是由最佳效率曲线支配的响应。可以把为各种进口温度而生成的一系列通过实验确定的最佳效率线编程(即,硬编码)入PLC31中。亦如上所述,这样的信息亦可以以参考表的形式编程入PLC31中。
在设备运行期间,PLC31连续地监测进口温度,计算跨压缩机的压力比,从最佳效率线中选择对应于进口温度的适当运行转速,最后发送信号给变频驱动器33,该信号传送给其相应的永磁电动机29和供给离心式压缩机22。在典型的整个VPSA循环期间的理论-理想和假设-真实(即,实际上可实现的)供给机转速和压力比分别示于图8和图9。注意到,图9是针对假设真实过程。同时,PLC31可以使用进口温度T2以及压力P3和P4来利用编程入PLC31中的其自身的最佳效率线或参考表来确定最优真空压缩机转速。与供给机一样,PLC31可以发送另外的信号给变频驱动器53,变频驱动器53然后可以传送给其相应的永磁电动机51和真空离心式压缩机50。
通常,在很低的转速下,离心式压缩机的喘振裕度极大地减小。为了避免运行问题,压缩机的最低转速因此优选地保持在合理百分数的设计转速下,在此具体情况下为40%的设计转速。一旦压缩机达到此转速,电动机转速就固定,并且压缩机会沿着其特定的转速特性曲线(例如,如图7中所示在1.0与1.1的压力比之间)运行。
由为变速运行而设计的高速永磁电动机直接驱动的压缩机消除了压缩机-电动机系统中的大惯量(例如,齿轮和大的低速运转的感应电动机转子)分量,并且允许压缩机对PSA或VPSA循环要求的充分响应(例如,供给压缩机可以响应如图8和/或图9中所示出的曲线)。更具体地,本发明的装置从而允许压缩机响应于当前PSA和VPSA系统及过程的短循环时间特性。对于给定的马力,当高速永磁电动机和感应电动机中的任一个用来驱动离心式压缩机时,高速永磁电动机的转动惯量大致为可比感应电动机的约1/6。
继续参见图9,电动机的加速速率和减速速率(即,在100%的全速与40%的全速之间)分别为从点C到D的大约11秒和从点D到点E的大约6秒。如上所述,机器(例如由感应电动机驱动的离心式压缩机)不能以PSA或VPSA系统的短循环时间所要求的快速速率来加速或减速(即,这类机器不能快速适应循环的瞬变流动状况(这归因于齿轮的大惯量和大的低速运转的感应电动机转子))。相反,根据本发明,使用高速永磁电动机来驱动离心式压缩机,允许这类机器响应于当前系统的短循环时间和循环时间。
实施本发明的替代方法是将吸气节流阀与高速变速电动机结合使用。这样的吸气节流阀可以应用在PSA或VPSA系统中,例如应用在供给压缩机与进口之间(例如,在图5中,供给压缩机22的上游与进口24的下游)。吸气节流阀可以在最低运行转速下(即,40%的全速,出于与上述相同的原因)使用,以进一步降低压缩机的功率消耗。这是通过在40%的全速下运行时降低压缩机的进口密度因而降低质量流量来实现的。
图10是在最低转速线上使用吸气节流阀的示例性压缩机性能图的图示。例如,如图10中的点F处所示,一旦达到约1.1的压力比,吸气节流阀就会开始关闭,关闭量为PLC31中的预编程量,从而得到改进的调低工作范围,其具有比没有吸气节流阀的情况更低的功率消耗。
本发明的另一实施例包括一系统,该系统将离心式压缩机上的进口导叶(IGV)与高速电动机结合使用。可以在期望进行离心式压缩机的容量控制的时候,使用进口导叶。它们在机器内部。IGV可以在定速下使用或以变化的压缩机转速使用。
虽然已经参照某些优选实施例详细描述了本发明,但是本领域技术人员会认识到,在权利要求的精神和范围内还有其它实施例。

Claims (24)

1.一种气体分离系统,包括:
至少一个容器,其容纳包含至少一种吸附材料的至少一个吸附床;
至少一个供给离心式压缩机,其构造成由相关联的电动机驱动,所述相关联的电动机包括高速永磁变速电动机;以及
控制装置,用于接收所述系统中状态的数据信号并且响应于所述状态传送给驱动所述至少一个供给离心式压缩机的高速永磁电动机,使得所述至少一个供给离心式压缩机能够在指定转速下运行;并且
其中,所述至少一个吸附床构造成在运行期间进行循环加压和减压。
2.如权利要求1所述的系统,还包括由相关联的电动机驱动的至少一个第二供给压缩机,其中,所述至少一个第二供给压缩机是旋转叶片鼓风机并且所述相关联的电动机是感应电动机。
3.如权利要求1所述的系统,还包括由相关联的电动机驱动的至少一个真空压缩机,其中,所述至少一个真空压缩机是旋转叶片鼓风机并且所述相关联的电动机是感应电动机。
4.如权利要求1所述的系统,还包括至少一个真空离心式压缩机和相关联的高速永磁变速电动机。
5.如权利要求4所述的系统,还包括由相关联的电动机驱动的至少一个第二真空压缩机,其中,所述至少一个第二真空压缩机是旋转叶片鼓风机,并且所述相关联的电动机是感应电动机。
6.如权利要求4所述的系统,其特征在于,所述至少一个供给离心式压缩机的相关联的电动机与至少一个相关联的变频驱动器通信,并且所述至少一个相关联的变频驱动器与所述控制装置通信,并且其中,所述至少一个真空离心式压缩机的相关联的电动机与至少一个相关联的变频驱动器通信,并且所述至少一个相关联的变频驱动器与所述控制装置通信。
7.如权利要求1所述的系统,其特征在于,所述系统中的所述状态包括所述至少一个供给离心式压缩机的进口压力和出口压力、以及所述至少一个供给离心式压缩机的进口温度。
8.如权利要求7所述的系统,其特征在于,所述控制装置构造成确定所述至少一个供给离心式压缩机的压力比(出口压力/进口压力)。
9.如权利要求8所述的系统,其特征在于,所述控制装置在运行期间响应于所述至少一个供给离心式压缩机的压力比和进口温度,把要以之运行的转速传送给所述至少一个供给离心式压缩机的相关联的高速永磁电动机。
10.如权利要求9所述的系统,其特征在于,所述相关联的高速永磁电动机直接联接到所述至少一个供给离心式压缩机,使得所述至少一个供给离心式压缩机能够沿着预定效率线运行。
11.如权利要求10所述的系统,其特征在于,所述预定效率线是由与在不同转速和工艺条件下所述至少一个供给离心式压缩机的压缩机工作曲线的最高效率点相对应的点的轨迹所代表的最佳效率线。
12.如权利要求1所述的系统,其特征在于,所述系统包括用于回收从O2、N2、CO2、H2或氦气中选择的至少一种气体的变压吸附或真空变压吸附系统。
13.如权利要求1所述的系统,其特征在于,所述至少一个高速永磁电动机包括至少一个稀土高速永磁电动机。
14.一种气体分离方法,该方法包括:
用由相关联的高速永磁变速电动机驱动的至少一个供给离心式压缩机压缩供给气体;
把供给气体引入容纳包含至少一种吸附剂材料的至少一个吸附剂床的至少一个容器中,所述供给气体包括至少一种较不容易吸附的成分和至少一种较容易吸附的成分;
让所述气体通过所述至少一种吸附剂材料,使得所述较容易吸附的成分被所述至少一种吸附剂材料吸附;以及
抽出富含所述较不容易吸附成分的气体;并且
其中,在所述方法期间对所述至少一个吸附剂床进行循环加压和减压。
15.如权利要求14所述的方法,还包括使用控制装置监测所述方法,所述控制装置用于接收系统中状态的数据信号并且响应于所述状态传送给与所述至少一个供给离心式压缩机相关联的高速永磁电动机,使得所述至少一个供给离心式压缩机能够在指定转速下运行。
16.如权利要求14所述的方法,其特征在于,所述系统中的所述状态包括所述至少一个供给离心式压缩机的进口压力P1、出口压力P2和进口温度,并且其中,所述控制装置构造成确定所述至少一个供给离心式压缩机的压力比P2/P1
17.如权利要求16所述的方法,其特征在于,所述控制装置响应于所述至少一个供给离心式压缩机的压力比P2/P1和进口温度,把要以之运行的转速传送给与所述至少一个供给离心式压缩机相关联的高速永磁电动机。
18.如权利要求17所述的方法,其特征在于,与所述至少一个供给离心式压缩机相关联的高速永磁电动机直接联接到所述至少一个供给离心式压缩机,使得所述至少一个供给离心式压缩机能够沿着预定效率线运行。
19.如权利要求18所述的方法,其特征在于,所述方法包括具有至少两个吸附容器的变压吸附或真空变压吸附系统,每个容器中容纳包含至少一种吸附材料的至少一个吸附床。
20.如权利要求14所述的方法,其特征在于:
使用由相关联的高速永磁变速电动机驱动的至少一个真空离心式压缩机,抽出富含所述较容易吸附成分的气体。
21.如权利要求20所述的方法,还包括使用控制装置监测所述方法,所述控制装置用于接收所述系统中状态的数据信号并且响应于所述状态传送给与所述至少一个供给离心式压缩机相关联的高速永磁电动机,使得所述至少一个供给离心式压缩机能够在指定转速下运行,并且还包括使用控制装置监测所述方法,所述控制装置用于接收所述系统中状态的数据信号并且响应于所述状态传送给与所述至少一个真空离心式压缩机相关联的高速永磁电动机,使得所述至少一个真空离心式压缩机能够在指定转速下运行。
22.如权利要求21所述的方法,其特征在于,所述系统中的所述状态包括所述至少一个供给离心式压缩机的进口压力P1、出口压力P2和进口温度,并且其中,所述系统中的所述状态包括所述至少一个真空离心式压缩机的进口压力P3、出口压力P4和进口温度,并且其中,所述控制装置构造成确定所述至少一个供给离心式压缩机的压力比P2/P1,并且其中,所述控制装置构造成确定所述至少一个真空离心式压缩机的压力比P4/P3
23.如权利要求22所述的方法,其特征在于,所述控制装置响应于所述至少一个供给离心式压缩机的压力比P2/P1和进口温度,把要以之运行的转速传送给与所述至少一个供给离心式压缩机相关联的高速永磁电动机,并且其中,所述控制装置响应于所述至少一个真空离心式压缩机的压力比P4/P3和进口温度,把要以之运行的转速传送给与所述至少一个真空离心式压缩机相关联的高速永磁电动机。
24.如权利要求23所述的方法,其特征在于,与所述至少一个供给离心式压缩机相关联的高速永磁电动机直接联接到所述至少一个供给离心式压缩机,使得所述至少一个供给离心式压缩机能够沿着预定效率线运行,并且其中,与所述至少一个真空离心式压缩机相关联的高速永磁电动机直接联接到所述至少一个真空离心式压缩机,使得所述至少一个真空离心式压缩机能够沿着预定效率线运行并且其中,所述方法包括真空变压吸附方法。
CN2009801110383A 2008-03-27 2009-03-24 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法 Active CN101980760B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/056,887 US7785405B2 (en) 2008-03-27 2008-03-27 Systems and methods for gas separation using high-speed permanent magnet motors with centrifugal compressors
US12/056887 2008-03-27
PCT/US2009/038021 WO2009120654A1 (en) 2008-03-27 2009-03-24 System and methods for psa gas separation using centrifugal compressor with high-speed permanent magnet motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310453220.5A Division CN103521032A (zh) 2008-03-27 2009-03-24 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法

Publications (2)

Publication Number Publication Date
CN101980760A CN101980760A (zh) 2011-02-23
CN101980760B true CN101980760B (zh) 2013-11-06

Family

ID=40888079

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310453220.5A Pending CN103521032A (zh) 2008-03-27 2009-03-24 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法
CN2009801110383A Active CN101980760B (zh) 2008-03-27 2009-03-24 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310453220.5A Pending CN103521032A (zh) 2008-03-27 2009-03-24 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法

Country Status (9)

Country Link
US (1) US7785405B2 (zh)
EP (1) EP2285469B1 (zh)
KR (1) KR101541567B1 (zh)
CN (2) CN103521032A (zh)
BR (1) BRPI0909324B1 (zh)
CA (1) CA2719750C (zh)
ES (1) ES2529198T3 (zh)
MX (2) MX2010010632A (zh)
WO (1) WO2009120654A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521032A (zh) * 2008-03-27 2014-01-22 普莱克斯技术有限公司 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2702758C (en) 2007-11-12 2016-08-30 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
EP2276550A4 (en) 2008-04-30 2012-02-29 Exxonmobil Upstream Res Co METHOD AND APPARATUS FOR OIL ELIMINATION FROM UTILITY GAS STREAM
US20110194904A1 (en) * 2009-06-26 2011-08-11 Accessible Technologies, Inc. Controlled Inlet of Compressor for Pneumatic Conveying System
US9234517B2 (en) * 2009-10-26 2016-01-12 Harold Wells Associates, Inc. Pump control device, oil well with device and method
BE1019299A3 (nl) * 2010-04-20 2012-05-08 Atlas Copco Airpower Nv Wekwijze voor het aansturen van een compressor.
US8529665B2 (en) * 2010-05-12 2013-09-10 Praxair Technology, Inc. Systems and methods for gas separation using high-speed induction motors with centrifugal compressors
MY162263A (en) 2010-05-28 2017-05-31 Exxonmobil Upstream Res Co Integrated adsorber head and valve design and swing adsorption methods related thereto
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
WO2012118757A1 (en) 2011-03-01 2012-09-07 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
CA2824986C (en) 2011-03-01 2017-05-09 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
EP2680954B1 (en) 2011-03-01 2018-09-12 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by pressure swing adsorption and related apparatus and systems
EP2680949B1 (en) 2011-03-01 2017-09-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by pressure swing adsorption
AU2012223486A1 (en) 2011-03-01 2013-08-15 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
EA201391255A1 (ru) 2011-03-01 2014-02-28 Эксонмобил Апстрим Рисерч Компани Устройства и системы, имеющие компактную конфигурацию многочисленных слоев для цикловой адсорбции, и связанные с этим способы
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US8623118B2 (en) * 2011-06-24 2014-01-07 Praxair Technology, Inc. Cyclic adsorption process using centrifugal compressors
US8657918B2 (en) 2011-11-17 2014-02-25 Praxair Technology, Inc. Cyclic adsorption process using centrifugal machines
US9885508B2 (en) 2011-12-28 2018-02-06 Carrier Corporation Discharge pressure calculation from torque in an HVAC system
EP2628520B1 (de) * 2012-02-14 2015-08-12 ultra air gmbh Verfahren und Vorrichtung zur zyklischen Adsorption einer Komponente aus einem Ausgangsgas mit einem Verdichter mit variabler Leistung
US9702365B2 (en) 2012-05-31 2017-07-11 Praxair Technology, Inc. Anti-surge speed control
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US8968444B2 (en) 2013-02-07 2015-03-03 Praxair Technology, Inc. Cyclic adsorption process using pulsation controlled compressors
US9817408B2 (en) * 2013-07-30 2017-11-14 Trane International Inc. Vibration control for a variable speed cooling system
AU2015294518B2 (en) 2014-07-25 2019-06-27 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
WO2016076994A1 (en) 2014-11-11 2016-05-19 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
CA2970286C (en) 2014-12-10 2019-08-13 Exxonmobil Research And Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
EP3237091B1 (en) 2014-12-23 2021-08-04 ExxonMobil Upstream Research Company Structured adsorbent beds and methods of producing the same
CA2979870C (en) 2015-05-15 2019-12-03 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
WO2016186725A1 (en) 2015-05-15 2016-11-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA3001336A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having a plurality of valves
CA3003169A1 (en) 2015-10-27 2017-05-04 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto having actively-controlled feed poppet valves and passively controlled product valves
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CA3005448A1 (en) 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
CN108883358B (zh) 2016-03-18 2021-06-08 埃克森美孚上游研究公司 用于与其相关的变吸附工艺的装置和系统
EP3463620A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
EP3463619A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
AU2017320837B2 (en) 2016-09-01 2020-07-23 Exxonmobil Upstream Research Company Swing adsorption processes for removing water using 3A zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
RU2720940C1 (ru) 2016-12-21 2020-05-14 Эксонмобил Апстрим Рисерч Компани Самоподдерживающиеся структуры, имеющие активные материалы
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10799827B2 (en) 2017-04-11 2020-10-13 Praxair Technology, Inc. Mid-range purity oxygen by adsorption
US10989210B2 (en) 2017-07-10 2021-04-27 Praxair Technology, Inc. Anti-surge speed control for two or more compressors
CN109898095B (zh) * 2017-12-07 2021-02-19 中国科学院大连化学物理研究所 一种电极与隔膜零间距的电化学制备过氧化氢装置及其使用方法
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
CN108678973A (zh) * 2018-05-04 2018-10-19 重庆冲能动力机械有限公司 一种用于vpsa气体分离系统的高速直驱双级离心真空泵机组
CN108644132A (zh) * 2018-05-04 2018-10-12 重庆冲能动力机械有限公司 一种用于vpsa气体分离系统的高速直驱双级离心鼓风机头组
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
CN109647131B (zh) * 2019-02-27 2022-02-11 大连大学 一种脉动射流变压吸附净化气体的装置
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
WO2021071755A1 (en) 2019-10-07 2021-04-15 Exxonmobil Upstream Research Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho
WO2021096752A1 (en) * 2019-11-15 2021-05-20 Praxair Technology, Inc. Energy efficient vesa process with direct drive high speed centrifugal compressors
KR20220011181A (ko) * 2019-11-15 2022-01-27 프랙스에어 테크놀로지, 인코포레이티드 직접 구동 고속 원심 압축기를 갖는 에너지 효율적 vpsa 시스템
CN111561460A (zh) * 2020-07-14 2020-08-21 天津飞旋科技有限公司 一种vpsa用离心压缩泵的变频控制系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555749A (en) * 1995-04-28 1996-09-17 Air Products And Chemicals, Inc. Use of centrifugal compressors in adsorptive systems
CN1850319A (zh) * 2006-03-22 2006-10-25 四川省达科特化工科技有限公司 一种变压吸附法回收低分压气体的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US275114A (en) 1883-04-03 John f
GB2003742B (en) 1977-08-10 1982-01-27 Boc Ltd Fluid supply system including a pressure-swing adsorption plant
US4197096A (en) * 1978-08-22 1980-04-08 Boc Limited Fluid supply system including a pressure-swing adsorption plant
US5123080A (en) * 1987-03-20 1992-06-16 Ranco Incorporated Of Delaware Compressor drive system
US4893479A (en) * 1987-03-20 1990-01-16 Ranco Electronics Division Compressor drive system
US4867766A (en) * 1988-09-12 1989-09-19 Union Carbide Corporation Oxygen enriched air system
USRE34434E (en) * 1988-09-12 1993-11-09 Praxair Technology, Inc. Oxygen enriched air system
JPH05502076A (ja) * 1989-12-20 1993-04-15 アライド・シグナル・インコーポレーテツド 可変速ターボ真空ポンプ
JPH0433584A (ja) * 1990-05-30 1992-02-04 Toshiba Corp すべり検出装置およびこれを用いた圧縮機の制御装置
US5258056A (en) * 1991-09-27 1993-11-02 The Boc Group, Inc. PSA system with product turndown and purity control
FR2684023B1 (fr) * 1991-11-26 1994-01-14 Air Liquide Procede de production d'un gaz a teneur substantielle en oxygene.
US5203889A (en) * 1992-03-05 1993-04-20 General Signal Corporation Process and system for fractionating gaseous mixtures
US5656068A (en) * 1996-02-29 1997-08-12 Praxair Technology, Inc. Large capacity vacuum pressure swing adsorption process and system
US6010555A (en) * 1997-11-04 2000-01-04 Praxair Technology, Inc. Vacuum pressure swing adsorption system and method
JP4016370B2 (ja) * 1999-03-29 2007-12-05 株式会社デンソー 電磁弁
KR100530757B1 (ko) * 1999-07-15 2005-11-23 삼성테크윈 주식회사 터보식 압축기
FR2800297B1 (fr) * 1999-10-28 2001-12-28 Air Liquide Installation de traitement cyclique de fluide par adsorption avec vannes a etancheite amelioree
US6691702B2 (en) * 2000-08-03 2004-02-17 Sequal Technologies, Inc. Portable oxygen concentration system and method of using the same
KR20020062031A (ko) * 2001-01-19 2002-07-25 엘지전자주식회사 터보 압축기
CN100351516C (zh) * 2001-04-23 2007-11-28 安内斯特太平洋有限公司 多级离心压缩机
US6997686B2 (en) * 2002-12-19 2006-02-14 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
GB0313143D0 (en) * 2003-06-07 2003-07-09 Boc Group Plc Sewage aeration
US7179324B2 (en) * 2004-05-19 2007-02-20 Praxair Technology, Inc. Continuous feed three-bed pressure swing adsorption system
US7402287B2 (en) * 2004-12-17 2008-07-22 Texaco Inc. Apparatus and methods for producing hydrogen
US7892304B2 (en) * 2004-12-17 2011-02-22 Texaco Inc. Apparatus and method for controlling compressor motor speed in a hydrogen generator
US7396387B2 (en) * 2005-11-01 2008-07-08 Praxair Technology, Inc. Pressure swing adsorption process for large capacity oxygen production
US7811068B2 (en) * 2005-11-16 2010-10-12 General Electric Company Methods and apparatus for transporting natural gas through a pipeline
EP1984628B1 (en) * 2006-02-13 2014-12-17 Ingersoll-Rand Company Multi-stage compression system and method of operating the same
US7763100B2 (en) * 2006-07-06 2010-07-27 Praxair Technology, Inc. Vacuum pressure swing adsorption process and enhanced oxygen recovery
US7785405B2 (en) * 2008-03-27 2010-08-31 Praxair Technology, Inc. Systems and methods for gas separation using high-speed permanent magnet motors with centrifugal compressors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555749A (en) * 1995-04-28 1996-09-17 Air Products And Chemicals, Inc. Use of centrifugal compressors in adsorptive systems
CN1850319A (zh) * 2006-03-22 2006-10-25 四川省达科特化工科技有限公司 一种变压吸附法回收低分压气体的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521032A (zh) * 2008-03-27 2014-01-22 普莱克斯技术有限公司 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法

Also Published As

Publication number Publication date
EP2285469A1 (en) 2011-02-23
US20090241771A1 (en) 2009-10-01
CN101980760A (zh) 2011-02-23
CN103521032A (zh) 2014-01-22
BRPI0909324A2 (pt) 2015-08-18
KR20110000640A (ko) 2011-01-04
MX2010010632A (es) 2010-12-15
US7785405B2 (en) 2010-08-31
ES2529198T3 (es) 2015-02-17
WO2009120654A1 (en) 2009-10-01
BRPI0909324B1 (pt) 2019-08-27
EP2285469B1 (en) 2015-01-07
MX350590B (es) 2017-09-11
CA2719750C (en) 2013-09-24
KR101541567B1 (ko) 2015-08-03
CA2719750A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
CN101980760B (zh) 使用带有高速永磁电动机的离心式压缩机的psa气体分离系统和方法
US8529665B2 (en) Systems and methods for gas separation using high-speed induction motors with centrifugal compressors
CN107249714B (zh) 利用滑动的反转风机吸附
US8728215B2 (en) Cyclic adsorption process using centrifugal machines
KR102016183B1 (ko) 원심 압축기를 사용하는 주기성 흡착 공정
AU2020383323B2 (en) Energy efficient VPSA system with direct drive high speed centrifugal compressors
KR20220093220A (ko) 직접 구동 고속 원심 압축기를 사용하는 에너지 효율적인 vpsa 시스템
US8968444B2 (en) Cyclic adsorption process using pulsation controlled compressors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant