CN101583309B - 模块化多通道微电极阵列及其制造方法 - Google Patents

模块化多通道微电极阵列及其制造方法 Download PDF

Info

Publication number
CN101583309B
CN101583309B CN2006800454192A CN200680045419A CN101583309B CN 101583309 B CN101583309 B CN 101583309B CN 2006800454192 A CN2006800454192 A CN 2006800454192A CN 200680045419 A CN200680045419 A CN 200680045419A CN 101583309 B CN101583309 B CN 101583309B
Authority
CN
China
Prior art keywords
site
electrode
carrier
microelectrode
neuroprobe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800454192A
Other languages
English (en)
Other versions
CN101583309A (zh
Inventor
詹米勒·海特科
达里尔·基普克
大卫·泊利恩
大卫·安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NeuroNexus Technologies Inc
Original Assignee
NeuroNexus Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NeuroNexus Technologies Inc filed Critical NeuroNexus Technologies Inc
Publication of CN101583309A publication Critical patent/CN101583309A/zh
Application granted granted Critical
Publication of CN101583309B publication Critical patent/CN101583309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0476Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0534Electrodes for deep brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/043Arrangements of multiple sensors of the same type in a linear array
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49149Assembling terminal to base by metal fusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4921Contact or terminal manufacturing by assembling plural parts with bonding
    • Y10T29/49211Contact or terminal manufacturing by assembling plural parts with bonding of fused material

Abstract

本发明的一些实施方式包括具有连接到载体的模块化平面微加工电极阵列的可定制的多通道微电极阵列、以及布置在其上的高密度记录和/或刺激电极位点。还公开了制造和使用其的新方法。

Description

模块化多通道微电极阵列及其制造方法
相关申请的交叉引用 
本申请基于2005年10月7日递交的美国临时专利申请No.60/724,501要求优先权,该申请由此通过引用被全部并入。 
技术领域
本发明涉及用于神经介入的装置与方法的领域。 
背景技术
神经外科介入作为对多种难治性神经疾病的疗法而出现,其中包括运动失调、疼痛以及癫痫。以分离的解剖位点为靶的不同治疗模式目前正在使用中或在发展中,包括射频毁损、慢性电刺激、组织移植以及微透析。这些介入的策略是减小或增强这些位点的活性,以便产生治疗效果。在所有的情况下,准确的靶向对于以对患者最小的风险获得最佳的治疗是必不可少的。 
靶向通常通过建立神经接口的装置来实现。这样的装置对于临床和科学的目的是重要的。“神经接口”指在装置与神经系统的靶区域之间的接口,用于记录神经信号、刺激神经元、以及递送流性剂(fluidic agent)的目的或这些目的的组合。“神经接口区域”指从流性剂的递送记录、被流性剂的递送刺激或影响的神经系统的体积。一般而言,根据应用,神经接口区域可以从装置表面延伸小至1微米或更小到从所述表面延伸数厘米。“调整”神经接口区域指选择性地调节记录、刺激或流体递送区域以靶向特定的神经结构。 
仅作为一个实例,目前以为帕金森氏病布置脑深部刺激(‘DBS’)电极为目标的方法包括参考脑的高质量CT或MRI图像的、结构边界的神经生理学(功能)映射的使用。目前,映射涉及用单通道活动丝微电极来穿透所计算的靶结构,以识别神经结构边界。每个微电极都前进得非常慢,停下来检查个别细胞并记录放电频率和模式。当微电极到达靶脑结构时,由于特定神经元类型的放电的持续模式,出现了电活动的一般变化。 
除使用用于映射的电记录技术以外,宏刺激或微刺激(自同一个或第二个相邻的电极)也可用于评估电刺激对沿着轨迹且在潜在靶中的单元的效果。特别地,组合的微记录与微刺激技术可用于在生理上确定在脑深部中的靶和非靶区域的位置。由于与电极有关的限制,此映射过程通常是冗长、费时和困难的,这联合起来限制了它的利用和有效性,其中所述电极一般为单通道装置或一起使用的多个单通道装置。 
常规的单通道电极一般由小直径金属丝(例如,钨、不锈钢、铂)形成。这些电极最经常地通过将金属丝电解锐化或机械斜切为细尖端(<1微米)并接着使它绝缘而形成,只留下尖端暴露。可选地,微丝可以由预绝缘的细金属丝形成,细金属丝被切割以暴露金属丝末端的横截面区域。这些类型的金属丝装置可以通过将多个金属丝组合进一个组合件而转变为电极阵列。然而,此捆束的金属丝结构对建立选择性的神经接口产生了限制,因为电极位点(electrode site)的尺寸、数量和位置错综复杂地与装置的大小、形状、硬度和结构复杂性有关。这样的装置也难以制造到约为电极位点特征尺寸的等级的小公差,典型地在1-15微米的范围内。电极尺寸相对大的可变性和这些装置有限的电极阵列结构妨碍了将电极组连接到一起以选择性地调整神经接口的能力。 
作为捆束的金属丝的替代物,利用在半导体工业中使用的晶片级微加工方法的多通道电极阵列已经经历了几乎30年的发展(Wise等人,2004,Proc.IEEE,92:72-97),且已经用于神经生理学的研究。一般而言,这些技术类似于那些用于产生集成电路并利用类似的基底、导体和绝缘材料的技术。加工一般在晶片基底上开始,且使用许多通过蚀刻界定的光刻图案化薄膜层来增加电极特征。这些方法是有吸引力的,因为它们产生具有限  定到小于+/-1微米之内的特征的可再生产的批量处理装置。使用这些方法,单个电极位点可以被制造成大约与小金属丝微电极的尖端同样小,而微电极柄,即,支持电极位点并取代组织的部分可以承载多个记录位点以及可与单个金属丝电极相比的横截面面积和体积。 
一般而言,用于目前微加工装置的制造过程对装置的长度强加了大约小于1厘米的实际限制。这样的装置不适合于例如人脑深部映射电极,其必须从脑表面穿透至少70毫米以靶向基底神经节或丘脑。另外,这些映射电极需要多达200毫米的额外长度,以安装在立体定向框架中并连接到外部仪器。微加工装置的另一个限制是,一般用作基底的材料对于准确靶向特定的神经结构来说通常太脆(如硅)或太柔韧(如聚酰亚胺、聚对二甲苯)。 
具有用于神经接口连接的多位点装置的实例,该装置不使用晶片级微加工技术,但确实使用类似的处理步骤如薄膜金属沉积和随后的激光显微机械加工,以在中心核上界定电极迹线(trace)。虽然这些装置可以在尺寸类似于常规单通道金属丝的基底上提供高密度的位点,且它们可制造在可把人脑深部作为靶的基底,但缺少几个希望有的特点。首先,所述装置不是批量制造的。换句话说,每个装置必须被单独处理,以形成多个电极互连物(interconnect)和位点。另外,在许多情况下,每个互连物以及每个位点必须单独形成。第二,电极位点的阵列与互连物以通常使电特征(例如,位点、迹线以及连接触点)密切地根据基底的长度、形状和材料特性来形成的方式从结构基底建立。电极位点的形成和布置之间的结合以及基本结构部件限制了聚集小的位点以形成宏位点来符合接口范围的能力。 
存在用于临床脑深部映射的装置的实例,该装置设计成仅在手术期内使用。这些装置由在尺寸上适合于神经生理学映射的单个微电极位点构成。虽然这些电极实现了脑深部刺激电极的改进布置,但它们仅在尖端提供记录能力,因而限制了调整与所述装置通过接口连接的区域的能力。 
还有用于临床DBS的装置的实例,该装置设计成用于长期植入和功能。这些装置由具有四个金属电极触点(有时指“宏电极”)的柔韧聚合物圆柱形基底组成。这些电极触点被设置成使得每个电极位点布置在柔韧基底的周界周围,以形成圆柱形状。所述电极位点沿着圆柱形基底的轴线被线性定位。由于此装置的相对大的尺寸(包括其刺激表面)、刺激位点的微小数量及其被构造的方式,此装置在建立可调节的神经接口区域的能力方面被限制。
发明内容
例如,同时通过多电极位点记录和/或刺激的能力有可能大大提高映射过程的速度和准确性。虽然单个位点电极通过每次允许只从组织中的单个点记录而被限制,但具有多个空间分离的记录通道的电极能够同时从许多点记录。记录可以由自发的神经元活动、与运动相关的活动或作为从邻近的位点刺激的结果的诱发活动组成。同时采样的记录可以被利用来增加获取数据的速度和准确性。能够同时从同一神经元区域采样的电极阵列也可能检测到统计独立的背景噪声和/或人为现象的区域。使用诸如独立部件分析的先进的信号处理技术,这些无用的信号可以被识别并被消除,导致信噪比的改善,并继而便于神经元尖峰信号(neuronal spike)的辨别。此技术也可以显示先前隐藏于背景噪声中的信号。因此,依然存在对神经接口装置的尚未满足的需要,该装置: 
可以设置为产生在较大的空间距离范围内的选择性的和可调的神经接口区域; 
建立靶向于神经系统的所有区域(例如,中央或外周)包括脑深部区域的高分辨率多位点接口; 
建立靶向于神经系统的所有区域(中央或外周)包括脑深部区域的多模式(例如,电和化学)接口; 
具有较大的设计空间(例如,位点面积、位点间距、基底形状)以提供各种应用特有的可定制的装置; 
能够在基底/载体上支持与常规单通道微电极尺寸相同或更小的高密度的电极位点; 
由生物相容的材料制成;以及 
容易制造。 
有利效果 
不仅限于在本部分中描述的实施方式,本发明包括具有载体的模块化多通道微电极阵列(也是“神经探测系统”),至少一个平面微电极阵列连接到所述载体,所述平面微电极阵列包括与所述载体分离地形成的基底,并进一步包括布置在电介质材料的层之间的基底上的多个互连物、多个电极位点和多个结合焊盘(bond pad),其中至少一些电极位点与相应的互连物接触,至少一些结合焊盘与相应的互连物接触,其中至少一个电极位点是记录位点或刺激位点。照这些或其它实施方式的附加特征原来的样子,在这里也公开了制造和使用其的方法。 
附图说明
现在参考附图,仅作为例子来描述本发明,其中: 
图1示出了神经探测系统的优选实施方式的远端和近端。 
图2示出了电极位点的形成过程。 
图3示出了用于折叠聚合物阵列以获得较长的长度的方法。 
图4显示了由神经探测系统从盐水和脑组织获得的电记录。 
在回顾了附图和下面的详细描述之后,本发明的其它方面对于本领域中的技术人员将是显而易见的。 
发明模式 
没有将本发明仅仅限制于在此明确描述的那些实施方式,一些实施方式包括多通道神经探测器,其是模块化和可定制的,并可用在与靶神经元群通过接口连接的微观和宏观级的各种结构中。神经探测器由中央载体组成,平面多通道微电极阵列连接到所述载体。所述装置以及制造所述装置的方法使用半导体微加工技术来获得可以被优化成与特定的脑结构通过接口连接的精确的小部件,并使用新型组装技术将微加工阵列转换为宏观 结构,其可以用于到达各种中央和外周神经系统区域。 
本发明的一些实施方式包括(图1): 
圆柱形载体1,其可以是刚性的或柔性的,实心的或中空的,取决于材料的选择和期望的用途,以及 
连接到载体1的平面微加工电极阵列3,所述电极阵列在远端提供高密度的微电极位点5、7、9,并在近端提供结合区域13。 
微电极阵列部件可以被定制地设计为最佳地采样(记录)和/或选择性地激活(刺激)神经元群。实施方式包括选择性地调整被记录和/或刺激的神经接口区域的尺寸和形状的能力。位点可以被调整用来记录、刺激,或基底可以包括仅作为一个例子用于诸如组织的阻抗测量的应用(例如,Siemionow,J.Neurosci.Meth.,2000,96:113-117)的两种类型的位点的组合。 
载体提供了结构支持,且在一些实施方式中通过提供内腔和/或通过作为单通道微电极的附加功能而扩展了所述装置的功能,流体(例如包含药物化合物的流体)可通过内腔递送至靶结构。 
在一些实施方式中,神经探测系统没有限制地(图1)包括布置在绝缘金属丝(例如钨、不锈钢、铂铱合金)载体1上的平面微电极阵列3。可选地,金属丝载体的远端可被锐化,且绝缘可在尖端11处被消除,以形成常规的单通道微电极。此结构使所述装置成为例如具有扩展功能(即,多通道记录和/或刺激)的目前人脑深部映射电极的意外出现(drop-in)的替代物。在另一实施方式中,平面微电极阵列3布置在柔韧的聚合物(例如聚酰亚胺、聚硅氧烷)载体上。可选地,所述载体可以包括内腔和在其远端可用于靶药物递送的端口。此特征允许特定药物化合物准确递送到神经系统的局部区域,该系统可以帮助例如手术期内的映射过程或长期治疗的植入装置。可选地,刚性元件或探针通过内腔插入以便于神经探测器装配和插入靶组织中。如果所述装置将以永久方式使用,或如果内腔将用于药物递送,则此刚性元件或探针可在插入后被去除。如果刚性元件或探针是尖端去除绝缘的锐化的绝缘金属丝,则它可用作常规单通道微电极,如前所述。 
平面微电极阵列3由布置在电介质层之间的传导性互连物组成,所述电介质层使顶部和底部侧面上的互连物绝缘。至少一些互连物终止于在远端上的记录和/或刺激电极位点5、7、9,和/或终止于电连接到近端上的混合芯片和/或外部仪器的结合焊盘13。在一种实施方式中,互连物是金属(例如铂、金)且电介质是聚合物(例如聚酰亚胺、聚对二甲苯、PDMS)。在另一实施方式中,互连物是与无机电介质(例如SiO2、Si3N4)和聚合物绝缘的多晶硅。在另一实施方式中,互连物是与由硅基底在下面支持的无机电介质绝缘的多晶硅。在又一实施方式中,所述装置是具有如上所述的电极位点、互连物和结合焊盘以及用于流体递送的掩埋通道(例如Chen等人,1997,IEEE Trans.Biomed.Engin.,44:760-769;Takeuchi等人,Proceeding of IEEE International Micro Electro Mechanical Systems(MEMS’04),pp.208-210(2004))的硅或基于聚合物的结构。 
电极位点和结合焊盘通过经由顶部电介质打开孔并沉积和图案化金属(例如铱、铂、金)来形成。在一种实施方式中,电极位点5、9被定位于平面微电极阵列的主体的远端上。这些电极位点中的至少一个9例如可以有较大的面积并用作记录或刺激的参考位点。在另一实施方式中,阵列还具有在从其主体的侧面突出的‘接头(tab)’7上的电极位点。这些接头位点7可以用于形成缠绕在载体周围的环电极,所述载体可用于刺激和/或记录。 
微电极阵列上的电极位点的精确性、一致性和再现性导致可预测的电和空间特征。这些特征使位点能够以实现神经接口区域的准确、可预测和选择性的调整的方式被分组。本发明的一些实施方式包括被分组以形成较大的复合位点的两个或更多电极位点,所述复合位点能够调整用于记录和/或刺激的神经接口区域。位点的分组可以通过位点迹线的内在连接,或它可以通过用于“在空中的”调整的外部连接。 
复合位点可以具有由神经接口的期望要求产生的不同形状。例如,复合位点可以是沿阵列的垂直条或水平带。它也可以将相对的条结合在一起,以形成连续的带。复合位点可以用于为装置建立一个或更多可调神经接口区域。多个神经接口区域可以是重叠的或不重叠的。 
复合位点具有用于记录和/或电刺激的效用。对于刺激,较大的复合位点增加了有效位点面积以允许增加的电荷注入,同时保持安全的电化学和生物限制。这将实现例如选择性地刺激神经结构的精确的电流控制。对于记录,复合位点可以用于改变装置的记录选择性以强调例如在单个单元记录之上的场电位记录。 
这些平面聚合物和硅微电极阵列的一般制造技术是本领域中的技术人员所熟知的(例如,Rousche等人,IEEE Trans.Biomed.Engin.,48:361-371,Hetke等人,1994,IEEE Trans.Biomed.Engin.,41:314-321)。另外,本发明的实施方式包括制造新型平面微电极阵列部件的新型处理和设计改进,如下所概述的。 
将平面微电极阵列3的宽度保持在某些限制中是重要的,以使组合的神经探测系统(图1)在尺寸上可与常规单通道微电极(例如在尖端附近的直径一般小于约330微米的商业上可得到的单通道脑深部映射微电极)相比。然而,对于一些应用具有包括大电极位点5、7、9面积的能力也是关键的。保持宽度最小的一种方法是提供两个互连物层,每层被一电介质层隔离。这允许以给定宽度的更密集的填充的互连物。最小化宽度的另一方法包括新型的电极位点形成过程。用于在聚酰亚胺和聚对二甲苯基底上产生电极位点的现有技术使用单个步骤过程,所述过程包括蚀刻通过顶部电介质的孔以暴露下面的金属位点。在这种情况下,电极位点与互连物邻接,且结果是在顶部电介质内凹入的电极位点。根据期望的位点面积和形状,金属一般在位点孔的区域内加宽,导致以电极位点尺寸的基底宽度的缩放比例。 
在一种聚合物微电极阵列实施方式中,使用三个步骤程序来没有限制地形成电极位点,所述三个步骤程序产生不限于或不被通过顶部电介质的孔(图2)的尺寸限定的位点面积。首先,通过顶部电介质25使用反应离子刻蚀法(“RIE”)来蚀刻小位点孔。凹槽接着被电镀金属(例如金、铂)27通过光刻界定的掩模填充。最后,使用常规抬离工序沉积金属并形成电极位点5。如图2所示,位点5不被孔的尺寸限制。实际上,它可以远大于孔,因为它通过电介质25与下面的互连物15电绝缘。另外,它实质上  可以具有任何期望的形状。使用此方法,例如,至少12个电极位点和相关的金属互连物可在180微米宽的聚酰亚胺基底上实现。电极位点可以具有高达180微米基底宽度的直径。 
在本发明之前,因为平面微电极阵列的长度通常被晶片的直径(典型地直径为4或6英寸)限制,故一些技术之一必须用于获得长于此的长度,所述平面微电极阵列制造在所述晶片上。如果阵列电介质材料是聚酰亚胺,则该阵列可以设计为蛇形状(图3),该形状可被折叠到适合于装配在长载体上的长直的结构中。折叠过程在图3中示出。为了执行第一次折叠,一段29被稳定,而另一段31被翻下来并继而在折叠线21处向下弯折。使用诸如载玻片或金属滑块的抛光表面可执行此弯折过程。通过向上翻折第二段31并继而在折叠线23处弯折该装置以获得最终的笔直形状来执行第二次折叠。为确保所述装置保持其形状,它可在适当位置被夹紧,并在约340℃调节约两个小时。使用此方法,仅作为一个实例,适合于从人脑深部记录或刺激的280毫米长的装置可使用由三个折叠区域连接的四个70毫米长的段来实现。 
在包括聚对二甲苯、无机电介质和/或硅的平面微电极阵列的实施方式中,装置由于材料特性而不能被折叠和弯折。在这种情况下,可组装两阶段装置,其由与神经组织通过接口连接的微电极阵列和将信号传输到阵列/从阵列传输信号的可折叠的聚酰亚胺电缆组成。此聚酰亚胺电缆具有与上述聚酰亚胺微电极阵列相同的基本结构,但在其远(用于连接至其它微电极阵列)端和近(用于连接至外部仪器)端上都具有结合焊盘。这两个部件可以通过本领域中的技术人员公知的方法连接,仅作为一个例子,在Meyer等人的2001年IEEE Trans.Adv.Packaging,24:366-375中概述的微弯曲互连物技术(Microflex Interconnect Technique)。暴露的连接可通过将所述装置模制到用作载体的聚合物(如聚硅氧烷)结构中而绝缘。 
如此处描述的,结合焊盘设置在平面微电极阵列的近端,以提供用于电接触阵列的方法,以便可访问被记录的信号和/或以便可提供刺激。这些焊盘可被粘结到连接器组合件(典型地为有或没有板上集成电路的印刷电路板和连接器的形式),或它们可以直接连接到专用集成电路(ASIC)。  后面情况的应用的实例是减少导线数的多路复用器芯片或减少在长导线上的信号损失的缓冲放大器。 
将微电极位点和宏电极位点合并在单个装置上的能力允许位点用于定制的操作模式。为刺激选择的位点位置可按需要调整以最佳地与所关注的神经区域通过接口连接。这允许位点设置为产生阳极和阴极结构的最佳布置。另外,可在各自的基础上或作为一个组来使用位点,以有效地形成由多个微电极组成的单个宏电极。这对于刺激特别重要,当为了最佳地与靶神经区域通过接口连接而调整刺激参数时提供了附加的自由度。例如,电极位点可以用分组的位点有效地形成垂直的“条”电极的方式配置,或可选地配置为有效地形成“带”电极。另外,分组的位点在一起可以增加电荷输送能力。此灵活性允许用户以提高的空间分辨率水平跨越从微刺激至宏刺激的范围的选择。 
这里描述了神经探测系统的一些实施方式的组合件。折叠的微电极阵列部件的近端及其相关的连接器首先连接到具有合适的医疗级环氧树脂(例如环氧技术353-NDT)的载体。微电极阵列部件的远端可使用水溶性环氧树脂(例如Master Bond MB-600)暂时连接到载体,以便于后续步骤。通过在载体的相对面上连接第二阵列可实现双面装置。微电极阵列/载体组合件的远端接着穿入较短长度的医疗级微收缩管(例如聚酯、PTFE、FEP)。该远端穿过直到它从所述收缩管的另一端出现,以使传导电极位点被暴露。所述组合件然后被加热以刺激所述收缩管,使微电极阵列及其相关的折叠部分紧密地固定到载体。将微电极阵列部件的远端固定到载体的水溶性环氧树脂现在应通过将该远端浸泡于水中数秒而被去除。 
有几种适于将微电极阵列部件的远端永久地连接到载体的方法。第一种包括将非常薄的医疗级粘合剂层应用于载体(例如环氧技术377)。这可通过一些方法之一来完成,包括但不限于: 
浸涂—在此程序中,微电极阵列的远端保持远离载体,且载体被浸入环氧树脂中并向后拉出,以留下一层薄的环氧树脂。微电极阵列随后放置在此环氧树脂上。注意,如果载体是中空的管状类型,则近端必须首先被封住,以避免环氧树脂通过毛细作用被向上传送到内腔中。在最终装配步  骤之一期间可切掉封口之物。 
涂抹—作为涂覆整个表面的浸涂的备选方案,诸如拉制玻璃微量吸移管的小工具可以用于选择性地通过“涂抹”来涂覆载体。 
使用粘合剂分配器的分配—有分配粘合剂微滴(microdots)或细流(lines)的、商业上可得到的许多粘合剂分配器(例如EFD 2400)。 
图4示出了神经探测系统的一种实施方式的记录功能,所述神经探测系统由用钨探针连接到聚酰亚胺管的聚酰亚胺微电极阵列组成。该聚酰亚胺阵列约280毫米长,且具有约1000平方微米的表面积的铂记录位点。该装置在工作台顶(bench top)上和动物体内都被评价。通过将先前获得的神经记录输送到盐水内并随后用神经探测系统记录此信号来进行工作台顶测试。被记录的神经(电压)波形使用光学隔离的电流激励器转换成为电流波形。此信号接着通过由绞合铂丝(每根丝直径为200微米)制成的双极电极输送进入盐水中。每根丝都被绝缘,以便只有尖端处的金属暴露于溶液。绞合丝用作阳极和阴极,且远端的铂丝(非绝缘,500微米直径)用作基准。图4(A)显示了在位于离刺激源1厘米的远端通道上获得的数据。在此通道上没有出现证明电迹线两端没有出现电串音的可辨别的尖峰信号。图4(B)显示了在位于离刺激源约1毫米的电极触点上记录的数据。所测试的电极接触的平均噪声基底(noise floor)为20microVp-p。如图4中看到的,工作台顶上的信噪比超过10∶1。 
体内测试在麻醉的大鼠体内实施。神经探测系统插入斯普拉-道来氏大鼠(Sprague-Dawley rats)的桶状皮层内。局部场电位和神经尖峰信号均被获得,并保存于磁盘用于离线分析。图4(C)显示了在一个通道上从植入的神经探测系统获得的尖峰信号活动。平均噪声基底(包括神经“杂乱信号”)为30microVp-p。如图4(C)中显示的,平均信噪比在自大鼠桶状皮层收集的记录中约为5∶1。 
在此,认为有关的每个参考资料由此通过引用被并入,好像这里充分阐述的一样。 
虽然本发明参考前述优先的和可选的实施方式特别显示和描述了本  发明,但是本领域中技术人员应当理解,在此描述的本发明的实施方式的各种可选方案可以在实践本发明中使用,而不偏离如下面权利要求中所限定的本发明的精神和范围。这意味着下面的权利要求限定了本发明的范围,且在这些权利要求范围内的方法和设备以及它们的等效物由此被包括。本发明的这个描述应被理解为包括这里描述的元件的所有新颖和不明显的组合,且权利要求可以出现在对这些元件的任何新颖和不明显的组合的这个或以后的应用中。前述的实施方式是例证性的,且没有单个特征或元件对于可在这个或以后的申请中被要求权利的所有可能的组合来说是必不可少的。在权利要求陈述其中等效物的“一个”或“第一个”元件的场合,这样的权利要求应被理解为包括一个或更多这样元件的结合,而既不需要也不排除两个或更多这样的元件。 

Claims (14)

1.一种神经探测系统,包括:
a.载体,
b.至少一个平面微电极阵列,其连接到所述载体,所述平面微电极阵列包括与所述载体分离地形成的基底并进一步包括:
多层互连物,其布置在所述基底上,所述互连物的每层被一电介质材料层隔离,
多个电极位点,其中至少一些所述电极位点与相应的互连物接触,以及
多个结合焊盘,其中至少一些所述结合焊盘与各自的互连物接触,
其中至少一个所述电极位点是记录位点或刺激位点。
2.如权利要求1所述的神经探测系统,其中至少一个所述电极位点是刺激位点。
3.如权利要求1所述的神经探测系统,其中至少一个所述电极位点通过电介质材料层中的孔接触其相应的互连物,所述电介质材料层设置为允许超过所述孔的周界的金属化。
4.如权利要求1所述的神经探测系统,其中至少一些所述互连物包括多层金属层或多晶硅层。
5.如权利要求1所述的神经探测系统,其中至少一个所述结合焊盘设置为与集成电路通过接口连接。
6.如权利要求1所述的神经探测系统,其中所述平面微电极阵列进一步包括上面布置有电极位点中的至少一部分的至少一个侧面突出部分,所述侧面突出部分设置为缠绕在所述载体周围。
7.如权利要求1所述的神经探测系统,其中所述基底包括内部通道,所述内部通道设置为通过其向靶递送流体。
8.如权利要求1所述的神经探测系统,其中所述载体包括具有内腔的聚合物管。
9.如权利要求8所述的神经探测系统,进一步包括用于记录和/或刺激的金属丝微电极,所述金属丝微电极布置在所述内腔中。
10.如权利要求8所述的神经探测系统,进一步包括可插入所述内腔中的刚性元件或探针。
11.如权利要求10所述的神经探测系统,其中所述刚性元件或所述探针包括金属丝微电极。
12.如权利要求1所述的神经探测系统,其中所述载体包括金属丝。
13.如权利要求12所述的神经探测系统,其中所述金属丝包括用于记录和/或刺激的微电极。
14.如权利要求1所述的神经探测系统,其中至少一个所述电极位点包括通过将多个较小的位点组成分组而形成的复合电极位点。
CN2006800454192A 2005-10-07 2006-10-09 模块化多通道微电极阵列及其制造方法 Active CN101583309B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US72450105P 2005-10-07 2005-10-07
US60/724,501 2005-10-07
PCT/IB2006/053700 WO2007042999A2 (en) 2005-10-07 2006-10-09 Modular multichannel microelectrode array and methods of making same

Publications (2)

Publication Number Publication Date
CN101583309A CN101583309A (zh) 2009-11-18
CN101583309B true CN101583309B (zh) 2012-07-04

Family

ID=37943197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800454192A Active CN101583309B (zh) 2005-10-07 2006-10-09 模块化多通道微电极阵列及其制造方法

Country Status (4)

Country Link
US (2) US7941202B2 (zh)
EP (1) EP1931419B1 (zh)
CN (1) CN101583309B (zh)
WO (1) WO2007042999A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340956A (zh) * 2014-09-29 2015-02-11 上海交通大学 可植入多通道柔性微管电极及其制备方法

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128739B2 (en) * 2001-11-02 2006-10-31 Vivant Medical, Inc. High-strength microwave antenna assemblies and methods of use
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
WO2005039696A1 (en) * 2003-10-21 2005-05-06 The Regents Of The University Of Michigan Intracranial neural interface system
US7799019B2 (en) 2005-05-10 2010-09-21 Vivant Medical, Inc. Reinforced high strength microwave antenna
WO2006138358A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of Michigan Technology Management Office Flexible polymer microelectrode with fluid delivery capability and methods for making same
EP1931419B1 (en) 2005-10-07 2016-08-10 NeuroNexus Technologies, Inc. Modular multichannel microelectrode array
US8195267B2 (en) * 2006-01-26 2012-06-05 Seymour John P Microelectrode with laterally extending platform for reduction of tissue encapsulation
US9180299B2 (en) * 2006-12-13 2015-11-10 Medtronic Bakken Research Center B. V. First time right placement of a DBS lead
US8731673B2 (en) 2007-02-26 2014-05-20 Sapiens Steering Brain Stimulation B.V. Neural interface system
US7998139B2 (en) * 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US8353901B2 (en) * 2007-05-22 2013-01-15 Vivant Medical, Inc. Energy delivery conduits for use with electrosurgical devices
US9023024B2 (en) 2007-06-20 2015-05-05 Covidien Lp Reflective power monitoring for microwave applications
US8152800B2 (en) * 2007-07-30 2012-04-10 Vivant Medical, Inc. Electrosurgical systems and printed circuit boards for use therewith
US8224417B2 (en) 2007-10-17 2012-07-17 Neuronexus Technologies, Inc. Guide tube for an implantable device system
WO2009052423A1 (en) 2007-10-17 2009-04-23 Neuronexus Technologies Three-dimensional system of electrode leads
WO2009052425A1 (en) 2007-10-17 2009-04-23 Neuronexus Technologies Implantable device including a resorbable carrier
US8355768B2 (en) * 2007-12-17 2013-01-15 California Institute Of Technology Micromachined neural probes
US8498720B2 (en) 2008-02-29 2013-07-30 Neuronexus Technologies, Inc. Implantable electrode and method of making the same
US20090240314A1 (en) * 2008-03-24 2009-09-24 Kong K C Implantable electrode lead system with a three dimensional arrangement and method of making the same
US9289142B2 (en) 2008-03-24 2016-03-22 Neuronexus Technologies, Inc. Implantable electrode lead system with a three dimensional arrangement and method of making the same
JP2011520510A (ja) * 2008-05-16 2011-07-21 ハートスケイプ・テクノロジーズ,インコーポレイテッド 電極パッチ監視装置
EP2313148B1 (en) 2008-07-30 2013-08-21 Ecole Polytechnique Fédérale de Lausanne Apparatus for optimized stimulation of a neurological target
EP3563902B1 (en) 2008-11-12 2021-07-14 Ecole Polytechnique Fédérale de Lausanne Microfabricated neurostimulation device
US8666478B2 (en) * 2009-10-08 2014-03-04 The Medical College Of Wisconsin, Inc. Method for determining locations of implanted electrodes with medical images
CN102665540B (zh) 2009-10-16 2015-09-09 神经连结科技公司 神经接口系统
US8870857B2 (en) * 2009-11-05 2014-10-28 Greatbatch Ltd. Waveguide neural interface device
CA2782710C (en) 2009-12-01 2019-01-22 Ecole Polytechnique Federale De Lausanne Microfabricated neurostimulation device and methods of making and using the same
AU2011234422B2 (en) 2010-04-01 2015-11-05 Ecole Polytechnique Federale De Lausanne (Epfl) Device for interacting with neurological tissue and methods of making and using the same
US20110288391A1 (en) * 2010-05-19 2011-11-24 Purdue Research Foundation Titanium-Based Multi-Channel Microelectrode Array for Electrophysiological Recording and Stimulation of Neural Tissue
EP2397071A1 (en) 2010-06-16 2011-12-21 Imec Neural probe with a modular microelectrode for stimulating neurons or recording neural activity
CN101950741B (zh) * 2010-08-13 2012-08-22 上海交通大学 芯片电极多层互连结构的制备方法
SG187918A1 (en) * 2010-08-25 2013-04-30 Neuronano Ab Displacement resistant microelectrode, microelectrode bundle and microelectrode array
US9155861B2 (en) 2010-09-20 2015-10-13 Neuronexus Technologies, Inc. Neural drug delivery system with fluidic threads
CN103221090A (zh) 2010-11-25 2013-07-24 沙皮恩斯脑部刺激控制有限公司 医疗探针以及提供医疗探针的方法
WO2012095529A1 (en) 2011-01-14 2012-07-19 Sapiens Steering Brain Stimulation B.V. Brain mapping probe
EP2679152B1 (en) * 2011-02-25 2018-09-12 Tohoku-Microtec Co., Ltd. Brain probe and method for manufacturing the same
US8676343B2 (en) 2011-03-10 2014-03-18 Biotronik Se & Co. Kg Multi-electrode leads for brain implantation
EP2522389A3 (en) 2011-05-13 2014-08-27 Sergio Lara Pereira Monteiro Animal and plant cell electric stimulator with randomized spatial distribution of electrodes for both current injection and for electric field shaping
US9265465B2 (en) 2011-06-04 2016-02-23 The Regents Of The University Of Michigan Probes having deployable sites and methods for making the same
EP2712323A1 (en) 2011-07-25 2014-04-02 Neuronexus Technologies, Inc. Distributed neural stimulation array system
US10123717B2 (en) 2011-11-10 2018-11-13 Neuropace, Inc. Multimodal brain sensing lead
KR101310767B1 (ko) * 2011-11-23 2013-09-25 한국과학기술연구원 생체 신호 측정용 테트로드 및 그 제조 방법
US20130134546A1 (en) 2011-11-30 2013-05-30 International Business Machines Corporation High density multi-electrode array
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
WO2013116864A1 (en) * 2012-02-03 2013-08-08 Lawrence Livermore National Security Rigid stiffener-reinforced flexible neural probes, and methods of fabrication using wicking channel-distributed adhesives and tissue insertion and extraction
EP2626108A1 (en) 2012-02-08 2013-08-14 Sapiens Steering Brain Stimulation B.V. A lead for brain applications
US9956396B2 (en) 2012-02-08 2018-05-01 Medtronic Bakken Research Center B.V. Thin film for a lead for brain applications
US8977335B2 (en) 2012-03-29 2015-03-10 Ad-Tech Medical Instrument Corp. Intracranial sensing and monitoring device with macro and micro electrodes
EP2833785A4 (en) * 2012-04-03 2015-10-28 Altec Inc SUSTAINABLE BIOMEDICAL ONE-WAY SENSOR WITH LOW PROFILE
DE102012006953A1 (de) 2012-04-04 2013-10-10 Albert-Ludwigs-Universität Freiburg Vorrichtung zur Stimulierung und/oder Detektion von Zellaktivitäten innerhalb einer Zellenumgebung
WO2013151559A1 (en) 2012-04-06 2013-10-10 Advanced Bionics Ag Intraneural stimulation systems and methods
EP2653187A1 (en) * 2012-04-20 2013-10-23 Sapiens Steering Brain Stimulation B.V. A freestanding thin film, especially a freestanding thin film for a system for neural applications
EP2656876A1 (en) 2012-04-25 2013-10-30 Sapiens Steering Brain Stimulation B.V. A thin film for a lead for neural applications
EP2656875A1 (en) 2012-04-25 2013-10-30 Sapiens Steering Brain Stimulation B.V. Lead for a neurostimulation and/or neurorecording system
CN102815664A (zh) * 2012-08-02 2012-12-12 上海交通大学 一种柔性管状微电极及其制备方法
EP2722071A1 (en) 2012-10-16 2014-04-23 Sapiens Steering Brain Stimulation B.V. A probe, especially a probe for neural applications
EP2742969A1 (en) 2012-12-13 2014-06-18 Sapiens Steering Brain Stimulation B.V. A lead, especially a lead for neural applications
EP2742968A1 (en) 2012-12-13 2014-06-18 Sapiens Steering Brain Stimulation B.V. A probe, especially a probe for neural applications
EP2745872A1 (en) 2012-12-21 2014-06-25 Sapiens Steering Brain Stimulation B.V. An electronic system for a system for neural applications
EP2810690A1 (en) 2013-06-06 2014-12-10 Sapiens Steering Brain Stimulation B.V. A system for planning and/or providing a therapy for neural applications
EP2786779A1 (en) 2013-04-05 2014-10-08 Sapiens Steering Brain Stimulation B.V. A system for planning and/or providing a therapy for neural applications
EP2786778A1 (en) 2013-04-05 2014-10-08 Sapiens Steering Brain Stimulation B.V. A system for planning and/or providing a therapy for neural applications
WO2014161789A1 (en) 2013-04-05 2014-10-09 Sapiens Steering Brain Stimulation B.V. A system for planning and/or providing a therapy for neural applications
EP2789364A1 (en) 2013-04-08 2014-10-15 Sapiens Steering Brain Stimulation B.V. A lead, especially a lead for neural applications
EP2789365A1 (en) 2013-04-08 2014-10-15 Sapiens Steering Brain Stimulation B.V. A reinforcement means for a lead, especially for a lead for neural applications
USD750248S1 (en) * 2013-04-08 2016-02-23 Medtronic Bakken Research Center B.V. Apparatus for stimulation of the nervous system
US10173051B2 (en) 2013-10-21 2019-01-08 Neuronexus Technologies, Inc. Neural electrode system with a carrier having a tape spring-type shape
US10589106B2 (en) 2013-12-18 2020-03-17 Medtronic Bakken Research Center B.V. Electronic module for a system for neural applications
WO2015164340A1 (en) * 2014-04-21 2015-10-29 University Of South Florida Magnetic resonant imaging safe stylus
CN106455985B (zh) 2014-05-16 2019-09-17 阿莱瓦神经治疗股份有限公司 与神经组织相互作用的装置及其制造和使用方法
US11311718B2 (en) 2014-05-16 2022-04-26 Aleva Neurotherapeutics Sa Device for interacting with neurological tissue and methods of making and using the same
EP2977077A1 (en) 2014-07-21 2016-01-27 Sergio Lara Pereira Monteiro Implantable electrical stimulating device with electrodes and with supercapacitors for electric field shaping
US9925376B2 (en) 2014-08-27 2018-03-27 Aleva Neurotherapeutics Treatment of autoimmune diseases with deep brain stimulation
US9474894B2 (en) 2014-08-27 2016-10-25 Aleva Neurotherapeutics Deep brain stimulation lead
US9403011B2 (en) 2014-08-27 2016-08-02 Aleva Neurotherapeutics Leadless neurostimulator
US9656057B2 (en) 2014-11-25 2017-05-23 Medtronic Bakken Research Center B.V. Lead and a system for medical applications
US10524681B2 (en) 2014-11-25 2020-01-07 Medtronic Bakken Research Center B.V. Lead and a system for medical applications
US10603484B2 (en) 2014-11-25 2020-03-31 Medtronic Bakken Research Center B.V. System and method for neurostimulation and/or neurorecording
US9597506B2 (en) 2014-11-25 2017-03-21 Medtronic Bakken Research Center B.V. System for neurostimulation and/or neurorecording
US10045738B2 (en) 2014-11-25 2018-08-14 Medtronic Bakken Research Center B.V. Tissue resistance measurement
US10507321B2 (en) 2014-11-25 2019-12-17 Medtronic Bakken Research Center B.V. Multilayer structure and method of manufacturing a multilayer structure
US9744352B2 (en) 2014-11-25 2017-08-29 Medtronic Bakken Research Center B.V. Electronic module with electromagnetic interference protection
KR101539654B1 (ko) 2014-11-27 2015-07-27 (주)와이브레인 Eeg 신호 측정 또는 전기 자극을 위한 전기 장치
US9364659B1 (en) 2015-04-27 2016-06-14 Dantam K. Rao Smart lead for deep brain stimulation
US10932862B2 (en) 2015-05-10 2021-03-02 Alpha Omega Neuro Technologies Ltd. Automatic brain probe guidance system
US11051889B2 (en) 2015-05-10 2021-07-06 Alpha Omega Engineering Ltd. Brain navigation methods and device
US11234632B2 (en) 2015-05-10 2022-02-01 Alpha Omega Engineering Ltd. Brain navigation lead
US10155107B2 (en) 2015-10-07 2018-12-18 Medtronic, Inc. Implantable modular electrode array assembly
GB201518205D0 (en) * 2015-10-14 2015-11-25 Univ Newcastle Probe response signals
CN105561469B (zh) * 2015-12-12 2018-11-09 西安交通大学 一种植入式多功能双面微型脑电极阵列芯片
CN105675682B (zh) * 2015-12-28 2019-03-26 中国人民大学 一种尺寸可控的纳米线微电极及其制备方法与应用
US11471092B2 (en) * 2016-06-20 2022-10-18 Greenville Neuromodulation Center Microelectrode with hemoglobin or iron sensor and methods of guiding same
EP3481288A4 (en) 2016-07-07 2020-04-08 Alpha Omega Neuro Technologies Ltd. BRAIN NAVIGATION METHOD AND DEVICE
CA3041999A1 (en) * 2016-10-31 2018-05-03 The Alfred E. Mann Foundation For Scientific Research Nerve cuff electrodes fabricated using over-molded lcp substrates
US20180264191A1 (en) * 2017-03-14 2018-09-20 Massachusetts Institute Of Technology Systems and methods for neural drug delivery and modulation of brain activity
US11547849B2 (en) 2017-06-07 2023-01-10 Neuronexus Technologies, Inc. Systems and methods for ruggedized penetrating medical electrode arrays
US10736726B2 (en) * 2017-07-11 2020-08-11 Lokeswara Rao SAJJA Mechanical prosthetic heart valve assembly for the provision of surface anticoagulation thereon
CN107198522A (zh) * 2017-07-18 2017-09-26 中国人民解放军总医院第附属医院 一种用于记录脑深部信号的复合型电极
WO2019051163A1 (en) * 2017-09-08 2019-03-14 Board Of Regents, The University Of Texas System SYSTEM AND METHOD FOR MANUFACTURING AND IMPLANTING HIGH-DENSITY ELECTRODE NETWORKS
US10702692B2 (en) 2018-03-02 2020-07-07 Aleva Neurotherapeutics Neurostimulation device
US11759566B2 (en) 2018-05-31 2023-09-19 University Of Virginia Patent Foundation Distribution system for flow control of infusate from branch catheters to selected site
CN110680311B (zh) * 2019-08-30 2020-11-03 北京航空航天大学 一种干电极脑电采集装置
EP3797823B1 (en) 2019-09-24 2023-10-25 Imec VZW An electrode arrangement for stimulating and recording electrical signals in biological matter, a neural probe and a micro-electrode array
US11738340B2 (en) 2019-10-04 2023-08-29 Javelin Biotech, Inc. Neurodegenerative target discovery platform
WO2022258212A1 (en) 2021-06-11 2022-12-15 INBRAIN Neuroelectronics S.L. Neurostimulation system for deep brain stimulation
AU2021455531A1 (en) 2021-07-09 2024-01-18 The Alfred E. Mann Foundation For Scientific Research Electrode leads having multi-application helical nerve cuffs and associated systems and methods
CN114343656A (zh) * 2022-01-10 2022-04-15 武汉衷华脑机融合科技发展有限公司 一种用于神经接口的微针

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2232257Y (zh) * 1995-06-16 1996-08-07 中国人民解放军南京军区南京总医院 埋藏式脑深部定位电极及其夹具

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US21116A (en) * 1858-08-10 Operating the teeth of cylinders for burring wool
US222647A (en) * 1879-12-16 Improvement in elevated railways and cars therefor
US255439A (en) * 1882-03-28 macdonald
US49499A (en) * 1865-08-22 Vegetable-cutter
US145216A (en) * 1873-12-02 Improvement in loom shedding mechanisms
US122677A (en) * 1872-01-09 Improvement in ratchet-drills
US3847687A (en) 1972-11-15 1974-11-12 Motorola Inc Methods of forming self aligned transistor structure having polycrystalline contacts
US3921916A (en) 1974-12-31 1975-11-25 Ibm Nozzles formed in monocrystalline silicon
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4166469A (en) 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode
US4306562A (en) 1978-12-01 1981-12-22 Cook, Inc. Tear apart cannula
DE2908952C3 (de) 1979-03-07 1981-12-03 Gerhard Hug Gmbh, 7801 Umkirch Drainagevorrichtung
US4461304A (en) * 1979-11-05 1984-07-24 Massachusetts Institute Of Technology Microelectrode and assembly for parallel recording of neurol groups
JPS57182449A (en) 1981-05-07 1982-11-10 Fuji Xerox Co Ltd Forming method of ink jet multinozzle
CA1240784A (en) 1985-08-30 1988-08-16 Patrick D. Van Der Puije Cochlea implant
US4904237A (en) 1988-05-16 1990-02-27 Janese Woodrow W Apparatus for the exchange of cerebrospinal fluid and a method of treating brain and spinal cord injuries
US4886065A (en) 1988-08-08 1989-12-12 California Institute Of Technology In vivo electrode implanting system
US5215088A (en) 1989-11-07 1993-06-01 The University Of Utah Three-dimensional electrode device
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5180376A (en) 1990-05-01 1993-01-19 Cathco, Inc. Non-buckling thin-walled sheath for the percutaneous insertion of intraluminal catheters
AU660444B2 (en) 1991-02-15 1995-06-29 Ingemar H. Lundquist Torquable catheter and method
CA2117088A1 (en) 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5524338A (en) 1991-10-22 1996-06-11 Pi Medical Corporation Method of making implantable microelectrode
US5207709A (en) 1991-11-13 1993-05-04 Picha George J Implant with textured surface
US5308442A (en) 1993-01-25 1994-05-03 Hewlett-Packard Company Anisotropically etched ink fill slots in silicon
DE4329728A1 (de) 1993-09-03 1995-03-09 Microparts Gmbh Düsenplatte für Fluidstrahl-Druckkopf und Verfahren zu deren Herstellung
JPH07125221A (ja) 1993-10-29 1995-05-16 Sony Corp プリントヘッドおよびその製造方法
US5385635A (en) 1993-11-01 1995-01-31 Xerox Corporation Process for fabricating silicon channel structures with variable cross-sectional areas
US5409469A (en) 1993-11-04 1995-04-25 Medtronic, Inc. Introducer system having kink resistant splittable sheath
DE69433213T2 (de) 1993-11-10 2004-05-06 Medtronic, Inc., Minneapolis Katheter mit Elektrodenanordnung
US5800535A (en) 1994-02-09 1998-09-01 The University Of Iowa Research Foundation Wireless prosthetic electrode for the brain
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5496360A (en) 1994-04-12 1996-03-05 Ventritex, Inc. Implantable cardiac electrode with rate controlled drug delivery
US5927277A (en) 1995-04-28 1999-07-27 Medtronic, Inc. Method and apparatus for securing probes within a burr hole
US5992769A (en) 1995-06-09 1999-11-30 The Regents Of The University Of Michigan Microchannel system for fluid delivery
FI954565A0 (fi) 1995-09-27 1995-09-27 Biocon Oy Biolgiskt upploeslig av ett polymerbaserat material tillverkad implant och foerfarande foer dess tillverkning
US5744958A (en) 1995-11-07 1998-04-28 Iti Medical Technologies, Inc. Instrument having ultra-thin conductive coating and method for magnetic resonance imaging of such instrument
AU714520B2 (en) 1996-01-31 2000-01-06 Cochlear Limited Thin film fabrication technique for implantable electrodes
JP3261996B2 (ja) * 1996-09-20 2002-03-04 松下電器産業株式会社 画像形成装置
US5975085A (en) 1997-05-01 1999-11-02 Medtronic, Inc. Method of treating schizophrenia by brain stimulation and drug infusion
US5843150A (en) 1997-10-08 1998-12-01 Medtronic, Inc. System and method for providing electrical and/or fluid treatment within a patient's brain
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US6205361B1 (en) 1998-02-10 2001-03-20 Advanced Bionics Corporation Implantable expandable multicontact electrodes
US6132456A (en) 1998-03-10 2000-10-17 Medtronic, Inc. Arrangement for implanting an endocardial cardiac lead
US6044304A (en) 1998-04-29 2000-03-28 Medtronic, Inc. Burr ring with integral lead/catheter fixation device
US6006124A (en) 1998-05-01 1999-12-21 Neuropace, Inc. Means and method for the placement of brain electrodes
US6304787B1 (en) * 1998-08-26 2001-10-16 Advanced Bionics Corporation Cochlear electrode array having current-focusing and tissue-treating features
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
JP4354656B2 (ja) * 1999-05-21 2009-10-28 コックレア リミティド 蝸牛インプラント電極配列
US6181569B1 (en) 1999-06-07 2001-01-30 Kishore K. Chakravorty Low cost chip size package and method of fabricating the same
US20030187461A1 (en) 1999-08-10 2003-10-02 Chin Albert K. Releasable guide and method for endoscopic cardiac lead placement
US6374143B1 (en) 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array
US6712791B2 (en) 1999-12-30 2004-03-30 Cook Vascular Incorporated Splittable medical valve
US6324433B1 (en) 2000-01-20 2001-11-27 Electrocare Technologies, Llc Electrode-lead coupling skull mounted port assembly
US6430443B1 (en) 2000-03-21 2002-08-06 Manuel L. Karell Method and apparatus for treating auditory hallucinations
US6829498B2 (en) * 2000-03-29 2004-12-07 Arizona Board Of Regents Device for creating a neural interface and method for making same
US7660621B2 (en) 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
DE10122705B4 (de) 2000-05-11 2012-07-26 Mitutoyo Corp. Einrichtung mit funktionalem Bauelement und Verfahren zu seiner Herstellung
US6745783B2 (en) * 2000-08-01 2004-06-08 Tokyo Electron Limited Cleaning processing method and cleaning processing apparatus
US6834200B2 (en) * 2000-10-19 2004-12-21 Philadelphia, Health & Education Corporation Ceramic based multi-site electrode arrays and methods for their production
JP2004512127A (ja) * 2000-11-01 2004-04-22 スリーエム イノベイティブ プロパティズ カンパニー 電気検出および/または信号印加装置
US7089059B1 (en) 2000-11-03 2006-08-08 Pless Benjamin D Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology
US6757970B1 (en) * 2000-11-07 2004-07-06 Advanced Bionics Corporation Method of making multi-contact electrode array
US6618623B1 (en) 2000-11-28 2003-09-09 Neuropace, Inc. Ferrule for cranial implant
WO2002043623A1 (en) * 2000-11-29 2002-06-06 Cochlear Limited Pre-curved cochlear implant electrode array
WO2002045795A2 (en) 2000-12-07 2002-06-13 Medtronic, Inc. Directional brain stimulation and recording leads
US6588607B2 (en) * 2001-01-24 2003-07-08 Jean K. Bergeson Flip pocket merchandise display system
US7004948B1 (en) 2001-01-31 2006-02-28 Advanced Bionics Corporation Cranial sealing plug
US6613083B2 (en) 2001-05-02 2003-09-02 Eckhard Alt Stent device and method
WO2002096482A2 (en) * 2001-05-30 2002-12-05 Innersea Technology Implantable devices having a liquid crystal polymer substrate
US6560472B2 (en) * 2001-06-21 2003-05-06 Microhelix, Inc. Multi-channel structurally robust brain probe and method of making the same
IL145700A0 (en) 2001-09-30 2002-06-30 Younis Imad Electrode system for neural applications
AUPR851601A0 (en) * 2001-10-26 2001-11-29 Cochlear Limited Auditory midbrain implant
US7209788B2 (en) 2001-10-29 2007-04-24 Duke University Closed loop brain machine interface
US7010356B2 (en) 2001-10-31 2006-03-07 London Health Sciences Centre Research Inc. Multichannel electrode and methods of using same
WO2003061517A2 (en) 2001-11-20 2003-07-31 California Institute Of Technology Neural prosthetic micro system
US6993384B2 (en) 2001-12-04 2006-01-31 Advanced Bionics Corporation Apparatus and method for determining the relative position and orientation of neurostimulation leads
US20030114906A1 (en) 2001-12-17 2003-06-19 Theracardia, Inc. Apparatus and methods for deploying cardiac electrodes
US7211103B2 (en) * 2002-04-11 2007-05-01 Second Sight Medical Products, Inc. Biocompatible bonding method and electronics package suitable for implantation
US7181288B1 (en) 2002-06-24 2007-02-20 The Cleveland Clinic Foundation Neuromodulation device and method of using the same
US7006859B1 (en) 2002-07-20 2006-02-28 Flint Hills Scientific, L.L.C. Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes
US7343205B1 (en) 2002-08-20 2008-03-11 Boston Scientific Neuromodulation Corp. System and method for insertion of a device into the brain
US7302298B2 (en) 2002-11-27 2007-11-27 Northstar Neuroscience, Inc Methods and systems employing intracranial electrodes for neurostimulation and/or electroencephalography
US20040106169A1 (en) 2002-12-02 2004-06-03 Evans Daron G. System and method for metabolyte neuronal network analysis
US6878643B2 (en) 2002-12-18 2005-04-12 The Regents Of The University Of California Electronic unit integrated into a flexible polymer body
WO2004071737A2 (en) 2003-02-04 2004-08-26 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University (Abr/Asu) Using benzocyclobutene as a biocompatible material
US20050021117A1 (en) 2003-07-21 2005-01-27 Jiping He Flexible integrated head-stage for neural interface
US20050021116A1 (en) 2003-07-21 2005-01-27 Jiping He Electrode for implant in live tissue with flexible region to accommodate micro-movement
US20050039696A1 (en) * 2003-08-21 2005-02-24 Springer Adam J. Always upright shape for dog bones
WO2005039696A1 (en) 2003-10-21 2005-05-06 The Regents Of The University Of Michigan Intracranial neural interface system
WO2005046470A1 (en) 2003-11-06 2005-05-26 The Regents Of The University Of Colorado, A Body Corporate Shape-memory polymer coated electrodes
US8060207B2 (en) 2003-12-22 2011-11-15 Boston Scientific Scimed, Inc. Method of intravascularly delivering stimulation leads into direct contact with tissue
US7174219B2 (en) 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8750957B2 (en) 2004-06-01 2014-06-10 California Institute Of Technology Microfabricated neural probes and methods of making same
US7578819B2 (en) 2005-05-16 2009-08-25 Baxano, Inc. Spinal access and neural localization
US7729780B2 (en) 2004-10-21 2010-06-01 Vardiman Arnold B Various apparatus and methods for deep brain stimulating electrodes
US8594807B2 (en) 2005-05-02 2013-11-26 Boston Scientific Neuromodulation Corporation Compliant stimulating electrodes and leads and methods of manufacture and use
US8831739B2 (en) * 2005-06-02 2014-09-09 Huntington Medical Research Institutes Microelectrode array for chronic deep-brain microstimulation for recording
WO2006138358A2 (en) 2005-06-14 2006-12-28 The Regents Of The University Of Michigan Technology Management Office Flexible polymer microelectrode with fluid delivery capability and methods for making same
EP1931419B1 (en) 2005-10-07 2016-08-10 NeuroNexus Technologies, Inc. Modular multichannel microelectrode array
AU2006304775B2 (en) 2005-10-21 2011-11-17 Boston Scientific Neuromodulation Corporation MRI-safe high impedance lead systems and related methods
US8771805B2 (en) 2005-11-10 2014-07-08 Second Sight Medical Products, Inc. Polymer layer comprising silicone and at least one metal trace and a process of manufacturing the same
US7881811B2 (en) 2005-12-08 2011-02-01 Cochlear Limited Flexible electrode assembly having variable pitch electrodes
US7244150B1 (en) * 2006-01-09 2007-07-17 Advanced Bionics Corporation Connector and methods of fabrication
US8195267B2 (en) 2006-01-26 2012-06-05 Seymour John P Microelectrode with laterally extending platform for reduction of tissue encapsulation
US7914842B1 (en) 2006-02-10 2011-03-29 Second Sight Medical Products, Inc Method of manufacturing a flexible circuit electrode array
AU2007278722B2 (en) 2006-07-28 2010-09-16 Med-El Elektro-Medizinische Gerate Gesellschaft M.B.H. Layered electrode array and cable
RU2463088C2 (ru) 2006-09-26 2012-10-10 Сапиенс Стиринг Брейн Стимулейшн Б.В. Способ и устройство для стимуляции тканей
US20080132970A1 (en) 2006-12-05 2008-06-05 Giancarlo Barolat Method and system for treatment of intractable scrotal and/or testicular pain
US8290599B2 (en) * 2006-12-12 2012-10-16 Boston Scientific Neuromodulation Corporation Electrode arrangements for tissue stimulation and methods of use and manufacture
US9180299B2 (en) 2006-12-13 2015-11-10 Medtronic Bakken Research Center B. V. First time right placement of a DBS lead
US8731673B2 (en) 2007-02-26 2014-05-20 Sapiens Steering Brain Stimulation B.V. Neural interface system
WO2008115383A2 (en) 2007-03-19 2008-09-25 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
US20090099555A1 (en) 2007-10-11 2009-04-16 Ingmar Viohl Reduction of rf induced tissue heating using conductive surface pattern
US8241950B2 (en) 2007-10-17 2012-08-14 Neuronexus Technologies, Inc. System and method to manufacture an implantable electrode
WO2009052425A1 (en) 2007-10-17 2009-04-23 Neuronexus Technologies Implantable device including a resorbable carrier
US8224417B2 (en) 2007-10-17 2012-07-17 Neuronexus Technologies, Inc. Guide tube for an implantable device system
WO2009052423A1 (en) 2007-10-17 2009-04-23 Neuronexus Technologies Three-dimensional system of electrode leads
JP5165065B2 (ja) 2007-12-06 2013-03-21 カーディアック ペースメイカーズ, インコーポレイテッド シールド付埋め込み型リード
US8498720B2 (en) 2008-02-29 2013-07-30 Neuronexus Technologies, Inc. Implantable electrode and method of making the same
US20090240314A1 (en) 2008-03-24 2009-09-24 Kong K C Implantable electrode lead system with a three dimensional arrangement and method of making the same
US8852206B2 (en) 2008-06-12 2014-10-07 The Regents Of The University Of Michigan Probe insertion device for implanting a probe into tissue
WO2010057095A2 (en) 2008-11-14 2010-05-20 The Regents Of The University Of Michigan Method for manufacturing an implantable electronic device
US20110010257A1 (en) * 2009-07-09 2011-01-13 Medtronic Minimed, Inc. Providing contextually relevant advertisements and e-commerce features in a personal medical device system
EP2456513B1 (en) 2009-07-24 2016-04-06 Medtronic Bakken Research Center B.V. Medical device for electrical stimulation
CN102665540B (zh) 2009-10-16 2015-09-09 神经连结科技公司 神经接口系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2232257Y (zh) * 1995-06-16 1996-08-07 中国人民解放军南京军区南京总医院 埋藏式脑深部定位电极及其夹具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104340956A (zh) * 2014-09-29 2015-02-11 上海交通大学 可植入多通道柔性微管电极及其制备方法

Also Published As

Publication number Publication date
EP1931419B1 (en) 2016-08-10
US8800140B2 (en) 2014-08-12
WO2007042999A3 (en) 2009-04-16
EP1931419A4 (en) 2009-12-02
CN101583309A (zh) 2009-11-18
EP1931419A2 (en) 2008-06-18
WO2007042999A2 (en) 2007-04-19
US20110154655A1 (en) 2011-06-30
US7941202B2 (en) 2011-05-10
US20070123765A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
CN101583309B (zh) 模块化多通道微电极阵列及其制造方法
US11324945B2 (en) Neural interface system
US8170638B2 (en) MEMS flexible substrate neural probe and method of fabricating same
US8355768B2 (en) Micromachined neural probes
US10426362B2 (en) Deep-brain probe and method for recording and stimulating brain activity
US8831739B2 (en) Microelectrode array for chronic deep-brain microstimulation for recording
US8489203B2 (en) Biostable neuroelectrode
Xu et al. Design and fabrication of a high-density metal microelectrode array for neural recording
US20060282014A1 (en) Flexible polymer microelectrode with fluid delivery capability and methods for making same
EP2343550B1 (en) Improved microneedle
CN110623655A (zh) 模拟失重大鼠的植入式微纳电极阵列芯片及其制备方法
CN110709692A (zh) 用于采集神经记录的设备和方法
Steins et al. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine
US8676343B2 (en) Multi-electrode leads for brain implantation
US20210038883A1 (en) Auditory implant
CN111053554A (zh) 一种超微柔性线性深部脑电极
Wang et al. Flexible multichannel electrodes for acute recording in nonhuman primates
Guo et al. Implementation of integratable PDMS-based conformable microelectrode arrays using a multilayer wiring interconnect technology
Qin et al. Fabrication of bio-microelectrodes for deep-brain stimulation using microfabrication and electroplating process
Pei et al. Flexible multi-channel electrodes for acute recording in the non-human primates
NL2013213B1 (en) An electrical connection assembly for a medical implant and a method of providing an electrical connection between a thin film and a connector for a medical implant.
Gabran Intra-Cortical Microelectrode Arrays for Neuro-Interfacing
Kipke Brain-machine interfaces using thin-film silicon microelectrode arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151127

Address after: American New York

Patentee after: Greatbatch Ltd.

Address before: michigan

Patentee before: Neuronexus Technologies

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160222

Address after: michigan

Patentee after: Neuronexus Technologies

Address before: American New York

Patentee before: Greatbatch Ltd.