CN101735795A - 生产光敏性微粒的方法,其水性组合物和用其制备的制品 - Google Patents

生产光敏性微粒的方法,其水性组合物和用其制备的制品 Download PDF

Info

Publication number
CN101735795A
CN101735795A CN200910222808A CN200910222808A CN101735795A CN 101735795 A CN101735795 A CN 101735795A CN 200910222808 A CN200910222808 A CN 200910222808A CN 200910222808 A CN200910222808 A CN 200910222808A CN 101735795 A CN101735795 A CN 101735795A
Authority
CN
China
Prior art keywords
photochromic
particulate
limiting embodiments
basically
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910222808A
Other languages
English (en)
Other versions
CN101735795B (zh
Inventor
D·L·费勒
F·R·布莱克本
K·J·斯图尔特
A·乔普拉
J·P·科尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transitions Optical Inc
Original Assignee
Transitions Optical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transitions Optical Inc filed Critical Transitions Optical Inc
Publication of CN101735795A publication Critical patent/CN101735795A/zh
Application granted granted Critical
Publication of CN101735795B publication Critical patent/CN101735795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers

Abstract

描述的是有效量的至少一种光敏材料和至少一种可聚合组分的水性组合物,该可聚合组分适合至少部分地形成光敏性微粒或至少部分地交联的光敏性聚合物微粒。该光敏性聚合物微粒是由整个表面域和内部域组成,其中表面域和/或内部域的至少一种是光敏性的。也描述的是此类微粒的水性分散体,生产该微粒的方法以及引入了光敏性聚合物微粒的光敏性制品如光学元件。

Description

生产光敏性微粒的方法,其水性组合物和用其制备的制品
本申请是2005年4月21日提交的中国专利申请200580028124X的分案申请。
发明背景
本发明涉及用于将光敏性微粒形成为光敏性聚合物微粒的水性组合物和生产此类微粒的方法。本发明还涉及光敏性聚合物微粒的水性分散体以及包括该光敏性聚合物微粒的制品。
光敏材料表现出对于电磁辐射的响应,该辐射包括红外辐射、可见辐射和紫外线辐射和由受激发射或激光的光放大。这一响应能够是下述类型的发光,其中可见辐射由曝光之后的光敏材料发射,例如,荧光和磷光物质;其中穿过该材料的电磁辐射在波长上有变化,例如,非线性的光学材料;或其中在颜色上有可逆变化,例如,光致变色材料。
还有利用光敏材料所表现出的现象的产品,例如,光学元件如光存储元件和显示元件。虽然采用了表现出光敏性能的核/壳微粒的产品是已知的,但是仍希望有一种其中微粒中的光敏材料的性能能够受到控制的产品。
发明详述
如在说明书中和所附权利要求书中所使用,单数形式“一”,“一个”和“一种”包括复数指代物,除非明确地限于一个指代物。
为了本说明书的目的,除非另有说明,否则表达成分的量、反应条件和在说明书和权利要求书中使用的其它参数的所有数值应被理解为在一切情况下被术语“约”修饰。因此,除非有相反指示,否则在下面的说明书和所附权利要求书中给出的数值参数是根据本发明所设法获得的所需性能来变化的近似值。至少,并且不试图将等同原则的应用限于权利要求的范围,各数值参数应该至少按照报道的有效数字的数值并采用寻常的舍入技术来解释。
在这里的全部数值范围包括全部数值和所列举的数值范围之内的全部数值的各个范围。尽管表达本发明的宽范围的数值范围和参数是近似的,但是在特定实施例中给出的数值应尽可能准确地报道。然而,任何数值固有地含有从在它们各自的试验测量中发现的标准偏差所产生的某些误差。
本发明包括多种非限制性实施方案。一种此类实施方案是水性组合物,它包括有效量的至少一种光敏材料和至少一种可聚合组分,该可聚合组分包括至少一种基本上亲水性单体和至少一种基本上疏水性单体,该亲水性单体和疏水性单体适于相结合并且至少部分地形成可聚合组分的微粒,其中光敏材料与该微粒缔合。该术语“单体”包括单个的单体单元和包含几个单体单元的低聚物。另一个非限制性实施方案提供水性组合物,它包括有效量的至少一种光敏材料和至少一种可聚合组分,该可聚合组分包括至少一种亲水性官能团和至少一种疏水性官能团,该光敏材料和可聚合组分适于形成至少部分地交联的光敏性聚合物微粒。再一个非限制性实施方案提供水性组合物,其中该光敏材料是光致变色材料。在又一个非限制性实施方案中,该可聚合组分包括至少一种基本上亲水性预聚物,至少一种基本上疏水性预聚物,和有效量的包括至少一个可聚合的基团的至少一种有机光致变色材料,该可聚合组分适于形成至少部分地交联的光致变色聚合物微粒。
根据再一个非限制性实施方案,该可聚合组分能够再进一步包括可与基本上亲水性单体和基本上疏水性单体之中的至少一种进行共聚合的材料,该材料以下称为“可共聚的材料”。另外,该可聚合组分能够具有适于与交联材料反应的官能团、与主体材料相容和具有与以下所述的光敏性聚合物微粒相关性能的官能团。
该短语“适于相结合和至少部分地形成可聚合组分的微粒,其中光敏材料与该微粒相缔合”是指可聚合组分适合于自组装成至少部分地形成的微粒。微粒的自组装归因于与构成该可聚合组分的基本上亲水性单体的亲水性官能团和基本上疏水性单体的疏水性官能团相关的在亲水性和疏水性上的差异。该光敏材料能够通过对亲水性光敏材料、疏水性光敏材料或具有允许它与所得微粒或该可聚合组分发生化学或物理缔合的另一种性能的光敏材料进行选择,来与该微粒相缔合。
在微粒的形成之后,它们典型地进行聚合。该短语“至少部分地聚合和形成至少部分地交联的聚合物微粒”是指下述的可聚合组分,其中部分至全部的这些单体进行反应和相结合而形成链状聚合物材料以及部分至全部的这些链状聚合物材料上的反应活性基团进行反应和交联形成聚合物网络,其中部分至全部的链发生互联。上述反应活性基团是能够进行本领域技术人员已知的聚合反应的化学基团。此类可聚合的基团的非限制性例子包括甲基丙烯酰氧基、丙烯酰氧基、乙烯基、烯丙基、羧基、氨基、巯基、环氧基、羟基和异氰酸酯基。
根据一个非限制性的实施方案,本发明的水性组合物包括含量能够广泛地变化的水。在一个非限制性例子中,水的量能够是30wt%-低于100wt%,包括在这一范围内的全部数值和全部数值的范围,如前面对于在本文列举的全部数值范围所规定的那样。在另一个非限制性实施方案中,该水性组合物能够包括含量能够在大范围内变化的有机溶剂,例如低于1wt%的正值用量到70wt%。水和有机溶剂的重量百分数以水或溶剂的重量除以水和有机溶剂(如果存在)的总重量再乘以100为基础计。
能够包括在水性组合物中的有机溶剂的类型能够在宽范围内变化。在一个非限制性的实施方案中,该水性组合物能够包括极性溶剂,如醇,和非极性溶剂如烃液体。能够包括在水性组合物中的有机溶剂的非限制性例子包括丙二醇单丁基醚,乙二醇单己基醚,乙二醇单丁基醚,二甘醇丁基醚,正丁醇,异丙醇,苄醇,石油溶剂油,N-甲基吡咯烷酮,甲苯,TEXANOL溶剂(据报道它是2,2,4-三甲基-1,1,3-戊二醇单异丁酸酯,可从Eastman Chemical Co.商购),和此类溶剂的混合物。在另一非限制性实施方案中,有机溶剂的使用能够协助形成该交联的聚合物微粒的过程。如果需要的话,部分或全部的该有机溶剂能够通过本领域技术人员已知的方法从水性组合物中除去,例如,利用共沸蒸馏或在低于40℃的温度下的减压蒸馏。
在另一个非限制性实施方案中,辅助材料也可以引入该水性组合物中,例如,协助加工该可聚合组分的或为所得微粒赋予所需特性的常规成分。此类成分的非限制性例子包括流变性能控制剂、表面活性剂,引发剂、催化剂、固化抑制剂、还原剂、酸、碱、防腐剂、交联材料、自由基给体、自由基清除剂、稳定剂如紫外线和热稳定剂、和粘合促进剂,如有机官能化硅烷、硅氧烷、钛酸酯和锆酸酯,这些辅助材料为本领域技术人员所已知。
如上所述,该水性组合物包括至少一种可聚合组分,该可聚合组分包括至少一种基本上亲水性单体和至少一种基本上疏水性单体。在这里使用的术语“基本上亲水性单体”和“基本上疏水性单体”是指将一种与另一种相比较的这些单体的相对亲水性或疏水性特征。该可聚合组分的基本上亲水性单体比基本上疏水性单体更具亲水性。相应地,该可聚合组分的基本上疏水性单体比该基本上亲水性单体更具疏水性。测定材料的亲水性/疏水性特征的一种方法是众所周知的亲水亲油平衡(HLB)值。HLB值一般是1-20,其中1是油溶性的材料且20是水溶性的材料。通过使用这一体系,在这里指定为基本上疏水性的材料将显示出低于10的HLB,而指定为基本上亲水性的材料将显示出大于10的HLB。
基本上亲水性单体与基本上疏水性单体的比例能够在宽范围内变化。在一个非限制性的实施方案中,在可聚合组分中基本上亲水性单体和基本上疏水性单体的重量百分数能够在2-98wt%范围内变化,基于100%的总的可聚合组分固体重量。基本上亲水性单体与基本上疏水性单体的比例的非限制性例子是20∶80和50∶50。
在另一个非限制性实施方案中,该基本上亲水性单体是与水基本上相容的、对水有亲和性、和/或能够通过使用常规混合设备至少部分地溶于水中。用于本发明的可聚合的单体组分中的基本上亲水性单体能够包括为本领域技术人员已知的任何亲水性单体。此类亲水性单体的非限制性例子包括包含亲水性官能团的单体,如:酸-官能团;羟基-官能团;腈-官能团;氨基-官能团;酰胺-官能团;氨基甲酸酯-官能团;离子-官能团如季铵或锍基团;或此类官能团的混合。
在更进一步的非限制性实施方案中,用于制备可聚合组分的单体的亲水性和疏水性的程度能够加以变化,这是本领域技术人员已知的。可聚合组分的基本上疏水性单体能够转化成基本上亲水性单体。在一个非限制性的实施方案中,在可聚合组分的疏水性单体上的异氰酸酯基团能够通过异氰酸酯基团与有机官能化硅烷如氨丙基三乙氧基甲硅烷进行反应而被硅氧烷基团官能化。通过分散在水中,该可水解的基团,例如,烷氧基硅烷,至少部分地水解形成亲水性硅烷醇基团。如果与醇反应或本身反应,这些亲水基团能够回复到疏水基。相同的官能化过程能够通过聚合和交联的光敏性聚合物微粒上的可用的异氰酸酯基团来进行。
用于该疏水性到亲水性转化过程的合适有机基官能化硅烷的非限制性例子包括:(3-丙烯酰氧基丙基)二甲基甲氧基硅烷,丙烯酰氧基丙基三乙氧基硅烷,烯丙基三乙氧基硅烷,4-氨基丁基三乙氧基硅烷,羧甲基三乙氧基硅烷,环氧基丁基三甲氧基硅烷,环氧丙氧基丙基三甲氧基硅烷,异氰酸根合丙基三乙氧基硅烷,3-巯基丙基三甲氧基硅烷,巯基甲基甲基-二乙氧基硅烷,甲基丙烯酰氧基丙基甲基二甲氧基硅烷,(甲基丙烯酰氧基甲基)二甲基乙氧基硅烷,甲基丙烯酰氧基丙基三甲氧基硅烷,苯乙烯基乙基三甲氧基硅烷,脲基丙基三乙氧基硅烷,脲基丙基三甲氧基硅烷,乙烯基甲基二乙氧基硅烷,乙烯基三乙酰氧基硅烷,乙烯基三乙氧基硅烷或它们的混合物。
除有机基官能化的硅烷之外,能够变成基本上亲水性的其它基本上疏水性材料包括在水中酸催化之后形成基本上亲水性基团的材料,如烷氧基化蜜胺,酚醛树脂,尿素甲醛树脂,这些是本领域技术人员已知的。
亲水性的含酸官能团的单体的非限制性例子包括丙烯酸,甲基丙烯酸,丙烯酸β-羧乙基酯,丙烯酰氧基丙酸,2-丙烯酰胺甲基丙烷磺酸,丙烯酸(3-磺基丙基)酯酸,巴豆酸,二羟甲基丙酸,富马酸,富马酸的单(C1-C17)烷基酯,马来酸,马来酸的单(C1-C17)烷基酯,衣康酸,衣康酸的单(C1-C17)烷基酯和它们的混合物。
亲水性的含羟基官能团的单体的非限制性例子包括甲基丙烯酸2-羟乙酯,丙烯酸2-羟乙酯,甲基丙烯酸羟丙酯,丙烯酸羟丙酯,甲基丙烯酸羟丁酯,丙烯酸羟丁酯,丙烯酸羟甲基乙基酯,丙烯酸羟基甲基丙基酯,二己内酯丙烯酸酯,二乙醇胺,二甲醇胺或它们的混合物。含有腈官能团的单体的非限制性例子包括甲基丙烯腈和丙烯腈。
亲水性的含有氨基官能团的单体的非限制性例子包括烯丙基胺,二甲基烯丙基胺,甲基丙烯酸2-(二甲基氨基)乙基酯,甲基丙烯酸2-(叔丁基氨基)乙基酯,4-氨基苯乙烯,二甲基氨基乙基乙烯基醚,和N-(3-二甲基氨基丙基)甲基丙烯酰胺。
亲水性的含有离子官能团的单体的非限制性例子包括烯丙基三甲基氯化铵,丙烯酸2-三甲基氯化铵乙基酯,和乙烯基苄基二甲基氯化锍。
亲水性的含有酰胺官能团的单体的非限制性例子包括甲基丙烯酰胺和丙烯酰胺。
亲水性的含有氨基甲酸酯官能团的单体的非限制性例子包括烯丙基氨基甲酸酯,乙烯基氨基甲酸酯,羟乙基氨基甲酸酯和甲基丙烯酸酐的反应产物,以及羟乙基氨基甲酸酯与异佛尔酮二异氰酸酯和丙烯酸羟乙酯的反应产物。
亲水性的含有乙烯基官能团的单体的非限制性例子包括乙酸乙烯酯,乙烯基吡咯烷酮和丙酸乙烯基酯。
在一个非限制性的实施方案中,疏水性单体包括基本不含亲水性官能团的以及与水基本上不相容、对水有很低亲和性和/或能够使用常规混合设备仅仅最低限度地溶于水中的单体。在另一个非限制性实施方案中,用于本发明的可聚合组分中的疏水性单体能够包括本领域技术人员已知的任何疏水性单体。疏水性官能团的非限制性例子包括具有4个或更多个碳原子的烃。此类官能团的其它例子包括在下面的疏水性单体的描述中。
疏水性单体的非限制性例子包括自由基可聚合的单体,该单体包括,但不限于,乙烯基芳族单体,例如,苯乙烯,α-甲基苯乙烯,叔丁基苯乙烯和乙烯基甲苯;卤乙烯和偏二卤乙烯,例如,氯乙烯和偏二氯乙烯;乙烯基酯;乙烯基醚,丁酸乙烯基酯,在烷基中具有4-17个碳原子的丙烯酸和甲基丙烯酸烷基酯,包括甲基丙烯酸丁酯,丙烯酸丁酯,甲基丙烯酸环己酯,丙烯酸环己基酯,甲基丙烯酸2-乙基己基酯,丙烯酸2-乙基己基酯,甲基丙烯酸丁基己基酯,丙烯酸丁基己基酯,甲基丙烯酸异辛基酯,丙烯酸异辛基酯,甲基丙烯酸异癸基酯,丙烯酸异癸基酯,甲基丙烯酸异冰片基酯,丙烯酸异冰片基酯,甲基丙烯酸月桂酯和丙烯酸月桂酯;和它们的混合物。
其它合适疏水性单体包括具有基本上非水解性的取代基如具有3个或更多个碳原子的烷氧基的有机基官能化硅烷。
在一个非限制性的实施方案中,该可聚合组分包括与该至少一种基本上亲水性单体和该至少一种基本上疏水性单体不同的至少一种可共聚的材料。在另一个非限制性实施方案中,该可共聚的材料能够与该基本上亲水性单体反应形成基本上亲水性预聚物和/或与该基本上疏水性单体反应形成基本上疏水性预聚物。
在另一个非限制性实施方案中,该可共聚的材料能够是可与该基本上亲水性单体和该基本上疏水性单体中的至少一种进行共聚合的任何材料。在一个非限制性的实施方案中,该可共聚的材料是结构骨架形成用的材料。可共聚的材料的非限制性例子能够选自:含有烯属不饱和基团的材料;本领域技术人员已知的含异氰酸酯的材料,例如,异氰酸酯和其它相应地反应性物质如多元醇的反应产物,其中该反应产物具有至少一个反应活性异氰酸酯基团;本领域技术人员已知的含羟基的单体;本领域技术人员已知的含有环氧基的单体;本领域技术人员已知的含羧基的单体;本领域技术人员已知的含碳酸酯基团的单体,例如,包含至少一个碳酸酯基团的多元醇与乙烯基单体的反应产物以及包含至少一个碳酸酯基团的多元醇和包含一个反应活性异氰酸酯基和至少一个可聚合的双键的异氰酸酯的反应产物,如在美国专利申请出版物US 2003/0136948段落[0041]到[0065]中所述,它的公开内容引入这里供参考;或此类可共聚的材料的混合物。
在一个非限制性的实施方案中,可共聚的材料包括含甲硅烷基的材料,例如具有至少一个可聚合的基团的有机基官能化硅烷,如前面描述的有机基官能化的硅烷。
诸如含有烯属不饱和基团的单体的可共聚的材料的非限制性例子包括乙烯基单体和具有选自羟基、羧基、氨基、巯基、(甲基)丙烯酰氧基(例如甲基丙烯酰氧基或丙烯酰氧基)、异氰酸酯基或它们的混合物中的官能团的烯属不饱和单体,它们为本领域技术人员已知。在一个非限制性的实施方案中,该可共聚的材料能够具有两个或多个的相同可聚合基团或两个或多个的不同可聚合基团。在另一个非限制性实施方案中,该可共聚的材料选自(甲基)丙烯酸系单体,其具有选自羟基,氨基,巯基或它们的混合物中的至少一个官能团。
在一个非限制性的实施方案中,用于可聚合组分的形成中的基本上亲水性单体和/或基本上疏水性单体对于通过聚合各聚合物的玻璃化转变温度所提供的性能来作选择,这是本领域技术人员已知的。例如,形成玻璃化转变温度高于室温例如23℃的聚合物的单体倾向于形成刚性或硬质聚合物,而形成玻璃化转变温度低于室温的聚合物的单体倾向于是软的和柔性的。用于形成聚合物微粒环境的单体的性能可能影响光敏材料的特性。例如,对于取决于表现出活化和未活化状态的构象变化的有机光致变色材料,在一个非限制性的实施方案中,软的和柔性环境允许更多运动和能够允许特性的提高,或刚性和硬质环境允许较低的运动并能够引起特性的下降。用具有能够影响光敏材料特性的性能的那些材料来配制该可聚合组分将允许所得光敏性聚合物微粒具有下述环境,在该环境中该光敏材料的特性能够受到控制。
通过聚合,基本上亲水性单体和基本上疏水性单体各自形成聚合物,该聚合物的玻璃化转变温度能够广泛地变化。在一个非限制性的实施方案中,基本上疏水性单体通过聚合形成的聚合物的玻璃化转变温度大于或等于基本上亲水性单体通过聚合形成的聚合物的玻璃化转变温度。在再一个非限制性的实施方案中,基本上疏水性单体通过聚合形成的聚合物的玻璃化转变温度低于基本上亲水性单体通过聚合形成的聚合物的玻璃化转变温度。
在另一非限制性实施方案中,该基本上疏水性单体适合于形成下述聚合物,通过聚合该聚合物具有低于23℃,例如从22.9℃到-100℃或从22℃到-90℃的玻璃化转变温度。在又一个非限制性实施方案中,基本上亲水性单体适合于形成下述聚合物,通过聚合该聚合物具有等于或大于23℃,例如,从23℃到130℃或从24℃到100℃的玻璃化转变温度。
在再一个其它非限制性实施方案中,基本上亲水性单体和/或基本上疏水性单体能够是适合于形成基本上刚性和/或基本上柔性链段的尿烷材料。制备尿烷材料以通过选择形成合适类型的链段的组分例如异氰酸酯和多元醇,来形成刚性或柔性链段的概念是本领域技术人员已知的。例如参见在美国专利6,187,444,第3栏,第49行到第4栏,第46行中的硬和软链段的讨论,它的公开内容引入这里供参考。尿烷材料的刚性链段是一种为其中使用它的所得材料提供劲度,即不易不断裂弯曲的那些。尿烷材料的柔性链段使得材料柔顺并能够弯曲或从直的线或形式上移动但不断裂那些。在一个非限制性的实施方案中,该基本上疏水性单体是尿烷材料,例如,尿烷(甲基)丙烯酸酯预聚物,它适合于形成柔性链段;该基本上亲水性单体是适合于形成刚性链段的尿烷材料,例如,尿烷(甲基)丙烯酸酯预聚物。在另一个的非限制性实施方案中,该基本上疏水性单体是适合于形成刚性链段的尿烷材料,该基本上亲水性单体是适合于形成柔性链段的尿烷材料。
本发明的尿烷材料能够用可以广泛地变化的异氰酸酯和多元醇,胺和/或硫醇来制备。合适的原料和方法是尿烷制备的领域的技术人员已知的。
当该尿烷形成用组分,如具有羟基、巯基和/或氨基的有机组分和异氰酸酯进行掺混来生产本发明的尿烷材料时,所述成分的相对量典型地表示为可用数目的反应活性异氰酸酯基与可用数目的反应活性羟基、巯基和/或氨基的比率,例如,NCO∶X的当量比,其中X是OH,SH,NH和/或NH2。例如,当一个NCO当量(重量)的异氰酸酯组分与一个X当量(重量)的含羟基、巯基和/或氨基的组分反应时,获得1.0∶1.0的NCO∶X比率。该尿烷材料具有能够在很大程度上变化的NCO∶X当量比。例如在一个非限制性的实施方案中,NCO∶X当量比能够在0.3∶1.0和3.0∶1.0之间,包括在两者之间的全部范围。当比率大于1.0∶1.0时,过量异氰酸根基团能够被封闭和/或进一步地例如与脲或有机基官能硅烷进行反应而形成亲水基团,这是本领域技术人员已知的。
异氰酸酯组分的非限制性例子包括,本领域技术人员已知的具有含游离、封闭(例如被合适的封闭剂)或部分地封闭的含异氰酸酯基的组分的那些改性或未改性的异氰酸酯类,选自:甲苯-2,4-二异氰酸酯;甲苯-2,6-二异氰酸酯;二苯基甲烷-4,4’-二异氰酸酯;二苯基甲烷-2,4’-二异氰酸酯;对-苯撑二异氰酸酯;联苯二异氰酸酯;3,3’-二甲基-4,4’-二亚苯基二异氰酸酯;四亚甲基-1,4-二异氰酸酯;六亚甲基-1,6-二异氰酸酯;2,2,4-三甲基己烷-1,6-二异氰酸酯;赖氨酸甲酯二异氰酸酯;双(异氰酸根合乙基)富马酸酯;异佛尔酮二异氰酸酯;亚乙基二异氰酸酯;十二烷-1,12-二异氰酸酯;环丁烷-1,3-二异氰酸酯;2-庚基-3,4-双(9-异氰酸根合壬基)-1-戊基-环己烷;环己烷-1,3-二异氰酸酯;环己烷-1,4-二异氰酸酯;二环己基甲烷-4,4-二异氰酸酯或亚甲基双(4-环己基异氰酸酯);甲基环己基二异氰酸酯;六氢亚甲苯基-2,4-二异氰酸酯;六氢亚甲苯基-2,6-二异氰酸酯;六氢亚苯基-1,3-二异氰酸酯;六氢亚苯基-1,4-二异氰酸酯;间-四甲代苯二亚甲基二异氰酸酯;对-四甲代苯二亚甲基二异氰酸酯;全氢二苯基甲烷-2,4’-二异氰酸酯;全氢二苯基甲烷-4,4’-二异氰酸酯或它们的混合物。
在另一非限制性实施方案中,当在催化剂存在下形成该尿烷材料时,该催化剂能够选自:路易斯碱、路易斯酸和插入催化剂,如在Ullmann′s Encyclopedia of Industrial Chemistry,第五版,1992,A21卷,第673到674页,它的公开内容引入这里供参考。
能够在本发明中用作尿烷形成用组分的有机多元醇的非限制性例子包括:(a)聚碳酸酯多元醇;(b)低分子量多元醇,例如,重均分子量低于500的多元醇,例如,脂族二醇,如C2-C10脂族二醇、三醇、多元醇和烷氧基化低分子量多元醇;(c)聚酯多元醇;(d)聚醚多醇;(e)含酰胺的多元醇;(f)聚丙烯酸系多元醇;(g)环氧基多元醇;(h)多羟基聚乙烯醇;(i)尿烷多元醇;或(j)它们的混合物。上述聚碳酸酯多元醇能够由本领域已知的方法来形成,如在美国专利5,143,997,第3栏,第43行到第6栏,第25行,和5,527,879,第2栏,第10行到第3栏,第48行中所公开。其它多元醇也可通过使用本领域已知的方法来制备,如在美国专利6,187,444,第7栏,第25行到第12栏,第15行中所述。这些公开物引入这里供参考。
在一个非限制性的实施方案中,用于制备本发明的尿烷材料的有机多元醇例如二醇、三醇等能够用于与异氰酸酯类形成预聚物或加合物。在另一个非限制性实施方案中,基本上亲水性或基本上疏水性预聚物能够各自通过亲水性单体,如二羟甲基丙酸,或疏水性单体,如C8脂族二醇,与预聚物的异氰酸酯反应活性基团的反应来制备。此类预聚物能够是基本上亲水性或基本上疏水性尿烷(甲基)丙烯酸酯预聚物,例如,尿烷丙烯酸酯预聚物,尿烷甲基丙烯酸酯预聚物或它们的混合物。
如上所述,本发明的水性组合物包括有效量的至少一种光敏材料。该术语“有效量的光敏材料”意指在可聚合组分和所得光敏性聚合物微粒中的一定量的光敏材料,当用合适波长的电磁辐射进行辐射时,该材料产生出可由仪器或肉眼观察所检测到的响应,如在光敏材料发射的辐射波长或辐射量上的变化,在穿过该光敏材料的辐射波长上的变化或在光敏材料的所观察颜色上的变化。该术语“光敏材料”包括光敏性有机材料、光敏性无机材料或它们的混合物,但不包括着色剂如颜料和固定的着色染料和常规的二色性染料,除非该二色性能与光致变色材料有关(如以下所讨论)。在一个非限制性的实施方案中,该光敏材料选自荧光染料、磷光的染料、非线性光学材料、光致变色材料或它们的混合物。
在另一个非限制性实施方案中,该光敏材料进一步包括一种或多种以上描述的可聚合的基团。将可聚合的基团连接于光敏材料上的多种方法是本领域技术人员已知的。例如参见美国专利6,113,814,第8栏,第42行到第22栏,第7行,该公开物引入这里供参考。能够使用的另外方法是用于将官能团连接于非光敏材料上的那些方法,如在美国专利5,919,846,第2栏,第35行到第4栏,第42行中描述的方法。在一个非限制性的实施方案中该光敏材料能够至少部分地键接于该可聚合组分的链状聚合物材料上。
正如本领域技术人员所知,当原子或分子从较高电子态过渡到较低电子态时,荧光和磷光染料可以发射出可见辐射。在两种染料之间的差异是,在曝光于辐射之后从该荧光染料中荧光的发射在出现时间上快于从磷光染料中的发射。
本领域技术人员已知的荧光染料能够在本发明中用作光敏材料。参见Haugland,R.P.(1996)Molecular Probes Handbook for Fluorescent Probes and Research Chemicals,第六版。荧光染料的非限制性例子包括蒽,并四苯,并五苯,若丹明,二苯甲酮,香豆素,荧光素,苝和它们的混合物。
本领域技术人员已知的磷光染料能够在本发明中用作光敏材料。磷光染料的非限制性例子包括:金属-配位体配合物,如三(2-苯基吡啶)铱[Ir(ppy)3];2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉铂(II)[PtOEP]和有机染料,如曙红(2’,4’,5’,7’-四溴荧光素),2,2’-二吡啶和赤藓红(2’,4’,5’,7’-四碘荧光素)。
非线性的光学材料(NLO)能够具有不同的晶体结构,它相对于电磁辐射而言是光学各向异性,但也可以是无定形的,例如,砷酸镓,以及引入了各种发色团的聚合物,如分散红1[2873-52-8]4-(N-乙基-N-2-羟乙基)氨基-4’-硝基偶氮苯。在这里使用的术语“各向异性”意指当在至少一个不同方向上测量时具有至少一种在数值上不同的性能。因此,“光学各向异性材料”是当在至少一个不同方向上测量时具有至少一种在数值上不同的光学性能的材料。
以NLO材料的各向异性为基础,该材料的有序化或定向排列(为本领域技术人员所已知)用于充分利用这些材料的非线性行为。一些NLO材料改变通过它们的光,这取决于取向、温度、光的波长等等。NLO材料的这一性能的非限制性例子是进入到磷酸二氢铵晶体中的低波长的红光,它释放出累积较高能量的光子并作为较高波长的蓝光离开。参见D.Arivuoli“Fundamentals of nonlinear optical materials”PRAMANA-journal of physics,57卷,Nos 5&6Nov.&Dec.2001,第871-883页,该公开物引入这里供参考。
本领域技术人员已知的NLO材料能够在本发明中用作光敏材料。参见Nalwa,H.S.和Miyata,S编辑,Nonlinear Optics of Organic Molecules and Polymers,CRC,1997。除上述材料之外NLO材料的非限制性例子包括:4-二甲基胺-4-硝基茋;4-[4-(苯基偶氮)-1-萘基偶氮]苯酚;N-乙基-N-(2-羟乙基)-4-(4-硝基苯基偶氮)苯胺;和(S)-(-)-1-(4-硝基苯基)-2-吡咯烷甲醇。
光致变色材料具有至少两种状态,具有第一吸收光谱的第一状态和具有与第一种吸收光谱不同的第二吸收光谱的第二状态,并且能够响应于至少两种不同波长的至少光化辐射而在两种状态之间转换。例如,第一吸收光谱的光致变色材料的异构体A,例如“透明”状态,暴露于第一波长的光并异构化为第二吸收光谱异构体B,例如“着色”状态,它在暴露于第二和不同的波长时或在暴露于第一波长的光的过程被中断时将异构化回到异构体A。典型地,处于透明状态下的光致变色材料被认为是“未活化的”而处于着色状态是“活化的”。在该类型的光致变色材料中,有热可逆的和非热可逆的光致变色材料。热可逆的光致变色材料能够响应于至少光化辐射在第一状态和第二状态之间转换和响应于热能(例如任何形式的热)或活化辐射的除去而恢复到第一状态。非热可逆的(或光可逆)光致变色材料适合于响应于光化辐射但不是热能而转换状态。在这里使用的术语“光化辐射”指能够在光致变色材料中引起响应的电磁辐射,比如但不限于紫外线和可见辐射。
在另一非限制性实施方案中,热可逆的和非热可逆的光致变色材料能够适合于在合适条件下同时显示光致变色和二色性(例如,至少部分地线性地偏振)性能并且被称为光致变色-二色性材料。在这里使用的“至少部分地线性地偏振”是指将光波的电场矢量的振动的部分至全部限定于一个方向或平面。正如以下更详细地讨论,包括光学各向异性材料如非线性光学材料和/或光致变色-二色性材料的光敏性制品能够至少部分地定向。
光致变色材料的非限制性例子包括多种在本发明中用作光敏材料的光致变色材料。在一个非限制性的实施方案中,该光致变色材料选自无机光致变色材料、有机光致变色材料或它们的混合物。
在一个非限制性的实施方案中,该无机光致变色材料包括卤化银、卤化镉和/或卤化铜的晶粒。其它非限制性的无机光致变色材料能够通过将铕(II)和/或铈(III)添加到诸如苏打-石英玻璃之类的无机玻璃中来制备。在一个非限制性的实施方案中,该无机光致变色材料被添加到熔化玻璃中并形成为颗粒,该颗粒被引入到本发明的水性组合物中以形成包含此类颗粒的微粒。玻璃颗粒能够通过本领域已知的大量方法中的任何一种来形成。无机光致变色材料进一步被描述在Kirk OthmerEncyclopediaofChemical Technology,第4版,6卷,第322-325页。
在另一个非限制性实施方案中,该光致变色材料是在300-1000纳米范围内包括至少一个活化吸收最大值的至少一种有机光致变色材料,这是本领域技术人员已知的。在另一非限制性实施方案中,该有机光致变色材料包括以下的混合物:(a)具有400纳米至低于550纳米的可见λmax的至少一种有机光致变色材料,和(b)具有550纳米至700纳米的可见λmax的至少一种有机光致变色材料。
在另一非限制性实施方案中,该光致变色材料能够包括下列类型的材料:吡喃类,噁嗪类,俘精酸酐,俘精酰亚胺,二芳基乙烯或它们的混合物。根据在这里公开的各种非限制性实施方案,该光致变色材料能够是热可逆的光致变色材料和/或非热可逆的光致变色材料。根据一个非限制性实施方案,该光致变色材料选自热可逆的吡喃、热可逆的噁嗪、热可逆的俘精酸酐、热可逆的俘精酰亚胺或它们的混合物。根据另一个非限制性实施方案,该光致变色材料是非热可逆的俘精酸酐、非热可逆的俘精酰亚胺、非热可逆的二芳基乙烯或它们的混合物。根据又一个非限制性实施方案,该光致变色材料是光致变色-二色性材料。
在这里能够使用的光致变色吡喃的非限制性例子包括苯并吡喃,和萘并吡喃,例如,萘并[1,2-b]吡喃,萘并[2,1-b]吡喃,和茚并稠合萘并吡喃,如公开在美国专利5,645,767第2栏,第16行到12栏,第57行中的那些,和杂环稠合萘并吡喃,如公开在美国专利No5,723,072第2栏,第27行到第15栏,第55行,US 5,698,141第2栏,第11行到第19栏,第45行,US 6,153,126第2栏,第26行到第8栏,第60行,和US 6,022,497第2栏,第21行到第11栏,第46行中的那些,这些公开物引入这里供参考,以及螺-9-芴并[1,2-b]吡喃,菲并吡喃,喹啉并吡喃;氟蒽并吡喃和螺吡喃,例如,螺(苯并二氢吲哚)萘并吡喃,螺(二氢吲哚)苯并吡喃,螺(二氢吲哚)萘并吡喃,螺(二氢吲哚)喹啉并吡喃和螺(二氢吲哚)吡喃。萘并吡喃的更特定例子以及互补的有机光致变色性物质已描述在美国专利5,658,501第1栏,第64行到第13栏,第17行,该公开物引入这里供参考。螺(二氢吲哚)吡喃也描述在教科书,Techniques in Chemistry,III卷,“Photochromism”,第3章,Glenn H.Brown,Editor,John Wileyand Sons,Inc.,New York,1971,它引入这里供参考。
能够用于在这里公开的各种非限制性实施方案中的光致变色噁嗪的非限制性例子包括苯并噁嗪,吩噁嗪,和螺-噁嗪,例如,螺(二氢吲哚)吩噁嗪,螺(二氢吲哚)吡啶并苯并噁嗪,螺(苯并二氢吲哚)吡啶并苯并噁嗪,螺(苯并二氢吲哚)吩噁嗪,螺(二氢吲哚)苯并噁嗪,螺(二氢吲哚)荧蒽并噁嗪,和螺(二氢吲哚)喹啉并噁嗪。
能够用于在这里公开的各种非限制性实施方案中的热可逆的光致变色俘精酸酐或俘精酰亚胺的非限制性例子包括:俘精酸酐和俘精酰亚胺,它们公开在US专利4,685,783第1栏,第57行至第5栏,第27行中,该专利引入这里供参考,和任何上述光致变色材料/化合物的混合物。
根据一个特定的非限制性实施方案,其中光致变色材料包括至少两种光致变色化合物,该光致变色化合物能够经由在各光致变色化合物上的连接基团取代基连接到彼此之上。例如,该光致变色材料能够是可聚合的光致变色化合物或适合与主体材料相容的光致变色化合物(“相容化光致变色材料”)。能够用于在这里公开的各种非限制性实施方案中的可聚合的光致变色材料的非限制性例子已公开在美国专利6,113,814第2栏,第23行到第23栏,第29行,该公开物引入这里供参考。能够用于在这里公开的各种非限制性实施方案中的相容化光致变色材料的非限制性例子已公开在美国专利6,555,028第2栏,第40行到第25栏,第26行,该公开物引入这里供参考。在一个非限制性的实施方案中,基本上亲水性的可聚合的光致变色材料能够在可聚合组分中用作基本上亲水性单体。在另一个非限制性实施方案中,基本上疏水性的可聚合的光致变色材料能够在可聚合组分中用作基本上疏水性单体。
其它合适光致变色基团和互补的光致变色基团已描述在美国专利6,080,338第2栏,第21行到第14栏,第43行;US 6,136,968第2栏,第43行到第20栏,第67行;US 6,296,785第2栏,第47行到第31栏,第5行;US 6,348,604第3栏,第26行到第17栏,第15行;US 6,353,102第1栏,第62行到第11栏,第64行;和US 6,630,597第2栏,第16行到第16栏,第23行。上述专利的上述公开内容被引入这里供参考。
其它合适光致变色材料包括光致变色-二色性材料,如公开在美国专利申请序列号No.P-108,936(2004年5月17日),从段落[0020]到[0134]中的材料,该公开物引入这里供参考。此类材料可用于为至少部分地定向排列的微粒提供偏振性能,如下所述。此类光致变色-二色性化合物的非限制性例子包括:
(1)3-苯基-3-(4-(4-(3-哌啶-4-基-丙基)哌啶子基)苯基)-13,13-二甲基-茚并[2’,3’:3,4]-萘并[1,2-b]吡喃;
(2)3-苯基-3-(4-(4-(3-(1-(2-羟乙基)哌啶-4-基)丙基)哌啶子基)苯基)-13,13-二甲基-茚并[2’,3’:3,4]萘并[1,2-b]吡喃;
(3)3-苯基-3-(4-(4-(4-丁基-苯基氨基甲酰基)-哌啶-1-基)苯基)-13,13-二甲基-6-甲氧基-7-(4-苯基-哌嗪-1-基)茚并[2’,3’:3,4]萘并[1,2-b]吡喃;
(4)3-苯基-3-(4-([1,4’]双吡啶基-1’-基)苯基)-13,13-二甲基-6-甲氧基-7-([1,4’]双吡啶基-1’-基)茚并[2’,3’:3,4]萘并[1,2-b]吡喃;
(5)3-苯基-3-(4-(4-苯基-哌嗪-1-基)苯基)-13,13-二甲基-6-甲氧基-7-(4-(4-己基苯甲酰氧基)-哌啶-1-基)茚并[2’,3’:3,4]萘并[1,2-b]吡喃;或
(6)此类吡喃的混合物。
除该上述光致变色材料之外,非热可逆的二芳基乙烯光致变色材料的非限制性例子已描述在美国专利申请2003/0174560,从段落[0025]至[0086]中,非热可逆的俘精酸酐或俘精酰亚胺已描述在美国专利5,631,382第2栏,第35行到第12栏,第8行中,该公开物引入这里供参考。
在另一非限制性实施方案中,该光敏材料是包含吡喃的光致变色材料,该材料选自:
(a)3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;
(b)3-苯基-3-(4-吗啉代苯基)-6,7-二甲氧基-13-丁基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;
(c)3,3-二(4-甲氧基苯基)-6-甲氧基-7-吗啉代-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;
(d)3-(4-(2-羟基乙氧基)苯基)-3-(4-吗啉代苯基)-13,13-二甲基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;
(e)3-(4-甲氧基苯基)-3-(4-氟苯基)-6,7-二甲氧基-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;
(f)3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-羟基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃;或
(g)此类吡喃的混合物。
制备有和没有至少一个可聚合的基团的光致变色材料的方法是本领域技术人员熟知的。例如和没有限制意义,3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料A)能够按照美国专利6,113,814的实施例8的方法制备,该实施例引入这里供参考,不同的是在方法的步骤7中使用三甘醇代替二甘醇。
在另一非限制性实施方案中,光致变色材料,如3-苯基-3-(4-吗啉代苯基)-6,7-二甲氧基-13-丁基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料B)能够通过使用以上对于光致变色材料A所述的相同方法来制备,不同的是在美国专利6,296,785中的实施例16的产物(该实施例引入在这里供参考)用于美国专利6,113,814的实施例8的步骤7中。
在再一个非限制性实施方案中,光致变色材料,如3,3-二(4-甲氧基苯基)-6-甲氧基-7-吗啉代-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料C)能够使用本领域技术人员已知的工序,通过2-吗啉代-3-甲氧基-5,7-二羟基-7-乙基-7H-苯并[C]芴(它能够按照美国专利6,296,785的实施例9的步骤2使用合适取代的起始原料来制备,该实施例引入这里供参考)与1,1-双(4-甲氧基苯基)-2-丙炔-1-醇(它能够按照美国专利5,458,814的实施例1的步骤1的方法制备,该实施例引入这里供参考)进行反应来制备。
在另一个非限制性实施方案中,光致变色材料,如(d)3-(4-(2-羟基乙氧基)-苯基-3-(4-吗啉代苯基)-13,13-二甲基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料D)能够使用本领域技术人员已知的工序,通过7,7-二甲基-5-羟基-7H-苯并[C]芴与1-(4-(2-羟基乙氧基)-苯基-1-(4-吗啉代苯基)-2-丙炔-1-醇进行反应来制备。
类似地,在另一非限制性实施方案中,光致变色材料,如3-(4-氟苯基)-3-(4-甲氧基苯基)-6,7-二甲氧基-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料E)能够按照对于光致变色材料A所使用的方法制备,不同的是在该方法中使用3-(4-氟苯基)-3-(4-甲氧基苯基)-6,7-二甲氧基-13-乙基-13-羟基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃和二甘醇。
在另一个非限制性实施方案中,光致变色材料,如(f)3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-羟基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃(光致变色材料F),能够按照美国专利5,645,767的实施例5的方法制备,该实施例引入这里供参考。
在这里描述的光敏材料能够选自多种材料。非限制性例子包括:单个光敏性化合物;光敏性化合物的混合物;包含至少一种光敏性化合物的材料,如聚合物树脂或有机单体溶液;以化学键连接了至少一种光敏性化合物的材料如单体或聚合物;光敏聚合物,例如,包括键接在一起的光致变色化合物的光致变色聚合物;或它们的混合物。
在一个非限制性的实施方案中,当光敏材料是包含至少一个可聚合的基团的有机光致变色材料并且存在可共聚的材料时,该可聚合组分包括2-25wt%的基本上亲水性预聚物,2-25wt%的基本上疏水性预聚物,1-45wt%的光致变色材料和5-95wt%的一种或多种可共聚单体,以可聚合组分的固体的总重量为100%为基础。在另一个非限制性实施方案中,该可聚合组分包括10-25wt%的基本上亲水性预聚物,10-25wt%的基本上疏水性预聚物,5-15wt%的光致变色材料和35-75wt%的一种或多种可共聚单体。可聚合组分的各个组分能够各自按照在上述范围内的它们各自范围的任何组合之间的全部数值量来确定范围。在一个非限制性的实施方案中,该有机光致变色剂以可聚合组分的固体总重量的至多50wt%的量存在。
本发明的其它非限制性实施方案是包括至少部分地聚合的组分的包括整体表面域和内部域的至少部分地交联的光敏性聚合物微粒,其中表面域包括至少一个基本上亲水性区域,该内部域包括至少一个基本上疏水性区域,以及该表面域和/或内部域中的至少一个是光敏性的。在另一非限制性实施方案中,光敏性的表面域和/或内部域包括有效量的选自荧光物质、磷光物质、非线性光学材料、光致变色材料或它们的混合物中的至少一种光敏材料。在另一非限制性实施方案中,该内部域适于是光敏性的。在另一个非限制性实施方案中,该光敏材料是基本上不可萃取的和在又一个非限制性实施方案中,该光敏材料是光致变色材料。
至少部分地交联的聚合物微粒由可聚合组分在水性环境中的自组装和部分聚合形成。在微粒的自组装过程中,基本上亲水性区域朝向外部取向并形成表面域,而基本上疏水性区域朝向内部取向并形成该内部域。在这里使用的术语“表面域”指微粒的外部的邻接区域,“内部域”包括微粒的内部的邻接区域,所有这些域是整体的。
在再一个非限制性实施方案中,该至少一种光敏材料适于是基本上不可萃取的。在另一个非限制性实施方案中,该不可萃取的光敏材料是光致变色材料。在另一非限制性实施方案中,该光致变色材料是有机光致变色材料和在再一个非限制性实施方案中,该有机光致变色材料被至少一个可聚合的基团取代。“基本上不可萃取的”是指基本上不可萃取的光敏材料的微粒将比基本上可萃取的相同光敏材料的微粒释放出更低的光敏材料,这是因为它没有采取防止萃取的措施,例如,提供具有能够与可聚合组分反应的至少一个可聚合的基团的光敏材料,这将在以下描述。
光敏材料从光敏性聚合物微粒中的相对可萃取性(使用有机光致变色材料作为例子)能够通过在实施例中所用的成膜型的涂料组合物的一个部分中包括有效量的基本上不可萃取的光致变色材料(如在前面描述的光致变色剂A,它具有能够与可聚合组分反应的至少一个可聚合的基团)的聚合物微粒,并且在涂料组合物的另一个部分中包括有效量的基本上可萃取的光致变色材料(如前面描述的光致变色剂F,它不具有能够与可聚合组分反应的可聚合的基团)的光致变色聚合物微粒。在这一说明中的术语“有效量”是指足够量的光致变色聚合物微粒用来通过活化产生为肉眼可辨别的光致变色效应。含有各种类型的光致变色聚合物微粒的涂料组合物按照这里的实施例中所述的方法,作为至少部分涂层施涂于透镜上并且进行至少部分地固化。该至少部分地固化的涂层的透镜和相同材料的未涂覆的透镜各自测量它们在合适波长(例如390纳米(nm))下的吸收率,以测量光致变色材料的初始量和透镜材料的吸收率。未涂覆透镜的吸收率从每一个涂覆的透镜的吸收率中扣除,以计算典型地在该透镜中存在的紫外线稳定剂。将涂覆的透镜和未涂覆的透镜在装有相等量的溶剂的单独容器中浸泡,其中该光敏材料至少部分地可溶于该溶剂,如四氢呋喃(THF),该溶剂维持在23℃例如室温。在30分钟的间隔之后,每一个透镜被取出,干燥和测试在390nm处它们的吸收率,未涂覆的透镜的吸收率从每一个至少部分地涂覆的透镜中扣除。继续直到对于涂覆的透镜的吸收率读数没有显著地变化,表明可萃取量的光致变色材料已经被萃取。
对于本发明的光敏性聚合物微粒,在一个非限制性的实施方案中,与由光敏性聚合物微粒释放的可萃取的光敏材料的量相比,从光敏性聚合物微粒中释放的基本上不可萃取的光敏材料的量能够从稍低到低得多之间变化。换言之,与含有可萃取的光致变色材料的微粒相比,含有基本上不可萃取的光敏材料的微粒能够释放出少了10%到少了100%的光敏材料。
在另一个非限制性实施方案中,光敏材料能够通过捕集而变成基本上不可萃取的,这归因于由于光敏材料的尺寸,使得它被捕集在至少部分地交联的聚合物微粒的所得聚合物网络之内。例如,在一个非限制性的实施方案中,颗粒状光敏材料,例如,包括无机光致变色材料的玻璃颗粒,或具有数均重量和/或构型的光致变色低聚物或光致变色聚合物,按尺寸它们预计被捕获。在另一个非限制性实施方案中,该光敏材料通过共价键至少部分地键接于聚合物网络,例如,通过可与表面域和/或内部域反应的至少一种官能团。在另一非限制性实施方案中,该光敏材料由包括实际尺寸、氢键和共价键在内的因数的综合所保持。
在一个非限制性的实施方案中,已经发现基本上不可萃取的有机光敏材料,例如,有机光致变色材料,在它们所添加的物理相中保留。例如,与内部域的基本上疏水性区域缔合的基本上不可萃取的有机光致变色材料不倾向于迁移到表面域的基本上亲水性区域中和发生结晶。
本发明的光敏性聚合物微粒的尺寸能够在很大范围内变化。例如,在另一非限制性实施方案中,本发明的微粒的尺寸能够是从10到10,000纳米(nm)或从20到5000nm或从30到1500nm或从40到1000nm或从50到500nm或从60到200nm的平均粒度,例如由激光衍射粒度仪器测定的体积平均粒度,该仪器测量颗粒的粒度时假设各颗粒具有球形,得到一种“粒度”,其是完全地包围该颗粒的最小球的直径。光敏性聚合物微粒的平均粒度具有在上述值的任何两个之间变化的范围,包括所列举的端值在内,例如,从60到120nm。
当光敏性聚合物微粒的平均粒度低于50nm时,尺寸能够由紫外线或X射线-激光散射方法、原子力显微镜检查法、中子散射法或本领域技术人员已知的其它方法来测定。当该平均粒度大于50纳米和至多1000nm时,该平均粒度能够根据已知的可见光-激光散射技术来测量或它能够通过目测检查透射电子显微镜(“TEM”)图像的电子显微照片、测定在图像中颗粒的直径,和以TEM图像的放大为基础计算平均粒度来测定。当该平均粒度大于1000nm时,尺寸能够通过使用本领域技术人员已知的光学显微镜方法测量。
在另一非限制性实施方案中,该上述光敏性聚合物微粒包括适于与交联材料反应的官能团。该官能团也使得光敏性聚合物微粒与主体材料的组分例如聚合物有机材料进行反应,使得光敏性聚合物微粒与主体更相容。该术语“更相容”是指光敏性聚合物微粒和主体材料的结合物不太可能显示出浑浊或结雾,该浑浊或结雾是相容性缺乏的典型指征。在一个非限制性的实施方案中,适于反应的该官能团的至少一部分是亲水性的,例如羟基和羧基官能团。官能团的非限制性例子包括:羟基,羧基,环氧基,氨基甲酸酯,氨基,巯基,酰胺和/或脲基团。
对于该交联材料,在一个非限制性的实施方案中,该交联材料选自:包括具有反应活性不饱和度的两个或多个位置的材料;包括两个或多个的上述官能团的材料;包括具有反应活性不饱和度的一个或多个位置和一个或多个上述官能团的材料;或此类交联材料的混合物。用于含有羟基,羧基,酰胺和氨基甲酸酯官能团的材料的交联材料的非限制性例子包括氨基塑料树脂,酚醛塑料树脂或它们的混合物。氨基塑料树脂的非限制性例子能够以商标CYMEL从CYTEC Industries,Inc.商购,例如CYMEL
Figure G2009102228083D00231
327,328,345,350,370和385以及从MonsantoChemical Co.以商标RESIMENE商购。
在另一个非限制性实施方案中,多异氰酸酯和封闭多异氰酸酯和聚氮丙啶能够用作含有羟基和伯和/或仲氨基的材料的交联材料。适合用作本发明的光敏性微粒的交联剂的多异氰酸酯和封闭多异氰酸酯的非限制性例子是描述在美国专利No.4,546,045第5栏,第16行到38行;和在美国专利No.5,468,802第3栏,第48行到60行中的那些,这些公开物因此引入这里供参考。
用于羟基和伯和/或仲氨基的交联材料的非限制性例子包括在本领域已知的酸酐。适合用作交联材料的酸酐的非限制性例子是描述在美国专利No.4,798,746第10栏,第16行到50行;和在美国专利No.4,732,790第3栏,第41行到57行中的那些,该公开物因此引入这里供参考。
用于羧基官能团的交联材料的非限制性例子包括聚环氧化物和碳化二亚胺,如由Nisshinbo Industries,Inc,Japan制造的以商标CARBODILITE销售的材料。
用于含环氧基官能团的材料的交联材料的非限制性例子是本领域公知的多元酸。适合用作交联材料的多元酸的非限制性例子是描述在美国专利No.4,681,811第6栏,第45行到第9栏,第54行中的那些,该公开物因此引入这里供参考。
用于碳酸酯和无位阻酯类的交联材料的非限制性例子包括在本领域已知的多胺。适合用作本发明的光敏性聚合物微粒的交联材料的多胺的例子是描述在美国专利No.4,046,729第6栏,第61行到第7栏,第26行中的那些,该公开物因此引入这里供参考。
用于含羟基官能团的材料的交联材料的非限制性例子包括硅氧烷,硅烷和/或各自的水解产物,它们是可以形成硬涂层的涂料溶液如由PPG Industries,Inc销售的Hi-Gard(R)涂料溶液的典型组分。其它非限制性例子包括本领域公知的甲硅烷基取代的材料,如三[3(三甲氧基甲硅烷基)丙基]异氰脲酸酯。
当需要和合适时,能够使用上述交联材料的混合物。
在一系列的其它非限制性实施方案中,与交联材料之间的反应性和附加物理性能(如下面描述的那些)可能与本发明的光敏性聚合物微粒有关。该微粒能够适合于通过,在可聚合组分的形成过程中和/或在至少部分地交联的光敏性聚合物微粒的形成之后,引入赋予此类性能的材料而具有这些性能。
在一个非限制性的实施方案中,该光敏性聚合物微粒适合于在微粒的制备过程中和/或之后,通过引入磁性材料和/或磁性响应性金属氧化物来变成磁性或磁性响应的。此类材料的非限制性例子包括本领域技术人员已知的超顺磁性金属氧化物,顺磁性金属氧化物,铁磁性金属氧化物,例如铁氧体,或它们的混合物。磁性颗粒可以从DynalBiotech商购或能够使用本领域公知的方法来制备,如公开在例如美国专利4,358,388第1栏,第42行到第7栏,第39行,和US 5,356,713第1栏,第47行到第5栏,第12行中的那些方法,这些公开物因此引入这里供参考。
在另一个非限制性实施方案中,该光敏性聚合物微粒能够通过将导电性材料引入光敏性聚合物微粒中而变成导电性的。在一个非限制性的实施方案中,导电性填料,如碳填料,炭黑或金属纤维能够在微粒的制备过程中和/或之后被引入其中。导电性材料的添加量能够在宽范围中变化,条件是满足或超过渗滤阈值,例如填料的浓度(在该浓度下微粒将传导电流)。在另一个非限制性实施方案中,导电性聚合物能够通过在可聚合组分中包括此类聚合物的单体而被引入到该微粒中。导电聚合物的非限制性例子包括:聚苯胺-基聚合物,聚吡咯-基聚合物,聚噻吩-基聚合物,聚氧化乙烯-基聚合物或它们的共聚物。导电性材料的制备和使用能够使用本领域技术人员公知的技术来完成。参见Kirk Othmer Encyclopedia of Chemical Technology,第四版,第9卷,“Electrically Conductive Polymers”,第61-88页,该公开物因此引入这里供参考。
在另一非限制性实施方案中,通过将非光敏性染料和/或颜料引入到可聚合组分和/或微粒中使得该微粒呈现色彩,从而在光敏性聚合物微粒内引入颜色。非光敏性染料和颜料的非限制性例子包括本领域技术人员已知的各种的有机或无机材料。非光敏性染料的非限制性例子包括固定的着色剂,如可溶性和可分散的着色剂。颜料的非限制性例子包括有机金属氧化物、和粉末以及有机颜料如动物、植物或合成颜料。上述非光敏性有机染料和颜料也能够是可聚合的,如下面使用二色性材料作为例子进行的讨论。
有机颜料的非限制性例子包括喹吖啶酮,酞菁,异吲哚啉,蒽嘧啶,蒽嵌蒽二醌,黄烷士酮,perinones,皮蒽酮,它们的取代衍生物,和它们的混合物。无机颜料的非限制性例子包括二氧化钛,氧化铁,氧化铬,铬酸铅,炭黑或它们的混合物。
在又一些非限制性实施方案中,本发明的光敏性聚合物微粒能够通过引入光致变色-二色性材料(如前所述)和/或常规的二色性材料并且至少部分地定向排列它们来至少部分地偏振化。二色性材料能够更强烈地吸收透过辐射的两种正交平面偏振组分之中的一种,与另一种相比。因此,二色性材料能够至少部分地线性地偏振透过辐射。然而,虽然二色性材料能够优先吸收透过辐射的两种正交平面偏振组分之中的一种,如果二色性化合物的分子没有合适地定位或排列,则无法实现透过辐射的净线性偏振。也就是说,由于二色性材料的分子的无规定位,各分子的选择性吸收能够互相抵消,使得无法实现净或总体线性偏振作用。因此,一般需要合适地将二色性化合物的分子定位或排列(例如至少部分地定向排列)在另一种材料中,以便形成常规的线性偏振元件。例如通过聚合物片材的拉伸使二色性材料定向排列以生产线性地偏振滤光镜或供太阳镜用的透镜,这是本领域技术人员已知的。
合适常规的二色性化合物的非限制性例子包括甲亚胺类,靛类,硫靛类,部花青类,茚满类,喹啉并邻羧基苯乙酮酸染料,,酞吡呤,三苯并二噁嗪类(triphenodioxazines),吲哚并喹喔啉类,咪唑并三嗪类,四嗪类,偶氮和(多)偶氮染料,苯醌类,萘醌类,蒽醌和(多)蒽醌,蒽并嘧啶酮,碘和碘酸盐。在另一个非限制性实施方案中,二色性材料能够是可聚合的二色性材料。也就是说,根据这一非限制性实施方案,该二色性材料能够包括至少一个可聚合的基团。例如,虽然在这里没有限制意味,至少一种二色性材料能够具有由至少一个可聚合的基团封端的至少一个烷氧基,多烷氧基,烷基,或多烷基取代基。
根据本发明的另一个实施方案,提供了一种非限制性方法用于生产光敏性微粒,该方法包括:a)形成有效量的至少一种光敏材料和包含至少一种亲水性官能团和至少一种疏水性官能团的至少一种可聚合组分的水性分散体;和b)让a)的分散体经历足以至少部分地形成微粒的条件,这些条件在下面进行描述。在另一个非限制性实施方案中,该方法进一步包括:c)至少部分地聚合b)的至少一种可聚合组分。在另一非限制性方法中,该光敏材料是光致变色材料。
在上述方法的另一个非限制性实施方案中,该亲水性官能团由至少一种基本上亲水性单体提供和该疏水性官能团由至少一种基本上疏水性单体提供。在另一非限制性实施方案中,该可聚合组分进一步包括至少一种可共聚的材料,后者不同于该基本上亲水性单体或该基本上疏水性单体。
提供了生产光敏性微粒的又一种非限制性方法,该方法包括:a)形成至少一种基本上亲水性预聚物组分的水性分散体,它任选地包括有效量的至少一种光敏材料;b)形成至少一种基本上疏水性预聚物组分的水性分散体,它任选地包括有效量的至少一种光敏材料;和c)让a)和b)的混合物经历足以至少部分地形成微粒的条件,该条件在下面进行描述,其中该微粒包括有效量的至少一种光敏材料。在一个非限制性的实施方案中,该方法进一步包括将可共聚的材料添加到在c)中的a)和b)的混合物之中。在另一个非限制性实施方案中,该方法进一步包括:d)少部分地聚合c)的可聚合组分。在这里使用的术语“预聚物”指部分地聚合的材料。
在上述另一种方法的另一非限制性实施方案中,该基本上亲水性预聚物包括在水性组合物中的基本上亲水性烯属不饱和单体,该基本上疏水性预聚物包括在水性组合物中的基本上疏水性烯属不饱和单体,和该光敏材料是光致变色材料。在再一个非限制性实施方案中,该光致变色材料存在于该基本上疏水性预聚物中和该光致变色材料是有机光致变色材料。在又一个非限制性实施方案中,该有机光致变色材料包括至少一个可聚合的基团。
在另一个非限制性实施方案中,该短语“让材料经历足以至少部分地形成微粒的条件”包括让该材料经历高剪切应力条件,以使该材料颗粒化形成微粒。高剪切应力能够通过本领域技术人员已知的任何高剪切应力技术来实现。
在这里使用的术语“高剪切应力条件”指不仅包括高剪切应力技术,如下面详细地讨论的液体-液体冲击技术,而且包括由机械法实现的高速度剪切。应该理解,如果需要的话,能够采用对水性组合物施加应力的任何模式,只要施加足够的应力实现水性组合物的颗粒化形成微粒就行。
该水性组合物能够利用MICROFLUIDIZER
Figure G2009102228083D00271
乳化器(它可从Microfluidics Corporation,Newton,Massachusetts获得)来接受合适的剪切应力条件。该MICROFLUIDIZER
Figure G2009102228083D00281
高压冲击乳化器详细描述在美国专利No.4,533,254中,它引入这里供参考。该设备由高压(高达约1.4×105kPa(20,000psi))泵和互作用腔(在其中发生乳化)组成。在一个非限制性的实施方案中,掺混物的预乳液在接受高剪切应力之前制备。该泵强迫该掺混物进入腔中,在其中它被分裂成至少两股液流,它们在很高的速度下通过至少两个狭缝并碰撞,导致了小颗粒的形成,例如该掺混物被“颗粒化”。
在一个非限制性的实施方案中,各水性组合物在约3.5×104和约1×105kPa(5,000和15,000psi)之间的压力下通过乳化器多次或一直到生产出至少部分地形成的微粒为止。在另一个非限制性实施方案中,每一种水性组合物在乳化器中的多次通过能够得到具有较小平均粒度和较窄的粒度分布范围的微粒。当使用上述MICROFLUIDIZER
Figure G2009102228083D00282
乳化器时,应力由液体-液体冲击施加。如上所述,能够采用对预乳化掺混物施加应力的其它模式,只要施加足够的应力获得至少部分地形成的微粒(它能够借助于多次通过进一步减少尺寸)就行。例如,施加高剪切应力条件的其它非限制性方法将是超声能、均化器、转子/定子混合器和/或射流分散器的使用。
在另一非限制性实施方案中,至少部分地形成的光敏性聚合物微粒的可聚合组分的聚合反应能够通过用引发量的辐射辐射该组合物和/或向组合物中添加引发量的能够由诸如自由基聚合、热聚合、光聚合或它们的结合方法之类的方法进行聚合的材料例如引发剂来实现。聚合那些用于制备本发明的光敏性聚合物微粒的材料的方法是本领域技术人员公知的并且这些众所周知的技术中的任何一种都能够使用。
例如,该可聚合组分能够通过热聚合法,例如在22℃到150℃的温度范围、通过光聚合或由这些方法的结合来至少部分地聚合。尽管对于在至少部分地形成的微粒中可聚合组分的热聚合而言已经描述了温度的范围,但是所属技术领域的专业人员可以理解,除在这里公开的那些以外的温度也可以使用。
由辐射引发聚合的非限制性方法包括紫外、可见光、红外、微波、γ或电子束辐射的使用,以便引发该可聚合组分的聚合反应。在这之后能够跟有加热步骤,以固化任何未反应的可聚合材料。
可聚合组分的聚合反应能够通过在水性组合物中包含引发量的能够产生自由基的材料来进行,如有机过氧化合物或偶氮双(有机腈)化合物,例如,引发剂。可用作热聚合引发剂的合适有机过氧化合物的非限制性例子包括:叔丁基过氧化氢,过氧基单碳酸酯如叔丁基过氧基异丙基碳酸酯;过氧化二碳酸酯,如二(2-乙基己基)过氧化二碳酸酯,二(仲丁基)过氧化二碳酸酯和二异丙基过氧化二碳酸酯;二酰基过氧化物,如2,4-过氧化二氯苯甲酰,过氧化异丁酰,过氧化癸酰,过氧化月桂酰,过氧化丙酰,过氧化乙酰,过氧化苯甲酰和过氧化对-氯苯甲酰;过氧化酯如叔丁基过氧基新戊酸酯,叔丁基过氧辛酸酯和叔丁基过氧异丁酸酯;甲乙酮过氧化物,和乙酰基环己烷磺酰基过氧化物。在一个非限制性的实施方案中,热引发剂是不使所得聚合物微粒变色并且能够不需要额外热量就可参与氧化还原引发剂体系的那些,这些是本领域技术人员已知的。例如参见“RedoxPolymerization”,G.S.Misra,Prog.Polym.Sci.Vol 8,第61-131页,1982,它引入这里供参考。
能够用作热聚合引发剂的合适偶氮双(有机腈)化合物的非限制性例子包括:2,2’-偶氮双(2,4-二甲基戊腈,1,1’-偶氮双环己烷甲腈,偶氮二异丁腈或它们的混合物。
用于引发和聚合该可聚合组分的热聚合引发剂的量能够变化并且取决于具体使用的引发剂。需要仅仅为了引发和维持聚合反应所需要的量。在一个非限制性的实施方案中,对于偶氮双(有机腈)化合物而言,能够使用0.01-5.0份的该引发剂/100份的可聚合组分(phm)。典型地,热固化周期包括在引发剂存在下在室温-125℃范围内的温度下加热该可聚合组分20分钟到2小时。尽管对于在至少部分地形成的微粒中可聚合组分的热聚合已经描述了时间的范围,但是所属技术领域的专业人员可以理解,除在这里公开的那些以外的时间间隔也可以使用。
可聚合组分的光聚合能够在光引发剂存在下通过使用紫外和/或可见光来进行。根据在这里公开的各种非限制性实施方案可以使用的光引发剂的非限制性例子包括分裂型光引发剂和夺去型光引发剂。
分裂型光引发剂的非限制性例子包括乙酰苯,α-氨基烷基苯基酮,苯偶姻醚,苯甲酰基肟,酰基膦氧化物和双酰基膦氧化物或此类引发剂的混合物。此类光引发剂的商品实例是可从Ciba Chemicals,Inc商购的DAROCURE
Figure G2009102228083D00301
4265。夺取型光引发剂的非限制性例子包括二苯甲酮,米蚩酮,噻吨酮,蒽醌,樟脑醌,荧光酮,苯并二氢呋喃酮或此类引发剂的混合物。
夺去型光引发剂典型地在诸如胺和其它氢给体材料之类的材料(它们被添加来提供用于夺去的不稳定氢原子)存在下发挥更好功能。典型的氢给体具有位于氧或氮的α位的活性氢,例如醇、醚和叔胺,或直接连接于硫上的活性氢原子,例如,硫醇。在不存在此类添加的材料的情况下,光致引发能够仍然通过从该体系的单体、低聚物或其它组分中夺去氢来进行。
在另一个非限制性实施方案中,阳离子光引发剂也可以与上述光引发剂相结合使用。为夺去型光引发剂所使用的阳离子引发剂的非限制性例子是氢给体材料,如丁酰基胆碱三苯基丁基硼酸酯,或此类材料的结合物。阳离子光引发剂的其它非限制性例子是描述在美国专利5,639,802,第8栏,第59行到第10栏,第46行中的鎓盐,该公开物引入这里供参考。
用于引发和聚合该至少部分地形成的微粒的可聚合组分的光聚合引发剂的量能够变化并且取决于具体使用的引发剂。需要仅仅为了引发和维持聚合反应所需要的量。该光聚合引发剂能够以基于可聚合组分的重量的0.01%-5%重量的量使用。
用于光聚合反应的光源选自发射紫外光和/或可见光的那些。在一个非限制性的实施方案中,该光源能够是汞灯,用FeI3和/或GaI3掺杂的汞灯,杀菌灯,氙灯,钨灯,金属卤素灯或此类灯的组合。典型地,光引发剂或光引发剂结合物的吸收谱与灯泡例如H灯泡、D灯泡、Q灯泡和/或V灯泡的光谱输出匹配,以获得最高的固化效率。该曝光时间能够根据光源的波长和强度、光引发剂、和可聚合组分来变化。该至少部分地形成的微粒也能够通过使用不需要引发剂存在的电子束方法来进行至少部分地聚合。
使用热和/或光聚合方法用于在光敏性微粒中可聚合组分的聚合反应的引发剂和方法的进一步叙述已公开在美国专利6,602,603,第11栏,第1行到第13栏,第36行中,该公开物引入这里供参考。
在一个非限制性的实施方案中,本发明涉及本发明的至少部分地交联的光敏性聚合物微粒的水性分散体。在另一非限制性实施方案中,从上述工艺得到的光敏性聚合物微粒能够作为基本上稳定的水性分散体或作为不稳定的水性组合物来制备。该术语“基本上稳定的分散体”指在静置时大多数,例如大于50%的光敏性聚合物微粒不沉降、凝聚和/或絮凝。不稳定的水性组合物是其中高于50%的光敏性聚合物微粒在静置时沉降的一种水性组合物。在一些情况下,表面活性剂或分散剂能够用于稳定该分散体,这是本领域技术人员已知的。应该理解,为了本发明的目的,为了产生微粒的稳定分散体所需要的表面活性剂的量(当需要时)常常通过促进分散体的稳定性的其它成分的使用来减到最少。例如,在一个非限制性的实施方案中,能够用胺中和以便形成水可分散性聚合物的含有酸官能团的聚合物能够用于将其它成分分散在包括该微粒的水性组合物中。
在本发明的其它实施方案中,光敏性聚合物微粒从该水性组合物中回收。在一个非限制性的实施方案中,能够使用为本领域技术人员已知的液-固相分离技术。非限制性例子包括过滤、离心、絮凝和蒸发技术。在另一个非限制性实施方案中,当至少部分地交联的光敏性微粒的团块被回收时,该团块通过振动破坏作用来分散。在另一非限制性实施方案中,回收的微粒能够由处理膨松固体的技术领域的技术人员已知的方法,进行静电和/或化学方法处理,以便将再聚结减到最少。
在本发明的一个非限制性的实施方案中,提供了光敏性聚合物制品,它包括单独的本发明光敏性聚合物微粒或该微粒与下面将描述的至少部分地固化的聚合物材料两者。在另一个非限制性实施方案中,该光敏性制品是光学元件。在另一非限制性实施方案中,该光学元件选自光存储元件、显示元件、眼科元件、窗元件或镜元件。在再一些非限制性实施方案中,该光敏性制品是眼科元件。在仍然其它非限制性实施方案中,该光敏性制品是包括本发明的至少部分地交联的光致变色聚合物微粒的一种光致变色制品。
在另一个非限制性实施方案中,本发明的光致变色制品包括至少部分地固化的聚合物有机材料和有效量的本发明的至少部分地交联的光致变色聚合物微粒,其中该微粒的表面域和/或内部域的至少一种是光致变色的。在一个非限制性的实施方案中,该聚合物有机材料能够选自热固性聚合物有机材料、热塑性聚合物有机材料或此类聚合物有机材料的混合物。在另一个非限制性实施方案中,该聚合物有机材料选自聚(甲基丙烯酸C1-C12烷基酯),聚(氧化烯二甲基丙烯酸酯),聚(烷氧基化苯酚甲基丙烯酸酯),乙酸纤维素,三乙酸纤维素,乙酸丙酸纤维素,乙酸丁酸纤维素,聚乙酸乙烯酯,聚乙烯醇,聚氯乙烯,聚偏二氯乙烯,热塑性聚碳酸酯,聚酯,聚氨酯,聚硫氨酯,聚硫醚-硫氨酯,聚(脲-尿烷),聚(对苯二甲酸乙二醇酯),聚苯乙烯,聚(α甲基苯乙烯),共聚(苯乙烯-甲基丙烯酸甲酯),共聚(苯乙烯-丙烯腈),聚乙烯醇缩丁醛,或从下面单体制备的聚合物:双(烯丙基碳酸酯)单体,多官能化丙烯酸酯单体,多官能化甲基丙烯酸酯单体,二甲基丙烯酸二甘醇酯单体,二异丙烯基苯单体,乙氧基化双酚A二甲基丙烯酸酯单体,乙二醇双甲基丙烯酸酯单体,聚(乙二醇)双甲基丙烯酸酯单体,乙氧基化苯酚双甲基丙烯酸酯单体,烷氧基化多元醇聚丙烯酸酯单体,苯乙烯单体,尿烷丙烯酸酯单体,丙烯酸缩水甘油酯单体,甲基丙烯酸缩水甘油酯单体,二烯丙叉基季戊四醇单体或此类单体的混合物。
在本发明的一个非限制性实施方案中,光学元件包括:光存储元件如光存储和图像处理的设备;眼科元件如矫正镜、非矫正镜、接触镜、眼内透镜、放大镜、防护镜和护目镜;窗元件如建筑、汽车、摩托车和飞机透明体、滤光片、开闭器、和光学开关;镜元件;和显示元件如屏幕、监测器、液晶池、有机发光设备和安全元件。
在这里使用的术语“光学(optical)”意指与光和/或视觉有关。在一个非限制性的实施方案中,该光存储元件包括图像处理设备和光学数据存储设备。在此类光存储元件中,设备与光信号的相互作用会引起这些设备的光学存储在一段时间中发生变化,直到图像的形式变化被处理或维持为止或直到信息的形式变化被维持而直到进一步变化或删除为止。在这里使用的术语“眼科(ophthalmic)”意指与眼睛和/或视觉有关。眼科元件的非限制性例子包括矫正和非矫正镜,其中包括单视或多视透镜,它们可以是分区或未分区的多视透镜(如,但不限于,双焦点透镜,三焦点透镜和渐进的透镜),以及用于矫正、保护或增强(化妆或其它)视觉的其它元件,包括但不限于接触镜、眼内透镜、放大镜、和防护镜或护目镜。
在这里使用的术语“窗”意指适合于让辐射透过的口。窗的非限制性例子包括建筑、汽车和飞机透明体、滤光片、开闭器、和光学开关。在这里使用的术语“镜元件”意指镜面方式反射入射光的大部分的一种表面。在本发明中,该反射光能够由连接到镜元件的光敏性聚合物微粒的类型来改性。
在这里使用的术语“显示器”是指在文字、数字、符号、设计或图画方面的信息的看得见的或计算机可读的表示。显示元件和设备的非限制性例子包括屏幕、监视器、液晶池、有机发光设备和安全元件。在这里使用的术语“液晶池”指含有液晶材料(它是能够有序化的各向异性材料)的一种结构。有源液晶池是其中液晶材料能够利用外力如电场或磁场在有序化和无序化状态之间转变或在两个有序化状态之间转变的一类池。无源液晶池是其中液晶材料维持有序化状态的那些池。有源液晶池元件或设备的一个非限制性例子是液晶显示器。
在这里使用的术语“有序化”是指达到合适的排列或定位,如通过用另一种结构或材料定向排列,或借助于一些其它力或作用。因此,在这里使用的术语“有序化”包括将材料有序化如用另一种结构或材料定向排列的接触方法,和将材料有序化如受到外力或外部作用的非接触方法。术语“有序化”还包括接触和非接触方法的结合。
根据在这里公开的使用液晶材料作为例子的各种非限制性实施方案,将液晶材料以及其它各向异性材料如非线性光学材料、光致变色-二色性材料以及二色性染料进行至少部分地有序化的方法的非限制性例子包括让液晶材料的至少一部分暴露于下列这些当中的至少一种:磁场、电场、线性偏振的红外辐射、线性偏振的紫外线辐射、线性偏振的可见辐射和剪切力。
除了将液晶材料至少部分地有序化的上述方法之外,根据在这里公开的各种非限制性实施方案的液晶材料能够通过用另一种材料或结构如取向设备将液晶材料的至少一部分定向排列来至少部分地有序化。在这里使用的术语“取向设备”意指一种机构,所述机构能够促进直接和/或间接地接触到该取向设备的至少一部分的一种或多种其它结构的定位。关于取向设施的其它信息已公开与美国专利申请P-108,935从段落[0153]到[0288](2004年5月17日申请),该公开物因此引入这里供参考。
在本发明的一个非限制性的实施方案中,提供了光学元件,它包括a)具有第一表面的第一基材;b)具有第二表面的第二基材,其中第二基材的第二表面与第一基材的第一表面相对;和c)位于第一表面和第二表面之间的材料,该材料包括有效量的本发明的至少部分地交联的光敏性聚合物微粒。在一个非限制性的实施方案中,位于第一表面和第二表面之间的该材料与两个表面实现物理分离或与至少一个表面接触。在另一非限制性实施方案中,c)的材料与第一和第二基材的第一表面和第二表面接触。
在另一个非限制性实施方案中,该光学元件选自光存储元件、显示元件、眼科元件、窗元件或镜元件。在另一非限制性实施方案中,显示元件选自屏幕、监视器、液晶池、有机发光设备或安全元件。在再一些非限制性实施方案中,该光学元件是有机发光设备“OLED”,其中第一表面是阳极,第二表面是阴极和位于两者之间的材料是发射性材料,该发射性材料与该阳极和该阴极电接触。
在一个非限制性的实施方案中,当电流施加于OLED时,阳极注射空穴并且阴极注射电子到包括有效量的本发明的光敏性聚合物微粒的发射性材料中。注入的空穴和电子各自向着相反电荷的电极迁移。当电子和空穴定域在同一分子上时,形成了“激子”,后者是具有激发能状态的定域电子空穴对。当激子通过光发射机理发生松驰时发射出光,这是本领域技术人员已知的。例如参见美国专利6,687,266第2栏,第47行到第18栏,第59行,该公开物因此引入这里供参考。在另一非限制性实施方案中,该至少部分地交联的光敏性聚合物微粒包括有效量的选自荧光物质、磷光物质或它们的混合物中的光敏材料。
安全元件的非限制性例子包括具有有效量的本发明的至少部分地交联的光敏性聚合物微粒的制品,该微粒引入到和/或连接到该制品的至少一个表面的至少一部分上。有效量的光敏性聚合物微粒是允许该制品的鉴定(authentication)的微粒量。有效量的光敏性微粒能够位于鉴定标记中。此类安全元件的非限制性例子包括,没有限制:防问卡和通行证,例如,车票,徽章,鉴别证或会员证,签帐卡等等;流通票据和非流通票据,例如,汇票,支票,债券,票据,存款单,股票,等等;政府公文,例如,货币,执照,身份证,福利卡,签证,护照,正式证书,契据等等;生活消费品,例如,软件,压缩光盘(“CD”),数字-视频光盘(“DVD”),电气设备,消费电子设备,体育用品,小汽车,等等;信用卡;或商品贴签,标签和包装。
虽然在这里没有限制意味,根据另一个非限制性实施方案,安全元件能够连接到选自透明基材和反射基材中的基材的至少一部分上。或者,根据其中需要反射基材的某些特定的非限制性实施方案,如果基材对于预定应用不是反射性或充分反射性的,反射材料能够在施涂鉴定标记之前首先被施涂于基材的至少一部分上。例如,至少部分地反射性铝涂层能够在基材上形成安全元件之前被施涂于基材的至少一部分上。更进一步,安全元件能够连接到基材的至少一部分上,所述基材选自未着色的基材、着色的基材、光致变色基材、着色的光致变色基材、至少部分地线性偏振基材、至少部分地圆形偏振基材、和至少部分地椭圆形偏振基材。在一个非限制性的实施方案中,该安全元件是至少部分地线性偏振安全元件。
此外,根据上述非限制性实施方案的安全元件能够进一步包括一种或多种其它涂层或片材以便形成具有视角依赖特性的多层反射安全元件,如在美国专利6,641,874第1栏,第6行到第13栏,第28行中所述,它因此引入这里供参考。
在一个非限制性实施方案,本发明的光敏性制品包括:a)基材;和b)连接到基材的至少一个表面的一部分上的至少部分地固化的涂料组合物,该涂料组合物包括有效量的至少部分地交联的光敏性聚合物微粒,其中微粒的表面域和/或内部域的至少一种应当是光敏性的。在一个非限制性的实施方案中,基材选自玻璃、砖石、纺织品、陶瓷,例如,溶胶凝胶材料、金属、木材、纸或聚合物有机材料。在另一非限制性实施方案中,基材是玻璃、陶瓷或聚合物材料并选择用于未着色基材、着色基材、光致变色基材、着色-光致变色基材、至少部分地线性地偏振基材、至少部分地圆形偏振基材、至少部分地椭圆形偏振基材或至少部分地反射基材。
可以与在这里公开的各种非限制性实施方案相结合用作基材的聚合物有机材料的非限制性例子包括聚合物材料,例如,从公开在US专利6,733,887第9栏,第55行到第17栏,第7行中和在美国专利5,658,501第15栏,第28行到第16栏,第17行中的单体和单体混合物制备的均聚物和共聚物,这两篇US专利的公开内容被引入这里供参考。
在这里对于涂层或基材所使用的术语“至少部分地线性偏振”指适于线性地偏振辐射(即,将光波的电场矢量的振动的部分到全部被限制到一个方向)的涂层或基材。在这里对于涂层或基材所使用的术语“至少部分地圆形偏振”指适于圆形地偏振部分到全部的辐射的涂层或基材。在这里对于涂层或基材所使用的术语“至少部分地椭圆形偏振”指适于椭圆形地偏振部分到全部的辐射线的涂层或基材。在对于涂层或基材所使用的术语“光致变色”是指具有可见辐射的吸收光谱的涂层或基材,该吸收光谱响应至少光化辐射而变化。此外,在这里对于基材所使用的术语“着色-光致变色”意指一种基材,它含有着色剂及光致变色材料,并且具有响应于至少光化辐射而发生变化的可见光、紫外线和/或红外辐射的吸收光谱。因此例如,在一个非限制性的实施方案中,着色的-光致变色基材能够具有着色剂的第一色彩特性以及当暴露于光化辐射时着色剂和光致变色材料的结合的第二色彩特性。
在一个非限制性的实施方案中,涂料组合物能够是液态或固态的并且能够作为至少部分地固化的涂料组合物的至少部分涂层来施涂。至少部分涂层覆盖了从部分到全部的涂覆表面并且涂料组合物的部分到全部的可固化组分被固化,例如,反应或聚合。
在其它非限制性实施方案中,涂料组合物是粘合剂、漆、或油墨。在又一个非限制性实施方案中,涂料组合物是粘合剂。粘合剂如热塑性或热固性粘合剂,以及在这里描述的偶联剂的底漆涂组合物能够用于本发明中。漆类(它们是用于基材的装饰、保护和/或鉴别的含颜料的液体或浆料)和油墨类(它们是用于书写和打印在基材上的含颜料的液体或浆料)能够用于本发明中。
在再一些非限制性实施方案中,有粘合剂作为涂料组合物的光敏性制品进一步包括连接到涂料组合物的至少一个表面上的第一至少部分地固化的聚合物片材。在这里使用的术语“连接到”指直接与目标接触或经由一种或多种其它结构或材料(其中的至少一种与目标直接接触)与目标间接接触。在再一个非限制性实施方案中,该光敏性制品进一步包括第二个至少部分地固化的聚合物片材,该第二聚合物片材靠近基材并且由粘合剂涂料组合物连接于第一个聚合物片材上。在另一个非限制性实施方案中,该光敏性制品是一种制品,其中第一和第二聚合物片材中的至少一种是光敏性的。
在本发明的另一非限制性实施方案中,该光敏性制品包括基材和连接到基材的至少一个表面的至少一部分上的至少部分地固化的涂料组合物,其中涂料组合物包括至少部分地有序化各向异性材料,并且至少部分地交联的光敏性聚合物微粒与该各向异性材料之间至少部分地定向排列。
施涂包含本发明的光敏性聚合物微粒的涂料组合物的非限制性方法包括本领域已知的施涂涂层的那些方法,比如旋涂、喷涂、喷雾和旋涂、幕涂、流涂、浸涂、注塑、浇铸、辊涂、线涂、和覆盖模塑。根据一个非限制性实施方案,包含光敏性聚合物微粒的至少部分涂层施加于模具中并且基材在涂层的表面上形成或将预先形成的基材放置于涂层的表面上,例如通过覆盖模塑法,并且涂层是至少部分地固化的。在这一实施方案中,涂层能够作为包含该光敏性聚合物微粒的液体或粉末涂料来施涂。包括以下描述的聚合物片材的光致变色制品也能够使用覆盖模塑方法制备。
本发明的另一个非限制性实施方案是光致变色涂层的制品,包括:a)基材;和b)连接到基材的至少一个表面的至少一部分上的至少部分地固化的光致变色涂层,该光致变色涂层包括成膜聚合物和有效量的本发明的至少部分地交联的光致变色聚合物微粒。在本发明的各种非限制性实施方案中,成膜聚合物的确切性质不是关键的。与光致变色聚合物微粒相容的任何成膜聚合物材料都能够使用。
在一个非限制性的实施方案中,成膜聚合物选自热固性聚合物材料、热塑性聚合物材料或此类聚合物材料的混合物。在另一个非限制性实施方案中,成膜聚合物是热固性聚合物材料,后者选自聚氨酯,聚(脲-尿烷),氨基塑料树脂,聚硅氧烷,聚酐,聚丙烯酰胺,环氧树脂或聚(甲基)丙烯酸酯,例如,聚甲基丙烯酸酯,聚丙烯酸酯或它们的混合物。
包含光致变色材料的成膜聚合物的涂料组合物的非限制性例子包括光致变色聚氨酯涂料,如描述在美国专利6,187,444第3栏,第4行到第12栏,第15行中的那些;光致变色氨基塑料树脂涂料,如描述在美国专利6,432,544第2栏,第52行到第14栏,第5行和6,506,488第2栏,第43行到第12栏,第23行中的那些;光致变色聚硅氧烷涂料,如描述在美国专利4,556,605第2栏,第15行到第7栏,第27行中的那些;光致变色聚(甲基)丙烯酸酯涂料,如描述在美国专利6,602,603第3栏,第15行到第7栏,第50行、6,150,430第8栏,第15-38行、和6,025,026第8栏,第66行到第10栏,第32行中的那些;聚酐光致变色涂料,如描述在美国专利6,436,525第2栏,第52行到第11栏,第60行中的那些;光致变色聚丙烯酰胺涂料,如描述在美国专利6,060,001第2栏,第6行到第5栏,第40行中的那些;光致变色环氧树脂涂料,如描述在美国专利6,268,055第2栏,第63行到第15栏,第12行中的那些;和光致变色聚(脲-尿烷)涂料,如描述在美国专利6,531,076第2栏,第60行到第10栏,第49行中的那些。涉及到成膜聚合物的上述美国专利的公开内容因此引入这里供参考。
在本发明的光致变色涂覆制品的一系列的其它非限制性实施方案中,至少部分地固化的光致变色涂层连接到基材的至少一个表面的至少一部分上;涂覆制品进一步包括连接到基材的至少一个表面的至少一部分上的底漆涂层的至少部分涂层;涂覆制品进一步包括连接到基材的至少一个表面的至少一部分上的至少部分地耐磨涂层;该涂覆制品进一步包括连接到基材的至少一个表面的至少一部分上的至少部分地防反射涂层;该涂覆制品进一步包括插入在光致变色涂层和耐磨涂层之间的过渡涂层的至少部分涂层;和涂层制品进一步包括连接到基材的至少一个表面的至少一部分上的至少部分地偏振聚合物膜或涂层。
在另一系列的非限制性实施方案中,该上述涂层能够连接到基材的同一表面的至少一部分上,按照从表面开始的以下顺序:底漆涂层;光致变色涂层;过渡涂层;耐磨涂层;偏振膜或涂层;抗反射涂层;和耐磨涂层;或底漆涂层;光致变色涂层;过渡涂层;耐磨涂层;和抗反射涂层;或光致变色涂层;过渡涂层;和偏振涂层;或底漆涂层;光致变色涂层;和偏振涂层;或底漆涂层;光致变色涂层;和抗反射涂层。上述涂层的许多不同的组合是可能的,这是本领域技术人员已知的。全部的上述涂层能够施涂于基材的一个或多个表面上,例如光学基材的两个表面上。在另一非限制性实施方案中,该光致变色涂层典型地被施涂于一个表面上。基材能够是在这里描述为基材的任何类型的材料。在一个非限制性的实施方案中,基材是光学元件。在另一个非限制性实施方案中,该光学元件是眼科元件。
能够与在这里公开的各种非限制性实施方案相结合使用的底漆涂层的非限制性例子包括含有偶联剂、偶联剂的至少部分水解产物、和它们的混合物的涂料。在这里使用的“偶联剂”是指下述物质,它具有至少一个能够与至少一个表面上的基团反应、结合和/或缔合的基团。在一个非限制性的实施方案中,偶联剂能够在至少两个表面(相同或不同表面)的界面上用作分子桥连。在另一个非限制性实施方案中,偶联剂能够是单体、预聚物和/或聚合物。此类物质包括,但不限于,金属有机化合物如硅烷,钛酸酯,锆酸酯,铝酸盐,铝酸锆,它们的水解产物和它们的混合物。在这里使用的短语“偶联剂的至少部分水解产物”指在偶联剂上的至少部分到全部的可水解基团发生水解。适合与在这里公开的各种非限制性实施方案相结合使用的底涂料的其它非限制性例子包括描述在美国专利6,025,026第3栏,第3行到第11栏,第40行和美国专利6,150,430第2栏,第39行到第7栏,第58行中的那些底漆涂料,这些公开物因此引入这里供参考。
在这里使用的术语“过渡涂层”意指协助在两种涂层之间产生性能梯度的涂层。例如,虽然在这里没有限制意味,过渡涂层能够协助在较硬涂层和较软涂层之间产生硬度梯度。过渡涂层的非限制性例子包括辐射固化的丙烯酸酯型薄膜,如在美国专利申请出版物2003/0165686中所述,它的涂料公开内容因此引入这里供参考。
至少部分地耐磨涂层的非限制性例子包括包含有机硅烷、有机硅氧烷的耐磨性涂层,以无机材料如二氧化硅、二氧化钛和/或二氧化锆为基础的耐磨性涂层,紫外光可固化类型的有机耐磨性涂层,氧阻隔涂层,UV遮挡涂层,和它们的结合物。
该短语“至少部分地耐磨涂层或片材”指,根据与ASTMF-735(Standard Test Method for Abrasion Resistance ofTransparent Plastics and Coatings Using the Oscillating SandMethod)相当的方法进行测试,所具有的耐磨性大于标准参考材料(例如由从PPG Industries,Inc商购的CR-39
Figure G2009102228083D00411
单体制成的聚合物)的保护聚合物材料的涂层或至少部分片材。
该短语“至少部分地防反射涂层”是通过减少由基材表面反射的眩光的量和对于透明基材而言通过增加透光百分率(与未涂覆的基材相比)来至少部分地改进所施涂的基材的抗反射性质的涂层。防反射涂层的非限制性例子包括金属氧化物、金属氟化物或其它此类材料的单层或多层,它们可以通过真空蒸发、溅射或一些其它方法沉积到本发明的制品上。
至少部分地线性地偏振涂层的非限制性例子包括,但不限于,包括普通二色性化合物(如,但不限于,以上讨论的那些化合物)的涂料。
在一个非限制性的实施方案中,本发明的制品是光致变色复合材料制品,包括:a)基材;和b)连接到基材的至少一个表面上的至少部分地固化的光致变色聚合物片材,该光致变色聚合物片材包含有效量的本发明的至少部分地交联的光致变色聚合物微粒。包括基材和一个或多个片材的本发明光致变色制品被称为光致变色复合材料制品。
在另一个非限制性实施方案中,基材与此前所描述的相同并且光致变色复合材料制品是光学元件。在另一非限制性实施方案中,该光学元件是眼科元件。至少部分地固化的聚合物片材的非限制性例子包括热固性聚合物材料、热塑性聚合物材料或它们的混合物。在一个非限制性的实施方案中,该至少部分地固化的聚合物片材包括热塑性聚氨酯。
在另一非限制性实施方案中,在这里描述的本发明的光致变色复合材料制品能够进一步包括连接到至少部分地固化的光致变色聚合物片材的至少一个表面的至少一部分上的至少部分地耐磨保护性聚合物片材。在另一个非限制性实施方案中,至少部分地耐磨保护性聚合物片材包括热固性聚合物材料、热塑性聚合物材料或它们的混合物。在另一非限制性实施方案中,该至少部分地耐磨保护性聚合物片材包括热塑性聚碳酸酯。
在另一个非限制性实施方案中,本发明的光致变色复合材料制品包括:a)基材;b)连接到基材的至少一个表面的至少一部分上的光致变色粘合剂的至少部分地固化的涂层,该粘合剂包含粘合剂和有效量的本发明的至少部分地交联的光致变色聚合物微粒;和c)连接到光致变色粘合剂涂层上的第一至少部分地固化的聚合物片材。在一个非限制性的实施方案中,该光致变色复合材料制品是光学元件。在另一非限制性实施方案中,该光致变色复合材料制品是眼科元件。
在另一个非限制性实施方案中,该光致变色复合材料制品进一步包括第二至少部分地固化的聚合物片材,该第二聚合物片材靠近基材并且由光致变色粘合剂涂层连接于第一聚合物片材上。在另一非限制性实施方案中,第一和第二聚合物片材中的至少一种是光致变色的。在另一非限制性实施方案中,该光致变色复合材料制品是安全元件。
另外,根据在这里公开的各种非限制性实施方案,至少部分涂层和/或至少部分片材能够进一步包括可以促进至少部分涂层和/或片材的加工、性能或特性之中的一种或多种的至少一种添加剂。此类添加剂的非限制性例子包括染料、定向排列促进剂、动力学增强添加剂、光引发剂、热引发剂、聚合抑制剂、溶剂、光稳定剂(如、但不限于、紫外线吸收剂和光稳定剂、如受阻胺光稳定剂(HALS))、热稳定剂、脱模剂、流变性能控制剂、流平剂(如、但不限于、表面活性剂)、自由基清除剂、交联剂和粘合促进剂(如己二醇二丙烯酸酯和偶联剂)。
能够在根据在这里公开的各种非限制性实施方案的至少部分涂层和/或片材中存在的染料和颜料的非限制性例子包括能够为至少部分涂层和/或片材赋予所需颜色或其它光学性能的有机和无机染料和颜料。
在这里使用的术语“定向排列促进剂”意指一种添加剂,它能够促进它所添加到的材料的定向排列的速率和均匀性的至少一种。能够在根据在这里公开的各种非限制性实施方案的至少部分涂层和/或片材中存在的定向排列促进剂的非限制性例子包括在美国专利6,338,808第1栏,第48行到第9栏,第40行和美国专利出版物No.2002/0039627在段落[0010]到[0119]中描述的那些,定向排列促进剂的公开内容因此引入这里供参考。
能够在根据在这里公开的各种非限制性实施方案的至少部分涂层和/或片材中存在的动力学增强添加剂的非限制性例子包括含环氧基的化合物、有机多元醇、和/或增塑剂。此类动力学增强添加剂的更具体例子公开在美国专利6,433,043第2栏,第57行到第8栏,第37行和美国专利6,713,536第2栏,第62行到第10栏,第6行中,动力学增强添加剂的公开内容因此引入这里供参考。
本发明更具体地在下面的实施例中进行描述,它们仅仅举例说明而已,因为其中的许多改进和变化对于本领域技术人员是显而易见的。
实施例A至J代表了与实施例K至S中的其它成分合并和反应的材料,以生产出光致变色微粒的水性分散体。实施例1至22代表了引入有实施例K至S的光致变色微粒的水性分散体的不同涂料组合物。实施例23描述了涂有实施例1-22的透镜的制备和测试。对该透镜测试了Fischer微硬度、光学密度和褪色半衰期。测试结果列于表12和13中。
实施例A
亲水性尿烷预聚物
下列材料按照所述工序添加到装有电子测温探针、机械搅拌器、冷凝器、和加热罩的四颈圆底烧瓶中。
投料A
  原料   重量(克)
  N-甲基吡咯烷酮(NMP)   138.9
  二羟甲基丙酸(DMPA)   134.1
  亚磷酸三苯基酯   1.1
  二月桂酸二丁锡   1.1
  丁基化羟基甲苯   1.1
投料B
  原料   重量(克)
  丙烯酸2-(二己内酯)乙基酯   344.4
投料C
  原料   重量(克)
  亚甲基双(4-环己基异氰酸酯)   524.0
投料D
  原料   重量(克)
  二乙醇胺   105.1
  丙二醇单丁基醚   138.9
投料A在烧瓶中于100℃的温度下搅拌,直至全部固体溶解为止。添加投料B,混合物再加热到80℃。投料C经过15分钟时间添加进去,所得混合物在80℃下保持3小时。添加投料D,混合物被冷却到室温。最终产物是具有38.0的酸值和81.4%的百分固体含量的极粘稠的澄清黄色溶液。该酸值用KOH电位滴定法测量。该百分固体含量是通过将已知量的材料添加到铝盘中,添加附加的水来稀释该材料和将它更均匀地分布在盘中来测定。将盘在110℃的烘箱中放置1小时。该盘进行再称重,百分固体含量是从剩余质量(减去盘)除以初始质量(减去盘)测定的。
实施例B
光致变色疏水性尿烷预聚物
下列材料按照所述顺序添加到装有电子测温探针、机械搅拌器、冷凝器、和加热罩的四颈圆底烧瓶中。
投料A
  原料   重量(克)
  N-甲基吡咯烷酮   72.1
  光致变色剂A(1)   67.3
  丙烯酸2-(二己内酯)乙基酯   103.4
  二月桂酸二丁基锡   0.3
  丁基化羟基甲苯   0.3
投料B
  原料   重量(克)
  2-庚基-3,4-双(9-异氰酸根合壬基)-1-戊基-环己烷(2)   117.4
(1)光致变色剂A是3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃。
(2)从Cognis Corporation获得的二异氰酸酯。
投料A在烧瓶中搅拌并加热到90℃的温度。投料B经过17分钟添加进去,混合物在90℃下保持90分钟,然后冷却到室温。最终产物是暗紫色液体,具有1390cps的Brookfield粘度(#3转子,50rpm,25℃)。
实施例C
亲水性尿烷预聚物
下列材料按照所述顺序添加到装有电子测温探针、机械搅拌器、冷凝器、和加热罩的四颈圆底烧瓶中。
投料A
  原料   重量(克)
  N-甲基吡咯烷酮   313.3
  二羟甲基丙酸(DMPA)   241.5
  甲基丙烯酸羟乙基酯(HEMA)   234.3
  二月桂酸二丁基锡   2.3
  亚磷酸三苯基酯   2.3
  丁基化羟基甲苯   2.3
投料B
  原料   重量(克)
  数均分子量1000的聚氧化丁烯   1200.0
投料C
  原料   重量(克)
  异佛尔酮二异氰酸酯   666.9
投料D
  原料   重量(克)
  丙烯酸丁酯   153.0
投料E
  原料   重量(克)
  丙烯酸丁酯   1100.0
投料A在烧瓶中在100℃的温度下搅拌,直至全部固体溶解为止。添加投料B,混合物再加热到90℃。经过90分钟的时间添加投料C。添加投料D,所得混合物在90℃下保持2小时。添加投料E,混合物被冷却到室温。最终产物是具有25.8的酸值,58.5%的百分固体含量和W+的Gardner-Holdt粘度(ASTM D 1545-89)的澄清溶液。
实施例D-I
光致变色疏水性尿烷预聚物
在表1中对于实施例D-I中每一个以克用量所列出的原料按照所述顺序添加到装有电子测温探针、磁力搅拌器、冷凝器,和加热罩的四颈圆底烧瓶中。
投料A在烧瓶中进行搅拌,然后加热至90℃的温度。经过至多10分钟的时间添加投料B,混合物在90℃下保持1小时,只是实施例D除外,它保持2小时。在改变为空气气氛后,添加投料C,混合物在90℃下对于实施例D和E保持34-35分钟,对于实施例F和I保持23分钟,对于实施例G保持20分钟和对于实施例H保持32分钟,然后冷却到室温。最终产物是具有在表2中所列的百分固体含量的深色液体。
表1-实施例D-I
Figure G2009102228083D00471
表2-实施例D-I的固体%
  D   E   F   G   H   I
  所得产物的固体%   32.7   58.6   50.4   57.2   53.4   37.7
(3)光致变色剂B是3-苯基-3-(4-吗啉代苯基)-6,7-二甲氧基-13-丁基-13-(2-(2-(2-羟基乙氧基)乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃。
(4)光致变色剂C是3,3-二(4-甲氧基苯基)-6-甲氧基-7-吗啉代-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃。
(5)光致变色剂D是3-(4-(2-羟基乙氧基)苯基)-3-(4-吗啉代苯基)-13,13-二甲基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃。
(6)光致变色剂E是3-(4-甲氧基苯基)-3-(4-氟苯基)-6,7-二甲氧基-13-乙基-13-(2-(2-羟基乙氧基)乙氧基)-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃。
实施例J
疏水性尿烷预聚物
将下列原料按照所述顺序添加到装有电子测温探针、顶置搅拌器、冷凝器、和加热罩的四颈圆底烧瓶中。
投料A
  原料   重量(克)
  N-甲基吡咯烷酮   649.3
  丁基化羟基甲苯   3.1
  二月桂酸二丁基锡   3.1
  丙烯酸2-(二己内酯)乙基酯   1770.9
投料B
  原料   重量(克)
  2-庚基-3,4-双(9-异氰酸根合壬基)-1-戊基-环己烷(2)   1408.8
投料A在烧瓶中在空气气氛中进行搅拌,并加热至90℃的温度。投料B经过25分钟添加进去,混合物在90℃下保持50分钟。最终产物是具有81.4%的百分固体含量的和R+的Gardner-Holdt粘度的稍微黄色液体。
实施例K
实施例A和B形成的光致变色微粒的水性分散体
下列原料按照所述顺序添加。
投料A
投料B
  原料   重量(克)
  丙烯酸2-(二己内酯)乙基酯   9.6
  实施例B   49.7
  十二烷基苯磺酸(在异丙醇中70%)   2.33
  二甲基乙醇胺   0.65
投料C
  原料   重量(克)
  水   2.0
  硫酸亚铁铵   0.01
  叔丁基过氧化氢   0.16
投料D
  原料   重量(克)
  水   6.0
  原料   重量(克)
  偏亚硫酸氢钠   0.2
投料E
  原料   重量(克)
  二甲基乙醇胺   0.24
  水   0.48
(7)从Rhodia获得的非离子型表面活性剂。
通过在玻璃烧杯中搅拌投料A来制备预乳液。在该预乳液当中,132.37g通过Microfluidizer
Figure G2009102228083D00501
M110T在8000psi和28℃下循环15分钟,而投料B按顺序添加。MicrofluidizerM110T是从MFICCorporation,Newton,MA的Microfluidics(TM)部门获得的。将所得微乳液转移到装有顶置搅拌器、冷凝器、电子测温探头、和氮气导入管的四颈圆底烧瓶中。投料C作为混合物快速地添加,投料D作为混合物经过30分钟添加。随着添加投料D,温度从30℃提高到33℃。最终,添加投料E生产具有8.22的pH的乳状紫色分散体。
实施例L
实施例C形成的微粒的水性分散体
下列原料按照所述顺序添加。
投料A
Figure G2009102228083D00503
投料B
  原料   重量(克)
  水   20.0
投料C
  原料   重量(克)
  水   6.0
  硫酸亚铁铵   0.02
  偏亚硫酸氢钠   0.5
投料D
  原料   重量(克)
  水   12.0
  叔丁基过氧化氢   0.4
投料E
  原料   重量(克)
  二甲基乙醇胺   1.2
  水   2.4
投料F
Figure G2009102228083D00511
(8)从Cytec,Inc.获得的据报道是作为在异丁醇中90wt%分散体销售的部分地甲基化蜜胺/甲醛树脂。
通过在不锈钢烧杯中搅拌投料A来制备预乳液。预乳液在8000psi下一次通过Microfluidizer M110T。将所得微乳液转移到装有顶置搅拌器、冷凝器、电子测温探头、和氮气导入管的四颈圆底烧瓶中。投料B用来漂洗烧杯和Microfluidizer M110T,然后添加到该烧瓶中。投料C作为混合物快速地添加,投料D作为混合物经过30分钟添加。随着添加投料D,温度从30℃提高到54℃。投料E作为混合物添加。添加投料F,生产具有8.11的pH,39.7厘泊(#1转子,50rpm,25℃)的布氏粘度和36.9%的百分固体含量的乳白色分散体。
实施例M
实施例A和D形成的光致变色微粒的水性分散体
下列原料按照所述顺序添加。
投料A
Figure G2009102228083D00521
投料B
  原料   重量(克)
  丙烯酸2-(二己内酯)乙基酯   7.0
  实施例D   47.0
  十二烷基苯磺酸(在异丙醇中70%)   2.07
  二甲基乙醇胺   0.55
投料C
  原料   重量(克)
  水   2.1
  硫酸亚铁铵   0.01
  叔丁基过氧化氢   0.14
投料D
  原料   重量(克)
  水   6.2
  偏亚硫酸氢钠   0.19
通过在玻璃烧杯中搅拌投料A来制备预乳液。131.8克的预乳液通过Microfluidizer M110T在8000psi和28℃下循环15分钟,投料B按顺序添加。将所得微乳液转移到装有顶置搅拌器、冷凝器、电子测温探头、和氮气导入管的四颈圆底烧瓶中。投料C作为混合物快速地添加,投料D作为混合物经过30分钟添加。随着添加投料D,温度从30℃提高到33℃。该最终产物是具有8.21的pH和33.1%的百分固体含量的乳状灰色分散体。
实施例N-R
实施例A与实施例E,F,G,H,或I和J形成的光致变色微粒的 水性分散体。
表3列出了按所述顺序使用的、用于实施例N-R的制备中的原料的量(克)。通过在玻璃烧杯中搅拌投料A来制备预乳液。在所得预乳液中:对于实施例N而言53.7克;对于实施例O而言73.59克;对于实施例P而言60.31克;对于实施例Q而言57.31克和对于实施例R而言66.14克各自在8000psi和70℃下通过Microfluidizer M110T循环15分钟,投料B按顺序添加。将所得微乳液转移到装有磁力搅拌器、冷凝器、电子测温探头、和氮气导入管的四颈圆底烧瓶中。投料C用来漂洗Microfluidizer,然后添加到该烧瓶中。微乳液的温度被调节到23℃。投料D作为混合物快速地添加,投料E作为混合物经过30分钟添加。随着添加投料E,温度升高至24-26℃。所得微分散体在减压下蒸镏,直至对于各实施例剩下了在表4中所列的量为止。最终产物是具有在表4中所列的pH和百分固体含量的深色液体。
表3-实施例N-R
Figure G2009102228083D00541
表4-实施例N-R的特性
  N   O   P   Q   R
  在蒸馏之后保留的各实施例的量(克)   67.5   76.3   65.2   57.5   55.8
  pH   6.5   6.48   6.75   6.52   6.63
  固体%   34   35.7   35.9   39.9   41.6
实施例S
实施例A和B形成的光致变色微粒的水性分散体
下列原料按照所述顺序添加。
投料A
  原料   重量(克)
  水   562.4
  二甲基乙醇胺   1.7
  丙二醇单丁基醚   22.44
  实施例A   127.5
  丙烯酸2-(二己内酯)乙基酯   40.66
投料B
  原料   重量(克)
  实施例B   210.8
  十二烷基苯磺酸(在异丙醇中70%)   9.71
  二甲基乙醇胺   6.97
投料C
  原料   重量(克)
  水   30.0
投料D
  原料   重量(克)
  水   10.0
  硫酸亚铁铵   0.01
  叔丁基过氧化氢   0.68
投料E
  原料   重量(克)
  水   30.0
  偏亚硫酸氢钠   0.85
通过在装有顶置搅拌器、冷凝器、电子测温探头、和进气管的四颈圆底烧瓶搅拌投料A来制备预乳液。预乳液被加热至60℃和然后通过Microfluidizer
Figure G2009102228083D00551
M110T在8000psi和没有冷却的情况下循环15分钟,投料B按顺序添加。将冷却水施加于Microfluidizer
Figure G2009102228083D00552
M110T,以便将所得微乳液的温度降低至25℃。将微乳液转移到装有顶置搅拌器、冷凝器、电子测温探头、和氮气导入管的四颈圆底烧瓶中。投料C用来漂洗Microfluidizer
Figure G2009102228083D00553
,然后添加到该烧瓶中。投料D作为混合物快速地添加,然后投料E作为混合物经过30分钟添加。随着添加投料E,温度从25℃提高到30℃。所得乳状紫色分散体具有6.58的pH,48.3厘泊(#1转子,50rpm,25℃)的布氏粘度,和30.8%的百分固体含量。
实施例1-8
使用蜜胺树脂作为交联剂的实施例K的光致变色微粒的水性分散 体的涂料组合物
部分A
向实施例K的原料中添加足够的水,达到23.2%的百分固体含量测量值。所得溶液搅拌大约1小时。
部分B
在表5中的实施例1-8的每一个所列出的用量(克)的原料按照所述顺序添加:
在投料A在搅拌平台上的烧杯中用磁力搅拌棒进行搅拌,使用可调节的移液管将投料B添加到其中。所得混合物搅拌2-5分钟。按照与投料B同样的方法,添加投料C。添加投料D,所得混合物偶尔摇振2-10次以确保它自顶到底进行混合,搅拌20-45分钟。在搅拌停止之后,所得溶液静置30-60分钟,以驱除已经形成的气泡。
表5-实施例1-8
Figure G2009102228083D00561
(9)据报道是γ-环氧丙氧基丙基三甲氧基硅烷并且可以从OsiSpecialty Chemicals商购。
(10)在NMP中5wt%TINUVIN-144,据报道具有CAS#63843-89-O并且可从Ciba Specialty Chemicals获得。通过搅拌,直至TINUVIN-144溶解为止,制备第一稳定剂溶液。
(11)据报道是可从Cytec,Inc商购的甲氧基甲基羟甲基蜜胺。
实施例9-13
在除实施例9之外的全部其它实施例中,使用蜜胺树脂作为交联 剂,实施例L或M的光致变色微粒的水性分散体的涂料组合物
按照实施例1的部分B的工序,不同的是下列原料按照在表6中指定的量(克)使用。
表6-实施例9-13
Figure G2009102228083D00571
(12)通过添加光致变色剂F(它是3,3-二(4-甲氧基苯基)-6,11,13-三甲基-13-羟基-3H,13H-茚并[2,1-f]萘并[1,2-b]吡喃),1.75g,和TINUVIN-144,0.87g(它被描述为在第一稳定剂(10)中的原料)到NMP中,50.0g,来制备光致变色剂/稳定剂。该原料在搅拌下溶解,然后将溶液加热至低于45℃以得到在NMP中有3.3wt%的光致变色剂F和1.7wt%的TINUVIN-144的溶液。
实施例14-16
实施例K的光致变色微粒的水性分散体的涂料组合物,使用下列 物质作为交联剂:聚碳化二亚胺;聚氮丙啶;或异氰酸酯基官能化的 有机硅烷
部分A
按照实施例1的工序,不同的是将足够的水添加到实施例K的原料中,得到31.4wt%的固体含量测量值。
部分B
按照实施例1的部分B的工序,不同的是下列原料按照在表7中指定的量(克)使用。
表7-实施例14-16
Figure G2009102228083D00581
(13)多官能聚碳化二亚胺作为在水中的40%固体而提供,并且由Nisshinbo Industries,Inc.,Japan制造。
(14)通过将3.5wt%的TINUVIN-144和19.9wt%的A-187粘合促进剂溶解在NMP中来制备稳定剂/粘合促进剂。
(15)聚氮丙啶作为从NeoResins,Inc获得的100%固体而提供。
实施例17
使用蜜胺树脂作为交联剂并包括尿烷二醇的实施例N,O和P的光 致变色微粒的水性分散体的涂料组合物
按照实施例1的部分B的工序,不同的是下列原料按照在表8中指定的量(克)使用。
表8-实施例17
Figure G2009102228083D00591
(16)据报道是作为在水中85%活性的从Cytec Inc.获得的高亚胺基蜜胺树脂
(17)据报道是作为在水中88%活性提供的并且从KingIndustries,Inc获得的尿烷二醇。
部分4
将下列原料按照所述顺序添加到烧杯中,并混合约10分钟以生产实施例17。
 原料   重量(克)
 部分2的产物   7.75
 部分3的产物   4.19
 部分1的产物   2.67
实施例18-19
使用蜜胺树脂作为交联剂并包括尿烷二醇的实施例Q或R的光致 变色微粒的水性分散体的涂料组合物
按照实施例1的部分B的工序,不同的是下列原料按照在表9中指定的量(克)使用。
表9-实施例18-19
Figure G2009102228083D00601
实施例20-22
使用商购Solgel硬涂层形成用溶液的实施例S的光致变色微粒的 水性分散体的涂料组合物
按照实施例1的部分B的工序,不同的是下列原料按照在表10中指定的量(克)使用。
表10-实施例20-22
Figure G2009102228083D00602
(18,19和20)HiGard
Figure G2009102228083D00603
1020涂料溶液,HiGard
Figure G2009102228083D00604
1080涂料溶液,和HiGard
Figure G2009102228083D00605
1035涂料溶液各自是从PPG Industries,Inc.获得的商购solgel硬涂层形成用涂料溶液。
实施例23
透镜的制备按照在部分A中所述来进行;透镜的涂覆描述在部分B中;涂覆透镜的Fischer微硬度测定描述在部分C中;并且涂膜透镜的光致变色性能测定描述在部分D中。
部分A
具有76毫米直径的PDQ涂覆的Gentex
Figure G2009102228083D00607
聚碳酸酯平光透镜以所供应的形式使用或用洗碗用的洗涤剂和水洗涤,用去离子水漂洗和干燥。实施例1至13的透镜以所供应的形式使用,然后用氧等离子体在100毫升(mL)/每分钟的氧流速下,在100瓦功率下处理一分钟。实施例14到22的清洗过的透镜用一阵的电离空气处理以除去任何尘粒,在3DT MultiDyne 1系统中通过将各透镜放置在电晕源下方约1英寸(2.54cm)处,以约200rpm的速度旋转并处理约3到4秒来进行电晕处理。
部分B
在部分A中制备的透镜利用旋涂方法用实施例1-22的溶液涂覆。将约1-2mL的的各实施例的溶液分配到透镜上,该透镜在表11中所列的速度下旋转所列出的时间。实施例1-19的涂覆透镜在强制空气烘箱中通过下列固化周期来固化:80℃下20分钟,经过5分钟缓升到120℃,在120℃下保持1小时和冷却到室温。实施例20-22的涂覆透镜在强制空气烘箱中在60℃下固化20分钟,然后在120℃下固化3小时。
表11-旋涂参数
  实施例号  旋转速度(rpm)   旋转时间(秒)
  1,2,5,6   1,100   5.0
  3   1,100   3.7
  4,7   1,100   3.0
  8   1,100   2.3
  9   850   3.5*
  10   850   3.0*
  11   850   3.3*
  12   850   4.0*
  13   1,100   4.5
  14,15,16,20,21,22   1,100   6.0
  17   700   5.0*
  18   1,600   2.0
  19   1,600   3.0
*表示一些原料在旋转之前被分配,而一些在透镜的旋转过程中分配至多1.0秒。
部分C
在部分B中制备的涂覆透镜通过使用从Fischer Technology,Inc获得的Fischerscope HCV,Model H-100来进行微硬度测定。微硬度以牛顿/平方毫米测量。透镜在约48%相对湿度下在21-23℃的温度下调理至少12小时之后进行这些测量。各透镜被测量2到5次,所得数据取平均值。在100牛顿荷载下15秒之后,硬度测量值是在2微米的穿透深度下作为硬度获得。结果列于表11中。
部分D
在部分B中制备的涂覆透镜在VARIAN CARY 3UV-可见光分光光度计或相当的仪器上对于紫外线吸收来进行筛选。在390纳米下具有相当的UV吸收率的透镜在光具座上测试光致变色响应。在光具座上进行响应测试前,通过让涂覆透镜以距离光源约14cm的距离曝光于365nm紫外光10分钟来调理该涂覆透镜,以便预活化该光致变色材料。在样品上的UVA辐照度用Licor Model Li-1800分光辐射谱仪测量并且测得是22.2瓦特/平方米。样品然后以距离该灯约36cm的距离在卤素灯(500W,120V)下放置约10分钟,以便漂白或钝化在样品中的光致变色材料。在样品上的辐照度用Licor分光辐射谱仪测量并且测得是21.9Klux。样品然后在黑暗环境中保持至少1小时,以便冷却和在试验之前继续消退到基态。
用于测量光致变色响应的光具座装有Oriel Model#66011300-瓦特氙弧灯,Oriel Model 71445计算机控制的快门,Schott 3mm KG-2带通滤光片(用于除去短波长辐射),涂覆熔凝硅石中性密度滤光片(用于衰减来自氙灯的光),熔凝硅石聚光透镜(用于光束准直),和石英水池/样品保持器(用于保持样品温度,所要试验的样品插入其中)。在水池中的温度用泵送的水循环系统来控制,其中水通过放置于冷却装置的贮器中的铜线圈。水池用于将含有试验样品的熔凝硅石片材保持在前后两面上,以便消除该活化或监测光束的光谱变化。通过该水池的滤过水维持在72°F±2°F,以进行光致变色响应测试。OrielPhotofeedback装置,Model 68850用于控制在样品的活化过程中氙弧灯的强度。
Ocean Optics LS-1钨卤素光源用作光致变色响应测量的监测光源。聚焦到纤维光缆中的光进行准直并且垂直通过在水池中的样品的中心。在通过样品后,该光重新聚焦到2英寸积分球面上并由纤维光缆供应给Ocean Optics S2000分光光度计。Ocean Optics OOIBase 32软件和PPG专有软件用于测量响应和控制光具座的操作。
在光具座上光致变色样品的响应测试的辐照度通过使用International Light Research Radiometer,Model IL-1700,用包括Model SED033检测器,B滤光器和扩散器的检测器系统在样品上建立。辐射计的输出显示针对Licor 1800-02Optical CalibrationCalibrator进行校正(系数值设定),以便显示代表瓦特/平方米UVA的值。在样品点上对于响应测试的辐照度被设定在6.7瓦特/平方米UVA并具有约18Klux的照度。试验样品以偏离法向31°角度且同时垂直于该监测光的条件下暴露于活化光。
样品在72°F的受控水池中活化15或30分钟,直到样品达到饱和密度。在此时,活化光束的快门被关闭。在室内灯条件下褪色最多30分钟的过程中对该样品继续进行监测。在它在光具座上褪色的同时,对于各样品测定褪色半衰期(T1/2)。褪色的第一半衰期是在活化光源的去除(例如关闭该快门)之后,在透镜上的涂层中活化形式的光致变色材料的饱和ΔOD褪色到在72°F(22℃)下十五或三十分钟的活化之后所测量的最高ΔOD的一半时所经历的时间间隔(秒)。褪色的第二半衰期是在透镜上的涂层中活化形式的光致变色材料的ΔOD褪色到如上所述测量的最高ΔOD的四分之一时所经历的时间间隔(秒)。褪色的第三半衰期是在透镜上的涂层中活化形式的光致变色材料的ΔOD褪色到如上所述测量的最高ΔOD的八分之一时所经历的时间间隔(秒)。对于各样品测量的各种褪色半衰期包括在表13中。
表12
 实施例#   Fisher微硬度(N/mm2)
  1   45
  2   44
  3   84
  4   122
  5   56
  6   53
  7   98
  8   147
  9   21
  10   80
  11   104
  12   130
  13   65
  14   16
  15   23
  16   42
  17   99
  18   99
  19   101
  20   10
  21   33
  22   49
表13
 实施例#   吸光率,390nm处   光学密度@试验波长(nm)   褪色的第一半衰期(sec)   褪色的第二半衰期(sec)   褪色的第三半衰期(sec)
  1   1.14   0.84@565   42   95   196
  2   1.28   0.87@565   43   96   204
  3   1.52   0.92@565   48   108   264
  4   1.63   0.94@565   62   173   827
  5   1.12   0.83@565   43   94   186
  6   1.22   0.84@565   42   92   185
  7   1.32   0.85@565   42   90   176
  8   1.37   0.89@565   52   144   ---
  9   0.92   0.62@565   48   122   ---
  10   0.86   0.44@565   146   1168   ---
  11   0.86   0.38@565   215   >1800   ---
  12   0.84   0.78@565   422   >1800   ---
  13   1.12   0.58(光适应)   54   129   ---
  14   1.52   0.87@570   44   96   ---
  15   1.62   0.90@570   45   97   ---
  16   1.99   0.92@570   44   95   ---
  17   1.20   0.59(光适应)   50   109   198
  18   1.39   0.85@565   46   102   204
  19   1.30   0.88@565   70   167   436
  20   1.48   0.87@565   42   90   ---
  21   1.17   0.79@565   42   92   ---
 实施例#   吸光率,390nm处   光学密度@试验波长(nm)   褪色的第一半衰期(sec)   褪色的第二半衰期(sec)   褪色的第三半衰期(sec)
  22   1.24   0.79@565   42   92   ---
表12中的结果表明,使用本发明的实施例1-22制备的涂料的Fischer微硬度值是10-147(N/mm2)。
在表13中,实施例1至22的结果表明,涂层的光致变色性能值能够在很大程度上变化。
本发明已经参考本发明的具体实施方案的细节进行了描述。但是不希望这些细节被认为是对于本发明的限制,除非在它们包括在所附权利要求中的程度上。

Claims (5)

1.水性组合物,它包括有效量的至少一种光敏材料和至少一种可聚合组分,该可聚合组分包括至少一种基本上亲水性单体和至少一种基本上疏水性单体,该亲水性单体和该疏水性单体适于相结合并至少部分地形成该可聚合组分的微粒,其中该光敏材料与该微粒缔合。
2.生产光敏性微粒的方法,包括:
a)形成有效量的至少一种光敏材料和至少一种可聚合组分的水性分散体,该可聚合组分包括至少一种亲水性官能团和至少一种疏水性官能团;和
b)让a)的分散体经历足以至少部分地形成微粒的条件。
3.权利要求2的方法,进一步包括:
c)至少部分地聚合b)的该至少一种可聚合组分。
4.权利要求3的方法,其中该亲水性官能团由至少一种基本上亲水性单体提供和该疏水性官能团由至少一种基本上疏水性单体提供。
5.权利要求4的方法,其中该可聚合组分进一步包括至少一种可共聚的材料,该可共聚的材料不同于该基本上亲水性单体或该基本上疏水性单体。
CN200910222808.3A 2004-07-16 2005-04-21 生产光敏性微粒的方法,其水性组合物和用其制备的制品 Active CN101735795B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/892,919 2004-07-16
US10/892,919 US8153344B2 (en) 2004-07-16 2004-07-16 Methods for producing photosensitive microparticles, aqueous compositions thereof and articles prepared therewith

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200580028124XA Division CN101006156B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法,其水性组合物和用其制备的制品

Publications (2)

Publication Number Publication Date
CN101735795A true CN101735795A (zh) 2010-06-16
CN101735795B CN101735795B (zh) 2014-06-11

Family

ID=35599839

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410035072.XA Expired - Fee Related CN103955116B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法
CN200910222808.3A Active CN101735795B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法,其水性组合物和用其制备的制品
CN200580028124XA Active CN101006156B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法,其水性组合物和用其制备的制品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410035072.XA Expired - Fee Related CN103955116B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200580028124XA Active CN101006156B (zh) 2004-07-16 2005-04-21 生产光敏性微粒的方法,其水性组合物和用其制备的制品

Country Status (13)

Country Link
US (1) US8153344B2 (zh)
EP (1) EP1778815B1 (zh)
JP (3) JP5372370B2 (zh)
KR (2) KR20090113387A (zh)
CN (3) CN103955116B (zh)
AU (1) AU2005272981B2 (zh)
BR (1) BRPI0513420A (zh)
CA (1) CA2573595C (zh)
ES (1) ES2377215T3 (zh)
HK (3) HK1105155A1 (zh)
MX (1) MX2007000522A (zh)
WO (1) WO2006019435A1 (zh)
ZA (1) ZA200700244B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715126A (zh) * 2014-06-25 2017-05-24 视觉缓解公司 染料微环境

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389113B2 (en) * 2002-09-17 2013-03-05 Ppg Industries Ohio, Inc. Substrates and articles of manufacture coated with a waterborne 2K coating composition
US20070020463A1 (en) * 2004-12-23 2007-01-25 Trainham James A Flexible polymer coating and coated flexible substrates
US7057134B2 (en) * 2003-03-18 2006-06-06 Loma Linda University Medical Center Laser manipulation system for controllably moving a laser head for irradiation and removal of material from a surface of a structure
US7605194B2 (en) 2003-06-24 2009-10-20 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US20080112909A1 (en) * 2003-06-24 2008-05-15 Ppg Industries Ohio, Inc. Compositions for providing color to animate objects and related methods
US20100184911A1 (en) * 2009-01-22 2010-07-22 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US8563212B2 (en) * 2004-07-16 2013-10-22 Transitions Optical, Inc. Methods for producing photosensitive microparticles, non-aqueous dispersions thereof and articles prepared therewith
US8563213B2 (en) * 2004-07-16 2013-10-22 Transitions Optical, Inc. Methods for producing photosensitive microparticles
JP5272332B2 (ja) * 2006-06-28 2013-08-28 東レ株式会社 蛍光体ペーストおよびディスプレイの製造方法
US8349066B2 (en) 2006-09-21 2013-01-08 Ppg Industries Ohio, Inc. Low temperature, moisture curable coating compositions and related methods
US20080096023A1 (en) * 2006-10-18 2008-04-24 Ppg Industries Ohio, Inc. Process for preparing coated optical elements
US20080095933A1 (en) * 2006-10-18 2008-04-24 Colton James P Process for preparing coated optical elements
FR2909094A1 (fr) * 2006-11-28 2008-05-30 Arkema France Memoire optique 3d comprenant des particules multicouches comprenant un monomere photoactif porteur d'un groupement photoisomerisable.
US7667285B2 (en) 2006-12-14 2010-02-23 Motorola, Inc. Printed electronic substrate havine photochromic barrier layer
US20080187749A1 (en) * 2007-01-11 2008-08-07 Ppg Industries Ohio, Inc. Optical element having light influencing property
US7852366B2 (en) * 2007-06-13 2010-12-14 Xerox Corporation System and method for printing reimageable transient documents
US20080311493A1 (en) * 2007-06-13 2008-12-18 Xerox Corporation Inkless reimageable printing paper and method
US8097093B2 (en) 2007-09-28 2012-01-17 Ppg Industries Ohio, Inc Methods for treating a ferrous metal substrate
US9428410B2 (en) 2007-09-28 2016-08-30 Ppg Industries Ohio, Inc. Methods for treating a ferrous metal substrate
US20090246393A1 (en) * 2008-03-27 2009-10-01 Ppg Industries Ohio, Inc. Polycarbodiimides
US8507050B2 (en) * 2008-11-12 2013-08-13 Ppg Industries Ohio, Inc. Methods for depositing ultra thin coatings exhibiting low haze and methods for the preparation of such coatings
KR101002659B1 (ko) * 2008-12-23 2010-12-20 삼성모바일디스플레이주식회사 유기 발광 표시 장치
FR2940975B1 (fr) 2009-01-13 2011-02-25 Centre Nat Rech Scient Materiau composite photochrome
JP5530936B2 (ja) 2009-01-16 2014-06-25 トヨタ自動車株式会社 巨大ファラデー回転を用いた超高感度磁気センサ
US9212252B2 (en) 2009-08-06 2015-12-15 Basf Se Radiation-curable, water-dispersible polyurethanes and polyurethane dispersions
US8143348B2 (en) 2009-09-01 2012-03-27 Ppg Industries Ohio, Inc. Waterborne coating compositions, related methods and coated substrates
US8900667B2 (en) 2009-12-18 2014-12-02 Ppg Industries Ohio, Inc. One-component, ambient curable waterborne coating compositions, related methods and coated substrates
US8461253B2 (en) 2010-01-15 2013-06-11 Ppg Industries Ohio, Inc. One-component, ambient curable waterborne coating compositions, related methods and coated substrates
KR101188678B1 (ko) * 2010-01-26 2012-10-08 주식회사 에이앤피 테크 광학부재 및 그 제조방법
US8323871B2 (en) * 2010-02-24 2012-12-04 International Business Machines Corporation Antireflective hardmask composition and a method of preparing a patterned material using same
US20110217471A1 (en) 2010-03-02 2011-09-08 Schwendeman Irina G One-component, ambient curable waterborne coating compositions, related methods and coated substrates
CN103534079B (zh) 2011-01-12 2016-02-03 剑桥企业有限公司 复合光学材料的制造
US10451897B2 (en) 2011-03-18 2019-10-22 Johnson & Johnson Vision Care, Inc. Components with multiple energization elements for biomedical devices
TWI433896B (zh) 2011-05-31 2014-04-11 Sdc Technologies Inc 防霧之聚胺基甲酸酯塗料組合物
US10017861B2 (en) 2011-08-03 2018-07-10 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing a rare earth metal, associated methods for treating metal substrates, and related coated metal substrates
US8963104B2 (en) 2011-08-05 2015-02-24 Nitto Denko Corporation Optical element for correcting color blindness
US8852357B2 (en) 2011-09-30 2014-10-07 Ppg Industries Ohio, Inc Rheology modified pretreatment compositions and associated methods of use
US8845873B2 (en) 2011-09-30 2014-09-30 Ppg Industries Ohio, Inc. Near neutral buoyancy texture additive for electrodepositable coating compositions and associated methods for forming textured coated substrates
FR2983487B1 (fr) 2011-12-06 2015-02-20 Centre Nat Rech Scient Compositions de materiaux photocommutables.
US8857983B2 (en) 2012-01-26 2014-10-14 Johnson & Johnson Vision Care, Inc. Ophthalmic lens assembly having an integrated antenna structure
IL224797A (en) * 2012-02-22 2017-03-30 Johnson & Johnson Vision Care An eyepiece lens with annular layers divided by a functional implant
US20130302620A1 (en) 2012-05-09 2013-11-14 Ppg Industries Ohio, Inc. Basecoat with improved adhesion to bioplastic
US8758862B2 (en) 2012-06-26 2014-06-24 Prc Desoto International, Inc. Coating compositions with an isocyanate-functional prepolymer derived from a tricyclodecane polyol, methods for their use, and related coated substrates
SG11201408545RA (en) * 2012-07-06 2015-02-27 Mitsui Chemicals Inc Polymer particles and use thereof
CN104685099A (zh) 2012-08-29 2015-06-03 Ppg工业俄亥俄公司 含锂的锆预处理组合物,处理金属基材的相关方法,和相关的经涂覆的金属基材
PL2890830T3 (pl) 2012-08-29 2019-01-31 Ppg Industries Ohio, Inc. Kompozycje cyrkonowe do obróbki wstępnej zawierające molibden, powiązane sposoby obróbki podłoży metalicznych i powiązane powlekane podłoża metaliczne
US9109131B2 (en) * 2013-01-16 2015-08-18 Xerox Corporation Photochromic phase change ink compositions
US8931930B2 (en) 2013-01-29 2015-01-13 Nitto Denko Corporation Optical element for correcting color blindness
US9068089B2 (en) 2013-03-15 2015-06-30 Ppg Industries Ohio, Inc. Phenolic admix for electrodepositable coating composition containing a cyclic guanidine
US9303167B2 (en) 2013-03-15 2016-04-05 Ppg Industries Ohio, Inc. Method for preparing and treating a steel substrate
EP3041908B1 (en) 2013-09-04 2018-10-24 PPG Coatings (Tianjin) Co. Ltd. Uv-curable coating compositions and methods for using the same
US9311545B2 (en) 2013-09-18 2016-04-12 Blackberry Limited Multicolor biometric scanning user interface
US9418273B2 (en) 2013-09-18 2016-08-16 Blackberry Limited Structure for multicolor biometric scanning user interface
US20150132592A1 (en) 2013-11-08 2015-05-14 Ppg Industries Ohio, Inc. Curable film-forming compositions comprising catalyst associated with a carrier and methods for coating a substrate
US9562000B2 (en) 2014-02-14 2017-02-07 Prc-Desoto International, Inc. Amino alcohol treatment for sol-gel conversion coatings, substrates including the same, and methods of making the substrates
JP6256132B2 (ja) * 2014-03-14 2018-01-10 株式会社リコー 撮像システム
JP6002351B2 (ja) * 2014-03-19 2016-10-05 株式会社メニコン 含水性コンタクトレンズ用インク組成物
CN114591652A (zh) * 2014-04-15 2022-06-07 爱克发有限公司 水性树脂基喷墨油墨
US10627651B2 (en) 2014-08-21 2020-04-21 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization primary elements for biomedical devices with electroless sealing layers
US10361404B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Anodes for use in biocompatible energization elements
US10381687B2 (en) 2014-08-21 2019-08-13 Johnson & Johnson Vision Care, Inc. Methods of forming biocompatible rechargable energization elements for biomedical devices
US9793536B2 (en) 2014-08-21 2017-10-17 Johnson & Johnson Vision Care, Inc. Pellet form cathode for use in a biocompatible battery
US9383593B2 (en) 2014-08-21 2016-07-05 Johnson & Johnson Vision Care, Inc. Methods to form biocompatible energization elements for biomedical devices comprising laminates and placed separators
US9941547B2 (en) 2014-08-21 2018-04-10 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes and cavity structures
US9715130B2 (en) 2014-08-21 2017-07-25 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form separators for biocompatible energization elements for biomedical devices
US9599842B2 (en) 2014-08-21 2017-03-21 Johnson & Johnson Vision Care, Inc. Device and methods for sealing and encapsulation for biocompatible energization elements
US10361405B2 (en) 2014-08-21 2019-07-23 Johnson & Johnson Vision Care, Inc. Biomedical energization elements with polymer electrolytes
KR101959408B1 (ko) * 2014-11-12 2019-03-18 삼성에스디아이 주식회사 표시장치 절연막 및 이를 포함하는 유기 발광 장치
JP6460391B2 (ja) * 2015-02-17 2019-01-30 国立大学法人 鹿児島大学 フォトクロミック微粒子の製造方法、及びフォトクロミック微粒子
US10017690B2 (en) * 2015-05-28 2018-07-10 Xerox Corporation Photochromatic composition for 3D printing
US10113070B2 (en) 2015-11-04 2018-10-30 Ppg Industries Ohio, Inc. Pretreatment compositions and methods of treating a substrate
US20170204289A1 (en) 2016-01-15 2017-07-20 Ppg Industries Ohio, Inc. Hydroxy functional alkyl polyurea
AU2017208147B2 (en) 2016-01-15 2019-08-29 Ppg Industries Ohio, Inc. Carbodiimide curing for packaging coating compositions
US10345620B2 (en) 2016-02-18 2019-07-09 Johnson & Johnson Vision Care, Inc. Methods and apparatus to form biocompatible energization elements incorporating fuel cells for biomedical devices
AT518601A1 (de) * 2016-05-09 2017-11-15 Franz Schwarz Hubert Anstrichmittel
EP3455084B1 (en) * 2016-05-11 2021-11-10 Neenah, Inc. Security document having enhanced foil durability
WO2018005869A1 (en) 2016-06-30 2018-01-04 Ppg Industries Ohio, Inc. Electrodepositable coating composition having improved crater control
CN106220780B (zh) * 2016-08-09 2019-07-12 上海交通大学 一种变色龙仿生的迷彩伪装变色膜的制备方法
CN109641317B (zh) 2016-08-19 2021-08-06 利惠商业有限公司 服装的激光整理
WO2018039462A1 (en) 2016-08-24 2018-03-01 Ppg Industries Ohio, Inc. Alkaline composition for treating metal substartes
US10184068B2 (en) 2016-09-28 2019-01-22 Ppg Industries Ohio, Inc. Coating compositions comprising silicone
US10703920B2 (en) 2016-09-28 2020-07-07 Ppg Industries Ohio, Inc. Corrosion-resistant epoxidized vegetable oil can interior coating
WO2018070383A1 (ja) 2016-10-11 2018-04-19 三井化学株式会社 光学材料用重合性組成物およびその用途
JP6810792B2 (ja) * 2017-03-31 2021-01-06 三井化学株式会社 積層体の製造方法、積層体およびハードコート液
US10808144B2 (en) 2017-05-22 2020-10-20 Ppg Industries Ohio, Inc. Polyolefin silicon coating composition
JP2019006891A (ja) * 2017-06-23 2019-01-17 トーヨーポリマー株式会社 防曇コーティング組成物及びそれを用いた防曇性透明シート
US10392515B2 (en) 2017-08-25 2019-08-27 Ppg Industries Ohio, Inc. Metal cans coated with shellac-containing coatings
US10370545B2 (en) 2017-09-19 2019-08-06 Ppg Industries Ohio, Inc. Low VOC anionic electrodepositable coating composition
US10738213B2 (en) 2017-10-17 2020-08-11 Ppg Industries Ohio, Inc. Modified silicone coating composition
EP3703898A4 (en) 2017-10-31 2021-05-19 Levi Strauss & Co. LASER PROCESSING TOOL
EP3704608A4 (en) 2017-10-31 2021-08-18 Levi Strauss & Co. USE OF NEURAL NETWORKS IN CLOTHING DESIGN
US11053191B2 (en) 2018-01-09 2021-07-06 Ppg Industries Ohio, Inc. Hydroxy functional alkyl carbamate crosslinkers
US10543577B2 (en) 2018-01-23 2020-01-28 Clear and Dark Ltd. Systems, methods, and apparatus for forming optical articles, and optical articles formed by the same
US11352738B2 (en) 2018-02-27 2022-06-07 Levi Strauss & Co. On-demand manufacturing of apparel by laser finishing fabric rolls
US11140936B2 (en) 2018-02-27 2021-10-12 Levi Strauss & Co. Guided allocation in an apparel management system
US11299576B2 (en) 2018-05-11 2022-04-12 Carbon, Inc. Sustainable chemistry systems for recyclable dental models and other additively manufactured products
US10947408B2 (en) 2018-06-27 2021-03-16 Prc-Desoto International, Inc. Electrodepositable coating composition
CA3104247A1 (en) * 2018-07-03 2020-01-09 Bausch & Lomb Incorporated Water extractable ophthalmic devices
EP3833571A4 (en) 2018-08-07 2022-06-29 Levi Strauss & Co. Outdoor retail space structure
CN112930487A (zh) * 2018-08-10 2021-06-08 鲍希与洛姆伯股份有限公司 眼科装置
CA3108052A1 (en) * 2018-08-10 2020-02-13 Bausch & Lomb Incorporated High water content ophthalmic devices
US20200095448A1 (en) 2018-09-21 2020-03-26 Ppg Industries Ohio, Inc. Coating Composition Providing Increased Adhesion and/or UV Durability to a Substrate
EP3887593A4 (en) 2018-11-30 2022-10-05 Levi Strauss & Co. NEUTRAL THREE-DIMENSIONAL CLOTHING DARKENING RENDER
CN109875171A (zh) * 2019-01-30 2019-06-14 国家电网公司 电场感应报警安全帽
EP3919584A4 (en) 2019-01-30 2022-09-28 Mitsui Chemicals, Inc. METHOD FOR PRODUCTION OF A POLYMERIZABLE COMPOSITION FOR AN OPTICAL MATERIAL
TWI709789B (zh) 2019-03-28 2020-11-11 星歐光學股份有限公司 隱形眼鏡及隱形眼鏡產品
US20200325289A1 (en) 2019-04-15 2020-10-15 Ppg Industries Ohio, Inc. Curable film-forming compositions containing rheology modifiers comprising non-aqueous dispersions
US11485874B2 (en) 2019-06-27 2022-11-01 Prc-Desoto International, Inc. Addition polymer for electrodepositable coating compositions
US11313048B2 (en) 2019-06-27 2022-04-26 Prc-Desoto International, Inc. Addition polymer for electrodepositable coating compositions
US11274167B2 (en) 2019-06-27 2022-03-15 Prc-Desoto International, Inc. Carbamate functional monomers and polymers and use thereof
CN114423896A (zh) 2019-07-23 2022-04-29 利惠商业有限公司 对激光精加工服装的三维渲染预览
EP4021955A1 (en) * 2019-08-30 2022-07-06 Transitions Optical, Ltd. Photochromic composition with polyol and poly(anhydride)
WO2021108760A1 (en) * 2019-11-26 2021-06-03 Virginia Commonwealth University Slug-flow manufacturing of uniform and controllable microparticles for battery cathodes
EP4163270A1 (en) 2020-05-28 2023-04-12 Tokuyama Corporation Compound for optical material, curable composition, cured body, and optical article
KR102417069B1 (ko) * 2022-03-24 2022-07-05 함병우 회전형 교반기를 이용한 실리콘 잉크 제조방법
WO2024054786A1 (en) 2022-09-06 2024-03-14 Ppg Industries Ohio, Inc. Precision coatings and methods of applying them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080338A (en) * 1997-12-10 2000-06-27 Transitions Optical, Inc. Water soluble photochromic compounds, compositions and optical elements comprising the compounds
WO2001057106A1 (en) * 2000-02-04 2001-08-09 Ppg Industries Ohio, Inc. Photochromic coated articles

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US108935A (en) 1870-11-01 Improvement in steam-generators
US108936A (en) 1870-11-01 Improvement in steam-generators
US4046729A (en) 1975-06-02 1977-09-06 Ppg Industries, Inc. Water-reduced urethane coating compositions
FR2480764B1 (fr) 1980-04-18 1985-10-04 Rhone Poulenc Spec Chim Latex de polymeres magnetiques et procede de preparation
US4533254A (en) 1981-04-17 1985-08-06 Biotechnology Development Corporation Apparatus for forming emulsions
US4556605A (en) 1982-09-09 1985-12-03 Kabushiki Kaisha Suwa Seikosha Photochromic coating composition and photochromic synthetic resin ophthalmic lens
US4685783A (en) 1983-09-07 1987-08-11 The Plessey Company P.L.C. Polychromic tetracyclo-spiro-adamatylidene derivatives, and polychromic lens incorporating said compounds
US4546045A (en) 1984-12-27 1985-10-08 Ppg Industries, Inc. Method for reducing temperature rise of heat sensitive substrates
US4681811A (en) 1985-08-19 1987-07-21 Ppg Industries, Inc. Color plus clear coatings employing polyepoxides and polyacid curing agents in the clear coat
US4732790A (en) 1986-08-21 1988-03-22 Ppg Industries, Inc. Color plus clear application of thermosetting high solids coating composition of hydroxy-functional epoxies and anhydrides
EP0277639B1 (en) 1987-02-02 1995-01-25 Toray Industries, Inc. Photochromic compound
CA1340939C (en) 1987-02-02 2000-03-28 Ryojiro Akashi Photochromic compound
DE3706561A1 (de) 1987-02-28 1988-09-08 Basf Ag Lichtempfindliches aufzeichnungsmaterial mit erhoehter flexibilitaet
JPH07121977B2 (ja) 1987-07-24 1995-12-25 東レ株式会社 フォトクロミック性ポリマ−微粒子
US4798746A (en) 1987-08-24 1989-01-17 Ppg Industries, Inc. Basecoat/clearcoat method of coating utilizing an anhydride additive in the thermoplastic polymer-containing basecoat for improved repairability
US4963461A (en) 1987-10-02 1990-10-16 Fuji Photo Film Co., Ltd. Light-sensitive micropcapsule and light-sensitive material employing the same
US4931220A (en) 1987-11-24 1990-06-05 Ppg Industries, Inc. Organic photochromic pigment particulates
US5017225A (en) * 1987-12-02 1991-05-21 Japan Capsular Products Inc. Microencapsulated photochromic material, process for its preparation and a water-base ink composition prepared therefrom
JPH0621257B2 (ja) * 1988-07-14 1994-03-23 株式会社タカ・コーポレーション 耐光性フォトクロミックインキの製造方法
FR2645160B1 (zh) 1989-03-31 1992-10-02 Rhone Poulenc Chimie
US5071904A (en) 1989-05-30 1991-12-10 Ppg Industries, Inc. Waterborne coating compositions for automotive applications
DE3924811A1 (de) 1989-07-27 1991-01-31 Hoechst Ag Pfropfpolymerisat mit ungesaettigten seitenketten, dieses enthaltendes lichtempfindliches gemisch sowie daraus hergestelltes aufzeichnungsmaterial
DE69026902T2 (de) 1989-10-11 1996-11-28 Daicel Chem Polykarbonat-Polyol-Zusammensetzung und Polykarbonat-(meth)acrylatzusammensetzungen und darauf basierende Urethan(meth)acrylate
JPH0816215B2 (ja) * 1990-06-18 1996-02-21 株式会社松井色素化学工業所 フォトクロミック材料
JPH04117483A (ja) 1990-09-06 1992-04-17 Nikon Corp フォトクロミック・プラスチック成形物
US5221288A (en) * 1990-10-09 1993-06-22 Matsui Shikiso Chemical Co., Ltd. Thermochromic dyeing method and cellulose product dyed thereby
US5252450A (en) 1991-02-06 1993-10-12 Battelle Memorial Institute Capped photochromic silver halides for incorporation into a plastic matrix
US5639802A (en) 1991-05-20 1997-06-17 Spectra Group Limited, Inc. Cationic polymerization
US5246748A (en) 1991-12-23 1993-09-21 Hoechst Celanese Corp. Thin film optical medium of a multiple amphiphilic bilayer composite
AU670570B2 (en) 1992-03-24 1996-07-25 Nippon Paint Co., Ltd. Polyfunctional polycarbonate polyol
JPH06256758A (ja) 1993-03-10 1994-09-13 Mitsubishi Petrochem Co Ltd フォトクロミック材料
JPH0726027A (ja) 1993-07-12 1995-01-27 Nikon Corp フォトクロミック・プラスチック成形物
JPH0762337A (ja) 1993-08-23 1995-03-07 Toray Ind Inc 液晶性高分子フォトクロミック材料
US5458814A (en) 1993-12-09 1995-10-17 Transitions Optical, Inc. Substituted naphthopyrans
JPH07258585A (ja) * 1994-03-18 1995-10-09 Nippon Paint Co Ltd 水性塗料組成物及び色彩可変塗膜
JPH07258581A (ja) * 1994-03-18 1995-10-09 Nippon Paint Co Ltd フォトクロミック性光輝顔料及びそれを含むコーティング組成物
US5468802A (en) 1994-07-18 1995-11-21 Ppg Industries, Inc. Low volatile organic content automotive refinish coating composition
AU688531B2 (en) 1994-08-08 1998-03-12 Tokuyama Corporation Fulgimide compound
US5645767A (en) 1994-11-03 1997-07-08 Transitions Optical, Inc. Photochromic indeno-fused naphthopyrans
US5658501A (en) 1995-06-14 1997-08-19 Transitions Optical, Inc. Substituted naphthopyrans
RU2095836C1 (ru) 1995-07-20 1997-11-10 Войсковая часть 33825 Способ получения микрокапсул с органическим фотохромным соединением в полимерной матрице
US5723072A (en) 1996-06-17 1998-03-03 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
US5698141A (en) 1996-06-17 1997-12-16 Ppg Industries, Inc. Photochromic heterocyclic fused indenonaphthopyrans
FR2751971B1 (fr) 1996-07-31 1998-11-20 Essilor Int Nouvelles spirooxazines homoazaadamantane et leur utilisation dans le domaine de l'optique ophtalmique
AU718471B2 (en) 1997-02-21 2000-04-13 Ppg Industries Ohio, Inc. Photochromic polyurethane coating and articles having such a coating
US6025026A (en) 1997-06-30 2000-02-15 Transitions Optical, Inc. Process for producing an adherent polymeric layer on polymeric substrates and articles produced thereby
US6268055B1 (en) 1997-12-08 2001-07-31 Ppg Industries Ohio, Inc. Photochromic epoxy resin coating composition and articles having such a coating
US6630597B1 (en) 1997-12-15 2003-10-07 Transitions Optical, Inc. Photochromic 6-aryl substituted 3H-naphtho(2,1-b)pyrans
US6565978B1 (en) 1998-02-18 2003-05-20 Ppg Industries Ohio, Inc. Multi-component composite coating composition and coated substrate
US5919846A (en) 1998-02-19 1999-07-06 Milliken Research Corporation Colorant having isocyanate substituent
US5952131A (en) 1998-04-27 1999-09-14 Xerox Corporation Core and shell matrix compositions and processes
DE19820302A1 (de) 1998-05-04 2000-02-24 Basf Ag Kern/Schale-Partikel, ihre Herstellung und Verwendung
DE69903042T2 (de) 1998-07-10 2003-08-07 Transitions Optical Inc Photochrome sechsgliedrige heterocyclisch kondensierte naphthopyrane
US6022497A (en) 1998-07-10 2000-02-08 Ppg Industries Ohio, Inc. Photochromic six-membered heterocyclic-fused naphthopyrans
US6555028B2 (en) 1998-09-11 2003-04-29 Transitions Optical, Inc. Polymeric matrix compatibilized naphthopyrans
WO2000015629A1 (en) 1998-09-11 2000-03-23 Ppg Industries Ohio, Inc. Polymerizable polyalkoxylated naphthopyrans
US6436525B1 (en) 1998-12-11 2002-08-20 Ppg Industries Ohio, Inc. Polyanhydride photochromic coating composition and photochromic articles
US6060001A (en) * 1998-12-14 2000-05-09 Ppg Industries Ohio, Inc. Alkoxyacrylamide photochromic coatings compositions and photochromic articles
US6180181B1 (en) 1998-12-14 2001-01-30 Ppg Industries Ohio, Inc. Methods for forming composite coatings on substrates
US6432544B1 (en) 1998-12-18 2002-08-13 Ppg Industries Ohio, Inc. Aminoplast resin photochromic coating composition and photochromic articles
US6506488B1 (en) 1998-12-18 2003-01-14 Ppg Industries Ohio, Inc. Aminoplast resin photochromic coating composition and photochromic articles
FR2790264A1 (fr) 1999-02-26 2000-09-01 Essilor Int Procede de preparation d'un latex a proprietes photochromiques et ses applications, en particulier dans le domaine ophtalmique
WO2000055653A1 (en) 1999-03-16 2000-09-21 Zms, Llc Precision integral articles
US6338808B1 (en) 1999-03-31 2002-01-15 Fuji Photo Film Co., Ltd. Liquid crystal composition comprising liquid crystal molecules and alignment promoter
US6325957B1 (en) 1999-06-04 2001-12-04 The Governing Council Of The University Of Toronto Method of producing three dimensional assembly of particles in ordered arrays
AU769249B2 (en) 1999-07-02 2004-01-22 Ppg Industries Ohio, Inc. Poly(meth)acrylic photochromic coating
US6150430A (en) 1999-07-06 2000-11-21 Transitions Optical, Inc. Process for adhering a photochromic coating to a polymeric substrate
WO2001006054A1 (en) 1999-07-19 2001-01-25 Avantgarb, Llc Nanoparticle-based permanent treatments for textiles
US6524164B1 (en) 1999-09-14 2003-02-25 Applied Materials, Inc. Polishing pad with transparent window having reduced window leakage for a chemical mechanical polishing apparatus
US6348604B1 (en) 1999-09-17 2002-02-19 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
US6296785B1 (en) 1999-09-17 2001-10-02 Ppg Industries Ohio, Inc. Indeno-fused photochromic naphthopyrans
US6329060B1 (en) 1999-11-10 2001-12-11 Ppg Industries Ohio, Inc. Solvent-free film-forming compositions for clearcoats, coated substrates and method related thereto
US6353102B1 (en) 1999-12-17 2002-03-05 Ppg Industries Ohio, Inc. Photochromic naphthopyrans
US6531076B2 (en) 2000-02-04 2003-03-11 Ppg Industries Ohio, Inc. Photochromic organic resin composition
DE60106311T2 (de) 2000-03-02 2006-02-09 Merck Patent Gmbh Mehrschichtiger reflektierender Film oder Pigment mit von Blickwinkel abhängigen Reflektionseigenschaften
US6875483B2 (en) 2000-07-06 2005-04-05 Fuji Photo Film Co., Ltd. Liquid crystal composition comprising liquid crystal molecules and alignment promoter
FR2811322B1 (fr) 2000-07-07 2002-10-18 Essilor Int Procede de preparation d'un latex de polyurethane photochromique et application a l'optique ophtalmique
US6599973B1 (en) 2000-09-27 2003-07-29 E. I. Du Pont De Nemours And Company Aqueous graft copolymer pigment dispersants
US6645767B1 (en) 2000-10-03 2003-11-11 Carnegie Mellon University Cells engineered to contain genes of interest without expressed bacterial sequences and materials and methods therefor
FR2816950B1 (fr) 2000-11-17 2003-02-14 Essilor Int Procede d'obtention d'un latex photochromique
US6433043B1 (en) 2000-11-28 2002-08-13 Transitions Optical, Inc. Removable imbibition composition of photochromic compound and kinetic enhancing additive
BR0115888A (pt) 2000-11-29 2003-12-09 Zms Llc Artigos fotocromáticos e métodos para fabricação dos mesmos
US6764710B2 (en) 2001-07-18 2004-07-20 Scimed Life Systems, Inc. Light emitting markers for use with substrates
US6525136B1 (en) 2001-08-02 2003-02-25 Xerox Corporation Photochromic core and shell matrix
KR100482654B1 (ko) 2001-09-18 2005-04-13 한국화학연구원 광변색 나노 캡슐 및 그의 제조방법
US6998072B2 (en) 2001-11-01 2006-02-14 Transitions Optical, Inc. Photochromic polymerizable compositions
US20030141490A1 (en) 2001-12-21 2003-07-31 Walters Robert W. Photochromic polymer compositions and articles thereof
US7452611B2 (en) 2001-12-27 2008-11-18 Transitions Optical, Inc. Photochromic optical article
US6986471B1 (en) * 2002-01-08 2006-01-17 Flame Spray Industries, Inc. Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics
TW594946B (en) 2002-01-16 2004-06-21 Sanken Electric Co Ltd Manufacturing method of semiconductor device
US20030174560A1 (en) 2002-02-26 2003-09-18 Klaus-Hermann Dahmen Photochromic compounds for molecular switches and optical memory
US7163769B2 (en) 2002-03-11 2007-01-16 Pavel Cheben Photosensitive material and process of making same
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
US20050042758A1 (en) * 2003-08-20 2005-02-24 Honeywell Corporation Leak detection method using microencapsulated dye precursor
US7261843B2 (en) * 2004-03-04 2007-08-28 Transitions Optical, Inc. Photochromic optical article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080338A (en) * 1997-12-10 2000-06-27 Transitions Optical, Inc. Water soluble photochromic compounds, compositions and optical elements comprising the compounds
WO2001057106A1 (en) * 2000-02-04 2001-08-09 Ppg Industries Ohio, Inc. Photochromic coated articles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715126A (zh) * 2014-06-25 2017-05-24 视觉缓解公司 染料微环境
CN106715126B (zh) * 2014-06-25 2021-04-06 视觉缓解公司 染料微环境

Also Published As

Publication number Publication date
CA2573595C (en) 2012-01-24
KR20090113387A (ko) 2009-10-30
WO2006019435A1 (en) 2006-02-23
CA2573595A1 (en) 2006-02-23
CN103955116B (zh) 2017-11-17
HK1140787A1 (zh) 2010-10-22
HK1105155A1 (en) 2008-02-01
JP5372370B2 (ja) 2013-12-18
EP1778815A1 (en) 2007-05-02
CN101006156B (zh) 2011-01-19
JP2008506031A (ja) 2008-02-28
AU2005272981B2 (en) 2009-04-30
EP1778815B1 (en) 2011-12-14
ZA200700244B (en) 2008-05-28
CN101735795B (zh) 2014-06-11
US20060014099A1 (en) 2006-01-19
KR100939396B1 (ko) 2010-01-28
MX2007000522A (es) 2007-03-07
AU2005272981A1 (en) 2006-02-23
JP2011006704A (ja) 2011-01-13
CN103955116A (zh) 2014-07-30
JP2014065910A (ja) 2014-04-17
US8153344B2 (en) 2012-04-10
BRPI0513420A (pt) 2008-05-06
JP5470207B2 (ja) 2014-04-16
HK1200921A1 (zh) 2015-08-14
ES2377215T3 (es) 2012-03-23
CN101006156A (zh) 2007-07-25
KR20070046115A (ko) 2007-05-02

Similar Documents

Publication Publication Date Title
CN101006156B (zh) 生产光敏性微粒的方法,其水性组合物和用其制备的制品
CN102791758B (zh) 制备光敏微颗粒、其非水性纳米分散体的方法及由其制备的制品
CN102791826B (zh) 制备光敏微颗粒的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1140787

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1140787

Country of ref document: HK