CN101686939A - 用于肺部投送的核酸微粒 - Google Patents

用于肺部投送的核酸微粒 Download PDF

Info

Publication number
CN101686939A
CN101686939A CN200880020654A CN200880020654A CN101686939A CN 101686939 A CN101686939 A CN 101686939A CN 200880020654 A CN200880020654 A CN 200880020654A CN 200880020654 A CN200880020654 A CN 200880020654A CN 101686939 A CN101686939 A CN 101686939A
Authority
CN
China
Prior art keywords
nucleic acid
microgranule
solution
mixture
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880020654A
Other languages
English (en)
Other versions
CN101686939B (zh
Inventor
拉里·R·布朗
金伯利·A·吉利斯
迈克尔·加洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter Healthcare SA
Baxter International Inc
Original Assignee
Baxter Healthcare SA
Baxter International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter Healthcare SA, Baxter International Inc filed Critical Baxter Healthcare SA
Publication of CN101686939A publication Critical patent/CN101686939A/zh
Application granted granted Critical
Publication of CN101686939B publication Critical patent/CN101686939B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)

Abstract

本发明涉及微粒组合物,其中微粒由核酸和非聚合性阳离子制成,所述组合物适于施加到潮湿或水性的靶位(例如肺组织),在那里,基本上呈球形的核酸微粒通过溶解释放出核酸,使得释放出的核酸与靶细胞自由地相互作用。

Description

用于肺部投送的核酸微粒
本申请要求2007年5月15日提交的美国临时专利申请No,60/938123和2007年4月17日提交的美国临时专利申请No.60/912320的优先权,这两份临时申请的内容在此以其全文引为参考。
发明领域
总的来说,本公开内容涉及核酸微粒的制备。更具体来说,本公开涉及基于核酸的球形微粒的肺部投送,该微粒使用水性条件制备,不使用聚合性阳离子。
背景技术
微粒是直径小于1毫米、更优选小于100微米的固体或半固体颗粒,它可以由各种不同的材料形成,包括合成聚合物、蛋白和多糖。
用于形成微球的示例性聚合物包括在Ruiz的美国专利No.5,213,812、Reid等的美国专利No.5,417,986、Tice等的美国专利No.4,530,840、Tice等的美国专利No.4,897,268、Tice等的美国专利No.5,075,109、Singh等的美国专利No.5,102,872、Boyes等的美国专利No.5,384,133、Tice等的美国专利No.5,360,610、以及南方研究所(SouthernResearch Institute)的欧洲专利申请公开号248,531中描述的乳酸和羟基乙酸的均聚物或共聚物(PLGA);嵌段共聚物,例如在Illum的美国专利No.4,904,479中描述的的4-羟乙酰乙酸内酯(tetronic)908和泊洛沙姆(poloxamer)407;以及如在Cohen等的美国专利No.5,149,543中描述的聚磷腈。使用例如这些聚合物产生的微粒表现出不佳的负载效能,通常只能将少部分(典型情况下低于10%)目标药物掺入聚合物结构中。
这些微粒具有广泛的粒径分布,通常缺乏均一性,不能表现出所需的释放动力学。此外,为了形成这些微粒,将使用的聚合物溶解在有机溶剂中。因此,它们必须在被设计用于操作有机溶剂的专用设施中生产。这些有机溶剂可能对微粒中包含的药物有不利影响。当用施用于人类或动物时,残余的有机溶剂可能有毒。
此外,其尺寸小得足以用于通过吸入给药的可用微粒非常稀少。例如,使用聚乳酸羟基乙酸(PLGA)制备的微粒较大,并有聚集的倾向。因此需要一个尺寸选择步骤,而这导致了产品的损失和成本的增加。
已知使用脂类囊封靶药物来制备微粒。例如,围绕多个水性区室排列成双层膜以形成颗粒的脂类,可用于囊封水溶性药物,用于随后的投送,如在Sinil Kim的美国专利No.5,422,120中所描述。这些颗粒一般尺寸大于10微米,被设计用于关节内、鞘内、皮下和硬膜外给药。可选地,脂质体已被用于静脉内投送小分子。脂质体技术受阻于多种问题,包括脂类成分的纯度、可能的毒性、载体的不均匀性和稳定性、过量摄取、以及制造或储存期限的困难。
医疗机构的一个目标是将核酸投送到对象、包括但不限于人类或哺乳动物的细胞,以用于治疗。例如,核酸可以相对有效地投送到培养的细胞中(体外),但是当将核酸投送到动物时(体内),核酸酶导致核酸的高速降解。
除了保护核酸免于核酸酶消化之外,理想的核酸投送载体还应该表现出低的毒性,被细胞有效吸收,并具有确定的、容易制造的制剂。正如在临床试验中显示的,用于核酸投送的病毒载体可能在体内导致严重不利的、甚至致命的免疫应答。此外,该方法有可能在体内具有诱变效应。通过将核酸包裹在脂类复合物(例如脂质体或阳离子脂类复合物)中进行投送,一般来说在体内是无效的,并可能具有毒性效应。核酸与各种不同聚合物或肽的复合物显示出不一致的结果,而且这些制剂的毒性尚未解决。也已将核酸囊封在聚合物基质中进行投送,但是在这些情况下,颗粒具有广泛的尺寸范围,用于治疗性应用的有效性还没有被证实。
因此,对于阐明核酸投送问题并提供有效的核酸制剂,存在着需求。此外,对于开发微粒和用于制造微粒的新方法也存在着不断的需求。微粒及其制备已经描述在Scott等的美国专利No.6,458,387、Woiszwillo等的美国专利No.6,268,053、No.6,090,925、No.5,981,719和No.5,599,719、Woiszwillo的美国专利No.5,578,709,以及美国专利公开号No.20050142206和美国专利公开号No.20060018971中。每个前述的参考文献和所有其中和本文中确认的其它参考文献,在此引为参考。但是,应该指出,以前描述的这些微粒一般是使用聚合性阳离子例如聚L-赖氨酸或聚L-鸟氨酸来制备的。尽管使用这样的聚合性阳离子产生了出色的结果,获得的微粒具有20重量百分比到100重量百分比的核酸负载,并具有不超过大约50微米的平均粒径,但是典型情况下,聚合性阳离子使这些微粒在水中相对不溶。因此,这些聚合性阳离子和核酸的微粒不适合于将核酸释放到靶位点。尽管这样的微粒可以通过胞吞作用被某些靶细胞和/或其它细胞(例如巨噬细胞)整个摄取,但是这些微粒在具有水性环境的靶位点处不溶解,因此这些微粒中的核酸不能与这样的靶细胞自由地相互作用。
因此,对于能够在处于潮湿或水性环境的靶位点、例如肺、鼻膜、口腔、咽喉、胃、肠、阴道、呼吸系统的任何部位、开放的伤口(例如损伤、划伤、外科伤口、烧伤)、任何粘膜、任何上皮细胞、任何脉管系统等处容易地溶解,以释放能够与靶细胞自由地相互作用的核酸的微粒制备物,仍然存在着需求。
发明内容
本发明涉及组合物,其中微粒由核酸和非聚合性阳离子制成,它适合于给药到潮湿或水性的靶位点(例如肺组织)。微粒是基本上球形的核酸微粒,通过溶解在靶位点释放核酸,允许释放出的核酸与靶细胞自由地相互作用。
在一个实施例中,提供了含有多个核酸微粒的组合物,核酸微粒含有一种或多种核酸以及一种或多种非聚合性阳离子,其中微粒是基本上球形的,在环境温度下可溶于水,并具有0.5微米到5微米的平均粒径,其中微粒不含聚合物聚阳离子,不含非核酸的基质、核心或外壳。
例如,微粒含有大约4重量%到大约10重量%之间的一种或多种非聚合性阳离子。或者,微粒含有大约2重量%、大约3重量%、大约4重量%、大约5重量%、大约6重量%、大约7重量%、大约8重量%、大约9重量%、大约10重量%、大约11重量%、大约12重量%、大约13重量%、大约14重量%或大约15重量%。
无机阳离子可以选自Ca2+、Zn2+、Mn2+、Na+、Ba2+、K+、Mg2+、Co2+、Cu2+、Fe2+、Fe3+、Al3+和Li+,或其两种或多种的组合。
在某些实施例中,核酸可以是反义寡核苷酸,或者它可以是siRNA。
在某些实施例中,组合物中的微粒彼此不聚集。
在某些实施例中,大部分(例如根据数量和/或体积计算时,75%或以上,80%或以上,85%或以上,90%或以上,95%或以上)的核酸微粒具有3微米或以下的空气动力学直径。
在某些实施例中,本文公开的核酸微粒组合物的大部分(例如根据重量计算时,50%或以上,55%或以上,60%或以上,65%或以上,70%或以上,75%或以上,80%或以上,85%或以上,90%或以上,95%或以上)固体含量是核酸。
另一种示例性组合物包含多个核酸微粒,核酸微粒含有一种或多种核酸以及一种或多种非聚合性阳离子,其中微粒是基本上球形的,在环境温度下可溶于水,并具有0.5微米到5微米的平均粒径,其中所述微粒含有少于6重量%的一种或多种非聚合性阳离子,以及大于60重量%的一种或多种核酸。
本文还提供了制造核酸微粒的方法,包括形成含有一种或多种核酸和一种或多种非聚合性阳离子的反应混合物(例如溶液或分散体系),以及将溶液或分散体系冷却,以形成多个核酸微粒。反应混合物可以通过将核酸溶液与非聚合性阳离子溶液进行混合来形成。示例性的非聚合性阳离子溶液包括浓度为0.01M到5M的CaCl2、NaCl、MgCl2、MnCl2、ZnCl2和LiCl。反应混合物可以温育足够的时间,可选地加热和/或冷却,使得在核酸微粒形成之前形成澄清的溶液。在一种情况下,冷却过程不使反应混合物冻结,而是典型情况下将溶液或分散体系冷却到大约1到大约10℃的温度,直到含有核酸和非聚合性阳离子的基本上球形的微粒群形成。方法是有效的,因为它们允许反应混合物中大部分(例如60%或以上,65%或以上,70%或以上,75%或以上)的核酸掺入到核酸微粒中。
在某些情况下,方法还可以包括在形成核酸微粒之前,向反应混合物中加入固体或溶液形式的非离子聚合物的步骤。示例性的聚合物包括PEG、PVP、及其混合物(例如但不限于1∶1比例的PEG∶PVP)。
在方法中,温育温度可以从大约25℃到大约90℃,并高达大约100℃。
在方法中,温育时间可以从大约1分钟到大约1小时。
方法还可以包括分离和/或洗涤核酸微粒。微粒可以使用离心通过沉降来分离。洗涤可以使用核酸微粒的非溶剂来进行。非溶剂可以是水性的,但不仅仅是水。
在其它情况下,方法包括将核酸微粒冻干,以产生干核酸粉末。
优选情况下,方法产生了含有基本上是球形的微粒的微球群。
在其它实施方案中,方法产生了在环境温度下基本上水溶的微球群。
在其它实施方案中,方法产生了具有大约0.5微米到大约3微米之间的平均粒径的微粒群。
在某些实施例中,方法产生了含有至少50重量%的核酸的微粒。
在其它实施例中,方法产生的微粒含有大约55重量%到大约95重量%之间的核酸,例如大约65重量%到大约85重量%,或大约70重量%到大约80重量%。
在某些实施例中,产生的微粒含有大约3重量%到大约10重量%的非聚合性阳离子。
在某些情况下,方法在进行时,用于形成微粒的反应混合物的pH范围在大约3到大约10之间。
在具体的实施例中,非聚合性阳离子溶液是CaCl2溶液。
在其它实施例中,非聚合性阳离子溶液是ZnCl2溶液。
在其它实施例中,非聚合性阳离子溶液是MgCl2溶液。
在其它实施例中,非聚合性阳离子溶液是NaCl溶液。
当阳离子溶液是CaCl2时,在某些具体的实施例中,它可以1.25M的浓度提供,温育温度是75℃,产生的微粒具有1-2微米之间的粒径。在其它实施例中,CaCl2以1M的浓度提供,温育温度是75℃,产生的微粒具有1.3-2.3微米之间的粒径。
在这些方法中,一个示例性的温育温度是70℃。在这样的实施例中,当CaCl2的浓度为大约0.67M时,形成的微粒具有大约2到2.6微米之间的粒径。
在优选实施例中,当CaCl2的浓度在大约0.15M和0.75M之间时,方法产生的微粒具有大约2到2.6微米之间的粒径。
还描述了按照上面讨论的方法制备的微粒组合物。
另一个实施例描述了含有本文描述的组合物的气溶胶组合物。
描述了治疗方法,包括例如治疗有需要的对象的方法,包括向所述对象给药本文描述的气溶胶组合物。
还描述了含有一种或多种核酸和一种或多种非聚合性阳离子的核酸微粒,其中微粒不含聚合物阳离子,并且不含非核酸的基质、核心或外壳。
还提供了制造核酸微粒的方法,包括形成含有一种或多种核酸、一种或多种非聚合性阳离子、以及一种或多种非离子聚合物的溶液或分散体系;以及将溶液或分散体系冷却,以形成多个基本上球形的核酸微粒,其中微粒不含聚合性聚阳离子,并且不含非核酸的基质、核心或外壳。在一种情况下,方法利用了一种或多种被修饰以包含疏水基团的核酸,在特定情况下,疏水基团是胆固醇。
在另一种情况下,方法包括一种或多种非聚合性阳离子与一种或多种核酸的摩尔比是50,000∶1或以下。
在另一种情况下,冷却步骤以0.5℃/min的速度,0.75℃/min的速度和0.8℃/min的速度进行。在某些情况下,冷却步骤在大约4℃、在大约0℃或在大约-5℃时停止。
本发明还提供了制造核酸微粒的方法,包括将胆固醇修饰的核酸、水溶性聚合物和多价阳离子的混合物进行温育,以及将混合物以足够形成微粒的速度随时间冷却。在各种不同情况下,冷却步骤以0.5℃/min的速度,0.75℃/min的速度或0.8℃/min的速度进行,在其它情况下,冷却步骤在大约4℃、在大约0℃或在大约-5℃时停止。
在公开的方法的一种情况下,核酸是抑制性RNA分子,在一种情况下,核酸是siRNA。
在方法的其它情况下,多价阳离子是如本文描述的任何多价阳离子,在具体的情况下,多价阳离子是Mg++或Ca++
在方法的其它情况下,水溶性聚合物是聚乙二醇,或水溶性聚合物是聚乙二醇(PEG)和聚乙烯吡咯烷酮(PVP)的混合物。
在某些方法中,混合物在室温下、在37℃或在65℃下温育,在其它情况下,温育步骤进行大约5分钟到大约10分钟。
在方法的另一种情况下,水溶性聚合物以大约12.5%(w/v)到大约25%(w/v)存在于混合物中,在具体的情况下,水溶性聚合物以大约12.5%(w/v)、大约16.7%(w/v)或大约20%(w/v)存在于混合物中。
在其它情况下,多价阳离子以大约7.5mM到高于1M存在于混合物中,在具体的情况下,多价阳离子以大约10mM到大约20mM、到大约25mM、或到大约35mM存在于混合物中,在另一种具体情况下,多价阳离子以大约25mM存在于混合物中。
本发明还提供了通过任何本文公开的方法生产的微粒。
在另一个实施方案中,本发明提供了用于将微粒投送到靶粘膜的方法,包括将靶粘膜与本文所描述的微粒,以有效穿透并作用于所述靶粘膜上或中的量进行接触的步骤。在各种不同的情况下,靶粘膜选自颊粘膜、食管粘膜、胃粘膜、肠粘膜、嗅粘膜、口腔粘膜、支气管粘膜、子宫粘膜和子宫内膜。
附图简述
下面的图形成了本说明书的一部分,包含它们是为了进一步说明本公开的各个方面。通过参考图并结合本文提出的具体实施例的详细描述,可以更好地理解本公开内容。
图1A-D显示了从冷却前相同的反应混合物形成的不同几何尺寸的核酸微粒,冷却速度为0.1℃/min(图1A),0.5℃/min(图1B),1℃/min(图1C),2℃/min(图1D),和5℃/min(图1E)。
图2A-B显示了核酸微粒在不同百分率点的空气动力学直径截止值与冷却速度之间的稳定的反比关系。图2B中的曲线与图2A中的中间曲线相同。
图3A-B显示了核酸(例如反义寡核苷酸)微粒的空气动力学直径分布,它按照数量计算时(图3A)与按照体积计算时(图3B)相符,但不完全一致。两种测量显示,至少95%的微粒具有小于3微米的空气动力学直径。
图4A-B显示了本文公开的核酸(例如反义寡核苷酸)微粒的下一代冲击器(next-generation impactor)(NGI)表征图形。图4A显示的核酸微粒具有2.9微米的质量中值空气动力学直径(MMAD),几何标准偏差(GSD)为1.5,喷射量为73%,细粒级份FPF(小于8微米或小于5微米)喷射量为82%或以上。图4B显示的核酸微粒具有2.9微米的MMAD,喷射量为85%,FPF(小于8微米或小于5微米)为79%或以上。
图5A-B显示了核酸微粒在不同百分率点的空气动力学直径截止值与核酸微粒形成之前反应混合物中非聚合性阳离子与核酸的摩尔比之间的稳定的相关关系。图5B的曲线与图5A的中间实线曲线相同。
图6显示了冷却过程中核酸微粒形成时的温度与核酸微粒形成之前反应混合物中非聚合性阳离子与核酸的摩尔比之间的正相关关系。
图7A-B、8A-B、9A-B和10A-B显示了按照实施例8从各种不同的标记的和未标记的siRNA分子形成的核酸微粒。
图11显示了按照实施例2形成的反义寡核苷酸微粒。
图12显示出核酸(例如反义寡核苷酸)在整个微粒形成过程中没有被降解。第1和5道是用于参比的10-bp DNA序列梯状条带。第3道是对应于图11的微粒的分离(de-formulation)混合物,而第2和4道是用作对照的相同核酸。
图13显示了按照实施例8形成的siRNA微粒。
图14显示出核酸(例如siRNA)在整个微粒形成过程中没有被降解。第1道是用于参比的10-bp DNA序列梯状条带。第3和4道是按照实施例8的两种不同微粒制剂(相同的核酸分子)的分离混合物,而第2道是用作对照的相同核酸。
图15显示了通过数量和体积计算的核酸(例如siRNA)微粒的空气动力学直径分布。两种测量显示出至少95%的微粒具有小于3微米的空气动力学直径。
图16显示了本文公开的核酸(例如siRNA)微粒的示例性NGI表征图形,MMAD为2.6微米,喷射量为77%,FPF(小于8微米)为78%或以上。
图17显示了特异性针对增强的绿色荧光蛋白(eGFP)的胆固醇修饰的siRNA。
图18显示了微球形式的胆固醇修饰的siRNA,与微球缓冲液和带有Oligofectamine的针对eGFP的siRNA相比,对阴道粘膜中eGFP表达的敲减作用。
图19显示了针对eGFP的胆固醇修饰的siRNA对eGFP表达的剂量依赖性沉默。
实施例的详细描述
正如本文上面讨论的,核酸与聚合性聚阳离子组合的微粒,例如在美国专利公开号No.20060018971中公开的微粒,不溶于水,不适合投送到潮湿或水性的靶位点。在这些微粒中,聚合性聚阳离子的含量在微粒重量的6%或以上(例如6-12%)的范围内,潜在地降低了其中核酸的有效载荷。本公开提供了核酸微粒组合物,可用于将核酸分子投送到潮湿或水性的靶位点,例如肺的表面(例如通过口或鼻吸入干粉和/或计量的剂型)。这些组合物在靶位点快速溶解,并在该靶位点释放包含在微粒组合物中的核酸分子。非聚合性阳离子的粒径比聚合性聚阳离子小,在某些情况下甚至比聚合性聚阳离子的单体单元还小。使用这种较小的非聚合性阳离子允许人们形成在最终的微粒中含有少得多重量(典型情况下少于6%,更典型情况下在2-3%到5%的重量级)的阳离子的微粒。这允许在同样量(以重量计)的微粒中投送较高的核酸有效载荷。
一般来说,本公开中的核酸(例如反义寡核苷酸、小干扰RNAs),在存在一种或多种溶解的非聚合性阳离子(例如Ba2+、Ca2+、Mg2+、Sr2+、Zn2+、Na+、K+、Li+、Cu2+、Fe2+、Mn2+、Fe3+、Al3+)和一种或多种溶解的非离子聚合物(例如聚乙二醇(PEG)和/或聚乙烯吡咯烷酮(PVP))的情况下,如果不是完全溶解(反应混合物目测模糊或云雾状),也是大部分上溶解(反应混合物目测透明)在单一相液体介质中(例如水性介质,例如水性缓冲液)。溶解的核酸的溶解度可以被调整(例如通过冷却反应溶液,增加核酸和/或非离子聚合物和/或非聚合性阳离子的浓度,和/或增加或降低施加于反应溶液的压力),使得溶解的核酸分子聚集在一起并与非聚合性阳离子共同固化,形成了核酸微粒,它们通常可以浑浊的可悬浮的分散体系的形式观察到。在核酸微粒形成后进行进一步处理(例如离心,洗涤和/或冷冻干燥),以将核酸微粒与反应介质和其中溶解的成分(例如非离子聚合物例如PEG和/或PVP)分离。对得到的核酸微粒(例如以干粉的形式)进行表征(例如通过扫描电子显微术(SEM)和使用TSI Aerosizer的空气动力学飞行时间测量来测定粒径分布,使用下一代冲击器(NGI)和Cyclohaler干粉吸入装置在体外测定空气动力学性质,通过反向(RP)HPLC检测降解来确定微粒中核酸的完整性)。
令人吃惊的是,发现核酸微粒可以被配制成具有0.5到5μm范围内的任何一种或多种直径和/或基本上球形的形状,并容易溶解在水和/或生理介质中。根据SEM和Aerosizer数据,PROMAXX核酸微粒的粒径分布被确定为适合于局部投送到肺的任何一个或多个区域,以及呼吸系统的其它区域。用NGI测量的某些实施例的空气动力学性质的体外评估,导致了例如3.0μm的质量中值空气动力学直径;例如1.5μm的几何标准偏差;例如73%的喷射量,以及例如82%但不限于此的细粒级份(小于8微米)。数据表明,这些微粒对于肺部粘膜沉积(例如局部投送到肺部)来说是理想的。RP-HPLC数据显示出,在微粒制作后核酸中没有显著的变化。此外,核酸微粒形成方法导致很少或不导致掺入到核酸微粒中或在它们之间凝聚的核酸的降解。
因此,本公开提供了核酸微粒,其特征为它们是基本上球形的。在一种情况下,当使用SEM观察微粒时,可以看到核酸微粒是基本上无孔的,并具有光滑的表面。因此,这些微粒在有限的空间中包裹了更多的核酸分子,使得核酸的投送比具有相对低的有效载荷的有孔微粒更高效和有效。此外,本文公开的核酸微粒的低孔隙度使它们的表面积最小化,有效地遮蔽了其中的大部分核酸分子免于暴露于引起降解的因素,使得其中的核酸比有孔微粒中的核酸储存更稳定。此外,本公开的核酸微粒的另一个特点是,微粒具有以重量计在一种情况下大于45%、在其它情况下大于60%的典型核酸载量,以及1到3%或以上的非聚合性阳离子含量,没有为如具有各种赋形剂基质(例如脂类、非核酸聚合物、表面活性剂、碳水化合物)的其它微粒中发现的材料基质留下空间。事实上,本公开的微粒,其二级、三级和四级结构原则上归因于核酸分子与非聚合性阳离子的组合。因此,本公开的示例性微粒可以被描述为基本上不含核酸之外的非阳离子结构成分,并基本上不含例如脂类、糖类、水凝胶材料和表面活性剂。微粒的阳离子成分由一种或多种非聚合性阳离子,例如单价阳离子,二价阳离子,三价阳离子,其它多价非聚合性阳离子,单价、二价或更多价的有机非聚合性阳离子,以及它们中的两种或多种的组合,包括但不限于锂离子、钠离子、钾离子、锌离子、钡离子、钙离子、镁离子、血清离子(serum ions)、锰离子、铜离子、铁离子、铝离子、铵离子、烷基铵离子、叔烷基铵离子、二烷基铵离子、三烷基铵离子、四烷基铵离子,等等。在非聚合性阳离子类别中包含了阳离子单体例如游离碱性氨基酸(例如赖氨酸、精氨酸、组氨酸、鸟氨酸、瓜氨酸及其光学异构体和立体异构体)。提供的非聚合性阳离子的形式为水溶性的氢氧化物,以及不与反应溶液中的任何非核酸成分形成不溶于水的沉淀的盐,盐的阴离子包括单价阴离子,二价阴离子,三价阴离子,其它多价非聚合阴离子,单价、二价或更多价的有机非聚合性阴离子,以及它们中的两种或多种的组合(例如氯化物、乙酸盐、碳酸盐、三氯碳酸盐、柠檬酸盐,但不限于此)。具体来说,本文使用的非聚合性阳离子不包括阳离子脂类、阳离子蛋白和阳离子肽。在术语非聚合性阳离子中,也排除了阳离子表面活性剂和磷脂,以及具有(CH2)n基团的阳离子分子,其中n大于4。
核酸微粒易溶于水和/或生理介质(例如盐水,PBS缓冲液,血清)中。例如,以重量计,在20℃到40℃范围内的温度下,例如25℃或37℃下,核酸微粒在去离子水中具有0.1%或以上的溶解度,例如0.5%或以上,1%或以上,2%或以上,3%或以上,5%或以上,10%或以上,20%或以上。对于任何给定的本公开的核酸微粒组合物来说,几何粒径分布和/或空气动力学粒径分布可以独立或同时是单模态、双模态或多模态的。
为了使给定组合物到达肺的一个或多个预定区域(例如肺的深部)或所有区域,正如在某些应用(例如肺部感染)中需要的,考虑到了组合物具有多分散的粒径分布,例如,通过混合两组或多组具有不同几何粒径分布和/或不同空气动力学粒径分布的核酸微粒。几何粒径分布和/或空气动力学粒径分布的非限制性的例子包括在任何值之间的一个、两个或多个范围内分布的粒径分布,例如0.1微米、0.5微米、1微米、1.5微米、2微米、2.5微米、3微米、3.5微米、4微米、4.5微米、5微米、10微米和其中的子范围。因此,考虑到了可以制备粒径在1.5微米到3微米、1.5微米到5微米或1.5微米到8微米范围内分布的给定组合物。
下面,将进一步详细描述制备这些核酸微粒和含有这样的核酸微粒、用于储存和最终使用的组合物的方法、材料和过程。
除非在本文中明确定义,在本公开中使用的科学和技术术语将具有本技术领域的普通专业人员通常理解和使用的意义。应该理解,除非上下文需要,单数的术语将包含其复数形式,复数的术语将包含单数。具体来说,当在本文和权利要求书中使用时,单数形式的表达方式包括了复数的指称物,除非上下文明确指明不是这样。因此,例如,对特定微粒的指称,是对一个这样的微粒或多个这样的微粒、包括其本领域技术人员已知的等价物的指称。此外,当在本文和权利要求书中使用时,术语“至少一个”和“一个或多个”具有同样的意义,包括了一个、两个、三个或以上。下面的术语,除非特别指明,当在本公开的上下文中使用时,应该被理解为具有下述的意义。
除了在操作实施例中之外,或者除非明确指明,所有的数字范围、量、值和百分数,例如用于材料的数量、时间、温度、反应条件、量的比率、分子量的值(不论是数均分子量Mn还是重均分子量Mw)以及本文中公开的其它数字范围、量、值和百分数,应该被理解为在所有情况下都被术语“大约”修饰。因此,除非指明不是这样,在本公开和随附的权利要求书中提出的数值参数都是近似值,可以根据需要改变。最后,每个数值参数应该至少根据报道的有效数字位数并通过使用常用的取整技术进行解释。
虽然为本公开提出了广泛范围的数值范围和参数是近似值,但在具体的例子中提出的数值被报道得尽可能精确。然而,任何数值本身必定包含了某些误差,它们来自于在它们的相应试验测量中发现的标准偏差。此外,当在本文中提出了各种范围的数值范围时,考虑到了可以使用这些包含有列举值的值的任何组合。
“从…形成”和“由…形成”表示开放语。因此,“从或由一系列列举成分形成”的组合物意指含有至少这些列举成分的组合物,并且在组合物的配制过程中还可以包含其它的未列举成分。
本文提供的例子,包括在“例如(such as)”和“例如(e.g)”后的例子,被认为是仅仅说明了本公开及其实施方案的各种不同情况,对它们没有具体的限制。本领域技术人员已知的和/或可获得的任何合适的等价物、替换物和修改都可以使用或执行,以代替本文中公开的或与其组合,并且被认为处于本公开的范围之内。
A.核酸微粒
“微粒”是指固体(包括基本上固体或半固体,但是不包含凝胶、液体和气体)颗粒,其平均几何粒径(有时被称为直径)小于1mm,例如200微米或以下,或100微米或以下,或10微米或以下。在一个实施例中,粒径是0.01微米或以上,例如0.1微米或以上,或0.5微米或以上,或从0.5微米到5微米。平均几何粒径可以通过动态光散射方法(例如光相关光谱、激光衍射、低角度激光光散射(LALLS)、中角度激光光散射(MALLS))、光遮蔽方法(例如Coulter分析方法)或其它方法(例如流变学,光学或电子显微术)来测量。用于肺部投送的微粒将具有通过飞行时间测量方法、Andersen级联冲击器测量方法或下一代冲击器测量方法测定的空气动力学粒径。微粒可以具有球形形状(有时为称为微球),和/或可以被囊封(有时被称为微囊)。某些微粒可以具有一个或多个内部空隙和/或空腔。其它微粒可以不含这样的空隙或空腔。微粒可以有孔,也可以无孔,可选地具有光滑的表面。无孔的微粒在有限的空间中包装更多的核酸,使得与具有相对低有效载荷的有孔微粒相比投送核酸更加高效和有效。无孔微粒具有最小的表面积,有效地遮蔽了其中的大部分活性试剂免于暴露于引起降解的因素,使得其中的活性试剂与有孔微粒中的相比储存更稳定。微粒可以部分或完全从一种或多种非限制性的材料形成,例如本文公开的活性试剂、载体、聚合物、稳定剂和/或络合剂。微粒可以不溶于水,但是对于某些应用来说(例如投送到潮湿或水性的靶位点),优选为基本上溶于水的。术语“核酸微粒”是指不含非核酸载体结构的微粒,该非核酸载体结构例如非核酸材料(例如赋形剂、合成聚合物、蛋白)的基质或支架或网络,非核酸材料(例如无机化合物、合成基底)的核心,以及非核酸材料(例如脂类、合成聚合物)的壳或壁或外膜,相反,其二级、三级和四级结构原则上归因于核酸分子,以及可选地与阳离子的组合。
“球形的”是指至少“基本上球形的”几何形状。“基本上球形的”是指在任何通过几何中心的横截面上,最长的长度(即周边上的两点之间并通过形状的几何中心的长度)与最短的长度的比率是大约1.5或以下,优选大约1.33或以下,更优选1.25或以下。球形不需要对称线。此外,微粒可以具有表面纹饰(例如与微粒的总体尺寸相比规模较小的连续的或离散的线、岛状物、网格、凹穴、通道开口、凸起),并仍是球形的。在球形微粒中,微粒之间的表面接触被最小化,从而使不想要的微粒的团聚最小化。与其相比,晶体或薄片微粒,通常通过在相对大而平的表面上的离子和/或非离子相互作用显示出明显的团聚。
在基本上球形的微粒中表面接触被最小化,从而最小化了储存后和/或最终使用时不想要的微粒的团聚。与其相比,大多数晶体或薄片具有平的表面,可以允许大的表面接触面积,通过离子或非离子相互作用可能发生团聚。
在一个实施例中,核酸微粒具有单分散的粒径分布。具有广泛的粒径分布的微粒,其中既存在相对较大的也存在较小的微粒,允许较小的微粒填充到较大微粒之间的空隙中,从而为团聚产生了较大的接触表面。本文公开的球形核酸微粒以及它们的单分散的粒径分布使接触团聚的机会最小化。“单分散的尺寸分布”是指在微粒的粒径分布中,第90百分位数的体积直径(即最大的10%微粒的平均粒径)与第10百分位数的体积直径(即最小的10%微粒的平均粒径)的比率是5或以下,例如3或以下,2或以下,或1.5到1。“多分布的粒径分布”是指在粒径分布中,上面描述的直径比率大于5,例如8或以上,或10或以上。
几何标准偏差(GSD)也可用于描述微粒粒径分布的特征。GSD值为2.5或以下,例如1.8或以下,指示了单分散的粒径分布。GSD的计算为本领域技术人员已知并了解。
在本发明的一个实施例中,微粒中的核酸是半晶体或非晶体的,例如是无定形的。
典型情况下,通过本公开中的工艺方法制造的核酸微粒是基本上无孔的,其密度是核酸凝聚的结果,这既包括核酸分子之间的压缩,也包括核酸和非聚合性阳离子之间的压缩。在一个例子中,核酸微粒的密度大于0.5g/cm3,例如大于0.75g/cm3,大于0.85g/cm3,或大于1g/cm3。密度的范围包括从0.5到2g/cm3,从0.75到1.75g/cm3,以及从0.85g/cm3到1.5g/cm3
本公开的核酸微粒典型地显示出高的核酸含量。在一个例子中,核酸微粒不含显著量的在许多其它微粒中存在的增量剂或其它赋形剂(除了非聚合性阳离子之外)。但是,在本公开的核酸微粒中可以包含增量剂或赋形剂。在另一个例子中,核酸占微粒重量的60%到100%,可以等于或大于下面的值,或者在任何两个这样的值之间的范围内:65%,70%,75%,80%,85%,90%,95%和97%。在各种不同的实施方案中,微粒含有本文描述的反义核酸和其它抑制性核酸、特别是被修饰或未修饰以包含疏水性基团例如胆固醇的siRNA,占微粒重量的50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、93%、94%、95%、96%、97%、98%或99%。
本公开的另一种情况是,在从微粒中释放后,其中掺入的核酸保留了如果不是全部也是大部分(例如70%到100%)溶解形式的同样核酸的生物化学完整性和生物学活性。
在本发明的各种不同情况下,微粒不含、或基本上不含基质和/或核心。在本发明的另一种情况下,微粒不含、或基本上不含基质、核心和/或外壳。本文中使用的“基质”、“核心”和“外壳”是指微粒的结构成分,它们典型情况下是惰性的,因此与微粒中的活性试剂不同,可以对它们每个进行设计以允许活性试剂的受控释放。“基质”一般来说是交联的或有孔的框架,包括细丝、聚合物等,其中散布有活性试剂。在一个实施方案中,基质是在基本上单一步骤中形成的药物与载体的组合。载体通常为聚合物载体,例如PLA、PGA和PLGA,其中活性试剂分散在整个聚合物载体中。活性试剂可以在整个载体中形成连续的药物有孔网络,活性试剂可以通过其释放。某些低分子量的药剂实际上可以随时间在整个聚合物结构中扩散。微粒“核心”在本技术领域是已知的,包括基本上致密的结构成分,通常是金属、陶瓷和/或聚合物,周围装载有活性试剂。“核心”可以是无孔的、基本上无孔的或有孔的。基本上无孔的“核心”也可以具有有孔的特性,允许活性试剂插入到致密的结构中,虽然与在“基质”中发现的相比程度较低。“外壳”典型为微粒的外部结构,它基本上包住了所有活性试剂,通常包括共价连接的聚合物亚基和/或非共价连接的亚基、即通过离子或疏水相互作用连接的亚基。“外壳”可以是无孔的,但是可以降解到活性试剂可以立即或随时间全部释放的程度,也可以是有孔的,其程度使得活性试剂可以随时间释放。因此,本文中使用的“非核酸基质、核心或外壳”是指微粒的不是核酸的结构成分。在一种类型的外壳中,微囊是含有活性试剂的结构,然后被可通透的、半可通透的或不可通透的包被层覆盖。药物释放只能够通过包层发生,包层一般是聚合物结构。
B.适合的核酸分子
“核酸”是指含有核苷酸的分子,但是它本身不是核苷酸单体。核酸可以是单链、双链或多链的,可以含有修饰的或未修饰的核苷酸或非核苷酸,或其各种不同混合物和组合。核酸可以在碱基、糖和/或骨架(例如磷酸基团)上进行修饰。非限制性的骨架修饰包括磷酸二酯、硫代磷酸酯、二硫代磷酸酯、5’-硫代磷酸酯和甲基膦酸酯。非限制性的糖修饰包括脱氧核糖、阿拉伯糖和氟代阿拉伯糖。这些修饰可以单独存在,或两种或多种相同的或不同类型的组合。本领域技术人员将会认识到,上述的是非限制性的例子,核酸的磷酸酯、糖和碱基化学的任何组合,只要支持核酸的活性,都在本公开的范围内。
本公开的核酸微粒适合于包装具有任何长度、序列、一级和二级结构(例如单链、双链、三链体)、来源(例如天然的、合成的、半合成的、重组的、原核的、真核的、外源的、内源的)、修饰、衍生和操作的一种、两种或多种核酸,只要需要或希望将这样的核酸投送到潮湿或水性的靶位点、例如肺组织就行。除了在本文中详细描述的之外,适合的核酸的非限制性的例子包括DNA分子(例如质粒、染色体DNAs),反义DNA分子,合成的反义分子,RNA分子(例如锁核酸(LNA)、信使RNAs(mRNA)、单顺反子mRNAs、多顺反子mRNAs、反义mRNAs、转移RNAs(tRNA)、核糖体RNAs(rRNA)、非编码RNAs(ncRNA)、RNA基因、小RNAs(sRNA)、非信使RNAs(nmRNA)、小非信使RNAs(snmRNA)、功能性RNAs(fRNA)、小核RNAs(snRNA)、小核仁RNAs(snoRNA)、小Cajal体特异性RNAs(scaRNA)、tmRNAs、催化性RNAs、核酶、RNA酶P RNAs、I类和II类内含子、脉孢菌VSRNAs、铅依赖性核酶(leadzyme)、发夹核酶、锤头核酶、丁型肝炎病毒核酶、四膜虫核酶、双链RNAs(dsRNA)、带有或不带有突出部分的一级和二级小干扰RNAs(siRNA)、前siRNA、沉默RNAs、微小RNAs(miRNA)、一级微小RNAs(pri-miRNA)、前miRNAs、内源siRNAs、Piwi相互作用RNAs、小活化RNAs(saRNA)、引导RNAs(gRNA)、传出(efference)RNAs(eRNA)、启动子RNAs(pRNA)、双链体反基因RNAs(agRNA)、短发夹RNAs(shRNA)、发夹RNAs),因诺酶(inozymes),G-切割者(G-cleavers),青霉素酰化酶(amberzymes),今酶(zinzymes),DNA酶(DNAzymes),反义核酸分子,2,5-A嵌合体,诱饵(包括转录因子诱饵),CpG寡核苷酸,适体,反义寡核苷酸(antagomers),肽核酸(PNA)分子,其它DNA和/或RNA模拟物,含有这些分子中的一种、两种或多种的复合物(例如三链体寡核苷酸、RNA诱导的沉默复合物(RISC)),与蛋白或肽或辅因子的复合物(例如信号识别颗粒RNA(SRP)、小核核蛋白(snRNP)、小核仁核蛋白(snoRNP)、miRNPs),含有这些分子中的一个、两个或多个的构建体,含有这些分子的两个或多个的序列的单一较大分子,它们的修饰或衍生(例如碱基修饰例如取代,糖修饰例如脱氧核糖、阿拉伯糖和氟代阿拉伯糖、胆固醇连接、PEG化、光化学修饰,骨架修饰例如PNAs、硫代磷酸酯化、磷酰胺化、磷酸二酯化、二硫代磷酸酯化、5’-硫代磷酸酯化和甲基膦酸酯化,2-O-烷基-RNAs,LNAs,肽共轭物例如与细胞渗透肽的共轭物,体内核酸修饰例如光化学去保护和水解),以及在美国专利Nos.5,334,711、5,627,053、5,672,695、5,716,824、5,898,221、6,001,311、6,107,094、6,506,559、6,573,099、7,056,704和7,078,196,美国专利公开号Nos.20060234973、20060240556、20060241075和20060264396,美国申请系列号Nos.09/301,511、60/082,404,国际专利No.EP 1,144,623,和国际专利公开号Nos.WO 89/02439、WO 91/03162、WO 92/07065、WO 93/15187、WO 93/23569、WO 95/06731、WO 95/11910、WO 97/26270、WO98/13526、WO 98/28317、WO 99/54459、WO 2006/105361、WO2006/110688、WO 2006/110813、WO 2006/123800、WO 2006/126600、WO 2006/128141和WO 2006/128739中明确或隐含公开的那些,其公开内容在此以其全文引为参考。
在一个例子中,至少一种可以掺入并从微粒释放的核酸(例如两种或多种不同的核酸)用于RNA-介导的基因表达的调控(例如蛋白生产)。RNA介导的基因表达的调节的非限制性的例子包括RNA介导的干扰(RNAi),例如外源和/或内源诱导的转录和/或转录后水平上的降低和/或沉默,RNA介导的外源和/或内源的转录和/或转录后水平上的基因活化(RNAa)。在其它例子中,从微粒释放的一种核酸,与一个具体基因表达(例如单个蛋白靶)的一种具体的调节或两种或多种不同的调节相关。在另一个例子中,从微粒释放的一种核酸,与两种或多种相应的不同基因表达(例如不同的蛋白靶)的同样的调节或两种或多种相应的不同调节相关。在另一个例子中,从同样的组合物的相同微粒或两个或多个相应的不同微粒释放的两种或多种不同的核酸,与相同的基因表达(例如同样的蛋白靶)或相应的不同基因表达(例如不同的蛋白靶)的同样的调节或相应的不同调节有关。因此,本公开的核酸微粒在配制方面提供了出色的多面性和极大程度的自由。
“抑制”或“下调”意味着基因的表达,或编码一个或多个蛋白亚基的RNAs或等价的RNAs的水平,或一个或多个蛋白亚基的活性,降低到在不存在本公开的核酸分子的情况下观察到的水平之下。在一个例子中,用具有酶活性的核酸分子的抑制,优选低于在存在能够与靶RNA上的同样位点结合、但不能水解该RNA的失活或减弱酶活性的分子的情况下观察到的水平。在另一个例子中,使用反义寡核苷酸的抑制,优选低于在存在例如具有不规则的序列或具有错配的寡核苷酸的情况下观察到的水平。在另一个例子中,用本发明的核酸分子的抑制,在存在核酸分子的情况下比不存在它的情况下高。
“上调”意味着基因的表达,或编码一个或多个蛋白亚基的RNAs或等价的RNAs的水平,或一个或多个蛋白亚基的活性,高于在不存在本公开的核酸分子的情况下观察到的水平。例如,可以增加基因的表达,以便治疗、预防、缓解或调节由基因表达的缺少或低水平所引起或加重的病理状况。
“调节”意味着基因的表达,或编码一个或多个蛋白亚基的RNAs或等价的RNAs的水平,或一个或多个蛋白亚基的活性,被上调或下调,使得表达、水平或活性高于或低于在不存在本公开的核酸分子的情况下观察到的水平。
“酶活性核酸分子”是指在底物结合区与特定基因靶具有互补性,并具有主动特异性切割靶RNA的酶活性的核酸分子。典型情况下,酶活性核酸分子能够分子间切割RNA,从而使靶RNA分子失活。这些互补性区域允许酶活性核酸分子与靶RNA足够地杂交,从而允许切割。百分之百的互补性是优选的,但是低至50%到75%的互补性也可用于本公开。术语酶活性核酸包括但不限于核酶、催化性RNA、酶活性RNA、催化性DNA、适体酶(aptazyme)或结合适体的核酶、可调节核酶、催化性寡核苷酸、核酶(nucleozyme)、DNAzyme、RNA酶、内切核糖核酸酶、内切核酸酶、小酶(minizyme)、铅依赖性核酶(leadzyme)、寡酶(oligozyme)和DNA酶。
目前已知几种类型的酶活性RNAs。每种能够在生理条件下反式水解RNA磷酸二酯键(因此也能够切割其它RNA分子)。总的来说,酶活性核酸通过首先与靶RNA结合来起作用。这种结合通过酶活性核酸的靶结合部分发生,该部分与分子的起切割靶RNA作用的酶活性部分保持紧密相邻。因此,通过互补碱基配对,酶活性核酸首先识别然后结合靶RNA,一旦结合到正确的位点后,发挥酶促作用以切开靶RNA。这种靶RNA的关键切割将破坏它指导所编码的蛋白的合成的能力。在酶活性核酸结合并切割其RNA靶后,它从该RNA上释放,以搜寻另一个靶,并可以重复结合和切割新的靶。因此,单个酶活性分子能够水解许多靶RNA分子。此外,酶活性分子是基因表达的高度特异性抑制剂,其抑制的特异性不仅取决于与靶RNA结合的碱基配对机制,而且取决于靶RNA切割的机制。靠近切割位点的单个错配或碱基取代,能够完全消除酶活性核酸的催化活性。
酶活性核酸分子的“酶活性部分”或“催化结构域”是指酶活性核酸分子中切割核酸底物所必需的部分/区域。
“底物结合臂”或“底物结合结构域”是指酶活性核酸能够与其底物的部分通过例如互补性(即碱基配对的能力)相互作用的部分/区域。优选情况下,这种互补性是100%,但是如果需要,可以更低(例如可以少到14个碱基中有10个碱基配对)。这些臂含有酶活性核酸中目的在于通过互补性碱基配对相互作用将酶活性核酸和靶RNA带到一起的序列。本公开的酶活性核酸可以具有结合臂,它们是毗连的或不毗连的,可以具有不同的长度。结合臂的长度优选大于或等于三个核苷酸,具有足够的长度以便与靶RNA稳定地相互作用;优选为12-100个核苷酸;更优选14-24个核苷酸长。如果选择两个结合臂,其设计使得结合臂的长度是对称的(即每个结合臂具有相同的长度;例如5个和5个核苷酸,或6个和6个核苷酸,或7个和7个核苷酸长),或不对称的(即结合臂具有不同的长度;例如6个和3个核苷酸3个和6个核苷酸长;4个和5个核苷酸长;4个和6个核苷酸长4个和7个核苷酸长;等等)。
“因诺酶(Inozyme)”或“NCH”基序或构型是指具有内切核酸酶活性的酶活性核酸分子,它能够切割具有切割三联体NCH/的RNA底物,其中N是核苷酸,C是胞嘧啶核苷,H是腺嘌呤核苷、尿嘧啶核苷或胞嘧啶核苷,“/”表示切割位点。H可以与X互换使用。因诺酶(Inozymes)也可以具有内切核酸酶活性,它切割具有切割三联体NCN/的RNA底物,其中N是核苷酸,C是胞嘧啶核苷,“/”表示切割位点。
“G-切割者(G-cleaver)”基序或构型是指具有内切核酸酶活性的酶活性核酸分子,它切割具有切割三联体NYN/的RNA底物,其中N是核苷酸,Y是尿嘧啶核苷或胞嘧啶核苷,“/”表示切割位点。G-切割者可以被化学修饰。
“青霉素酰化酶(Amberzyme)”基序或构型是指具有内切核酸酶活性的酶活性核酸分子,它切割具有切割三联体NG/N的RNA底物,其中N是核苷酸,G是鸟嘌呤核苷,“/”表示切割位点。青霉素酰化酶(Amberzymes)可以通过取代进行化学修饰,以增加核酸酶的稳定性。此外,可以使用不同的核苷和/或非核苷连接子取代5′-gaaa-3′环。青霉素酰化酶(Amberzymes)代表了其活性不需要它自己核酸序列中的核糖核苷酸(2′-OH)基团的酶活性核酸分子的非限制性的例子。
“今酶(Zinzyme)”基序或构型是指具有内切核酸酶活性的酶活性核酸分子,它切割具有包括但不限于YG/Y的切割三联体的RNA底物,其中Y是尿嘧啶核苷或胞嘧啶核苷,G是鸟嘌呤核苷,/表示切割位点。今酶(Zinzymes)可以通过取代进行化学修饰,以增加核酸酶的稳定性,包括用2′-O-甲基鸟嘌呤核苷核苷酸取代鸟嘌呤核苷酸。此外,可以使用不同的核苷酸和/或非核苷酸连接子取代5′-gaaa-2′环。今酶(Zinzymes)代表了其活性不需要它自己核酸序列中的核糖核苷酸(2′-OH)基团的酶活性核酸分子的非限制性的例子。
“DNA酶(DNAzyme)”基序或构型是指其活性不需要在它自己核酸序列中存在2′-OH基团的酶活性核酸分子。在具体的例子中,酶活性核酸分子可以具有连接的连接子或其它连接的或结合的基团、部分或链,其中含有一个或多个具有2′-OH基团的核苷酸。DNA酶(DNAzymes)可以化学合成或使用单链DNA载体或其等价物在体内内源表达。
“足够的长度”是指大于或等于3个核苷酸的寡核苷酸,其长度足以在预期条件下提供预定的功能。例如,对于酶活性核酸的结合臂来说,“足够的长度”意味着结合臂序列的长度足以在预期的结合条件下提供与靶位点的稳定的结合。优选情况下,结合臂没有长到阻止核酸分子的有用的翻转的程度。
“稳定地相互作用”是指寡核苷酸与靶核酸的相互作用(例如通过在生理条件下与靶中的互补核苷酸形成氢键)足以满足预计的目的(例如通过酶切割靶RNA)。
“等价的”或“相关的”RNA包括天然存在的RNA分子,它们与靶蛋白具有同源性(部分或完全),或在各种不同生物体,包括人类、啮齿动物、灵长动物、兔、猪、原生动物、真菌、植物和其它微生物和寄生虫中编码具有相似功能的蛋白。等价的RNA序列除了编码区之外,还包括其它区域,例如5′-非翻译区、3′-非翻译区、内含子、内含子-外显子连接序列等。
“同源性”是指两个或多个核酸分子的核苷酸序列部分或完全一致。
“反义核酸”是指通过RNA-RNA或RNA-DNA或RNA-PNA(蛋白核酸)相互作用与靶RNA结合,并改变靶RNA的活性的非酶活性核酸分子。典型情况下,反义分子与靶序列沿着反义分子的单一毗邻序列互补。但是,在某些例子中,反义分子的结合可以使底物分子形成环,和/或反义分子的结合可以使反义分子形成环。因此,反义分子可以与两个(或甚至更多)非毗邻的底物序列互补,或者反义分子的两个(或甚至更多)非毗邻的序列部分可以与靶序列互补,或者二者同时发生。此外,反义DNA可以用于通过DNA-RNA相互作用靶向RNA,从而活化RNA酶H,它消化双链体中的靶RNA。反义寡核苷酸可以含有一个或多个RNA酶H活化区域,能够活化RNA酶H切割靶RNA。反义DNA可以化学合成,或者通过使用单链DNA表达载体或其等价物进行表达。
“RNA酶H活化区域”是指核酸分子能够与靶RNA结合,以形成被细胞RNA酶H识别的非共价复合物的区域(例如4-25个核苷酸或更长的区域,例如5-11个核苷酸长)。RNA酶H与核酸分子-靶RNA复合物结合,并切割靶RNA序列。RNA酶H活化区域包含例如磷酸二酯、硫代磷酸酯(例如具有至少4个被硫代磷酸酯化的核苷酸,例如4-11个被硫代磷酸酯化的核苷酸的区域)、二硫代磷酸酯、5′-硫代磷酸酯或甲基膦酸酯骨架化学,或其组合。此外,RNA酶H活化区域也可以包含各种不同的糖化学部分。例如,RNA酶H活化区域可以包含脱氧核糖、阿拉伯糖、氟代阿拉伯糖或其组合的核苷酸糖化学部分。
“2-5A嵌合体”是指含有5′-磷酸化的2′-5′连接的腺苷化残基的寡核苷酸,例如反义核酸分子或酶活性核酸分子。这些嵌合体以序列特异性的方式与靶RNA结合,并活化细胞的2-5A依赖性核糖核酸酶,它反过来切割靶RNA。
“形成三链体的寡核苷酸”或“三链体寡核苷酸”是指能够以序列特异性的方式与双链DNA结合,以形成三链螺旋的寡核苷酸。这种三螺旋结构的形成已经显示出抑制了被靶向基因的转录。
“双链RNA”或“dsRNA”是指能够RNA干扰“RNAi”的双链RNA分子,包括但不限于短的干扰RNA(siRNA)。典型情况下,dsRNA与预定的基因序列匹配,该基因序列能够活化细胞的酶,降解基因的相应的信使RNA转录本。这些dsRNAs可用于抑制基因表达。
“基因”是指编码RNA的核酸,例如包括但不限于编码多肽的结构基因的核酸序列。
“互补性”是指核酸与另一个RNA序列通过传统的Watson-Crick配对或其它非传统类型的配对形成氢键的能力。对于本公开的核酸分子来说,核酸分子与其靶或互补序列的结合自由能足以允许核酸的相关功能得以进行,例如酶活性核酸的切割、反义或三螺旋抑制。核酸分子的结合自由能的确定在本技术领域中是众所周知的。互补性百分数表明了在核酸分子中能够与第二个核酸序列形成氢键(例如Watson-Crick碱基配对)的连续的残基的百分率(例如10个中的5、6、7、8、9、10个,是50%、60%、70%、80%、90%和100%的互补性)。“完全互补”意指核酸序列的所有连续的残基将与第二个核酸序列中同样数量的连续残基形成氢键。
“RNA”是指含有至少一个核糖核苷酸残基的分子,但是它本身不是核糖核苷酸。“核糖核苷酸”或“2′-OH”是指在β-D-呋喃核糖基团的2’位置上带有羟基的核苷酸。
“微小RNA(MicroRNA)”或“miRNA”是指小的双链RNA,它通过mRNA切割、翻译阻遏/抑制或异染色质沉默调节靶信使RNAs的表达。在一个例子中,微小RNA在miRNA分子的正义链或正义区与反义链或反义区之间、或miRNA的反义链或反义区与相应的靶核酸分子之间,具有部分互补性(即少于100%的互补性)。例如,部分互补性可以包括双链核酸分子中的各种不同的错配或非碱基配对的核苷酸(例如1、2、3、4、5个或以上的错配或非碱基配对核苷酸,例如核苷酸凸起),这些结构可以导致在miRNA分子的正义链或正义区与反义链或反义区之间、或miRNA的反义链或反义区与相应的靶核酸分子之间产生凸起、环或突出。
“诱饵”是指核酸分子例如RNA或DNA或适体,被设计用于优先地结合预定的配体。这样的结合可以导致靶分子的抑制或活化。诱饵或适体可以和天然存在的结合靶竞争与特定配体的结合。
“适体”或“核酸适体”是指与靶分子特异性结合的核酸分子,其中核酸分子具有与靶分子在其天然状态下所识别的序列不同的序列。可选地,适体可以是与靶分子结合的核酸分子,其中靶分子在天然情况下不与核酸结合。靶分子可以是任何天然的或合成的分子,包括但不限于树脂、代谢物、核苷、核苷酸、药物、毒素、过渡态类似物、肽、脂类、蛋白、氨基酸、核酸分子、激素、碳水化合物、受体、细胞、病毒、细菌以及其它。例如,适体可用于结合蛋白的配体结合结构域,从而阻止天然存在的配体与蛋白的相互作用。同样地,本公开的核酸分子可以结合并从而阻断蛋白的活性。
调节(例如上调或下调)基因表达的酶活性核酸分子、反义核酸分子、双链RNA分子或本公开的其它核酸分子,代表了用于治疗各种不同疾病和病症的治疗方法,这些疾病和病症包括但不限于与呼吸系统有关的,例如阻塞性肺病(例如肺气肿、支气管炎、哮喘、慢性阻塞性肺病、支气管扩张、棉纤维吸入性肺炎、细支气管炎、石棉沉着病,局限性肺病例如纤维变性、囊性纤维变性、肉状瘤病、肺泡损伤、胸膜腔积液、过敏性肺炎、胸膜炎、肺癌,感染性肺病例如流感、上呼吸道感染、下呼吸道感染或肺炎、肺结核,血管性肺病例如肺水肿、肺动脉栓塞、肺动脉高血压和呼吸系统肿瘤),与炎症有关的例如风湿性关节炎、再狭窄、哮喘、克罗恩病(Crohn′s disease)、脱色性色素失调症、糖尿病、肥胖症、自身免疫疾病、狼疮、多发性硬化症、移植/植入排斥、基因治疗应用、局部缺血/再灌注损伤(CNS和心肌)、肾小球性肾炎、败血病、过敏性气管炎、炎症性肠病和感染,以及各种不同癌症,包括但不限于乳腺、肺、前列腺、结肠直肠、脑、食管、膀胱、胰腺、宫颈、头颈和卵巢癌,黑素瘤、淋巴瘤、神经胶质瘤和多药物抗性癌。
在一个例子中,用于本公开的微粒组合物的核酸分子含有1个、2个或多个核苷酸序列,每个序列为3-100个核苷酸长,例如5-100个、或10-100个核苷酸长。本公开的示例性酶活性核酸分子为12-50个核苷酸长,例如15-45个、20-40个、或25-40个核苷酸长,例如34、36或38个核苷酸长。本公开的示例性DNA酶为12-40个核苷酸长,例如15-40个、20-35个、或25-35个核苷酸长,例如29、30、31或32个核苷酸长。本公开的示例性反义分子为12-100个核苷酸长,例如15-75个、20-50个、或20-35个核苷酸长,例如21、25、26、27或28个核苷酸长。本公开的示例性三链体形成寡核苷酸分子为8-40个核苷酸长,例如10-30个或12-25个核苷酸长,例如18、19、20或21个核苷酸长。本领域技术人员将会认识到,所有所需的是核酸分子具有足够的长度和适合的构象,以便核酸分子与其靶相互作用和/或催化本文所考虑的反应。本公开的核酸分子的长度不限于所陈述的普遍限度内。
本公开提供了一类基于核酸的基因调节因子,它们对目标靶的RNA具有高度的特异性,使得例如可以使用本公开的一种或几种核酸分子提供对疾病或病症的特异性治疗。这样的核酸分子可以在本文公开的微粒中外源投送到需要的特定组织或细胞。或者,核酸分子(例如核酶和反义分子)可以从DNA和/或RNA载体表达,这些载体在本文公开的微粒中被投送到特定组织或细胞。
“细胞”以其通常的生物学意义使用,并且不指完整的多细胞生物。细胞可以例如是体外的,例如在细胞培养物中,也可以存在于多细胞生物中,包括例如鸟类、植物和哺乳动物例如人类、奶牛、绵羊、猿、猴、猪、狗和猫。细胞可以是原核的(例如细菌细胞),也可以是真核的(例如哺乳动物或植物细胞)。
“高度保守序列区域”是指靶基因中从一代到另一代或从一个生物系统到另一个生物系统没有显著变化的一个或多个区域的核苷酸序列。
在本公开的微粒组合物中使用的核酸可以包含连接多个核酸的核苷酸连接子,连接子可以为2个核苷酸长或更长,例如3、4、5、6、7、8、9、10、15、20、26、30个核苷酸长或更长,或在任何两个这样的值之间的范围内。核苷酸可以内部碱基配对,形成2个或以上碱基对的茎。核苷酸连接子可以是核酸适体,例如ATP适体。
在另一个例子中,任选地或此外,序列X可以是非核苷酸连接子。非核苷酸可以包括脱碱基核苷酸、聚醚、聚胺、聚酰胺、肽、碳水化合物、脂类或聚烃类化合物。“非核苷酸”还指任何可以掺入到核酸链中以代替一个或多个核苷酸单元,包括糖和/或磷酸取代,并允许剩余的碱基表现出它们的活性的基团或化合物。基团或化合物可以是脱碱基的,它不含通常认识到的核苷酸碱基,例如腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶或胸腺嘧啶。
在本公开的另一个例子中,与靶RNA分子相互作用的核酸分子(例如酶活性核酸分子或反义分子),从插入到DNA或RNA载体中的转录单位表达。重组载体包括DNA质粒或病毒载体,但不限于此。表达酶活性核酸分子或反义分子的病毒载体,可以在腺相关病毒、反转录病毒、腺病毒或α病毒的基础上构建,但不限于这些病毒。能够表达酶活性核酸分子或反义分子的重组载体,可以通过本文描述的微粒投送到潮湿或水性的靶位点,并存留在靶细胞中。或者,病毒载体可用于为核酸分子提供短暂表达。如果需要,这种载体的微粒可以重复地给药。给药可以是局部的或全身性的,例如通过肺部给药,通过静脉内或肌肉内给药,通过向从患者或对象中移出的靶细胞给药然后重新导入到患者或对象中,或通过任何其它允许向所需靶细胞进行导入的方法。反义DNA可以通过使用单链DNA细胞内表达载体进行表达。
“载体”是指任何用于将所需核酸掺入较大的分子或构建物的基于核酸和/或病毒的技术。
“对象”或“患者”是指动物,包括脊椎动物例如哺乳动物,优选为人类。
“对象的区域”是指对象的局部内部或外部区域或部分(例如器官),或遍布整个对象的区域或部分的集合(例如淋巴细胞)。这种区域的非限制性的例子包括肺部区域(例如肺、肺胞),胃肠区域(例如由食管、胃、小肠、大肠和直肠定义的区域),心血管区域(例如心肌组织),肾区域(例如由肾脏、腹主动脉和直接流入或流出肾脏的血管系统定义的区域),血管系统(即血管,例如动脉、静脉、毛细血管等),循环系统,健康的或患病的组织,良性或恶性(例如肿瘤或癌化)组织,淋巴细胞,受体,器官等,以及使用诊断成像技术成像的区域,使用活性试剂给药和/或治疗的区域,作为靶投送活性试剂的区域,以及温度升高的区域。
“组织”一般是指个体细胞或大量特化细胞或特化细胞的集合,能够执行一种或多种特定功能。非限制性的组织的例子包括膜组织(例如内皮、上皮)、血液、层板组织、结缔组织(例如间质组织)、器官(例如心肌组织、心肌细胞、心肌细胞(cardiomyocites))、异常细胞(例如肿瘤)。
“增强的活性”是指在细胞中和/或体内测量到的活性,其中活性反映了本公开的核酸分子的活性和稳定性。在本公开中,与不基于微粒的剂型相比,这些性质的产物可以在体内被增加。在某些情况下,在体内,核酸分子的活性或稳定性可以降低(例如少于10倍),但释放出的核酸分子的总体活性增加。
本公开的核酸分子,单独地或与其它药物组合或结合,可用于治疗在本文中讨论的疾病或病症。
在其它例子中,所描述的核酸微粒可以与其它已知治疗方法组合使用,以治疗本文讨论的病症或疾病。例如,所描述的微粒可以与一种或多种已知的治疗药剂组合使用,以治疗(例如下调或抑制能够使疾病发展或维持的基因的表达)乳腺、肺、前列腺、结肠直肠、脑、食管、膀胱、胰腺、宫颈、头颈和卵巢癌、黑素瘤、淋巴瘤、胶质瘤、多药物抗性癌、风湿性关节炎、再狭窄、哮喘、克罗恩病、糖尿病、脱色性色素失调症、肥胖症、自身免疫疾病、狼疮、多发性硬化症、移植/植入排斥、基因治疗应用、局部缺血/再灌注损伤(CNS和心肌)、肾小球性肾炎、败血病、过敏性气管炎、炎症性肠病、感染,以及任何其它的癌性疾病或炎症性疾病或病症。
长度超过100个核苷酸的核酸的合成,使用自动化方法可能是困难的,这种分子的治疗费用可能是过高的。在本公开中,外源投送优选使用小的核酸基序(“小的”是指核酸基序的长度小于大约100个核苷酸,优选长度小于大约80个核苷酸,更优选长度小于大约50个核苷酸;例如,反义寡核苷酸、锤头或NCH核酶)。这些分子的简单结构增加了核酸侵入RNA结构的靶区域的能力。本公开的示例性分子是化学合成的,其它分子可以类似合成。
寡核苷酸(例如反义分子、GeneBlocs)使用本技术领域已知的方案合成,例如在国际专利公开号No.WO 99/54459、美国专利No.6,001,311以及其它在本文中引为参考的文献中描述的。
化学合成带有防止核酸分子被血清核糖核酸酶降解的修饰(碱基、糖和/或磷酸酯)的核酸分子,可以增加它们的效能。在某些例子中,需要增强它们在细胞中的效能,以及从核酸分子中除去碱基以缩短寡核苷酸合成时间并减少化学试剂需要的修饰,但是在其它例子中不需要。
在本技术领域中有几个例子描述了可以导入到核酸分子中并显著增加它们的核酸酶稳定性和效能的糖、碱基和磷酸酯的修饰。例如,通过用核酸酶抗性基团例如2′-氨基、2′-C-烯丙基、2′-氟代、2′-O-甲基、2’-H、核苷酸碱基修饰进行修饰,来修饰寡核苷酸,以增加稳定性和/或增强生物学活性。核酸分子的糖修饰在本技术领域中已被广泛描述。某些在本文中引用的参考文献描述了通用的方法和策略,用于确定糖、碱基和/或磷酸酯修饰等整合在核酸分子中而不抑制它们的活性的位置。根据这些教导,类似的修饰可以如本文所述用于修饰本公开的核酸分子。
尽管用硫代磷酸酯、硫代磷酸酯和/或5’-甲基膦酸酯键对寡核苷酸的核苷酸间连键进行化学修饰增加了稳定性,但太多这样的修饰可能引起某些毒性。因此,当设计核酸分子时,这些核苷酸间连键的数量应该被最小化。降低这些连键的浓度将降低毒性,导致这些分子的效能增加、特异性更高。
提供了具有维持或增强活性的化学修饰的核酸分子。这样的核酸一般来说也比未修饰的核酸对核酸酶更有抗性。因此,在细胞中和/或体内,活性将不会显著降低。最适情况下,外源投送的治疗性核酸分子在细胞内稳定,直到靶RNA的翻译被抑制的时间长得足以降低不需要的蛋白的水平。该时间的长短根据疾病的状态在几小时到几天之间变化。核酸分子优选对核酸酶有抗性,以便作为有效的细胞内治疗试剂发挥作用。RNA和DNA化学合成方面的进展,已经拓展了如本文所述的通过引入核苷酸修饰来增强它们的核酸酶稳定性以修饰核酸分子的能力。
基于核酸的分子的使用,通过提供组合疗法的可能性(例如靶向不同基因的多个反义或酶活性核酸分子,结合有已知的小分子抑制剂的核酸分子,或用分子(包括不同基序)和/或其它化学或生物学分子的组合进行间歇治疗),可以产生对疾病发展的更好的治疗。用核酸分子对对象进行治疗,也可以包括不同类型的核酸分子的组合。
在其它情况下,核酸分子含有5′和/或3′-帽结构。“帽结构”是指引入到寡核苷酸任何末端上的化学修饰。这些末端修饰保护核酸分子免受外切核酸酶的降解,可以帮助投送和/或在细胞中的定位。帽可以存在于5′-末端(5′-帽)或3′-末端(3′-帽),或者可以存在于两个末端。在非限制性的例子中,5′-帽包括倒置脱碱基残基(基团),4′,5′-亚甲基核苷酸;1-(β-D-赤呋喃糖基)核苷酸,4′-硫代核苷酸,碳环型核苷酸;1,5-失水己糖醇核苷酸;L-核苷酸;α-核苷酸;修饰碱基核苷酸;二硫代磷酸酯键;苏型呋喃戊糖基核苷酸;无环3′,4′-闭联核苷酸;无环3,4-二羟基丁基核苷酸;无环3,5-二羟基戊基核苷酸,3′-3′-倒置核苷酸基团;3′-3′-倒置脱碱基基团;3′-2′-倒置核苷酸基团;3′-2′-倒置脱碱基基团;1,4-丁二醇磷酸酯;3′-氨基磷酸酯;磷酸己基酯;磷酸氨基己基酯;3′-磷酸酯;3′-硫代磷酸酯;二硫代磷酸酯;或桥接或未桥接的甲基膦酸酯基团。
在另一个例子中,3′-帽包括例如4′,5′-亚甲基核苷酸;1-(β-D-赤呋喃糖基)核苷酸,4′-硫代核苷酸,碳环型核苷酸;5′-氨基-烷基磷酸酯;1,3-二氨基-2-丙基磷酸酯,3-氨基丙基磷酸酯;6-氨基己基磷酸酯;1,2-氨基十二烷基磷酸酯;羟丙基磷酸酯;1,5-失水己糖醇核苷酸;L-核苷酸;α-核苷酸;修饰的碱基核苷酸;二硫代磷酸酯;苏型呋喃戊糖基核苷酸;无环3′,4′-闭联核苷酸;3,4-二羟基丁基核苷酸;3,5-二羟基戊基核苷酸,5′-5′-倒置核苷酸基团;5′-5′-倒置脱碱基基团;5′-氨基磷酸酯;5′-硫代磷酸酯;1,4-丁二醇磷酸酯;5′-氨基;桥接和/或未桥接的5′-氨基磷酸酯,硫代磷酸酯和/或二硫代磷酸酯,桥接或未桥接的甲基膦酸酯和5′-巯基基团。
“核苷酸”是指杂环含氮碱基以N-糖苷键与磷酸化的糖相连。在本技术领域中,核苷酸被认为包含了天然碱基(标准)和本技术领域中众所周知的修饰的碱基。这样的碱基一般位于核苷酸糖基团的1′位置。核苷酸一般包含碱基、糖和磷酸基团。核苷酸在糖、磷酸和/或碱基部分上可以是修饰的或未修饰的(也可以互换地称为核苷酸类似物、修饰的核苷酸、非天然核苷酸、非标准核苷酸等)。可以引入到核酸中的化学修饰的和其它天然核酸碱基的某些非限制性的例子包括例如次黄嘌呤核苷、嘌呤、吡啶-4-酮、吡啶-2-酮、苯基,假尿嘧啶、2,4,6-三甲氧基苯、3-甲基尿嘧啶、二氢尿嘧啶核苷、萘基、氨基苯基、5-烷基胞嘧啶核苷(例如5-甲基胞嘧啶核苷)、5-烷基尿嘧啶核苷(例如胸腺嘧啶核糖核苷)、5-卤代尿嘧啶核苷(例如5-溴尿嘧啶核苷)或6-氮杂嘧啶或6-烷基嘧啶(例如6-甲基尿嘧啶核苷)、丙炔、Q核苷(quesosine)、2-硫尿嘧啶核苷、4-硫尿嘧啶核苷、怀丁苷(wybutosine)、怀丁氧苷(wybutoxosine)、4-乙酰胞嘧啶核苷(acetyltidine)、5-(羧基羟甲基)尿嘧啶核苷、5′-羧甲基氨基甲基-2-硫尿嘧啶核苷、5-羧甲基氨基甲基尿嘧啶核苷、β-D-半乳糖Q核苷(galactosylqueosine)、1-甲基腺嘌呤核苷、1-甲基次黄嘌呤核苷、2,2-二甲基鸟嘌呤核苷、3-甲基胞嘧啶核苷、2-甲基腺嘌呤核苷、2-甲基鸟嘌呤核苷、N6-甲基腺嘌呤核苷、7-甲基鸟嘌呤核苷、5-甲氧基氨基甲基-2-硫尿嘧啶核苷、5-甲基氨基甲基尿嘧啶核苷、5-甲基羰基甲基尿嘧啶核苷、5-甲氧基尿嘧啶核苷、5-甲基-2-硫尿嘧啶核苷、2-甲基硫代-N6-异戊烯基腺嘌呤核苷、β-D-甘露糖基Q核苷(mannosylqueosine)、尿嘧啶核苷-5-氧乙酸、2-硫胞嘧啶核苷、苏氨酸衍生物等。“修饰的碱基”是指1’位的腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶或其等价物之外的核苷酸碱基;这样的碱基可以用在任何位置,例如在酶活性核酸分子的催化核心内,和/或核酸分子的底物结合区域中。
“核苷”是指杂环含氮碱基以N-糖苷键与糖相连。在本技术领域中,核苷被认为包含了天然碱基(标准)和本技术领域中众所周知的修饰的碱基。这样的碱基一般位于核苷糖基团的1′位置。核苷一般包含碱基和糖基团。核苷在糖和/或碱基部分上可以是修饰的或未修饰的(也可以互换地称为核苷类似物、修饰的核苷、非天然核苷、非标准核苷等)。
在一个例子中,本公开的特征为带有磷酸酯骨架修饰的修饰的酶活性核酸分子,该骨架修饰包含一个或多个硫代磷酸酯、二硫代磷酸酯、甲基膦酸酯、吗啉代、酰胺化的氨基甲酸酯、羧甲基、乙酰亚胺盐(acetamidate)、聚酰胺、磺酸酯、磺酰胺、氨基磺酸酯、甲缩醛(formacetal)、硫代甲缩醛和/或烷基甲硅烷基取代。
可以对核酸(例如反义核酸和核酶)结构进行各种不同的修饰,以增加这些分子的用途。例如,这样的修饰可以增加储存期限、体外半衰期、稳定性以及将这样的寡核苷酸导入靶位点的容易性,包括增加细胞膜的通透性以及赋予识别和结合靶细胞的能力。
这些分子的使用,通过提供组合疗法的可能性(例如靶向不同基因的多个酶活性核酸分子,结合有已知的小分子抑制剂的酶活性核酸分子,或用酶活性核酸分子(包括不同的酶活性核酸分子的基序)和/或其它化学或生物学分子的组合进行间歇治疗),可以产生对疾病发展的更好的治疗。用核酸分子对对象进行治疗,也可以包括不同类型的核酸分子的组合。可以对疗法进行设计,使其包含针对一个或多个靶的酶活性核酸分子(包括不同的酶活性核酸分子的基序)、反义分子和/或25A嵌合体分子的混合物,以缓解疾病的症状。
正如上面提到的,本发明的一个实施方案是含有修饰过的核酸的微球,其中核酸与亲脂性(或疏水性)成分结合。siRNA与亲脂性成分的结合在本技术领域中是已知的(参见例如美国专利申请公开号No.20070298445,美国专利申请公开号No.20070082845,美国专利Nos.5,138,045、5,218,105和5,459,255,以及美国专利申请公开号No,20070072904),这种结合的siRNA的结合性质已经被表征。参见例如Wolfram等,Nature Biotechnology(2007)25:1149-1157(2007年9月16日在线公开),其中描述了siRNA与胆固醇、硬脂酸、二十二烷酸、石胆酸-油酸、石胆酸或月桂酸的结合,它们中的某些与高密度脂蛋白颗粒相关联,以及与短链和中链脂肪酸结合的siRNA,例如月桂酰基、肉豆寇酰基和棕榈酰基siRNA,它们不与脂蛋白结合,但是与血清白蛋白相关联,或保持在未结合的形式。Wolfram等还公开了胆固醇并不是唯一能够将siRNAs与脂蛋白颗粒结合的:其它高亲脂性结合物,例如长链脂肪酸和胆汁酸,也能够有效结合脂蛋白并介导siRNA摄入到细胞中。决定脂肪酸结合的siRNAs与脂蛋白颗粒的亲和性的关键因素,是烷基链的长度,它是亲脂性的主要决定因素。在一系列脂肪酸siRNA结合物中,二十二烷基(C22)和硬脂酰基(C18)结合物在体内显示出与HDL的较强结合,并有效地沉默了基因表达,而月桂酰基(C12)和肉豆蔻酰基(C14)结合物以及其它中链和短链脂肪酸显示出与脂蛋白颗粒的弱的相互作用。在其它情况下,Skobridis等ARKIVOC(2005)(vi)459-469描述了亲脂性树枝状结构块(building block),并将它们掺入到寡核苷酸中。
美国专利申请Nos.20060008822和20070275465公开了将配体与dsRNA结合可以增加其细胞吸收。例如,已将胆固醇与各种反义寡核苷酸结合,产生了与它们的未结合的类似物相比明显更有活性的化合物。参见M.Manoharan,Antisense & Nucleic Acid Drug Development2002,12,103。其它已经与寡核苷酸结合的亲脂性化合物包括1-芘丁酸,1,3-双-O-(十六烷基)甘油和薄荷醇。申请还公开了其它亲脂性成分,例如聚乙二醇化的甘油脂肪酸酯、聚乙二醇、饱和的和单饱和的聚乙二醇化的脂肪酸甘油酯,例如从对各种不同植物油的完全或部分氢化获得的。在有利的情况下,这样的油类可以由三、二和单脂肪酸甘油酯,以及相应脂肪酸的二和单聚乙二醇酯构成,其中特别优选的脂肪酸组成包含癸酸4-10%、癸酸3-9%、月桂酸40-50%、肉豆蔻酸14-24%、棕榈酸4-14%和硬脂酸5-15%。还描述了其它有用的成分,包含部分酯化的失水山梨糖醇和/或山梨糖醇,和饱和或单不饱和脂肪酸(SPAN-系列)或相应的乙氧基化类似物(TWEEN-系列),以及可商购的成分例如Gelucire-系列、Labrafil、Labrasol或Lauroglycol(都由法国的Gattefosse Corporation,Saint Priest制造和分销)、PEG-单油酸酯、PEG-二油酸酯、PEG-单月桂酸酯和二月桂酸酯、卵磷脂、,聚山梨酸酯80等(由美国和世界范围内多家公司生产和分销)。
美国专利申请Nos.20050186591、20050288244、20070213292、20070275914、20060035254和20070161595描述了亲脂性成分,包括胆固醇、脂类、油烯基、视黄基、胆固醇残基、胆酸、金刚烷乙酸、1-芘丁酸、二氢睾酮、1,3-双-O-(十六烷基)甘油、香叶基氧基己基、十六烷基甘油、冰片、薄荷醇、1,3-丙二醇、十七烷基、棕榈酸、肉豆蔻酸、O3-(油酰基)石胆酸、O3-(油酰)胆烯酸、二甲氧基三苯甲基或吩噁嗪。
美国专利申请公开号No,20060008822公开了将胆固醇与各种不同反义寡核苷酸结合,产生了与它们的非结合类似物相比明显更有活性的化合物。参见M.Manoharan,Antisense&Nucleic Acid DrugDevelopment 2002,12,103。其它已经与寡核苷酸结合的亲脂性化合物包括1-芘丁酸,1,3-双-O-(十六烷基)甘油和薄荷醇。
美国专利申请公开号Nos.20080039415、20070004667和20080039414公开了其它亲脂性基团,包括饱和或不饱和的线性、支链或环状烷基、胆固醇或其衍生物。其它亲脂性成分包括脂肪酸及其衍生物,包括直链、支链、饱和和不饱和脂肪酸、类胡萝卜素、萜烯、胆汁酸和甾族化合物,包括胆固醇、维生素E、维生素K、维生素A、叶酸、阳离子染料例如Cy3,及其衍生物或类似物。
美国专利申请公开号No.20070026079公开了能够增强化合物跨过鼻粘膜的投送的亲脂性物质,包括脂肪酸(例如棕榈酸)、神经节苷脂(GM-I)、磷脂(例如磷脂酰丝氨酸),和乳化剂(例如聚山梨酸酯80),胆汁盐例如脱氧胆酸钠,和去污剂类的物质,例如聚山梨酸酯80例如TweenTM,辛苯聚醇例如TritonTM X-100,以及牛磺-24,25-二氢夫西地酸钠(STDHF)。
本发明的各种其它方面和用于产生这些方面的方法,描述在美国专利申请Nos.:20040198640、20070173476、20050107325、20050119214、20040110296、20040249178、20050058982、20040171033和20050119470中。
上面讨论的每个专利和申请出版物的公开内容,在其中描述的亲脂性成分和亲脂性成分与核酸的连接方面引为参考。
C制造微粒的方法
在一个例子中,通过将水性非聚合性阳离子溶液和水性核酸溶液混合并降低核酸的溶解度以形成微粒,来形成微粒。在另一个例子中,除了核酸和非聚合性阳离子之外,反应溶液还含有一种或多种水性或与水混溶的非离子聚合物。一般来说,这样的过程包括通过例如将不同的溶液加热到足够的温度(例如在37℃到95℃的范围内)并持续一段足够的时间(例如1分钟到24小时),来溶解原料(例如核酸,非聚合性阳离子和非离子聚合物)。当在本文中使用时,“水性溶液”是指水或缓冲液单独作为溶剂的溶液,或水或缓冲液与一种或多种与水混溶的溶剂例如乙醇、DMSO、丙酮、N-甲基吡咯烷酮和2-吡咯烷酮混合;但是,优选的水性溶液不含有可检测的有机溶剂。
本公开涉及核酸微粒组合物的生产方法和使用方法,该核酸例如但不限于反义寡核苷酸或siRNA分子。按照制造方法,将核酸(例如反义寡核苷酸,siRNA分子,或其两种或多种的组合)溶解在含有一种或多种溶解的非聚合性阳离子和一种或多种溶解的非离子聚合物的单相反应溶液中。溶剂是水性的或与水混溶的(例如水、缓冲液)。然后将反应溶液冷却到低于活性试剂的相转变温度(不凝固),由此使核酸分子和非聚合性阳离子一起经历液-固相分离,以形成球形微粒,它构成了悬浮在含有溶解的非离子聚合物和其它未掺入到核酸微粒中的成分的连续相中的不连续相。
连续相:本公开的制备核酸微粒的方法始于提供反应混合物,其中一种或多种核酸、一种或多种非聚合性阳离子和一种或多种非离子聚合物,基本上全部溶解在单一连续相中。反应混合物的单一连续相是基于水的溶液,含有水性介质,以及可选的与水混溶的有机溶剂或与水混溶的有机溶剂的混合物,或其组合。水性介质可以是水、盐溶液(例如普通盐水)、缓冲溶液、缓冲盐水等。
适合的与水混溶的有机溶剂包括但不限于N-甲基-2-吡咯烷酮(N-甲基-2-吡咯烷酮)、2-吡咯烷酮(2-吡咯烷酮)、1,3-二甲基-2-咪唑烷酮(DMI)、二甲基亚砜、二甲基乙酰胺、乙酸、乳酸、丙酮、甲基乙基酮、乙腈、甲醇、乙醇、异丙醇、3-戊醇、正丙醇、苯甲醇、甘油、四氢呋喃(THF)、聚乙二醇(PEG)、PEG-4、PEG-8、PEG-9、PEG-12、PEG-14、PEG-16、PEG-120、PEG-75、PEG-150、聚乙二醇酯、PEG-4二月桂酸酯、PEG-20二月桂酸酯、PEG-6异硬脂酸酯、PEG-8硬脂酸棕榈酸酯、PEG-150硬脂酸棕榈酸酯、聚乙二醇山梨糖醇酐、PEG-20山梨糖醇酐异硬脂酸酯、聚乙二醇单烷基醚、PEG-3二甲基醚、PEG-4二甲基醚、聚丙二醇(PPG)、聚丙烯藻酸酯、PPG-10丁二醇、PPG-10甲基葡萄糖醚、PPG-20甲基葡萄糖醚、PPG-15硬脂基醚、丙二醇二辛酸酯/二癸酸酯、丙二醇月桂酸酯,以及四氢呋喃醇聚乙二醇醚(glycofurol)(四氢呋喃醇聚乙二醇醚),链烷烃包括丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷,或其组合。
单一连续相(即反应溶液),可以通过将核酸、非聚合性阳离子的盐或氢氧化物、以及非离子聚合物以任何适合的次序(例如同时一起或彼此按顺序)溶解在单一水性介质中,或者通过提供这些成分的一种或两种在相同或不同的水性介质中的分开的溶液,然后将这些分开的溶液以任何适合的次序(例如同时一起或彼此按顺序)混合,来制备。在反应溶液和/或分开的溶液的形成中,可以任选地使用促进各种不同成分溶解的物理手段,例如升高温度(例如加热)、降低压力和/或调整pH,只要成分不受不利影响(例如核酸活性的降低,分子的降解或分解或交联)就行。在一个例子中,首先将核酸溶液与非离子聚合物溶液混合,然后将混合物与非聚合性阳离子溶液混合。在另一个例子中,首先将非聚合性阳离子溶液与非离子聚合物溶液混合,然后将混合物与核酸溶液混合。在另一个例子中,首先将核酸溶液与非聚合性阳离子溶液混合,然后将混合物与非离子聚合物溶液混合。在另一个例子中,分别制备各种成分的浓缩储液,并将储液的等份试样与适合的稀释剂一起使用,以提供反应溶液。从分开的溶液的组合得到的反应混合物目测为单相溶液,其中没有可见的相分离(例如混浊、乳白色、云雾状、沉淀、结晶、乳剂、油-水分离),或者是具有一定相分离的分散体系。在另一个例子中,在将分开的溶液在正常操作条件下(例如在环境温度、大气压力下,进行或不进行连续搅拌)混合,可选地经过一段足以允许反应混合物达到平衡的温育时间后(例如几分钟到几小时,例如1小时或以下),形成了目测透明的反应溶液。可选的温育可以在正常操作条件下进行,例如与分开的溶液进行组合时相同的条件。在另一个例子中,通过一种或多种手段,例如加热或冷却到另一个预定的温度,以及其它的溶解手段例如稀释,作为分散体系的反应混合物目测澄清。尽管反应混合物在形成微粒前不必需是目测透明的,但是目测透明的反应混合物允许对随后形成的微粒的性质(例如粒径分布,空气动力学和几何粒径,颗粒形态学,颗粒均一性)进行更高程度的控制。在另一个例子中,将分开的溶液预先加热到共同的预定温度或不同的预定温度,然后以任何适合的次序混合(任选地在预热的温度下),在组合后任选地加热或冷却到高于或低于预热温度的另一个温度。
非离子聚合物。本公开的非离子聚合物用于增强和/或诱导核酸从反应溶液中的液-固相分离,其中核酸分子与非聚合性阳离子聚集在一起变成固体或半固体,形成了微粒,作为可悬浮地分散在水性介质中的不连续相,在水性介质中非离子聚合物仍保持溶解。当反应溶液被带到相分离条件下时,非离子聚合物降低了核酸的溶解度。适合的非离子聚合物包括但不限于可溶于或可混溶于水和/或反应溶液的水性介质的聚合物或聚合物的混合物。适合的非离子聚合物的例子包括线性或分枝非离子聚合物。
水溶和/或与水混溶的非离子聚合物包括基于碳水化合物的非离子聚合物,非离子两亲性聚合物,非离子聚脂族醇,非离子聚(乙烯基)聚合物,非离子聚酯(例如非离子聚丙烯酸,非离子聚有机酸),非离子聚氨基酸,非离子共聚物和非离子嵌段共聚物(例如泊洛沙姆(poloxamer),例如Pluronics F127或F68),非离子三元共聚物,非离子聚醚,天然存在的非离子聚合物,非离子聚酰亚胺,非离子环状聚合物和非离子聚醛,可以单独使用或其中的两种或多种组合使用(例如任何两种聚合物之间的重量比例为1∶1到99∶1)。
优选的非离子聚合物是对于核酸微粒所打算的给药途径来说,可接受作为药物添加剂的非离子聚合物。包括分子量为1kD到1,000kD的聚乙二醇(PEG),例如PEG 3350、PEG 8000、PEG 10000、PEG 20000等,分子量为1kD或以上的泊洛沙姆,例如Pluronics F127或PluronicsF68,聚乙烯吡咯烷酮(PVP),以及它们的组合(例如PEG和PVP的1∶1的混合物)。
液-固相分离。核酸在反应溶液中的液-固相分离可以通过本技术领域任何已知的方法来诱导,例如改变温度、改变压力、改变pH、改变溶液的离子强度、改变其中一种或多种溶质的浓度、改变溶液的重量克分子渗透压浓度,它们的组合等。
在本公开的一个例子中,相变是通过将反应溶液的温度降低到低于溶解在反应溶液中的核酸的相转变温度,并且不使整个反应溶液凝固,而获得的温度诱导的相变。
在冷却过程中,对冷却的速度进行控制,以获得具有所需尺寸和形状的微粒。例如,已发现,在所有其它条件相同的情况下,冷却速度与微粒的几何尺寸显示出反相关。也就是说,较慢的速度显示出形成较大的微粒,而较快的速度显示出形成较小的微粒。对于投送到潮湿或水性的靶位点例如肺中的区域来说,冷却速度是0.01℃/分钟或更快,例如等于或大于下面的值,或者在任何两个这样的值之间的范围内:0.05℃/分钟,0.1℃/分钟,0.5℃/分钟,1℃/分钟,3℃/分钟,5℃/分钟,10℃/分钟,20℃/分钟,50℃/分钟,100℃/分钟,200℃/分钟,500℃/分钟,600℃/分钟。温度变化的速度可以是恒定的或线性速度、非线性速度、断续的或程序化的速度(具有多个相循环)。
可以通过洗涤将核酸微粒从反应溶液中分离,正如将在下面讨论的。
本公开考虑到了调节溶质(例如核酸、非聚合性阳离子、非离子聚合物)的浓度、温度、压力、pH、离子强度、重量克分子渗透压浓度等,或反应溶液的这些参数的任何组合,来控制(例如诱导或终止)或调节(例如增强、促进、抑制)相变,在该相变中核酸分子从溶剂化状态进入聚集的固体状态,而非离子聚合物和溶剂不经历相变。对于凝固点相对较高、或凝固点高于相转变温度的反应溶液来说,反应溶液可以包含一种或多种凝固点降低试剂,例如丙二醇、蔗糖、乙二醇、醇类(例如乙醇、甲醇),或凝固点降低试剂的混合物,以降低反应溶液的凝固点,从而允许核酸的相变发生,同时反应溶液不凝固。使得当反应溶液的温度降低到低于其凝固点时,过程也可以进行。
分离和洗涤微粒。在本公开的一个例子中,反应溶液中含有分散在悬浮液中的新形成的核酸微粒的分散体系,适合照原样用于最终用途。在另一个例子中,通过从反应溶液中分离核酸微粒来收获它们。在另一个例子中,分离的方法包括浓缩核酸微粒并用非溶剂的液体介质洗涤它们,其中没有掺入到微粒中的成分(例如非离子聚合物,过量的反应试剂)溶解在该液体介质中。浓缩微粒的非限制性的方法包括离心、透析和渗滤。洗涤的非限制性的方法包括渗滤、透析、离心洗涤。液体洗涤介质可以是水性介质或有机溶剂。对于具有低的水溶性的微粒来说,液体洗涤介质可以是水性介质或含有降低微粒的水溶性的试剂、例如本文公开的非聚合性阳离子(例如二价阳离子)的水性介质。对于具有高的水溶性的活性试剂来说,可以使用有机溶剂或含有一种或多种溶解度降低试剂例如硫酸铵的水性溶剂。
适合用作液体洗涤介质的有机溶剂的例子包括上面具体指出的适于连续相的有机溶剂,更优选二氯甲烷、氯仿、乙腈、乙酸乙酯、甲醇、乙醇、戊烷等。
还考虑到了使用任何这些溶剂的混合物作为洗涤介质。一种优选的混合物是二氯甲烷或二氯甲烷与丙酮的1∶1混合物。优选情况下液体介质具有低的沸点,以便容易通过例如冷冻干燥、蒸发或干燥进行移除。
液体洗涤介质也可以是超临界流体,例如接近其超临界点的液态二氧化碳或流体。超临界流体可以是非离子聚合物的适合溶剂,但是不是核酸微粒的溶剂。超临界流体可以自身使用或与助溶剂一起使用。可以使用下列超临界流体:液态CO2,乙烷,或氙。潜在的助溶剂可以是乙腈、二氯甲烷、乙醇、甲醇、水或2-丙醇。
液体洗涤介质还可以含有一种或多种用于降低微粒溶解性的试剂。最理想情况下,微粒在液体洗涤介质中显示出最小的溶解性,以使微粒的产率最大化。对于本公开的核酸微粒来说,溶解性降低试剂可以是任何本文公开的非聚合性阳离子,包括但不限于Zn2+、Ca2+、Ba2+、Mg2+、Cu2+、Fe2+、Fe3+等。
液体洗涤介质也可以含有一种或多种可以为核酸或微粒提供附加特性的添加剂,例如增加微粒和/或其中核酸分子的稳定性,核酸从微粒的受控释放,或如前讨论的核酸与生物学组织和细胞的改变的相互作用(例如通透性)。
基于水的方法。在另一个例子中,反应溶液是包含水性或与水混溶的溶剂的水性系统。适合的与水混溶的溶剂的例子,包括但不限于上面指出的用于连续相的那些。使用基于水的方法的一个优点是,溶液可以被缓冲,并且可以含有提供例如生物化学稳定作用的添加剂,以保护核酸分子。
下面的表列出了示例性的核酸微粒制剂,其中钙阳离子被用作示例性非聚合性阳离子。还列出了反应溶液中相应的最终盐(非聚合性阳离子的)浓度,[核酸]∶[非聚合性阳离子]的摩尔比,微粒的平均直径,10%微粒的截止直径(即10%的微粒具有等于或小于该值的直径,而90%的微粒具有大于该值的直径),50%微粒的截止直径,以及95%微粒的截止直径。
  样品最终(盐)浓度([核酸]∶[非聚合性阳离子]的摩尔比)   使用的密度   直径计算   平均直径(μm)   标准偏差   10%以下(μm)   50%以下(μm)   95%-下(μm)
  1.243M(1∶6477)   1.45   数量   1.239   1.223   0.947   1.250   1.699
  1.243M(1∶6477)   1.45   体积   1.389   1.209   1.083   1.401   1.861
  0.994M(1∶4858)   1.45   数量   1.501   1.246   1.122   1.512   2.129
  0.994M(1∶4858)   1.45   体积   1.718   1.226   1.313   1.736   2.339
  0.667M(1∶3239)   1.45   数量   2.103   1.117   1.833   2.112   2.499
  0.667M(1∶3239)   1.45   体积   2.180   1.118   1.910   2.174   2.627
  0.333M(1∶1619)   1.45   数量   2.114   1.117   1.839   2.128   2.505
  0.333M(1∶1619)   1.45   体积   2.191   1.117   1.920   2.189   2.631
从上面的数据可以看出,0.333M和0.667M的钙盐浓度产生了同样尺寸的微粒,1M和1.25M的盐浓度产生了相对较小的微粒。这些以及相关的数据在下面进一步详细讨论。这些数据证明,非聚合性阳离子例如Ca2+的使用,使得形成的核酸微粒可以被容易地制备在用于肺部投送的可控尺寸范围内。
在本发明的包含了微球的具体实施方案中,其中该微球含有被修饰以包含亲脂性部分的核酸,提供了用于生产这种微球的方法,该方法包括将一种或多种修饰的核酸的水性溶液与一种或多种聚合物和一种或多种阳离子的溶液的混合物加热温育,以及冷却混合物以形成微球的步骤。在各种不同情况下,方法包括第一步将修饰的核酸溶解在水性溶液中,制备聚合物/阳离子溶液,将修饰的核酸溶液与聚合物/阳离子溶液混合,将修饰的核酸、聚合物和阳离子的混合物在升高的温度温育一段设定的时间,以及以设定的速度冷却混合物,以形成微球。在某些情况下,得到的微球是固体、球形和/或单分散的,或基本上固体、球形和/或单分散的。
在提供的方法的各种不同情况下,在微球的生产中使用的聚合物是一种或多种线性聚合物(例如聚乙二醇,聚赖氨酸,葡聚糖等),支链聚合物(参见例如Denkenwalter等1981年9月15日出版的美国专利No.4,289,872;Tam的1993年7月20日出版的美国专利No.5,229,490;Frechet等1993年10月28日公开的WO 93/21259);脂类;胆固醇基团(例如甾族化合物);或碳水化合物或寡糖。其它可能的载体包括一种或多种水溶性聚合物附着物,例如聚乙二醇或聚丙二醇,如在美国专利No.4,640,835、4,496,689、4,301,144、4,670,417、4,791,192和4,179,337中描述的。其它在本技术领域中已知的有用聚合物包括单甲氧基聚乙二醇、葡聚糖、纤维素或其它基于碳水化合物的聚合物、聚-(N-乙烯基吡咯烷酮)-聚乙二醇、丙二醇均聚物、聚环氧丙烷/环氧乙烷共聚物、聚氧乙基化的多元醇(例如甘油)和聚乙烯醇,以及这些聚合物和本文描述的其它聚合物的混合物。在提供的方法中使用“一种或多种”聚合物,意指聚合物的混合物可以包含在方法中。
在各种不同情况下,当与修饰的核酸混合时,在方法中使用的聚合物或聚合物组合的终浓度为大约5%重量/体积(w/v)、5.1%w/v、5.2%w/v、5.3%w/v、5.4%w/v、5.5%w/v、5.6%w/v、5.7%w/v、5.8%w/v、5.9%w/v、6%w/v、6.1%w/v、6.2%w/v、6.3%w/v、6.4%w/v、6.5%w/v、6.6%w/v、6.7%w/v、6.8%w/v、6.9%w/v、7%w/v、7.1%w/v、7.2%w/v、7.3%w/v、7.4%w/v、7.5%w/v、7.6%w/v、7.7%w/v、7.8%w/v、7.9%w/v、8%w/v、8.1%w/v、8.2%w/v、8.3%w/v、8.4%w/v、8.5%w/v、8.6%w/v、8.7%w/v、8.8%w/v、8.9%w/v、9%w/v、9.1%w/v、9.2%w/v、9.3%w/v、9.4%w/v、9.5%w/v、9.6%w/v、9.7%w/v、9.8%w/v、9.9%w/v、10%w/v、10.1%w/v、10.2%w/v、10.3%w/v、10.4%w/v、10.5%w/v、10.6%w/v、10.7%w/v、10.8%w/v、10.9%w/v、11%w/v、11.1%w/v、11.2%w/v、11.3%w/v、11.4%w/v、11.5%w/v、11.6%w/v、11.7%w/v、11.8%w/v、11.9%w/v、12%w/v、12.1%w/v、12.2%w/v、12.3%w/v、12.4%w/v、12.5%w/v、12.6%w/v、12.7%w/v、12.8%w/v、12.9%w/v、13%w/v、13.1%w/v、13.2%w/v、13.3%w/v、13.4%w/v、13.5%w/v、13.6%w/v、13.7%w/v、13.8%w/v、13.9%w/v、14%w/v、14.1%w/v、14.2%w/v、14.3%w/v、14.4%w/v、14.5%w/v、14.6%w/v、14.7%w/v、14.8%w/v、14.9%w/v、15%w/v、15.1%w/v、15.2%w/v、15.3%w/v、15.4%w/v、15.5%w/v、15.6%w/v、15.7%w/v、15.8%w/v、15.9%w/v、16%w/v、16.1%w/v、16.2%w/v、16.3%w/v、16.4%w/v、16.5%w/v、16.6%w/v、16.7%w/v、16.8%w/v、16.9%w/v、17%w/v、17.1%w/v、17.2%w/v、17.3%w/v、17.4%w/v、17.5%w/v、17.6%w/v、17.7%w/v、17.8%w/v、17.9%w/v、18%w/v、18.1%w/v、18.2%w/v、18.3%w/v、18.4%w/v、18.5%w/v、18.6%w/v、18.7%w/v、18.8%w/v、18.9%w/v、19%w/v、19.1%w/v、19.2%w/v、19.3%w/v、19.4%w/v、19.5%w/v、19.6%w/v、19.7%w/v、19.8%w/v、19.9%w/v、20%w/v、20.1%w/v、20.2%w/v、20.3%w/v、20.4%w/v、20.5%w/v、20.6%w/v、20.7%w/v、20.8%w/v、20.9%w/v、21%w/v、21.1%w/v、21.2%w/v、21.3%w/v、21.4%w/v、21.5%w/v、21.6%w/v、21.7%w/v、21.8%w/v、21.9%w/v、22%w/v、22.1%w/v、22.2%w/v、22.3%w/v、22.4%w/v、22.5%w/v、22.6%w/v、22.7%w/v、22.8%w/v、22.9%w/v、23%w/v、23.1%w/v、23.2%w/v、23.3%w/v、23.4%w/v、23.5%w/v、23.6%w/v、23.7%w/v、23.8%w/v、23.9%w/v、24%w/v、24.1%w/v、24.2%w/v、24.3%w/v、24.4%w/v、24.5%w/v、24.6%w/v、24.7%w/v、24.8%w/v、24.9%w/v、25%w/v、25.1%w/v、25.2%w/v、25.3%w/v、25.4%w/v、25.5%w/v、25.6%w/v、25.7%w/v、25.8%w/v、25.9%w/v、26%w/v、26.1%w/v、26.2%w/v、26.3%w/v、26.4%w/v、26.5%w/v、26.6%w/v、26.7%w/v、26.8%w/v、26.9%w/v、27%w/v、27.1%w/v、27.2%w/v、27.3%w/v、27.4%w/v、27.5%w/v、27.6%w/v、27.7%w/v、27.8%w/v、27.9%w/v、28%w/v、28.1%w/v、28.2%w/v、28.3%w/v、28.4%w/v、28.5%w/v、28.6%w/v、28.7%w/v、28.8%w/v、28.9%w/v、29%w/v、29.1%w/v、29.2%w/v、29.3%w/v、29.4%w/v、29.5%w/v、29.6%w/v、29.7%w/v、29.8%w/v、29.9%w/v、30%w/v、30.1%w/v、30.2%w/v、30.3%w/v、30.4%w/v、30.5%w/v、30.6%w/v、30.7%w/v、30.8%w/v、30.9%w/v、31%w/v、31.1%w/v、31.2%w/v、31.3%w/v、31.4%w/v、31.5%w/v、31.6%w/v、31.7%w/v、31.8%w/v、31.9%w/v、32%w/v、32.1%w/v、32.2%w/v、32.3%w/v、32.4%w/v、32.5%w/v、32.6%w/v、32.7%w/v、32.8%w/v、32.9%w/v、33%w/v、33.1%w/v、33.2%w/v、33.3%w/v、33.4%w/v、33.5%w/v、33.6%w/v、33.7%w/v、33.8%w/v、33.9%w/v、34%w/v、34.1%w/v、34.2%w/v、34.3%w/v、34.4%w/v、34.5%w/v、34.6%w/v、34.7%w/v、34.8%w/v、34.9%w/v、35%w/v或以上。
在含有修饰核酸的微球的制备方法中,在一种情况下,使用的阳离子是本文中描述的和/或本技术领域中已知的多价阳离子,在方法中,多价阳离子与修饰核酸以下面的阳离子∶核酸摩尔比进行混合:大约1∶1、2∶1、3∶1、4∶1、5∶1、6∶1、7∶1、8∶1、9∶1、10∶1、11∶1、12∶1、13∶1、14∶1、15∶1、16∶1、17∶1、18∶1、19∶1、20∶1、21∶1、22∶1、23∶1、24∶1、25∶1、26∶1、27∶1、28∶1、29∶1、30∶1、31∶1、32∶1、33∶1、34∶1、35∶1、36∶1、37∶1、38∶1、39∶1、40∶1、41∶1、42∶1、43∶1、44∶1、45∶1、46∶1、47∶1、48∶1、49∶1、50∶1、51∶1、52∶1、53∶1、54∶1、55∶1、56∶1、57∶1、58∶1、59∶1、60∶1、61∶1、62∶1、63∶1、64∶1、65∶1、66∶1、67∶1、68∶1、69∶1、70∶1、71∶1、72∶1、73∶1、74∶1、75∶1、76∶1、77∶1、78∶1、79∶1、80∶1、81∶1、82∶1、83∶1、84∶1、85∶1、86∶1、87∶1、88∶1、89∶1、90∶1、91∶1、92∶1、93∶1、94∶1、95∶1、96∶1、97∶1、98∶1、99∶1、100∶1、101∶1、102∶1、103∶1、104∶1、105∶1、106∶1、107∶1、108∶1、109∶1、110、110∶1、111∶1、112∶1、113∶1、114∶1、115∶1、116∶1、117∶1、118∶119∶1、120∶1、121∶1、122∶1、123∶1、124∶1、125∶1、126∶1、127∶1、128∶1、129∶1、130∶1、131∶1、132∶1、133∶1、134∶1、135∶1、136∶1、137∶1、138∶1、139∶1、140∶1、141∶1、142∶1、143∶1、144∶1;145∶1、146∶1、147∶1、148∶1、149∶1、150∶1、151∶1、152∶1、153∶1、154∶1、155∶1、156∶1、157∶1、158∶1、159∶1、160∶1、161∶1、162∶1、163∶1、164∶1、165∶1、166∶1、167∶1、168∶1、169∶1、170∶1、171∶1、172∶1、173∶1、174∶1、175∶1、176∶1、177∶1、178∶1、179∶1、180∶1、181∶1、182∶1、183∶1、184∶1、185∶1、186∶1、187∶1、188∶1、189∶1、190∶1、191∶1、192∶1、193∶1、194∶1、195∶1、196∶1、197∶1、198∶1、199∶1、200∶1、201∶1、202∶1、203∶1、204∶1、205∶1、206∶1、207∶1、208∶1、209∶1、210∶1、211∶1、212∶1、213∶1、214∶1、215∶1、216∶1、217∶1、218∶1、219∶1、220∶1、221∶1、222∶1、223∶1、224∶1、225∶1、226∶1、227∶1、228∶1、229∶1、230∶1、231∶1、232∶1、233∶1、234∶1、235∶1、236∶1、237∶1、238∶1、239∶1、240∶1、241∶1、242∶1、243∶1、244∶1、245∶1、246∶1、247∶1、248∶1、249∶1、250∶1、251∶1、252∶1、253∶1、254∶1、255∶1、256∶1、257∶1、258∶1、259∶1、260∶1、261∶1、262∶1、263∶1、264∶1、265∶1、266∶1、267∶1、268∶1、269∶1、270∶1、271∶1、272∶1、273∶1、274∶1、275∶1、276∶1、277∶1、278∶1、279∶1、280∶1、281∶1、282∶1、283∶1、284∶1、285∶1、286∶1、287∶1、288∶1、289∶1、290∶1、291∶1、292∶1、293∶1、294∶1、295∶1、296∶1、297∶1、298∶1、299∶1、300∶1、301∶1、302∶1、303∶1、304∶1、305∶1、306∶1、307∶1、308∶1、309∶1、310∶1、311∶1、312∶1、313∶1、314∶1、315∶1、316∶1、317∶1、318∶1、319∶1、320∶1、321∶1、322∶1、323∶1、324∶1、325∶1、326∶1、327∶1、328∶1、329∶1、330∶1、331∶1、332∶1、333∶1、334∶1、335∶1、336∶1、337∶1、338∶1、339∶1、340∶1、341∶1、342∶1、343∶1、344∶1、345∶1、346∶1、347∶1、348∶1、349∶1、350∶1、351∶1、352∶1、353∶1、354∶1、355∶1、356∶1、357∶1、358∶1、359∶1、360∶1、361∶1、362∶1、363∶1、364∶1、365∶1、366∶1、367∶1、368∶1、369∶1、370∶1、371∶1、372∶1、373∶1、374∶1、375∶1、376∶1、377∶1、378∶1、379∶1、380∶1、381∶1、382∶1、383∶1、384∶1、385∶1、386∶1、387∶1、388∶1、389∶1、390∶1、391∶1、392∶1、393∶1、394∶1、395∶1、396∶1、397∶1、398∶1、399∶1、400∶1、401∶1、402∶1、403∶1、404∶1、405∶1、406∶1、407∶1、408∶1、409∶1、410∶1、411∶1、412∶1、413∶1、414∶1、415∶1、416∶1、417∶1、418∶1、419∶1、420∶1、421∶1、422∶1、423∶1、424∶1、425∶1、426∶1、427∶1、428∶1、429∶1、430∶1、431∶1、432∶1、433∶1、434∶1、435∶1、436∶1、437∶1、438∶1、439∶1、440∶1、441∶1、442∶1、443∶1、444∶1、445∶1、446∶1、447∶1、448∶1、449∶1、450∶1、451∶1、452∶1、453∶1、454∶1、455∶1、456∶1、457∶1、458∶1、459∶1、460∶1、461∶1、462∶1、463∶1、464∶1、465∶1、466∶1、467∶1、468∶1、469∶1、470∶1、471∶1、472∶1、473∶1、474∶1、475∶1、476∶1、477∶1、478∶1、479∶1、480∶1、481∶1、482∶1、483∶1、484∶1、485∶1、486∶1、487∶1、488∶1、489∶1、490∶1、491∶1、492∶1、493∶1、494∶1、495∶1、496∶1、497∶1、498∶1、499∶1、500∶1、550∶1、600∶1、650∶1、700∶1、750∶1、800∶1、850∶1、900∶1、950∶1、1000∶1、1100∶1、1200∶1、1300∶1、1400∶1、1500∶1、1600∶1、1700∶1、1800∶1、1900∶1、2000∶1、2100∶1、2200∶1、2300∶1、2400∶1、2500∶1、2600∶1、2700∶1、2800∶1、2900∶1、3000∶1、3100∶1、3200∶1、3300∶1、3400∶1、3500∶1、3600∶1、3700∶1、3800∶1、3900∶1、4000∶1、4100∶1、4200∶1、4300∶1、4400∶1、4500∶1、4600∶1、4700∶1、4800∶1、4900∶1、5000∶1、5100∶1、5200∶1、5300∶1、5400∶1、5500∶1、5600∶1、5700∶1、5800∶1、5900∶1、6000∶1、6100∶1、6200∶1、6300∶1、6400∶1、6500∶1、6600∶1、6700∶1、6800∶1、6900∶1、7000∶1、7100∶1、7200∶1、7300∶1、7400∶1、7500∶1、7600∶1、7700∶1、7800∶1、7900∶1、8000∶1、8100∶1、8200∶1、8300∶1、8400∶1、8500∶1、8600∶1、8700∶1、8800∶1、8900∶1、9000∶1、9100∶1、9200∶1、9300∶1、9400∶1、9500∶1、9600∶1、9700∶1、9800∶1、9900∶1、10000∶1或以上。
在聚阳离子、水溶性聚合物和核酸的混合物中,聚阳离子的浓度为大约5mM到大于1M,或从大约10mM到大约20mM、到大约25nM或到大约35mM,以及在这些范围内的所有浓度。更具体来说,聚阳离子的终浓度是大约5mM、大约10mM、大约15mM、大约20mM、大约25mM、大约30mM、大约35mM、大约40、大约45mM、大约50mM、大约55mM、大约60mM、大约65mM、大约70mM、大约75mM、大约80、大约85mM、大约90mM、大约95mM、大约100mM、105mM、大约110mM、大约115mM、大约120mM、大约125mM、大约130mM、大约135mM、大约140、大约145mM、大约150mM、大约155mM、大约160mM、大约165mM、大约170mM、大约175mM、大约180、大约185mM、大约190mM、大约195mM、大约200mM、205mM、大约210mM、大约215mM、大约220mM、大约225mM、大约230mM、大约235mM、大约240、大约245mM、大约250mM、大约255mM、大约260mM、大约265mM、大约270mM、大约275mM、大约280、大约285mM、大约290mM、大约295mM、大约300mM、大约305mM、大约310mM、大约315mM、大约320mM、大约325mM、大约330mM、大约335mM、大约340、大约345mM、大约350mM、大约355mM、大约360mM、大约365mM、大约370mM、大约375mM、大约380、大约385mM、大约390mM、大约395mM、大约400mM、大约405mM、大约410mM、大约415mM、大约420mM、大约425mM、大约430mM、大约435mM、大约440mM、大约445mM、大约450mM、大约455mM、大约460mM、大约465mM、大约470mM、大约475mM、大约480、大约485mM、大约490mM、大约495mM、大约500mM、505mM、大约510mM、大约515mM、大约520mM、大约525mM、大约530mM、大约535mM、大约540、大约545mM、大约550mM、大约555mM、大约560mM、大约565mM、大约570mM、大约575mM、大约580、大约585mM、大约590mM、大约595mM、大约600mM、605mM、大约610mM、大约615mM、大约620mM、大约625mM、大约630mM、大约635mM、大约640、大约645mM、大约650mM、大约655mM、大约660mM、大约665mM、大约670mM、大约675mM、大约680、大约685mM、大约690mM、大约695mM、大约700mM、大约705mM、大约710mM、大约715mM、大约720mM、大约725mM、大约730mM、大约735mM、大约740、大约745mM、大约750mM、大约755mM、大约760mM、大约765mM、大约770mM、大约775mM、大约780、大约785mM、大约790mM、大约795mM、大约800mM、大约805mM、大约810mM、大约815mM、大约820mM、大约825mM、大约830mM、大约835mM、大约840、大约845mM、大约850mM、大约855mM、大约860mM、大约865mM、大约870mM、大约875mM、大约880、大约885mM、大约890mM、大约895mM、大约900mM、大约905mM、大约910mM、大约915mM、大约920mM、大约925mM、大约930mM、大约935mM、大约940、大约945mM、大约950mM、大约955mM、大约960mM、大约965mM、大约970mM、大约975mM、大约980、大约985mM、大约990mM、大约995mM、大约1M、大约1.1M、大约1.2M、大约1.3M、大约1.4M、大约1.5M、大约1.6M、大约1.7M、大约1.8M、大约1.9M、大约2.0M、大约2.1M、大约2.2M、大约2.3M、大约2.4M、大约2.5M、大约2.6M、大约2.7M、大约2.8M、大约2.9M、大约3.0M或高于3M。
在制备含有修饰的核酸的微球的方法中,核酸水性核酸溶液与聚合物/阳离子溶液的温育在大约20℃、21℃、22℃、23℃、24℃、25℃、26℃、27℃、28℃、29℃、30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃、50℃、51℃、52℃、53℃、54℃、55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃、65℃、66℃、67℃、68℃、69℃、70℃、71℃、72℃、73℃、74℃、75℃、76℃、77℃、78℃、79℃、80℃、81℃、82℃、83℃、84℃、85℃、86℃、87℃、88℃、89℃、90℃、91℃、92℃、93℃、94℃、95℃、96℃、97℃、98℃、99℃、100℃或更高的温度下进行。该温育步骤进行大约1分钟、2分钟、3分钟、4分钟、5分钟、6分钟、7分钟、8分钟、9分钟、10分钟、11分钟、12分钟、13分钟、14分钟、15分钟、16分钟、17分钟、18分钟、19分钟、20分钟、21分钟、22分钟、23分钟、24分钟、25分钟、26分钟、27分钟、28分钟、29分钟、30分钟或以上。在温育步骤完成后,然后将混合物冷却到最终温度大约低于-10℃、到大约-10℃、到大约-9℃、到大约-8℃、到大约-7℃、到大约-6℃、到大约-5℃、到大约-4℃、到大约-3℃、到大约-2℃、到大约-1℃、到大约0℃、到大约1℃、到大约2℃、到大约3℃、到大约4℃、到大约5℃、到大约6℃、到大约7℃、到大约8℃、到大约9℃、到大约10℃或以上,冷却步骤的进行使得温度以下述的速度降低:大约低于大约0.1℃/分钟,直到大约0.1℃/分钟、0.11℃/分钟、0.12℃/分钟、0.13℃/分钟、0.14℃/分钟、0.15℃/分钟、0.16℃/分钟、0.17℃/分钟、0.18℃/分钟、0.19℃/分钟、0.2℃/分钟、0.21℃/分钟、0.22℃/分钟、0.23℃/分钟、0.24℃/分钟、0.25℃/分钟、0.26℃/分钟、0.27℃/分钟、0.28℃/分钟、0.29℃/分钟、0.3℃/分钟、0.31℃/分钟、0.32℃/分钟、0.33℃/分钟、0.34℃/分钟、0.35℃/分钟、0.36℃/分钟、0.37℃/分钟、0.38℃/分钟、0.39℃/分钟、0.40℃/分钟、0.41℃/分钟、0.42℃/分钟、0.43℃/分钟、0.44℃/分钟、0.45℃/分钟、0.46℃/分钟、0.47℃/分钟、0.48℃/分钟、0.49℃/分钟、0.50℃/分钟、0.51℃/分钟、0.52℃/分钟、0.53℃/分钟、0.54℃/分钟、0.45℃/分钟、0.56℃/分钟、0.57℃/分钟、0.58℃/分钟、0.59℃/分钟、0.60℃/分钟、0.61℃/分钟、0.62℃/分钟、0.63℃/分钟、0.64℃/分钟、0.65℃/分钟、0.66℃/分钟、0.67℃/分钟、0.68℃/分钟、0.69℃/分钟、0.70℃/分钟、0.71℃/分钟、0.72℃/分钟、0.73℃/分钟、0.74℃/分钟、0.75℃/分钟、0.76℃/分钟、0.77℃/分钟、0.78℃/分钟、0.79℃/分钟、0.80℃/分钟、0.81℃/分钟、0.82℃/分钟、0.83℃/分钟、0.84℃/分钟、0.85℃/分钟、0.86℃/分钟、0.87℃/分钟、0.88℃/分钟、0.89℃/分钟、0.90℃/分钟、0.91℃/分钟、0.92℃/分钟、0.93℃/分钟、0.94℃/分钟、0.95℃/分钟、0.96℃/分钟、0.97℃/分钟、0.98℃/分钟、0.99℃/分钟、1.0℃/分钟、2.0℃/分钟、3.0℃/分钟、4.0℃/分钟、5.0℃/分钟、6.0℃/分钟、7.0℃/分钟、8.0℃/分钟、9.0℃/分钟10.0℃/分钟、11.0℃/分钟、12.0℃/分钟、13.0℃/分钟、14.0℃/分钟、15.0℃/分钟、16.0℃/分钟、17.0℃/分钟、18.0℃/分钟、19.0℃/分钟、20.0℃/分钟、21.0℃/分钟、22.0℃/分钟、23.0℃/分钟、24.0℃/分钟、25.0℃/分钟、26.0℃/分钟、27.0℃/分钟、28.0℃/分钟、29.0℃/分钟、30.0℃/分钟、31.0℃/分钟、32.0℃/分钟、33.0℃/分钟、34.0℃/分钟、35.0℃/分钟、36.0℃/分钟、37.0℃/分钟、38.0℃/分钟、39.0℃/分钟、40.0℃/分钟、41.0℃/分钟、42.0℃/分钟、43.0℃/分钟、44.0℃/分钟、45.0℃/分钟、46.0℃/分钟、47.0℃/分钟、48.0℃/分钟、49.0℃/分钟、50.0℃/分钟或更快。瞬间冷却步骤也可以考虑。尽管不受任何具体作用机制的束缚,冷却步骤以及它进行的方式,在决定获得的微球的尺寸中发挥了作用。
在方法的冷却步骤后,可选地将微球收集,洗涤,重新悬浮,和/或干燥成粉末。
在一种情况下,本发明的含有一种或多种修饰核酸的微球,能够进入细胞并执行生物学功能,并至少与不成为微球的一部分或没有按照本文的描述进行修饰的相同的核酸同样有效。在另一种情况下,本发明的含有一种或多种修饰核酸的微球,与不成为微球的一部分或没有按照本文的描述进行修饰的相同的核酸相比,能够更有效地进入细胞并执行生物学功能。
D.含有微粒的药物组合物
正如本文提到的,制备本公开的组合物是为了投送到潮湿或水性的靶位点,例如肺部。制备了组合物,使得它们可以是可吸入的形式。可吸入形式可以是干粉,含有或不含可药用赋形剂或稀释剂,或者可吸入形式可以是定剂量的基于推进剂的分散体系的形式。但是,核酸微粒本身不含任何赋形剂基质,并且当使用赋形剂时不与赋形剂形成较大的颗粒。可吸入形式可以通过使用吸入器或鼻喷入法进行口腔或鼻内投送。因此,本公开提供了用于患者治疗的自身给药方法。这种给药可以在医院、医生办公室中使用,也可以在医院或医生办公室之外由非医务人员使用,用于本公开的组合物的鼻部或吸入剂自身给药。
因此,在本公开的某些情况下,提供了用于患者自身给药本公开的组合物的装置,该装置包含鼻吸入器,含有本公开的组合物的气溶胶制剂以及可药用的分散剂,其中装置可以定量,以分散含有所需剂量的本公开的组合物的一定量的气溶胶制剂,用于缓解或治疗正在治疗的疾病的症状。分散剂可以是任何在吸入剂和喷洒组合物中通常使用的分散剂,例如表面活性剂,例如但不限于聚氧乙烯脂肪酸酯、聚氧乙烯脂肪酸醇、以及聚氧乙烯山梨糖醇酐脂肪酸酯,或甚至是基于磷脂的表面活性剂。但是,应该指出,本公开的可吸入装置不需要必需使用这样的分散剂。
在优选的例子中,本公开的组合物将采取干粉气溶胶剂型,其中组合物作为分得很细的粉末存在。干粉制剂还可以含有增量剂,例如但不限于乳糖、山梨糖醇、蔗糖和甘露糖醇。
在另一个具体的例子中,气溶胶制剂可以是液体气溶胶制剂,它还含有可药用的稀释剂,例如但不限于无菌水、盐水、缓冲盐水和葡萄糖溶液。
因此,一般来说,组合物优选被制备成适合于鼻内或吸入给药或粘膜给药的制剂或药物组合物。在本文中使用时,用于投送到粘膜的组合物和制剂包括可以治疗性、预防性或诊断性投送到颊粘膜、食管粘膜、胃粘膜、肠粘膜、嗅粘膜、口腔粘膜、支气管粘膜、子宫粘膜和子宫内膜以及它们的恶性细胞类型的组合物和制剂。适合的制剂可以用粘膜通透增强剂配制,以便于本公开的组合物的投送。粘膜通透增强剂是增加本公开的组合物的跨粘膜穿透速度或便利性的试剂,例如但不限于胆汁盐、脂肪酸、表面活性剂或醇类。在具体的例子中,通透增强剂可以是胆酸钠、十二烷基硫酸钠、脱氧胆酸钠、牛黄脱氧胆酸盐、甘氨胆酸钠、二甲基亚砜或乙醇。
制剂也可以被制备成具有最适于溶解性、药物稳定性、通过鼻粘膜的吸收和其它因素的pH。
因此,本发明提供了用于将本发明的治疗性、预防性或诊断性微粒组合物投送到粘膜的方法,包括将靶粘膜与微粒组合物相接触的步骤,其中该微粒组合物的量能够有效穿透并作用在靶粘膜上或中。
本公开的组合物以治疗有效的量、即能够有效证实所需的药物活性的量投送。根据本公开,给定核酸的治疗有效的量取决于它所投送的靶。投送的治疗结果,可以是被靶向的疾病的一种或多种症状的减少或缓解,和/或被靶向的具体核酸的表达、或作为靶向的结果其表达降低了的蛋白的活性的降低。
本文中使用的术语“气溶胶”是指空气中的悬浮物。具体来说,气溶胶是指本公开的制剂的颗粒化或雾化及其在空气中的悬浮物。根据本公开,气溶胶制剂是含有本公开的用于鼻部吸入或通过口腔进行肺部给药的微粒的制剂。
本文中使用的术语“吸入器”是指用于例如溶液中、粉末等的药物的鼻部和肺部给药的装置。例如,术语“吸入器”包含了推进剂驱动的吸入器,例如用于急性哮喘发作的抗组胺药物给药的吸入器,以及塑料喷洒瓶,例如用于充血缓和剂给药的喷洒瓶。
本文中使用的术语“分散剂”是指帮助本公开的组合物的气溶胶化、或这些组合物在粘膜组织中的吸收、或二者的试剂。但是,应该指出,本公开的微粒,由于均匀的粒径分布和它们的尺寸范围,具有特别好的空气动力学特性。在具体的情况下,分散剂可以是粘膜通透增强剂。优选情况下,分散剂是可药用的。本文中使用的术语“可药用的”意指被联邦或州政府的管理机构批准或列于美国药典或其它通常认可的药典中,可用于动物、更具体来说人类中。
本公开的微粒是不聚集的,因此,不是必需使用试剂来促进颗粒的分散和“分离”。但是,如果使用分散剂,它们可以包括表面活性剂等。在本技术领域中,这样的表面活性剂一般用于减少由形成液体气溶胶的溶液的雾化引起的被投送药剂的表面诱导的聚集,并可用在本公开的方法和装置中。这样的表面活性剂的例子包括但不限于表面活性剂例如聚氧乙烯脂肪酸酯和醇,以及聚氧乙烯山梨糖醇酐脂肪酸酯。使用的表面活性剂的量可以变化,一般在制剂重量的0.001%到4%的范围内。适合的表面活性剂在本技术领域是公知的,可以在所需性质的基础上,根据具体的制剂、寡核苷酸的浓度、稀释剂(在液体制剂中)或粉末的形式(在干粉制剂中)等进行选择。
对于液体气溶胶制剂来说,寡核苷酸微粒可以含有在生理可接受的稀释剂中的分散剂。本公开的干粉气溶胶制剂含有分得很细的冷冻干燥形式的微粒,以及可选的分散剂。
“冻干”或冷冻干燥是指通过快速冷冻并在冷冻状态下脱水(有时称为升华)来制备干燥形式的微粒组合物。冷冻干燥在能够引起脂类结晶的温度下发生,以形成脂类基质。该过程可以在真空下、在包含容器的环境温度为大约室温的情况下足以维持产物冷冻的压力下发生,该压力优选低于大约500mTorr、更优选低于大约200mTorr、更优选低于大约1mTorr。
对于无论是液体还是干粉气溶胶制剂来说,制剂应该被气溶胶化,以确保气溶胶化的药剂事实上到达了鼻腔通道或肺的粘膜。术语“气溶胶颗粒”在本文中用于描述适合用于鼻部或肺部给药、即将会到达粘膜的液体或固体颗粒。其它参数,例如投送装置的结构、制剂中的其他成分、以及颗粒的特性,也应该予以考虑。药物的鼻部或肺部给药的这些方面在本技术领域中是公知的,制剂的操作、气溶胶化的手段以及投送装置的结构,至多需要本技术领域普通技术人员的常规实验。
对于投送方法来说,任何本技术领域中已知的气溶胶化形式,包括但不限于喷洒瓶、液体制剂的雾状化、雾化或泵气溶胶化,以及干粉制剂的气溶胶化,都可用于本公开的实践中。
正如上面提到的,在本公开的优选情况下,用于气溶胶化的装置是可吸入的干粉形式,在其它优选例子中,装置是定剂量的药剂吸入器。定剂量的药剂吸入器在给药时提供了特定的剂量,而不是根据给药而变化的剂量。这种定剂量的吸入器可以用于液体或干粉气溶胶制剂。定剂量的吸入器在本技术领域中是众所周知的。
对于鼻部给药来说,有用的装置是小的、坚硬的瓶子,其上连接有定剂量的喷洒器。在一个例子中,定剂量药剂通过将微粒溶液抽入具有确定体积的室来进行投送,该室具有孔隙,其尺寸使得当室中的液体被压缩时通过形成喷雾进行气溶胶制剂的气溶胶化。将室压缩可以进行制剂给药。在具体的例子中,室是活塞装置。这样的装置是可商购的。
可选地,塑料挤瓶带有孔隙或开口,其尺寸使得当挤压时通过形成喷雾进行气溶胶制剂的气溶胶化。开口通常被发现在瓶子的顶部,顶部通常是尖的,与鼻腔通道部分契合,用于有效地给药气溶胶制剂。优选情况下,鼻吸入器将提供定量的气溶胶制剂,用于给药确定剂量的待给药组合物。
通常,用于吸入到肺中的液体或干粉制剂的气溶胶化将需要推进剂。推进剂可以是任何在本技术领域中常用的推进剂。这些可用的推进剂的具体的、非限制性的例子是氯氟烃、氢氟烃、氢氯氟烃或烃类,包括三氟甲烷、二氯二氟甲烷、二氯四氟乙醇和1,1,1,2-四氟乙烷,或其组合。
也考虑到了液体气溶胶制剂和剂量形式。一般来说,这样的剂量形式包含在可药用稀释剂中的组合物。在这种液体气溶胶制剂中的可药用稀释剂包括但不限于无菌水、盐水、缓冲盐水、葡萄糖溶液等。在具体的例子中,可用于本公开或本公开的药物制剂中的稀释剂,是磷酸盐缓冲的盐水或缓冲的盐水溶液,其pH一般在7.0-8.0的范围内,或者是水。
此外,本例中的制剂也可以包含其它用于pH维持、溶液稳定、或用于调节渗透压的试剂。试剂的例子包括但不限于盐类,例如氯化钠或氯化钾,以及碳水化合物例如葡萄糖、半乳糖或甘露糖等。
E.颗粒的体内投送
本公开中的核酸微粒适合于通过适当的途径体内投送给对象,例如可注射、表面、口部、直肠、鼻部、肺部、阴道、颊、舌下、透过皮肤、透过粘膜、耳部、眼内或眼部途径。微粒可以作为稳定的液体悬浮液投送,或配制成固体剂型例如干粉。优选的投送途径是肺部,它包括口腔和鼻部投送。
在这种投送途径中,可以选择性地设计微粒,以沉积在肺的深部、上呼吸道、或呼吸道的任何地方。微粒可以作为干粉通过干粉吸入器投送,它们也可以通过定剂量的药剂吸入器或喷雾器进行投送。
打算全身性起作用的药物,理想情况下沉积在肺泡中,在那里有非常大的表面积,适于吸收到血流中。当将药物沉积定向于肺中的某些区域时,可以通过操纵微粒的基本物理学性质、例如形状和尺寸,将微粒的空气动力学直径调整到最适的范围内。
被吸入的药物颗粒的可接受的可呼吸级份,通常通过向配方中添加赋形剂来获得,赋形剂或者掺入到颗粒组合物中,或者作为与药物颗粒的混合物。例如,通过与较大颗粒的(30-90μm)惰性载体颗粒例如海藻糖、乳糖或麦芽糖糊精进行混合,实现了微米级药物颗粒(大约5μm)的改进的分散。较大的赋形剂颗粒增加颗粒的流动性质,它与改进的药效作用相关。在进一步的改良中,赋形剂被直接掺入到小的球形颗粒中,以影响气溶胶的性能,并潜在地增强蛋白药物的稳定性。一般来说,选择以前已经被FDA批准用于吸入的赋形剂,例如乳糖,或肺内源性的有机分子,例如白蛋白和DL-α-二棕榈酰磷脂酰胆碱(DPPC)。其它的赋形剂,例如聚(乳酸-共-羟基乙酸)(PLGA)已经被用于对颗粒进行工程化改造,使其具有所需的物理和化学特性。但是,使用FDA批准的赋形剂的大多数吸入经验是使用哮喘药物时获得的,该哮喘药物具有大的空气动力学尺寸,理想地沉积在气管支气管区域,不明显地穿透到肺部深处。对于投送到肺部深处的吸入蛋白或肽疗法来说,关注的是可能发生的不想要的长期副作用,例如炎症和刺激,这可能是由于免疫应答导致的,或由赋形剂当被投送到肺泡区域时引起的。
为了最小化深肺吸入疗法可能的有害副作用,将用于吸入的颗粒制造成基本上由被投送的药物构成,可能是有利的。该策略将使肺泡暴露于赋形剂最小化,并减少使用每个剂量时沉积在肺泡表面上的颗粒的总质量剂量,在吸入疗法的长期使用过程中可能使刺激最小化。具有适合于肺部深处沉积的空气动力学性质、基本上完全由本文描述的治疗性、预防性和/或诊断性蛋白、肽或其它药剂构成的小的球形颗粒,对于孤立地研究长期治疗性或预防性剂量给药对肺的肺泡膜的影响,可能是特别有用的。然后可以研究通过吸入来全身性投送小的球形颗粒形式的蛋白、肽或其它药剂的效应,而没有由相关的赋形剂引入的复杂因素。
对于通过吸入将颗粒投送到肺部深处来说,要求颗粒具有0.5-10微米的小的平均空气动力学直径,以及狭窄的尺寸分布。本公开还考虑到了将具有不同粒径范围的不同批次的颗粒混合在一起。本公开的工艺方法允许制造具有上述特性的微粒。
形成具有0.5到3微米的空气动力学直径的颗粒,有两种主要方法。第一种方法是产生相对大但非常多孔(或有孔)的微粒。因为空气动力学直径(D空气动力学)和几何直径(D几何)之间的关系是D空气动力学等于D几何乘以颗粒密度的平方根。具有非常低的质量密度(大约0.1g/cm3)的颗粒可以表现出小的空气动力学直径(0.5到3微米),同时具有相对高的几何直径(5到10微米)。
另一种方法是产生具有相对低的孔隙度的颗粒,在本公开的情况下,颗粒具有上面提出的范围内的密度,更一般情况下接近1g/cm3。因此,这样的无孔致密颗粒的空气动力学直径接近于它们的几何直径。
上面提出的本发明的用于颗粒形成的方法,提供了使用或不使用赋形剂时的颗粒形成。
使用很少或不使用非聚合性阳离子之外的添加剂从核酸本身制造小的颗粒,为在肺部投送中的使用提供了卓越的优点,因为它为较大的药物有效载荷、增加的安全性和减少的所需吸入的次数,提供了选择。
H.实施例
下面的章节提供了用于制备本公开的核酸颗粒的方法和组合物的实施例。本文公开的工艺方法的可放大性,使用不同材料的各种不同尺寸的容器进行了证明,这些容器包括1.5ml微量离心管、5ml玻璃管、15ml聚丙烯管、10ml夹套玻璃容器、50ml夹套玻璃容器和100ml夹套玻璃容器。
本公开的示例性核酸微粒从含有溶解的核酸、非离子聚合物和非聚合性阳离子的溶液制备。这些溶质的相对浓度可以被调整,以使核酸微粒的某些特性,例如粒径、形状(例如微粒有多圆)、以及表面光滑度最适化。非聚合性阳离子的摩尔浓度典型情况下在0.01M到5M之间的范围内,例如0.05M、0.1M、0.2M 0.3M、0.4M、0.5M、0.6M、0.7M、0.8M、0.9M、1M、1.1M、1.2M、1.3M、1.4M、1.5M、1.6M、1.7M、1.8M、1.9M、2M、2.1M、2.2M、2.3M、2.4M、2.5M、2.6M、2.7M、2.8M、2.9M、3M、3.1M、3.2M、3.3M、3.4M、3.5M、3.6M、3.7M、3.8M、3.9M、4M、4.1M、4.2M、4.3M、4.4M、4.5M、4.6M、4.7M、4.8M、4.9M、5M,或在任何两个这些值之间的范围内。非离子聚合物的重量体积比浓度典型情况下为5%到50%,例如8%、10%、15%、20%、25%、30%、35%、40%,或在任何两个这样的值之间的范围内。核酸与非聚合性阳离子的摩尔比典型情况下为1∶20到1∶50,000,例如1∶20、1∶30、1∶40、1∶50、1∶60、1∶70、1∶80、1∶90、1∶100、1∶150、1∶200、1∶250、1∶300、1∶350、1∶400、1∶450、1∶500、1∶550、1∶600、1∶650、1∶700、1∶750、1∶800、1∶850、1∶900、1∶950、1∶1,000、1∶1,500、1∶2,000、1∶3,000、1∶4,000、1∶5,000、1∶6,000、1∶7,000、1∶8,000、1∶10,000、1∶15,000、1∶20,000、1∶30,000、1∶40,000,或在任何两个这样的值之间的范围内,或本文描述的其它比例。
本发明的实施例提供了用于制备如本文描述的可以用于肺部使用的微粒的方法和组分。这些说明性的实施例提供了不含聚合的聚阳离子的微粒。此外,本文制备的微粒可溶于水和/或水性溶液,这个特点使得当微粒被给药到预定位点、例如肺中的区域时,能够快速释放微粒的核酸成分。微粒的空气动力学特征、例如尺寸和直径,可以被操纵,用于定向投送到例如肺中的各种不同预定区域。
优选情况下,本文中制备的微粒典型地具有低的水分含量(通过Karl Fisher测量),例如水分含量低于8%。此外,微粒的非聚合性阳离子含量(通过原子吸收测量),为微粒组合物总量的3%或以上。得到的微粒干粉与核酸起始重量的重量比是大约1或以上(例如,对于Ca-反义微粒来说,比典型为1.03)。
实施例1:用于制备示例性微粒的材料
下面的材料用于制备本公开的示例性微粒。尽管为示例性实施例提供了具体的核酸和siRNAs,但使用其它核酸和寡核苷酸也可以制备类似的微粒。
所有的水性溶液使用高温高压灭菌并通过0.2微米滤器无菌过滤过的无核酸酶的去离子水制备。
核酸溶液以大约15mg/ml的浓度制备在水中。在本文描述的方法中使用的示例性反义寡核苷酸(抗-CD40,抗-CD80,抗-CD86)是可商购的HPLC纯化的冷冻干燥制备物。这些寡核苷酸在寡核苷酸骨架上被硫代磷酸酯化,可以从Integrated DNA Technologies公司(Coralville,IA)获得。
在本文中制备的微粒中使用了各种不同的siRNA组合物。siRNA分子由未修饰的双链体构成,可选地具有一条用荧光染料标记的链。双链体由两条21-mer的RNA寡核苷酸,通过碱基配对退火在一起,每个21-mer具有两个核苷酸长的3’-突出端。荧光染料DY547标记的SCR-027、NT-2和NT2被用作阴性对照,荧光染料DY547标记的活性siRNA分子针对eGFP。这些siRNA分子的HPLC纯化并冷冻干燥的制备物可以从Dharmacon公司(Dharmacon,Lafayette,CO)商购。
非聚合性阳离子储液通过将非聚合性阳离子的盐(无水或水合物的形式)以1M到10M的浓度溶解在水中来制备。储液的pH被调整到pH接近中性到酸性(例如3到7.5)。
非离子聚合物溶液A由酸性pH(例如5.6)下的0.1M乙酸钠缓冲液中的12.5%(w/v)PEG 3350(平均MW 3409D)和12.5%(w/v)PVP(平均MW 40kD)构成。
非离子聚合物溶液B由酸性pH(例如5.6)下的0.1M乙酸钠缓冲液中的25%(w/v)PEG 3350构成。
非离子聚合物溶液C由24%(w/v)泊洛沙姆188(平均MW 8400,Lutrol
Figure G2008800206543D00651
F68,来自BASF)构成,pH 5.6(用乙酸调整)。
非离子聚合物溶液D由酸性pH(例如5.6)下的0.167M乙酸钠缓冲液中的50%(w/v)PEG 3350构成。在使用非离子聚合物溶液D的反应混合物中聚合物的终浓度典型为20%(w/v)PEG 3350在0.067M乙酸钠缓冲液中。
实施例2:使用Ca 2+ 作为阳离子制备的示例性反义寡核苷酸微粒
下面的实施例提供了两种示意性的工艺方法,用于制备本公开的含有Ca2+的基于反义寡核苷酸的微粒。
制备工艺方法1:在本工艺方法中,制备了一系列6种反应混合物,其中每种反应混合物含有非离子聚合物、盐溶液和核酸溶液。简单来说,将非离子聚合物溶液A的等份试样分散到容器中,使得每个最终反应混合物的三分之二是溶液A。将盐溶液(5M CaCl2储液,pH5.5)和水加入到非离子聚合物等份试样中,使得最终反应混合物中的Ca浓度分别为0.1M、0.17M、0.33M、0.67M、1M和1.25M。制备反义核酸溶液的等份试样,使得当这些核酸溶液的等份试样加入到最终反应混合物中时,每种最终反应混合物中反义核酸的浓度将为0.206mM。
将盐/聚合物反应混合物和核酸等份试样预热,然后组合以形成最终反应混合物。将最终反应混合物都在大约同样的温育温度温育5分钟。使用一系列反应混合物进行的反应在不同的温度下进行重复(例如60℃,65℃或70℃)。所有的反应混合物,除了含有1.25M Ca的反应混合物之外,在混合后一开始变得浑浊,到温育结束时都转为目测透明(即表明反应混合物是均匀的、单相的溶液)。含有1.25M和1M Ca的反应混合物,即使在进一步加热到75℃时,也保持浑浊。将反应混合物以受控的速度(在0.1℃/min到5℃/min的范围内)冷却到4℃。Ca-反义微粒分散在所有反应混合物中,可以用光学显微镜观察到。通过离心和上清液倾析/吸取,从分散体系中收集Ca-反义微粒。收集到的微粒用二氯甲烷重复地离心洗涤,以除去非离子聚合物,并冷冻干燥成干粉。
制备工艺方法2:在本工艺方法中,Ca-反义微粒如下制备:制备非离子聚合物溶液A的等份试样,使得每个试样占最终反应混合物(包括非离子聚合物溶液、盐溶液和核酸溶液)的总体积的三分之二。制备盐的等份试样,使得当与核酸等份试样直接混合时,将具有0.1M、0.3M、1M、2M、3M和4.18M的中间盐浓度。将盐的等份试样和核酸等份试样预热,组合以形成中间混合物,并温育30分钟,这都在大约相同的温度下进行(70℃)。非离子聚合物的等份试样也进行预热,然后与中间混合物组合以形成反应混合物,温育30分钟,这都在大约相同的温度下进行(70℃)。通过将反应混合物暴露于-10℃的冷却介质30分钟,将反应混合物冷却到大约-10℃。Ca-反义微粒分散在所有反应混合物中,可以用光学显微镜观察到。
使用离心和上清液倾析/吸取,从分散体系中收集Ca-反义微粒。将微粒用1.5M CaCl2溶液在4℃重复地离心洗涤,然后用0.2M CaCl2溶液在4℃重复地离心洗涤。然后将洗涤过的Ca-反义微粒冷冻干燥成干粉。
在可选的洗涤过程中,将收集到的Ca-反义微粒用50%(w/v)PEG3350溶液在4℃重复地离心洗涤,并冷冻干燥以除去水和挥发性盐。然后将这些冷冻干燥的制备物重新悬浮,用二氯甲烷/甲醇混合物重复地离心洗涤,然后用单独的二氯甲烷洗涤,以除去PEG和PVP,然后重新冷冻干燥以除去二氯甲烷。
结果
在其它条件相同的情况下,Ca-反义微粒的冷却速度与微粒的平均空气动力学直径相关(图1A-1E,以及图2A-B和图11),对微粒的空气动力学直径分布没有影响(在0.34到0.43的范围内)。从图1A-1E和图2A-B可以看出,Ca-反义微粒的直径随着冷却速度的增加而减小。但是,在任何给定的反应混合物中,Ca-微粒总群的平均直径分布基本保持不变。
空气动力学直径分布由空气动力学直径分布范围与微粒的平均空气动力学直径的比来度量,其中空气动力学直径分布范围,是对应于第95%的颗粒的空气动力学直径(即95%的颗粒等于或小于该空气动力学直径)与对应于第10%的颗粒的空气动力学直径(即10%的颗粒等于或小于该空气动力学直径)之间的差值。对于Ca-反义微粒来说,空气动力学直径分布小于0.7,典型情况下在0.3到0.6的范围内。Ca-分子微粒的示例性空气动力学直径分布(第10%为1.836微米,平均为2.294微米,第95%为2.954微米)和下一代冲击器(NGI)特征图形(MMAD为2.6微米到2.9微米,GSD为1.5,喷射剂量为73%到77%,FPF(小于8微米)为喷射剂量的78%到82%或以上),分别显示在图3A-B和4A-B中。
在其它条件相同的情况下,反应混合物中非聚合性阳离子与核酸的摩尔比,与在给定反应混合物中产生的微粒的空气动力学直径(图5A-B)、以及在冷却过程中微粒形成时的温度(图6)相关。这些数据对应于1℃/min的冷却速度。更具体来说,正如可以从图5A-B看到的,微粒的空气动力学直径随着非聚合性阳离子与核酸的摩尔比的增加而降低。在图6中可以看到,颗粒形成时的温度随着非聚合性阳离子与核酸的摩尔比的增加而增加。
Ca-反义微粒的平均空气动力学直径为1-3微米。典型情况下,在任何给定的反应中,至少85%的微粒分布在大约0.8-4微米的狭窄范围内。Ca-反义微粒的水分含量在3%到7%的范围内,更具体来说水分含量在3.6%到6.1%之间。最后,Ca-反义微粒的非聚合性阳离子含量在4%或以上的范围内,典型情况下,非聚合性阳离子含量在微粒的4.1%到4.3%的范围内。
如图12中所示,核酸微粒形成的工艺方法不降解实施例2的核酸。
实施例3:用Zn 2+ 作为阳离子制备的示例性反义寡核苷酸微粒
在本工艺方法中,制备了一系列7种反应混合物,其中每种反应混合物含有非离子聚合物溶液、盐溶液和核酸溶液。简单来说,将非离子聚合物溶液A的等份试样分配到容器中,使得每个最终反应混合物的三分之二含有溶液A。制备反义核酸溶液的等份试样,使得当这些核酸溶液的等份试样加入到最终反应混合物中时,每种最终反应混合物中反义核酸的浓度将为0.206mM。
使用4M ZnCl2储液(pH 4),通过用水稀释制备盐溶液的等份试样,使得当等份试样加入到反应混合物中时,起始的盐和核酸混合物中的Zn浓度将分别为0.1M、0.33M、1M、2M和3M。
将盐等份试样和核酸等份试样预热,然后组合以形成中间混合物。将这些中间混合物都在大约同样的温度(70℃)温育30分钟。所有的中间混合物在混合后变得浑浊,可以目测观察到浊度随着Zn浓度的增加而增加。将也已经预热的非离子聚合物的等份试样与中间混合物组合,以形成最终组合的反应混合物。将最终组合的反应混合物都在大约同样的温度(70℃)温育30分钟。所有的最终反应混合物在混合后保持浑浊,通过目测检测可以看到浊度随着Zn浓度的增加而增加。按照本工艺方法制备的Zn-反义微粒分散在所有反应混合物中,可以用光学显微镜观察到。通过将反应混合物暴露于-10℃的冷却介质30分钟,将反应混合物冷却到大约-10℃。冷却后,通过光学显微镜重新检查Zn-反义微粒,可以看到分散在所有反应混合物中。
使用离心和上清液倾析/吸取,从分散体系中收集Zn-反义微粒。将收集到的Zn-反义微粒用1.5M ZnCl2溶液在4℃重复地离心洗涤。然后将洗涤过的Zn-反义微粒用0.2M ZnCl2溶液在4℃重复地离心洗涤,最后冷冻干燥成干粉。
在可选的洗涤程序中,将收集到的Zn-反义微粒用50%(w/v)PEG3350溶液在4℃重复地离心洗涤,并冷冻干燥以除去水和挥发性盐。然后将冷冻干燥的Zn-反义微粒重新悬浮,用二氯甲烷重复地离心洗涤以除去PEG 3350,然后重新冷冻干燥以除去二氯甲烷。
从含有0.33M Zn的反应混合物制备的Zn-反义微粒具有400nm的平均粒径。这些Zn-反义微粒的ζ电位是-17mV(在1mM KCl中,pH=7.1,PALSζ电位分析仪3.29版,Brookhaven Instruments Corp.)。在这些Zn-反义微粒中的反义核酸载量是48%(以微粒的重量计,使用电泳测定并定量)。
实施例4:使用Mg 2+ 作为阳离子制备的示例性反义寡核苷酸微粒
使用与实施例3中描述的用于形成Zn-反义微粒的工艺方法相同的方法来形成Mg-反义微粒,不同之处在于用MgCl2储液(4.09M,pH4.5)代替Zn盐储液,以及反应混合物中Mg的终浓度分别为0.033M、0.1M、0.33M、0.67M和1M。在将盐溶液和核酸溶液混合后,含有0.033MMg的中间反应混合物显示出目测透明,而所有其它中间混合物在混合后变得浑浊。中间反应混合物的浑浊度随着Mg浓度的增加而增加。当中间反应混合物与非离子聚合物溶液A混合时,含有0.033M Mg的反应混合物保持透明,含有0.1M和0.33M Mg的反应混合物保持浑浊,含有0.67M Mg的反应混合物变为透明,含有1M Mg的反应混合物沉淀出聚集体,沉积在反应容器的底部。将反应混合物在70℃温育30分钟,使所有反应混合物转变成均匀的、单相的溶液。冷却后,所有反应混合物变得浑浊,其中含有0.67M和1M Mg的反应混合物具有足够密度的成分,在冷却后微粒沉积在反应混合物中。Mg-反义微粒分散在所有反应混合物中,可以通过光学显微镜观察。
使用离心和上清液倾析/吸取,从分散体系中收集Mg-反义微粒,并用1.5M MgCl2溶液在4℃重复地离心洗涤。然后将洗涤过的Mg-反义微粒沉淀用0.2M MgCl2溶液在4℃重新重复地离心洗涤,最后冷冻干燥成干粉。
在可选的洗涤程序中,将收集到的Mg-反义微粒用50%(w/v)PEG3350溶液在4℃重复地离心洗涤,并冷冻干燥以除去水和挥发性盐。然后将冷冻干燥的Mg-反义微粒用二氯甲烷重复地离心洗涤以除去PEG 3350,然后重新冷冻干燥以除去二氯甲烷。
实施例5:使用Na + 作为阳离子制备的示例性反义寡核苷酸微粒
为了制备Na-反义微粒,进行了与上面实施例3中描述的用于形成Zn-反义微粒的工艺方法基本相同的方法,不同之处在于用NaCl储液(5.3M,pH 6.7)代替Zn盐储液。使用了6种反应混合物,其中反应混合物中钠的终浓度分别为0.033M、0.1M、0.33M、0.67M、1M和1.47M。除了含有1.47M Na的反应混合物是浑浊的之外,所有其它中间混合物都是目测透明的。混合后,所有反应混合物变得浑浊。将反应混合物在70℃温育30分钟,使所有反应混合物转变成透明均匀的、单相的溶液。冷却后,含有0.033M、0.1M和0.33M Na的反应混合物保持透明,含有0.67M和1M Na的反应混合物变得浑浊,含有1.47M Na的反应混合物保持浑浊。当加热到环境温度时,含有0.67M和1M Na的反应混合物再次变得目测透明,但是冷却后再次变得浑浊,这证明在冷却和加热时,微粒分别可逆地形成和分解。
实施例6:使用Ca 2+ 作为阳离子制备的示例性siRNA微粒
使用上面实施例2中描述的用于形成Ca-反义微粒的工艺方法1来制备Ca-siRNA微粒,不同之处在于用本实施例中的siRNA溶液代替实施例2的核酸溶液,使得每种反应混合物中siRNA的浓度为0.151mM。设置了7种独立的反应混合物,包含的Ca浓度分别为0.033M、0.1M、0.17M、0.5M、0.67M、0.74M和1M。使用非离子聚合物溶液A、以及使用非离子聚合物溶液B和C,制备了Ca-siRNA微粒的例子。反应的预热温度可变。使用预热温度58℃、60℃和70℃设置了反应。在预热温度下将核酸溶液与非离子聚合物/盐溶液混合后,所有的反应混合物变得浑浊,并在5分钟的温育期结束时保持浑浊。反应混合物的浑浊度随着反应混合物中Ca浓度的增加而增加。在冷却和温育后,将从分散体系收集(使用离心和上清液倾析/吸取)的Ca-siRNA微粒用适合的洗涤介质在4℃重复地离心洗涤,并冷冻干燥成干粉。
实施例7:使用Mg 2+ 作为阳离子制备的示例性siRNA微粒
使用上面实施例6中描述的用于形成Ca--siRNA微粒的工艺方法来制备Mg-siRNA微粒,不同之处在于在本实施例中用MgCl2储液(5M,pH 5.6)代替实施例6中的盐储液。设置了2种反应混合物,在反应混合物中包含的Mg浓度分别为0.78M和1.15M。在预热温度(70℃)下将核酸溶液与非离子聚合物/盐溶液混合后,所有的反应混合物目测透明(即反应混合物是均匀的单相溶液),并在5分钟的温育期结束时保持透明。在冷却和温育后,将从分散体系收集(使用离心和上清液倾析/吸取)的Mg-siRNA微粒用适合的洗涤介质在4℃重复地离心洗涤,并冷冻干燥成干粉。在存在非离子聚合物溶液B和C的情况下,在1.15M Mg浓度下形成了Mg-siRNA微粒。
实施例8:Mg-siRNA微粒
按照上面公开的方法,使用下表中列出的配方和反应条件制备了Mg-siRNA微粒。所有的siRNAs商购自Dharmacon公司。图7A-B、8A-B、9A-B、10A-B和13是这些微粒的SEM图像。如图14所示,核酸微粒形成的工艺方法不降解实施例8的核酸。如图15和16所示,实施例8的核酸微粒具有适合于肺部投送的空气动力学特征(例如,以数量和体积计95%的群小于3微米,高FPF)。
  参数   图7A   图8A   图9A   图10A
核酸(MW) NT-2siRNA(13,438)   DY547标记的NT-2siRNA(13,851) eGFP siRNA(13,526)   DY547标记的eGFP siRNA(13,939)
  核酸终浓度   0.149mM   0.144mM   0.146mM   0.140mM
  PEG 3350终浓度[储液浓度]   16.67%(w/v)[25%(w/v)]   16.67%(w/v)[25%(w/v)]   13.33%(w/v)[20%(w/v)]   16.67%(w/v)[25%(w/v)]
  Mg2+终浓度   1.15M   1.19M   1.15M   1.15M
  pH   5.6   5.6   5.6   5.6
  预热温度   65℃   65℃   65℃   65℃
  冷却速度   0.1℃/分钟   0.5℃/分钟   0.1℃/分钟   0.1℃/分钟
  参数   图7B   图8B   图9B   图10B   图13
核酸 NT-2siRNA   DY547-NT-2siRNA eGFP siRNA   DY547-eGFPsiRNA NT-2siRNA
  核酸终浓度   0.15mM   0.15mM   0.15mM   0.15mM   0.15mM
  聚合物终浓度[储液浓度]   20%(w/v)[50%(w/v)]   20%(w/v)[50%(w/v)]   20%(w/v)[50%(w/v)]   20%(w/v)[50%(w/v)]   20%(w/v)[50%(w/v)]]
  Mg2+终浓度   1.228M   1.228M   1.228M   1.228M   1.228M
  pH   5.6   5.6   5.6   5.6   5.6
  预热温度   65℃   65℃   65℃   65℃   65℃
  冷却速度   0.5℃/分钟   0.5℃/分钟   0.5℃/分钟   0.5℃/分钟   0.5℃/分钟
实施例9:Mg-siRNA微粒
按照上面公开的方法,使用NT-2siRNA作为核酸,非离子聚合物溶液D作为储液,pH5.6,预热温度65℃,冷却速度0.5℃/分钟,冷却终端温度4℃,以及下表中列出的不同聚合物终浓度和不同阳离子终浓度,制备了Mg-siRNA微粒。所有反应都导致球形核酸微粒的形成。
反应编号 阳离子终浓度 聚合物终浓度   [阳离子]∶[核酸]的摩尔比 颗粒形成温度
  1   1.228M   16.7%(w/v)   8251∶1   5℃
  2   1.8M   16.7%(w/v)   12094∶1   5℃
  3   2.2M   16.7%(w/v)   14782∶1   65℃
  4   1.228M   20.0%(w/v)   8251∶1   21℃
  5   1.8M   20.0%(w/v)   12094∶1   22℃
  6   2.2M   20.0%(w/v)   14782∶1   65℃
  7   1.228M   23.7%(w/v)   8251∶1   28℃
  8   1.8M   23.7%(w/v)   12094∶1   65℃
  9   2.2M   23.7%(w/v)   14782∶1   65℃
实施例10:具有胆固醇修饰的siRNA的微球的生产
将无核酸酶的水性溶液(水从Ambion获得,目录号9930,是去离子和无核酸酶的,并另外进行高温高压灭菌和0.2μm无菌过滤)加热到37℃,该水性溶液中含有如图17所示溶解在其中的胆固醇结合的增强的绿色荧光蛋白(eGFP,Dharmacon/Thermofisher)siRNA。将缓冲的聚合物/阳离子溶液加热到65℃,该溶液中含有全部溶解在其中的水溶性聚乙二醇3500(PEG 3350,Spectrum,目录号PO125;溶液由46%PEG,用0.245M NaOAc缓冲,在无核酸酶的水中,pH 5.6,在最终制剂中稀释到12.5%PEG和67mM NaOAc)、水溶性盐MgCl2(100mM MgCl2溶液(pH 5.6),在0.2μm过滤过的水中)和乙酸钠缓冲液(Spectrum,目录号S0104)。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,使胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、12.5%(w/v)、25mM和67mM。反应混合物中多价阳离子与胆固醇修饰的siRNA之间的摩尔比是176∶1。将反应混合物在65℃温育,在此期间混合物变得透明,然后将透明的混合物以0.8℃/每分钟的速度冷却到0℃,在此期间形成的胆固醇修饰的siRNA微球将透明的混合物转变成乳白色。通过在0℃离心收集微球,用冷却到0℃的50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
得到的微球是固体、球形的,粒径是单分散的。
  反应编号   核酸   分子量(g/mole)   聚合物   终体积中的聚合物%   阳离子或盐   起始[盐](M)   最终[盐](M)   盐的体积(μl)
1   CHOLeGFP siRNA 14070.1 PEG 12.5 MgCl2 0.10 0.0250 187.5
  水的体积(μl)   起始[siRNA](mg/ml)   最终[siRNA](mM)   siRNA体积(μl)   盐∶siRNA的摩尔比 聚合物溶液的体积(μl) 总体积(μl)   起始聚合物%
  233.5   11.98   0.142   125.2   176∶1  203.8   750   46
Aerosizer数据样品信息   10%以下(μm)   50%以下(μm)   95%以下(μm)
  061907MS Chol.eGFP,siRNA,25mMMgCl2 12.5%PEG 3.027 3.543 4.443
实施例11:胆固醇修饰的siRNA在用于肺部投送的标准微球制剂 中的应用
将如图17所示的含有溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。按照上面的描述,将含有水溶性PEG 3350的用乙酸钠缓冲的溶液与MgCl2溶液进行混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样加入到聚合物/阳离子溶液的等份试样中,使胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、16.7%或20%(w/v)、1.173M和67mM。反应混合物中多价阳离子与胆固醇修饰的siRNA之间的摩尔比是8251∶1。在该阳离子浓度下,反应立即变成乳白色,在65℃温育5分钟,在此期间混合物保持乳白色。将混合物以0.5℃/每分钟的速度冷却到0℃,混合物保持乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
得到的微球是固体、球形的,粒径是多分散的,并混有非球形的微粒,正如通过光学显微镜和扫描电子显微镜所观察的。
实施例12:具有降低的阳离子浓度以受控相分离的微球制剂
将图17中所示的含有溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将PEG 3500聚合物溶液如上所述与多种不同浓度的MgCl2溶液混合,然后加热到65℃。在65℃下,将siRNA溶液的等份试样加入到聚合物/阳离子溶液的等份试样中,使胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、16.7%(w/v)、阳离子范围1.173M到0M(1.173M、587mM、293mM、147mM、73mM、25mM和0mM)和67mM。各反应混合物中多价阳离子与胆固醇修饰的siRNA的最终摩尔比分别为8251∶1、4126∶1、2061∶1、1031∶1、516∶1、176∶1和0∶1。所有的混合物,除了0mM阳离子溶液不形成沉淀之外,都立即变成乳白色,并且都在65℃温育大约5分钟,在此期间混合物保持乳白色。然后将所有混合物冷却到0℃,除了0mM阳离子混合物之外所有混合物保持乳白色。在每个这些工艺过程中形成了微球,它们变成乳白色,但是形成不是通过CPS类的反应。因此,确定了在这些条件下,为了发生CPS类反应,阳离子的浓度需要低于25mM。
实施例13:具有降低的阳离子浓度以受控相分离的其它微球制剂
将图17中描述的其中溶解有胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将用乙酸钠缓冲的PEG 3500聚合物溶液与各种浓度的不同MgCl2溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样加入到聚合物/阳离子溶液中,使胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、16.7%或20%(w/v)、阳离子范围15mM至10mM(10mM、12.5mM、15mM,或12.5mM与单一的20%PEG制剂)和67mM。各种混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比是分别为70∶1、80∶1、106∶1或80∶1。将反应混合物在65℃温育10分钟,在此期间70∶1和80∶1比例的反应保持透明。106∶1比例的反应轻微模糊,80∶1比例的反应模糊。将混合物以0.5℃/分钟的速度冷却到0℃,在此期间形成的siRNA微球将混合物转变成乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
得到的微球是固体、球形的,粒径是单分散的,并混有一些非球形的微粒,正如通过光学显微镜和扫描电子显微镜所观察的。
实施例14:钙阳离子在微球制剂中的使用
将图17中描述的含有溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将每种用乙酸钠缓冲的含有PEG 3350或PEG 3350与PVP的组合的聚合物溶液,与不同浓度的CaCl2溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液混合。产生CPS类反应的条件是,其中胆固醇修饰的siRNA的浓度为0.142mM,聚合物为16.7%或20%PEG(w/v)或PEG和PVP各8.3%的组合,阳离子为10mM或7.5mM或25mM,缓冲液为67mM。反应混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比分别是70∶1或50∶1或176∶1。所有三种反应在65℃温育的大约5分钟期间,保持透明,正如在各50μl体积中目测确定的。然后将每种混合物冷却到0℃,在冷却过程中,通过受控的相分离类的反应明显形成了微球。
实施例15:具有提供受控相分离的镁和较少聚集的其它微球制剂
根据上面获得的结果,进行了小规模的筛选实验,以便降低MgCl2制剂的聚合物含量,确定能产生CPS类反应的条件,并提供能够用于Aerosizer分析、具有较少聚集的微球。
将含有图17中描述的溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将用乙酸钠缓冲的PEG 3350聚合物溶液,与含有不同量的MgCl2的两种溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,使胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、12.5%(w/v)、20mM或25mM、以及67mM。反应混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比分别是141∶1或176∶1。将反应混合物在65℃温育10分钟,在此期间,混合物保持透明。然后将混合物冷却到0℃,在此期间,形成的胆固醇修饰的siRNA的微球,通过受控的相分离类的反应,将混合物转变成乳白色。
实施例16:用于微球表征的放大制剂
上面描述的结果引出了一组放大实验,以筛选将产生CPS类的反应的制剂,用于生产可以进行表征的微球。
将图17中描述的溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将都用乙酸钠缓冲的含有PEG 3350或PEG 3350与PVP的组合的聚合物溶液,与不同浓度的MgCl2或CaCl2阳离子溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,分别提供了胆固醇修饰的siRNA的终浓度为0.142mM,PEG的终浓度为12.5%(w/v)、MgCl2的终浓度为20mM或25mM,以及缓冲液的终浓度为67mM。这些反应混合物中Mg++阳离子与胆固醇修饰的siRNA的摩尔比分别是141∶1或176∶1。对于PEG与CaCl2的反应来说,终浓度为0.142mM siRNA、16.7%或20%(w/v)PEG、10mM或7.5mM CaCl2、以及67mM缓冲液,反应混合物中多价阳离子与胆固醇修饰的siRNA的最终摩尔比分别是70∶1或53∶1。对于PEG/PVP与CaCl2的反应来说,终浓度为0.142mM siRNA、PEG和PVP各8.3%(w/v)、25mM CaCl2、以及67mM缓冲液。该反应混合物中多价阳离子与胆固醇修饰的siRNA之间的摩尔比是176∶1。将每种反应混合物在65℃温育5分钟,在此期间,与PEG和MgCl2的混合物保持透明,与CaCl2的混合物变得轻微模糊。在温育5分钟后,将所有混合物以0.75℃/分钟的速度冷却到0℃,在此期间,形成的微球将透明的或轻微模糊的混合物转变成乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水的二元溶液洗涤3次,重新悬浮在二元溶液中,并冷冻干燥成干粉。
从12.5%PEG-25mM MgCl2、16.7%PEG/10mM CaCl2和20%PEG/7.5mM CaCl2的反应得到的微球是固体、球形的,粒径是单分散的,8.3%PEG/PVP-25mM CaCl2微球是固体和球形的,具有稍微宽一些的尺寸分布,12.5%PEG/20mM MgCl2反应产生了较小和轻微聚集的微球。通过光学显微镜和扫描电子显微镜观察了所有获得的微球。
实施例17:在设定的聚合物浓度下使用增加的镁阳离子的微球制
根据上述的结果,设计了实验来研究增加的MgCl2阳离子含量对12.5%PEG制剂的影响。
将图17中描述的含有溶解的胆固醇修饰的siRNA的水性溶液加热到37℃。将用乙酸钠缓冲的含有PEG 3350的聚合物溶液,与含有22.5mM到32.5mM范围内的MgCl2溶液的溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,终浓度为0.142mM siRNA,12.5%(w/v)聚合物,22.5mM、25mM、27.5mM、30mM或32.5mM MgCl2,以及67mM缓冲液。反应混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比分别是158∶1、176∶1、193∶1、211∶1和229∶1。将反应混合物在65℃温育10分钟,混合物保持透明。然后将混合物以0.75℃/分钟的速度冷却到0℃,在此期间,微球将混合物转变成乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
从每种反应得到的微球是固体、球形的,颗粒是单分散的,正如通过光学显微镜和扫描电子显微镜所观察到的,只有含有22.5mMMgCl2的反应例外,它由于某些未知的原因,不能产生许多微球。
实施例18:用于生物学表征的制剂的选择
上面的结果引出了包含各种MgCl2和CaCl2制剂的重复实验,以选择一种用于生物学表征研究的阳离子浓度。
将图17中描述的含有溶解的胆固醇修饰的siRNA的水性溶液加热到37℃。将用乙酸钠缓冲的PEG 3500溶液,与含有特定浓度的CaCl2或MgCl2的溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,对于PEG与MgCl2的反应来说,终浓度为0.142mM siRNA,12.5%(w/v)聚合物,25mM或32.5mM MgCl2,以及67mM缓冲液,混合物中多价阳离子与胆固醇修饰的siRNA的最终摩尔比分别是176∶1或229∶1。对于PEG与CaCl2的反应来说,终浓度为0.142mM siRNA,16.7%或12.5%(w/v)聚合物,9mM CaCl2,以及67mM缓冲液。这些反应混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比是63∶1。将每种反应混合物在65℃温育10分钟,混合物保持透明。然后将混合物以0.8℃/分钟的速度冷却到-5℃,在此期间微球形成,将混合物转变成乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
得到的微球是固体、球形的,粒径是单分散的,正如通过光学显微镜和扫描电子显微镜所观察到的。Aerosizer分析显示,本实验中基于CaCl2的制剂与MgCl2制剂相比,被证明发生更多的聚集。
实施例19:用于生物学表征的微球的生产
上述的结果提供了用于生物学表征研究的微球的产生方法。
将图17中描述的含有溶解的胆固醇修饰的eGFP siRNA的水性溶液加热到37℃。将用乙酸钠缓冲的PEG 3500聚合物溶液与MgCl2溶液混合,并加热到65℃。在65℃下,将siRNA溶液的等份试样与聚合物/阳离子溶液的等份试样混合,胆固醇修饰的siRNA、聚合物、阳离子和缓冲液的终浓度分别为0.142mM、12.5%(w/v)、25mM和67mM。反应混合物中多价阳离子与胆固醇修饰的siRNA的摩尔比是176∶1。将反应混合物在65℃温育10分钟,混合物保持透明。温育后,将混合物以0.8℃/分钟的速度冷却到-5℃,在此期间微球形成,将混合物转变成乳白色。通过离心收集微球,用50%2-甲基-2-丙醇和50%水(w/v)的二元溶液洗涤3次,重新悬浮在二元溶液中,冷冻,并冷冻干燥成干粉。
得到的微球是固体、球形的,粒径是单分散的,正如通过光学显微镜和扫描电子显微镜所观察到的。Aerosizer分析也显示出适合于投送到肺的单分散的粒径。
实施例20:胆固醇修饰的siRNA的体内投送
将如图X所示的含有胆固醇修饰的eGFP siRNA的微球,用在修饰过的在人类泛素C(UBC)启动子的转录控制之下表达GFP的转基因小鼠中,以确定微球敲落GFP蛋白表达的效能。表达UBC-GFP的转基因小鼠描述在Palliser等,Nature(2006)439:89-94和Swenson等,Stem Cells(2007)25:2593-2600中。
在第一个实验中,将2nmol按照上面实施例19中所述制备的胆固醇修饰的eGFP siRNA微粒,阴道内给药小鼠,在72小时后,评估阴道粘膜中的GFP表达。2nmol的剂量相当于大约1mg/kg的剂量。阴性对照是微球悬浮缓冲液,阳性对照是eGFP siRNA和寡核苷酸转染胺(Oligofectamine)(Invitrogen)。GFP的表达使用本技术领域已知的技术检测和定量。
结果显示,与阴性对照相比,使用阳性对照时GFP表达被基本上消除了(图18)。值得注意的是,本实验中的阳性对照不是胆固醇修饰的siRNA。结果还显示,在给药胆固醇修饰的eGFP siRNA微球后,与阴性对照相比,GFP表达显著降低了,由此证明了概念验证。
在相关的实验中,使用按照上面实施例19中的描述制备的胆固醇修饰的siRNA微球,在肌动蛋白-GFP转基因小鼠(Guo等,TransgenicResearch(2007)16:829-834)中敲落GFP的表达,显示出是剂量依赖性的。简单来说,对小鼠阴道内给药0、0.5、1、2和4nmol siRNA微球,并在阴道粘膜中评估GFP蛋白的表达。随着胆固醇修饰的GFP siRNA的量的增加,观察到了对GFP表达敲落的增加,在最高量siRNA下发现的敲落程度,与使用同等量的没有在微球制剂中的胆固醇修饰的GFPsiRNA时发现的,基本上相同(图19A-F)。
在另一个相关实验中,对UBC-EGFP转基因小鼠阴道内给药2nmol胆固醇修饰的EGFP siRNA微球,并在14天的时期内,在第1、3、5、7和14天时评估阴道粘膜中GFP表达的敲落。
结果显示,正如在前面的实验中观察到的,EGFP表达的敲落可以持续超过72小时的一段时间。事实上,在单次给药后大约5到7天,观察到了敲落。
实施例20:胆固醇修饰的siRNA的体内投送
在上述实施例中生产的微粒的核酸载量分析中,通过测量260nm处的吸光度,发现了当使用CaCl2形成时,反义DNA寡核苷酸占微粒的大约65%到大约75%,当使用MgCl2形成时,未修饰的siRNA占微粒的大约70%到大约95%,当使用MgCl2形成时,胆固醇修饰的siRNA占微粒的大约55%到大约90%。

Claims (78)

1.含有多个核酸微粒的组合物,该核酸微粒含有一种或多种核酸和一种或多种非聚合性阳离子,其中微粒是基本上球形的,在环境温度下溶于水,并具有0.5微米到5微米的平均粒径,其中微粒不含聚合性聚阳离子。
2.权利要求1的组合物,其中不含非核酸基质和非核酸核心。
3.权利要求1的组合物,其中不含非核酸基质、非核酸核心和非核酸外壳。
4.权利要求1的组合物,所述微粒含有大约4重量%到大约10重量%之间的非聚合性阳离子。
5.权利要求4的组合物,其中无机阳离子选自Ca2+、Zn2+、Mn2+、Na+、Ba2+、K+、Mg2+、Mn2+、Co2+、Cu2+、Fe2+、Fe3+、Al3+和Li+
6.权利要求1的组合物,其中所述核酸是反义寡核苷酸。
7.权利要求1的组合物,其中所述核酸是siRNA。
8.权利要求1的组合物,其中所述微粒在所述组合物中是单分散的。
9.含有多个核酸微粒的组合物,该核酸微粒含有一种或多种核酸和一种或多种非聚合性阳离子,其中微粒是基本上球形的,固体的,在环境温度下溶于水,并具有0.5微米到5微米的平均粒径,其中所述微粒含有少于10重量%的一种或多种非聚合性阳离子,以及大于50重量%的一种或多种核酸。
10.权利要求9的组合物,其中所述微粒含有少于6重量%的一种或多种非聚合性阳离子,以及大于60重量%的一种或多种核酸。
11.制造核酸微粒的方法,包括:
a)将反义硫代磷酸酯化的核酸溶液,与浓度为0.1M到5M的选自CaCl2、NaCl、MgCl2、MnCl2、ZnCl2、LiCl的聚合性阳离子溶液混合;
b)将步骤(a)的混合物温育足够长的时间,以允许从所述混合物形成透明的溶液;
c)将步骤(b)的溶液冷却到大约1到大约10℃的温度,直到含有核酸和非聚合性阳离子的基本上球形的微粒群形成。
12.权利要求11的方法,还包括向步骤(a)或步骤(b)的混合物中加入含有1∶1比的12.5%聚乙二醇∶PVP的聚合物溶液的步骤。
13.权利要求11的方法,其中步骤(b)中的所述温育温度是从大约25℃到大约90℃。
14.权利要求11的方法,其中步骤(b)中的所述温育时间是从大约1分钟到大约1小时。
15.权利要求11的方法,还包括(e)分离步骤(d)的微粒。
16.权利要求15的方法,其中所述微粒使用离心通过沉降来分离。
17.权利要求16的方法,还包括(f)将所述分离的微粒重新悬浮在水性聚合物溶液中,然后使用离心进行微粒的沉降。
18.权利要求17的方法,还包括(e)沉降和(f)重新悬浮的一个或多个步骤。
19.权利要求17或权利要求18的方法,包括重新悬浮所述被沉降的微粒,并将所述重新悬浮的微粒冷冻干燥,以产生冻干的微粒。
20.权利要求11的方法,其中所述方法产生了含有基本上球形的微粒的微球群。
21.权利要求11的方法,其中所述方法产生了在环境温度下基本上溶于水的微球群。
22.权利要求11的方法,其中所述方法产生了平均粒径在大约0.5微米到大约3微米之间的微粒群。
23.权利要求11的方法,其中所述方法产生了含有至少55重量%的核酸的微粒。
24.权利要求11的方法,其中所述方法产生了含有大约55重量%到大约85重量%之间的核酸的微粒。
25.权利要求11的方法,其中所述方法产生了含有大约55重量%到大约90重量%之间的核酸的微粒。
26.权利要求11的方法,其中所述方法产生了含有大约55重量%到大约95重量%之间的核酸的微粒。
27.权利要求11的方法,其中所述微粒含有大约4重量%到大约10重量%之间的非聚合性阳离子。
28.权利要求11的方法,其中用于形成微粒的溶液的pH范围在大约3到大约10之间。
29.权利要求11的方法,其中所述非聚合性阳离子溶液是CaCl2溶液。
30.权利要求11的方法,其中所述非聚合性阳离子溶液是ZnCl2溶液。
31.权利要求11的方法,其中所述非聚合性阳离子溶液是MgCl2溶液。
32.权利要求11的方法,其中所述非聚合性阳离子溶液是NaCl溶液。
33.权利要求29的方法,其中所述CaCl2以1.25M的浓度提供,温育温度是75℃,产生的微粒具有1-2微米之间的尺寸。
34.权利要求29的方法,其中所述CaCl2以1M的浓度提供,温育温度是75℃,产生的微粒具有1.3-2.3微米之间的尺寸。
35.权利要求29的方法,其中温育温度是70℃。
36.权利要求35的方法,其中当CaCl2浓度是大约0.67M时,形成的微粒具有大约2到2.6微米之间的尺寸。
37.权利要求35的方法,其中当CaCl2浓度在大约0.15M到0.75M之间时,形成的微粒具有大约2到2.6微米之间的尺寸。
38.按照权利要求11的方法制备的微粒组合物。
39.含有权利要求1的组合物或权利要求38的组合物的气溶胶组合物。
40.对需要的对象进行治疗的方法,包括给所述对象施用权利要求36的气溶胶组合物。
41.含有一种或多种核酸和一种或多种非聚合性阳离子的核酸微粒,其中微粒不含聚阳离子性的聚阳离子,不含非核酸的基质、核心或外壳。
42.制造核酸微粒的方法,包括
形成含有一种或多种核酸、一种或多种非聚合性阳离子、以及一种或多种非离子聚合物的溶液或分散体系;以及
将溶液或分散体系冷却以形成多个基本上球形的核酸微粒,其中微粒不含聚合性聚阳离子,不含非核酸的基质、核心或外壳。
43.权利要求42的方法,其中一种或多种核酸被修饰以包含疏水部分。
44.权利要求43的方法,其中疏水部分是胆固醇。
45.权利要求42的方法,其中一种或多种非聚合性阳离子与一种或多种核酸的摩尔比是50,000∶1或以下。
46.权利要求42的方法,其中冷却步骤以0.5℃/min的速度进行。
47.权利要求42的方法,其中冷却步骤以0.75℃/min的速度进行。
48.权利要求42的方法,其中冷却步骤以0.8℃/min的速度进行。
49.权利要求42的方法,其中冷却步骤结束在大约4℃。
50.权利要求42的方法,其中冷却步骤结束在大约0℃。
51.权利要求42的方法,其中冷却步骤结束在大约-5℃。
52.制造核酸微粒的方法,包括
将胆固醇修饰的核酸、水溶性聚合物和多价阳离子的混合物进行温育,以及
以足以形成微粒的速度将混合物冷却一段时间。
53.权利要求52的方法,其中冷却步骤以0.5℃/min的速度进行。
54.权利要求52的方法,其中冷却步骤以0.75℃/min的速度进行。
55.权利要求52的方法,其中冷却步骤以0.8℃/min的速度进行。
56.权利要求52的方法,其中冷却步骤结束在大约4℃。
57.权利要求52的方法,其中冷却步骤结束在大约0℃。
58.权利要求52的方法,其中冷却步骤结束在大约-5℃。
59.权利要求52的方法,其中核酸是抑制性RNA分子。
60.权利要求59的方法,其中核酸是siRNA。
61.权利要求52的方法,其中多价阳离子如权利要求3中的陈述。
62.权利要求52的方法,其中多价阳离子是Mg++或Ca++
63.权利要求52的方法,其中水溶性聚合物是聚乙二醇。
64.权利要求52的方法,其中水溶性聚合物是聚乙二醇(PEG)与聚乙烯吡咯烷酮(PVP)的混合物。
65.权利要求52的方法,其中混合物在室温温育。
66.权利要求52的方法,其中混合物在37℃温育。
67.权利要求52的方法,其中混合物在65℃温育。
68.权利要求52的方法,其中温育步骤执行大约5分钟到大约10分钟。
69.权利要求52的方法,其中水溶性聚合物在混合物中以大约12.5%(w/v)到大约25%(w/v)存在。
70.权利要求69的方法,其中水溶性聚合物在混合物中以大约12.5%(w/v)存在。
71.权利要求69的方法,其中水溶性聚合物在混合物中以大约16.7%(w/v)存在。
72.权利要求69的方法,其中水溶性聚合物在混合物中以大约20%(w/v)存在。
73.权利要求52的方法,其中多价阳离子在混合物中以大约7.5mM到大于1M存在。
74.权利要求73的方法,其中多价阳离子在混合物中以大约10mM到大约20mM、到大约25mM、或到大约35mM存在。
75.权利要求73的方法,其中多价阳离子在混合物中以大约25mM存在。
76.通过权利要求42到75任一项的方法生产的微粒。
77.将微粒投送到靶粘膜的方法,包括以有效穿透并作用于所述靶粘膜上或中的量,将靶粘膜与权利要求76的微粒相接触的步骤。
78.权利要求77的方法,其中靶粘膜选自颊粘膜、食管粘膜、胃粘膜、肠粘膜、嗅粘膜、口腔粘膜、支气管粘膜、子宫粘膜和子宫内膜。
CN2008800206543A 2007-04-17 2008-04-17 用于肺部投送的核酸微粒 Expired - Fee Related CN101686939B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US91232007P 2007-04-17 2007-04-17
US60/912,320 2007-04-17
US93812307P 2007-05-15 2007-05-15
US60/938,123 2007-05-15
PCT/US2008/060669 WO2008131129A2 (en) 2007-04-17 2008-04-17 Nucleic acid microparticles for pulmonary delivery

Publications (2)

Publication Number Publication Date
CN101686939A true CN101686939A (zh) 2010-03-31
CN101686939B CN101686939B (zh) 2013-03-27

Family

ID=39542113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800206543A Expired - Fee Related CN101686939B (zh) 2007-04-17 2008-04-17 用于肺部投送的核酸微粒

Country Status (8)

Country Link
US (1) US8808747B2 (zh)
EP (1) EP2146691A2 (zh)
JP (1) JP5744513B2 (zh)
CN (1) CN101686939B (zh)
AU (1) AU2008242842B2 (zh)
CA (1) CA2682135A1 (zh)
MX (1) MX2009011218A (zh)
WO (1) WO2008131129A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363659A (zh) * 2023-12-05 2024-01-09 中山大学 一种中华乌塘鳢生殖细胞异种移植及其嵌合体精准鉴定的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060014973A1 (en) * 2004-07-19 2006-01-19 Wyeth Processes for the preparation of 16beta-alkoxy, 17alpha-hydroxy steroids and steroidal 16beta, 17alpha-diols from 16alpha, 17alpha-epoxy steroids
CA2723672C (en) 2007-05-11 2019-09-03 Adynxx, Inc. Gene expression and pain
US20100047292A1 (en) * 2008-08-20 2010-02-25 Baxter International Inc. Methods of processing microparticles and compositions produced thereby
US8367427B2 (en) * 2008-08-20 2013-02-05 Baxter International Inc. Methods of processing compositions containing microparticles
US8323615B2 (en) * 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing multi-phasic dispersions
US8323685B2 (en) * 2008-08-20 2012-12-04 Baxter International Inc. Methods of processing compositions containing microparticles
CA2817218C (en) * 2010-11-10 2020-02-18 Nigel L. Webb Nuclions and ribocapsids
WO2012074885A1 (en) * 2010-11-24 2012-06-07 Hologic, Inc. System for improved tissue handling and in line analysis of the tissue
RU2668136C2 (ru) 2012-05-10 2018-09-26 Эйдинкс, Инк. Композиции для доставки активных ингредиентов
RU2015137815A (ru) 2013-02-05 2017-03-13 1ГЛОУБ ХЕЛТ ИНСТИТЬЮТ ЭлЭлСи Биодеградируемые и клинически совместимые наночастицы в качестве носителей для доставки лекарственного средства
WO2015125147A1 (en) 2014-02-20 2015-08-27 B. G. Negev Technologies And Applications Ltd Anionic polyplexes for use in the delivery of nucleic acids
JP6705807B2 (ja) 2014-08-15 2020-06-03 エーダイニクス インコーポレイテッド 疼痛を治療するためのオリゴヌクレオチドデコイ
US20210316008A1 (en) * 2018-08-14 2021-10-14 Ethris Gmbh Lipid-based formulations containing salts for the delivery of rna
CN116940351A (zh) * 2021-01-15 2023-10-24 阿奎斯蒂弗医疗股份有限公司 前药组合物和治疗方法

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4289872A (en) 1979-04-06 1981-09-15 Allied Corporation Macromolecular highly branched homogeneous compound based on lysine units
JPS6023084B2 (ja) 1979-07-11 1985-06-05 味の素株式会社 代用血液
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4584894A (en) 1984-02-29 1986-04-29 Borg-Warner Corporation Transmission anti-clash and anti-rattle brake
US5417986A (en) 1984-03-16 1995-05-23 The United States Of America As Represented By The Secretary Of The Army Vaccines against diseases caused by enteropathogenic organisms using antigens encapsulated within biodegradable-biocompatible microspheres
DE3675588D1 (de) 1985-06-19 1990-12-20 Ajinomoto Kk Haemoglobin, das an ein poly(alkenylenoxid) gebunden ist.
US5102872A (en) 1985-09-20 1992-04-07 Cetus Corporation Controlled-release formulations of interleukin-2
GB8601100D0 (en) 1986-01-17 1986-02-19 Cosmas Damian Ltd Drug delivery system
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
WO1988001165A1 (en) 1986-08-11 1988-02-25 Innovata Biomed Limited Pharmaceutical formulations comprising microcapsules
US5075109A (en) 1986-10-24 1991-12-24 Southern Research Institute Method of potentiating an immune response
US5229490A (en) 1987-05-06 1993-07-20 The Rockefeller University Multiple antigen peptide system
US4897268A (en) 1987-08-03 1990-01-30 Southern Research Institute Drug delivery system and method of making the same
US4853462A (en) 1988-03-21 1989-08-01 Arco Chemical Technology, Inc. Preparation of discrete particles of polyalkylene carbonate
US5422120A (en) 1988-05-30 1995-06-06 Depotech Corporation Heterovesicular liposomes
US4996689A (en) 1989-02-01 1991-02-26 Vlsi Technology, Inc. Method of generating tests for a combinational logic circuit
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
WO1991017772A1 (en) 1990-05-16 1991-11-28 Southern Research Institute Controlled release dopamine and its use to stimulate nerve fiber growth
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
GB9016885D0 (en) 1990-08-01 1990-09-12 Scras Sustained release pharmaceutical compositions
US5149543A (en) 1990-10-05 1992-09-22 Massachusetts Institute Of Technology Ionically cross-linked polymeric microcapsules
DE552178T1 (de) 1990-10-12 1994-02-03 Max Planck Gesellschaft Abgeänderte ribozyme.
WO1992014449A1 (en) 1991-02-20 1992-09-03 Nova Pharmaceutical Corporation Controlled release microparticulate delivery system for proteins
DE4216134A1 (de) 1991-06-20 1992-12-24 Europ Lab Molekularbiolog Synthetische katalytische oligonukleotidstrukturen
US5525519A (en) 1992-01-07 1996-06-11 Middlesex Sciences, Inc. Method for isolating biomolecules from a biological sample with linear polymers
DE4211169C1 (zh) 1992-03-31 1993-06-03 Klaus Kretzschmar
WO1994012158A1 (en) 1992-12-02 1994-06-09 Alkermes Controlled Therapeutics, Inc. Controlled release growth hormone containing microspheres
US6090925A (en) 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US5981719A (en) 1993-03-09 1999-11-09 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
DK0809110T3 (da) 1993-03-09 2004-05-24 Baxter Int Makromolekylære mikropartikler og fremgangsmåder til fremstilling
US5994314A (en) 1993-04-07 1999-11-30 Inhale Therapeutic Systems, Inc. Compositions and methods for nucleic acid delivery to the lung
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
US6387399B1 (en) 1994-12-02 2002-05-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microencapsulated bioactive agents and method of making
US5716824A (en) 1995-04-20 1998-02-10 Ribozyme Pharmaceuticals, Inc. 2'-O-alkylthioalkyl and 2-C-alkylthioalkyl-containing enzymatic nucleic acids (ribozymes)
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US5665428A (en) 1995-10-25 1997-09-09 Macromed, Inc. Preparation of peptide containing biodegradable microspheres by melt process
US5958769A (en) * 1996-01-18 1999-09-28 Fred Hutchinson Cancer Research Center Compositions and methods for mediating cell cycle progression
GB9607035D0 (en) 1996-04-03 1996-06-05 Andaris Ltd Spray-dried microparticles as therapeutic vehicles
GB9610992D0 (en) 1996-05-24 1996-07-31 Glaxo Group Ltd Concentrated antibody preparation
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US20050119470A1 (en) 1996-06-06 2005-06-02 Muthiah Manoharan Conjugated oligomeric compounds and their use in gene modulation
US5898221A (en) 1996-09-27 1999-04-27 Sanyo Electric Company, Ltd. Semiconductor device having upper and lower wiring layers
US6319906B1 (en) 1996-12-31 2001-11-20 Isis Pharmaceuticals Oligonucleotide compositions and methods for the modulation of the expression of B7 protein
US6077833A (en) 1996-12-31 2000-06-20 Isis Pharmaceuticals, Inc. Oligonucleotide compositions and methods for the modulation of the expression of B7 protein
US6001311A (en) 1997-02-05 1999-12-14 Protogene Laboratories, Inc. Apparatus for diverse chemical synthesis using two-dimensional array
ES2205481T3 (es) 1997-04-17 2004-05-01 Amgen Inc. Microparticulas biodegradables para la liberacion sostenida de farmacos terapeuticos.
US6042792A (en) 1997-09-18 2000-03-28 International Flavors & Fragrances Inc. Apparatus for preparing a solid phase microparticulate composition
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
AUPP249298A0 (en) 1998-03-20 1998-04-23 Ag-Gene Australia Limited Synthetic genes and genetic constructs comprising same I
US20040186071A1 (en) 1998-04-13 2004-09-23 Bennett C. Frank Antisense modulation of CD40 expression
US6197584B1 (en) 1998-05-01 2001-03-06 Isis Pharmaceuticals, Inc. Antisense modulation of CD40 expression
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
EP1471034A3 (en) * 1999-02-03 2005-03-02 Biosante Pharmaceuticals, Inc. Therapeutic calcium phosphate particles and methods of manufacture and use
US6630169B1 (en) 1999-03-31 2003-10-07 Nektar Therapeutics Particulate delivery systems and methods of use
ATE244558T1 (de) 1999-04-16 2003-07-15 Novo Nordisk As Trockene formbare arzneistoffformulierung
JP2002542819A (ja) 1999-05-04 2002-12-17 ゲネトール ゲゼルシャフト ミット ベシュレンクテル ハフツング 特異的免疫反応の低減方法
WO2001001964A2 (en) 1999-06-23 2001-01-11 Sedum Laboratories, Inc. Ionically formulated biomolecule microcarriers
US6458387B1 (en) * 1999-10-18 2002-10-01 Epic Therapeutics, Inc. Sustained release microspheres
FR2803206A1 (fr) * 1999-12-30 2001-07-06 Aventis Pharma Sa Composition comprenant des acides nucleiques, preparation et utilisation
CA2395742A1 (fr) * 1999-12-30 2001-07-12 Aventis Pharma S.A. Compositions comprenant des acides nucleiques incorpores dans des particules minerales bilamellaires
US20080039414A1 (en) 2002-02-20 2008-02-14 Sima Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
JP2003523544A (ja) * 2000-02-17 2003-08-05 レックスマーク・インターナショナル・インコーポレーテツド 導電性駆動ハブを備えたトナーカートリッジ
FR2809309B1 (fr) 2000-05-23 2004-06-11 Mainelab Microspheres a liberation prolongee pour administration injectable
KR100831118B1 (ko) 2000-05-26 2008-05-20 심포젠 에이/에스 알레르기를 치료하기 위한 재조합 폴리클로날 항체 또는정제된 폴리클로날 항체
US6849259B2 (en) 2000-06-16 2005-02-01 Symphogen A/S Polyclonal antibody composition for treating allergy
AU1344102A (en) 2000-10-12 2002-04-22 Genentech Inc Reduced-viscosity concentrated protein formulations
SE518007C2 (sv) 2000-11-16 2002-08-13 Bioglan Ab Förfarande för framställning av mikropartiklar
DE60130583T3 (de) 2000-12-01 2018-03-22 Europäisches Laboratorium für Molekularbiologie Kleine rns moleküle, die rns-interferenz vermitteln
KR100923514B1 (ko) 2000-12-28 2009-10-27 알투스 파마슈티컬스 인코포레이티드 전항체 및 이의 단편의 결정과 이의 제조 및 사용 방법
EP1801123A3 (en) 2000-12-28 2007-11-21 Altus Pharmaceuticals Inc. Crystals of whole antibodies and fragments thereof and methods for making and using them
WO2002072762A2 (en) 2001-03-08 2002-09-19 Advanced Cell Technology, Inc. Use of rna interference for the creation of lineage specific es and other undifferentiated cells and production of differentiated cells in vitro by co-culture
GB0113179D0 (en) 2001-05-31 2001-07-25 Novartis Ag Organic compounds
CA2451185A1 (en) 2001-06-21 2003-01-03 Altus Biologics, Inc. Spherical protein particles and methods of making and using them
US20080026068A1 (en) 2001-08-16 2008-01-31 Baxter Healthcare S.A. Pulmonary delivery of spherical insulin microparticles
CA2849556A1 (en) 2002-04-11 2003-10-23 Vu Truong-Le Preservation of bioactive materials by freeze dried foam
US6900998B2 (en) 2002-05-31 2005-05-31 Midwest Research Institute Variable-speed wind power system with improved energy capture via multilevel conversion
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
CA2490423A1 (en) 2002-06-21 2003-12-31 Biogen Idec Inc. Buffered formulations for concentrating antibodies and methods of use thereof
CA2884658A1 (en) 2002-07-26 2004-02-05 Novartis Vaccines And Diagnostics, Inc. Modified small interfering rna molecules and methods of use
AU2003297320B8 (en) 2002-12-17 2008-02-21 Medimmune, Llc High pressure spray-dry of bioactive materials
US20060002862A1 (en) 2002-12-17 2006-01-05 Medimmune Vaccines, Inc. High pressure spray-dry of bioactive materials
JP2006514954A (ja) 2002-12-31 2006-05-18 ネクター セラピューティクス 抗体含有粒子及び組成物
EP2216407B1 (en) 2003-03-07 2016-01-13 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
US20040198640A1 (en) 2003-04-02 2004-10-07 Dharmacon, Inc. Stabilized polynucleotides for use in RNA interference
PT2335725T (pt) 2003-04-04 2017-01-06 Novartis Ag Formulações de elevada concentração de anticorpos e proteínas
US20050158303A1 (en) 2003-04-04 2005-07-21 Genentech, Inc. Methods of treating IgE-mediated disorders comprising the administration of high concentration anti-IgE antibody formulations
ES2216707B1 (es) 2003-04-08 2005-12-16 Josep Maria Aran Perramon Secuencia oligoribonucleotidica homologa a una region del cdna que codifica para el receptor cd40 humano y oligoribonucleotidos duplex, vectores, composiciones farmaceuticas y usos correspondientes.
WO2004094595A2 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals Inc. MODIFIED iRNA AGENTS
EP1635763B1 (en) 2003-06-09 2012-08-08 Alnylam Pharmaceuticals Inc. Method of treating neurodegenerative disease
US7595306B2 (en) 2003-06-09 2009-09-29 Alnylam Pharmaceuticals Inc Method of treating neurodegenerative disease
GB2417727B (en) 2003-06-13 2008-01-16 Alnylam Europe Ag Double-stranded ribonucleic acid with increased effectiveness in an organism
PT1639011E (pt) 2003-06-30 2009-01-20 Domantis Ltd Anticorpos (dab) de domínio único peguilados
SG135204A1 (en) * 2003-07-18 2007-09-28 Baxter Int Methods for fabrication, uses and compositions of small spherical particles prepared by controlled phase separation
DE10355904A1 (de) 2003-11-29 2005-06-30 Merck Patent Gmbh Feste Formen von anti-EGFR-Antikörpern
WO2005072527A2 (en) 2004-01-23 2005-08-11 Avi Biopharma, Inc. Antisense oligomers and methods for inducing immune tolerance and immunosuppression
JP2007522157A (ja) 2004-02-12 2007-08-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 抗egfr抗体の高濃縮液体製剤
KR101147147B1 (ko) 2004-04-01 2012-05-25 머크 샤프 앤드 돔 코포레이션 Rna 간섭의 오프 타겟 효과 감소를 위한 변형된폴리뉴클레오타이드
WO2006078278A2 (en) 2004-04-27 2006-07-27 Alnylam Pharmaceuticals, Inc. Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety
CA2562151C (en) 2004-04-30 2016-09-06 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a c5-modified pyrimidine
US7815941B2 (en) * 2004-05-12 2010-10-19 Baxter Healthcare S.A. Nucleic acid microspheres, production and delivery thereof
US20060000882A1 (en) 2004-07-01 2006-01-05 Raymond Darzinskas Cup holder
JP4898101B2 (ja) * 2004-07-02 2012-03-14 株式会社リコー 印刷装置、印刷方法、印刷プログラム及び記録媒体
CA2574088C (en) 2004-07-21 2013-09-17 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising a modified or non-natural nucleobase
WO2006072527A1 (de) 2005-01-05 2006-07-13 Siemens Aktiengesellschaft Head-up-display für ein kraftfahrzeug
US20070026079A1 (en) 2005-02-14 2007-02-01 Louis Herlands Intranasal administration of modulators of hypothalamic ATP-sensitive potassium channels
JP4595112B2 (ja) 2005-02-14 2010-12-08 独立行政法人産業技術総合研究所 タンパク質の高効率分離または濃縮方法
US20060234973A1 (en) 2005-04-14 2006-10-19 Kevin Fitzgerald Transcription factor RNA interference reagents and methods of use thereof
EP1871803B1 (en) 2005-04-18 2013-02-20 Yeda Research And Development Company Limited Stabilized anti-hepatitis b (hbv) antibody formulations
KR100694804B1 (ko) 2005-05-18 2007-03-14 아주대학교산학협력단 작은 헤어핀 rna 분자를 포함하는 자궁 내막암 치료또는 예방용 조성물 및 그를 이용한 자궁 내막암 치료 또는예방 방법
JPWO2006126600A1 (ja) 2005-05-25 2008-12-25 国立大学法人名古屋大学 血管閉塞性疾患用医薬組成物
US8802640B2 (en) 2005-06-01 2014-08-12 Polyplus-Transfection Sa Oligonucleotides for RNA interference and biological applications thereof
US20070082845A1 (en) 2005-07-15 2007-04-12 The Penn State Research Foundation Ferritin as a therapeutic target in abnormal cells
RU2303833C2 (ru) 2005-07-26 2007-07-27 Самсунг Электро-Меканикс Ко., Лтд. Осветительное устройство
US20070213292A1 (en) 2005-08-10 2007-09-13 The Rockefeller University Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof
CA2621055A1 (en) 2005-09-02 2007-03-15 Takeda Pharmaceutical Company Limited Sustained-release microsphere containing short chain deoxyribonucleic acid or short chain ribonucleic acid and method of producing the same
RU2419618C2 (ru) 2005-09-07 2011-05-27 Плекссикон, Инк. Соединения, активные в отношении ppar (рецепторов активаторов пролиферации пероксисом)
AU2006330858A1 (en) 2005-12-21 2007-07-05 Wyeth Protein formulations with reduced viscosity and uses thereof
US20070298445A1 (en) 2006-03-03 2007-12-27 Douglas Boyd Cancer Therapeutic
US20080039415A1 (en) 2006-08-11 2008-02-14 Gregory Robert Stewart Retrograde transport of sirna and therapeutic uses to treat neurologic disorders

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117363659A (zh) * 2023-12-05 2024-01-09 中山大学 一种中华乌塘鳢生殖细胞异种移植及其嵌合体精准鉴定的方法
CN117363659B (zh) * 2023-12-05 2024-03-29 中山大学 一种中华乌塘鳢生殖细胞异种移植及其嵌合体精准鉴定的方法

Also Published As

Publication number Publication date
EP2146691A2 (en) 2010-01-27
AU2008242842A1 (en) 2008-10-30
JP5744513B2 (ja) 2015-07-08
US8808747B2 (en) 2014-08-19
AU2008242842B2 (en) 2014-06-05
US20090017124A1 (en) 2009-01-15
JP2010524964A (ja) 2010-07-22
CA2682135A1 (en) 2008-10-30
MX2009011218A (es) 2010-02-11
WO2008131129A3 (en) 2009-05-14
WO2008131129A2 (en) 2008-10-30
CN101686939B (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN101686939B (zh) 用于肺部投送的核酸微粒
JP7256824B2 (ja) 粒子状製剤用の凍結保護剤
US7815941B2 (en) Nucleic acid microspheres, production and delivery thereof
US11220686B2 (en) Therapeutic alteration of transplantable tissues through in situ or ex vivo exposure to RNA interference molecules
US20130123330A1 (en) Dual Targeted siRNA Therapeutics for Treatment of Diabetic Retinopathy and Other Ocular Neovascularization Diseases
CN106074591A (zh) 眼部症候中的rna干扰
CN108366964A (zh) 制备含阴离子药物的聚合物胶束的方法
EP4297722A1 (en) Formulations for aerosol formation and aerosols for the delivery of nucleic acid
WO2023036345A1 (zh) 一种雾化吸入的载药纳米颗粒以及用于治疗肺纤维化的siRNA序列组及其设计方法
CN103232531A (zh) 一种癌细胞靶向性结构分子及其应用
Yao et al. Nucleic acid nanomaterials-based therapy for osteoarthritis: Progress and prospects
Ubale et al. Pulmonary administration of microparticulate antisense oligonucleotide (ASO) for the treatment of lung inflammation
EP4306133A1 (en) Composition for administration of double-stranded oligonucleotide structures using ultrasonic nebulizer for prevention or treatment of respiratory viral infection including covid-19, pulmonary fibrosis caused by viral infection, or respiratory diseases
US20170240901A1 (en) Nucleic acids, and uses therof
US20220031633A1 (en) Poly(amine-co-ester) polymeric particles for selective pulmonary delivery
CN101259289A (zh) 用于rna干扰的治疗用途的方法及组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130327

Termination date: 20190417