CN101542490A - 用于优化计算机辅助设计模型的空间方位的方法 - Google Patents

用于优化计算机辅助设计模型的空间方位的方法 Download PDF

Info

Publication number
CN101542490A
CN101542490A CNA2007800206375A CN200780020637A CN101542490A CN 101542490 A CN101542490 A CN 101542490A CN A2007800206375 A CNA2007800206375 A CN A2007800206375A CN 200780020637 A CN200780020637 A CN 200780020637A CN 101542490 A CN101542490 A CN 101542490A
Authority
CN
China
Prior art keywords
cad model
orientation
coordinate system
objective
computing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800206375A
Other languages
English (en)
Other versions
CN101542490B (zh
Inventor
埃瑞克·K·海蒂
达纳德·J·霍尔茨瓦特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stratasys Inc
Original Assignee
Stratasys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stratasys Inc filed Critical Stratasys Inc
Publication of CN101542490A publication Critical patent/CN101542490A/zh
Application granted granted Critical
Publication of CN101542490B publication Critical patent/CN101542490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing

Abstract

本发明公开一种用于构建一个或者多个三维目标的方法(14)和系统(192),其中方法(14)包括提供在坐标系统(12)中具有初始空间方位的三维目标的计算机辅助设计模型(16),并根据一个或多个标准确定在坐标系统(12)中的计算机辅助设计模型的最佳空间方位(18)。

Description

用于优化计算机辅助设计模型的空间方位的方法
技术领域
本发明涉及根据计算机辅助设计(CAD)模型,快速制造例如原型、模具和生产质量零件的三维(3D)目标。具体地,本发明涉及到一种用于优化CAD模型的空间方位以在快速制造期间提高构建性能的方法。
背景技术
在工业的广泛领域中,3D目标的生产和测试通常用于开发新产品、机械和工艺。有各种快速制造技术用于构建三维目标,每个都在计算机的控制下从CAD模型开发三维目标。术语“快速制造”在此指通过一个或多个层基添加技术构建3D目标。示例的快速制造技术包括熔融沉积成型、水墨喷射、选择性激光烧结、电子束熔化和立体平版印刷加工技术。
CAD模型是在直角坐标系(即x-y-z坐标系统)中具有特定的空间方位的3D目标的几何计算机模型。快速制造技术通常根据特定的空间方位,将CAD模型切片成水平层,然后,通过材料的重复施加,一层一层地建立3D目标。因此,3D目标在与CAD模型同样的空间方位建立。然而,对于构建性能,所述CAD模型的空间方位不必然是最佳的。
发明内容
本发明涉及到一种方法和执行该方法的系统,用于从在坐标系统中具有初始空间方位的CAD模型构建一个或多个3D目标。所述方法包括根据一个或多个标准,在坐标系统中确定CAD模型的最佳空间方位。该标准涉及到在快速制造期间用于提高构建性能的因素。
附图说明
图1是空间地定位在直角坐标系中的3D目标的CAD模型的透视图;
图2是用于基于CAD模型构建3D目标的本发明的方法的方框图;
图3A是用于依照本发明的方法确定CAD模型最佳空间方位的方法的方框图;
图3B是用于在最佳空间方位定位CAD模型的方法的方框图;
图4是在直角坐标系统中具有初始空间方位的3D模型的透视图;
图5是用于标识和分析显示在图4中的CAD模型的空间方位的适合方法的方框图;
图6A是在直角坐标系统中具有初始空间方位的CAD模型的透视图;
图6B是在直角坐标系统中具有轴向对齐方位的CAD模型的透视图;
图6C是当从显示在图6B中的轴向对齐方位旋转后,在直角坐标系统中具有稳定的方位的CAD模型的透视图;
图7是用于标识和分析显示在图6A-6C中的CAD模型的稳定方位的适合方法的方框图;
图8A是在直角坐标系统中具有轴向对齐方位的CAD模型的透视图;
图8B是图8A中的8B-8B剖面的CAD模型的底部表面的剖视图;
图8C是当从显示在图8A中的轴向对齐方位旋转后,在直角坐标系统中具有稳定的方位的CAD模型的左透视图;
图9是用于标识和分析显示在图8A-8C中的CAD模型的稳定方位的方法的方框图;
图10A是在直角坐标系统中具有轴向对齐方位的CAD模型的透视图;
图10B是在直角坐标系统中具有轴向对齐方位的第一可供选择的CAD模型的透视图;
图10C是在直角坐标系统中具有轴向对齐方位的第二可供选择的CAD模型的透视图;
图10D是在直角坐标系统中具有轴向对齐方位的第三可供选择的CAD模型的透视图;
图11是用于确定显示在图10A-10D中的CAD模型的空间方位是否为稳定方位的方法的方框图;
图12A是在直角坐标系统中具有轴向对齐方位的CAD模型的透视图;
图12B是图12A中的12B-12B剖面的CAD模型的底部表面的剖视图;
图12C是在直角坐标系统中具有轴向对齐方位的第二可供选择的CAD模型的透视图;
图12D是在直角坐标系统中具有轴向对齐方位的第三可供选择的CAD模型的透视图;
图13是用于计算显示在图12A-12D中的CAD模型枢轴线的方法的方框图;
图14A是在直角坐标系统中具有旋转角度为确定的轴向对齐方位的CAD模型的侧透视图;
图14B是当从显示在图14A中的轴向对齐方位旋转后,在直角坐标系统中具有稳定的方位的CAD模型的侧透视图;
图15是用于从显示在图14A中的轴向对齐方位将CAD模型旋转到显示在图14B中的轴向对齐方位的方法的方框图;以及
图16是用于进行本发明的方法的适合系统的流程图。
具体实施方式
图1是位于直角坐标系统12内的CAD模型10的透视图,其中CAD模型10为3D目标的几何计算机模型(例如,STL文件)。坐标系统12是表示CAD模型10空间地定位的区域的直角坐标系统。在可供选择的实施例中,也可以使用其它坐标系统(例如,圆柱坐标系统)。坐标系统12包括x轴12x,y轴12y和z轴12z,其轴12x和12y定义水平x-y平面,而12z定义垂直于水平x-y平面的垂直轴。CAD模型10为在坐标系统12中空间地定位,使得轴12x、12y、12z总体地在CAD模型10的中心位置相交。
在利用本发明的方法优化CAD模型10的空间地定位之前,坐标系统12中的CAD模型10称为“初始空间方位”。典型地,其指的是当基于计算机的文件最后保存时的特定的CAD模型(例如,CAD模型10)的空间方位,但也包括默认的空间方位和任何其它手动或自动预定位的CAD模型。因此,CAD模型10可以在坐标系统12中设置在任何初始的空间方位。
当初始空间方位可以使用用于在计算机的监视器上观看CAD模型的方位时,其不必定是用于具体的快速制造系统的构建性能的最佳方位。结果,基于初始空间方位中的CAD模型构建3D目标可能意外地降低构建性能(例如,增加了构建时间和材料成本)。因此,如下所述,本发明的方法可以用于优化CAD模型(例如,CAD模型10)的空间方位,以提供在快速制造期间的构建性能。
图2是本发明的方法14的方框图,其是用于基于CAD模型构建3D目标的计算机实现方法。下面将参照显示在图1中的CAD模型10具体说明方法14,应该理解,方法14可以用于各种CAD模型。方法14包括步骤16-22,且最初包括将CAD模型10提供给计算机,其中CAD模型10具有在直角坐标系统中的初始空间方位(步骤6)。对于以下说明,显示在图1中的CAD模型10的空间方位假设为初始空间方位。
依照方法14,计算机依据一个或多个标准(步骤18)确定在直角坐标系统12中的CAD模型10的“最佳空间方位”。所述标准是在快速制造期间用于优化构建性能的因素。适合的标准的示例包括快速制造构造性能的任何形式,例如,减少构建时间、最小化支撑材料所需要体积(在此称为“体积Volumersm”)、提供3D目标的表面光洁度、增加3D目标的零件强度、降低覆盖尺寸(在水平x-y平面中)、降低3D目标的高度(沿轴12z)、改进填充模式机器组合。
根据选择的标准,CAD模型10可以相对轴12x、12y和12z的一个或多个旋转,以达到在坐标系统12中的CAD模型10的最终空间方位。例如,CAD模型10可以重新定位到最小化所述体积Volumersm的最佳空间方位,从而减少需要构建3D目标的支撑材料量。一旦根据标准将CAD模型10设置在最佳空间方位,则计算机用切片算法将CAD模型10切片成层(在水平x-y平面)(步骤20)。然后,产生用于切片层和用于任何要求的支撑结构的构建路径。
当完成数据生成时,快速制造系统根据产生的构建路径(步骤22)构建3D目标。3D目标用相对应坐标系统12中的CAD模型10的最佳空间方位的物理空间方位构建。结果,在快速制造期间的构建性能根据选择的一个或多个标准改进。
图13A是方法24的方框图,其为用于依照方法14的步骤18(显示在以上图2中)确定CAD模型10的最佳空间方位的适合方法的实例。方法24包括步骤26-40,并初始包括选择一个或多个标准(步骤26)。一个或多个标准可以从因素列表中手动选择或可以预设在计算机中。此后者“预设”的实施例特别地适用于自动加工,其中,CAD模型10被提供到计算机,然后,计算机自动地或根据软件程序的执行(例如,使用者敲击执行按钮)而实施方法24。
然后,计算机确定是否选择多个标准(步骤28)。如果如此,则相对权重和阈值可以分配到一个或多个选择的标准(步骤30)。如下所述,所述分配的相对权重和阈值指定在冲突或者没有合理结果期间哪个标准控制。如果用所述标准,也可以手动分配相对权重和阈值或作为用于自动加工的默认值预设在计算机中。在一个实施例中,利用两两比较分配相对权重,其中在每对标准之间分配单独的相对权重,然后根据单独的相对权重产生总的相对权重。
当标准设置后,计算机相对轴12x、12y和12z的一个或多个旋转CAD模型10,以确定坐标系统12中的CAD模型10的可供选择的空间方位(步骤32)。然后,计算机根据一个或多个选择的标准,分析CAD模型10的初始和可供选择的空间方位(步骤34)。如下所述,分析总体地根据选择的标准进行。例如,当选择最小化体积Volumersm的标准时,计算机计算用于初始和可供选择的空间方位的每个的体积Volumersm以确定空间方位需要支撑材料的最小体积。
在分析期间,计算机将分配的相对权重和阈值组合合并进分析的结果。当两个或多个标准对于具体的空间方位具有冲突的结果时,所述相对权重提供加权的平均结果。因为典型地,标准的原始结果以不同的单位量化,所以,原始结果的加权平均可能不一定有意义。考虑到此点,计算机可以标准化每个标准的结果统一排列(例如,0-100的等级)。然后,根据所述标准的标准化结果和分配的相对权重,计算机可以提供加权的平均结果。
分配的阈值提供避免使用不合理最终空间方位的超控值。例如,如果选择最小化构建时间的标准,则阈值可以分配为指定可以接收的最长构建时间。导致构建时间大于阈值的的CAD模型10的任何空间方位都自动拒绝,不考虑所选择的任何其它标准的结果。
相对权重和阈值的使用增加了根据一个或多个选择地标准可靠地改进构建性能获得分析结果的可能性。如上所述,相对权重和阈值可以手动分配或可以预设定。在可供选择的实施例中,如果相对权重和/或阈值不需要特定的分析,则可以省略步骤30。
在步骤34分析后,比较初始和可供选择的空间方位的分析结果,以根据一个或多个标准确定CAD模型10的哪个空间方位提供最佳结果(步骤36)。计算机以各种方式执行所述比较,例如,通过分析结果排列初始和可供选择的空间方位。然后,计算机标识提供最佳结果的空间方位(步骤38)。
根据一个或多个选择的标准,提供用于分析的空间方位的最佳结果的空间方位在此称为“最佳的空间方位”。例如,如果步骤34中的分析基于最小化体积Volumersm的标准,则最佳的空间方位是需要支撑材料的最小体积的CAD模型10的空间方位。
一旦最佳的空间方位被标识,则计算机将CAD模型10定位在最佳的空间方位(步骤40)。然后,计算机将CAD模型10切片成水平层,并在如上方法14中的步骤20(以上图2中显示)中产生构建路径。
在可供选择的实施例中,步骤32-36可以以重复的方式进行(如通过虚线箭头42指明)。在此实施例中,在步骤32中的接下来的可供选择的空间方位的确定之前,在步骤34和36中分析和比较在步骤32中标识的特定的可供选择的空间方位。然后,计算机重复用于确定每个可供选择的空间方位的步骤32-36。在步骤36中的每个比较期间,计算机更新CAD模型10的“最佳的空间方位”,从而降低计算机储存要求(即,放弃非最佳的空间方位的数据)。
图3B是依照方法24的步骤40(显示在以上图3A中),用于将CAD模型10定位在最佳的空间方位的方法43的方框图。如图3B所示,方法43包括步骤44-48,且初始包括确定最佳的空间方位是否与初始空间方位相同(步骤44)。如果如此,则因为初始空间方位为用于CAD模型10的“最佳”空间方位,所以,不重新定位CAD模型10,且不需要位置的改变(步骤46)。
可供选择地,如果最佳的空间方位与初始空间方位不同,则计算机在坐标系统12中将CAD模型10重新定位到最佳的空间方位(步骤48)。这样就允许用最佳的空间方位而不是初始空间方位构建最终的3D目标。当无论是进行步骤46或步骤48后,如以上在方法14的步骤20(显示在以上图2中)中所述,都将CAD模型10切片成水平层,并产生构建路径。
图4和图5显示了依照方法24的步骤32和34(显示在以上图3A中),用于标识和分析CAD模型10的空间方位的第一适合方法。图4是在坐标系统12中具有初始空间方位的CAD模型10的透视图,并提供为显示在以下图5中说明的方法。作为方法的总体概述,通过绕轴12x(箭头50表示)、绕轴12y(箭头52表示)以及绕轴12x和轴12y(未显示)的矢量组合旋转CAD模型10,计算机标识CAD模型10的可供选择的空间方位。在每个可供选择的空间方位处,根据一个或多个选择的标准,打算机分析特定的空间方位。然后,如前面在方法24的步骤36(显示在以上图3A中)中的说明,计算机比较可供选择的空间方位的分析结果。
应该注意,快速制造系统典型地沿轴12z一层一层地构建3D目标。结果,因为此旋转一般地对于所述标准提供相同的分析结果(例如,对于绕轴12z旋转的所有空间方位的相同的体积Volumersm),所以一般地不需要绕轴12z的旋转。虽然如此,如果分析标准需要,CAD模型10还可以绕轴12z旋转。
绕轴12x的旋转增量表示在图4中,如增量X1、X2、X3…Xn,其中X1表示CAD模型10相对轴12x的初始空间方位。同样地,绕12y的旋转增量用增量Y1、Y2、Y3…Ym表示,其中Y1表示CAD模型10相对轴12y的初始空间方位。因此,CAD模型10的初始空间方位定位CAD模型10在增量X1和Y1处。
图5是用于确定和分析CAD模型10的空间方位的方法54的方框图,其包括步骤56-68。步骤56-60和64-68总体地相对应方法24的步骤32(显示在以上图3A中),而步骤62总体地相对应方法24的步骤34。如图5所示,方法54开始包括绕轴12x的限定旋转增量X1-Xn,以及绕轴12y的旋转增量Y1-Ym(步骤56)。旋转增量理想地为平均间距,以提供测量的平均分布。
然后,根据每个选择的标准,计算机分析在当前空间方位(即,位置X1、Y1)处的CAD模型10(步骤58)。例如,如果选择的标准包括(1)最小化所述体积Volumersm,以及(2)最小化3D目标的覆盖区,然后,对于特定的空间方位,计算机计算(1)需要构建具有特定的空间方位的3D目标的支撑材料的体积,以及(2)CAD模型10的水平覆盖区。用于计算体积Volumersm和水平覆盖区适合的技术将在下面说明。另外,因为选择两个标准,则计算机可以组合任何分配的相对权重和阈值,以提供用于特定的空间方位的加权结果。
一旦分析结果被计算用于当前的空间方位,则计算机绕轴12x旋转CAD模型10一个旋转增量(即,从位置X1到位置X2)(步骤60)。然后,在增量(X2,Y1)处的CAD模型10的空间方位被标识(步骤62)。
然后,计算机确定当前的空间方位是否位于X1,以评价CAD模型10是否已经完全绕轴12x旋转(步骤64)。在此实例中,CAD模型10当前只在位置X2处。因此,重复步骤58-64,直到CAD模型10已经完全绕轴12x旋转为止,并返回到位置X1。这就提供了用于绕轴12x的“n”个空间方位的分析结果。
一旦CAD模型10完成绕轴12x旋转,则计算机绕轴12y旋转CAD模型10一个旋转增量(即,从位置Y1到位置Y2)(步骤66)。然后,计算机确定当前的空间方位是否在位置Y1处,以评价CAD模型10是否已经完全绕轴12y旋转(步骤68)。在此实例中,CAD模型10当前只在位置Y2处。因此,重复步骤58-68,直到CAD模型10已经完全绕轴12y旋转为止,并返回到位置Y1
一旦CAD模型10返回到位置Y1,则计算机将为绕轴12y的“m”个增量旋转的每个计算绕轴12x达到“n”个空间方位的构建特性。这就提供达到在坐标系统12内的均匀地间隔的“n×m”个CAD模型10的空间方位的分析结果。因为计算机可能忽略重复的具体方位以进一步减少计算时间,所以,分析结果的实际数量可以小于此乘积。
一旦分析所有旋转增量的空间方位,则在方法24的步骤36(显示在以上图3A中)中比较用于初始和可供选择的空间方位的分析结果,以确定提供的最佳结果的空间方位。例如,当最小化体积Volumersm时,计算机将初始和可供选择的空间方位的体积Volumersm进行比较,以确定提供最小的体积Volumersm的空间方位。然后,依照方法24的步骤36(显示在以上图3A中),计算机标识所述最佳的空间方位为具有最佳结果的空间方位。然后,依照CAD模型10的最佳空间方位,构建最终的3D目标,从而改进在快速制造期间的构建性能。
虽然以上以具体的顺序说明了具有绕轴12x和12y旋转的CAD模型10的方法54,但也可以使用各种可供选择的旋转技术,以达到可供选择的空间方位。例如,CAD模型10旋转的顺序可以与方法54提供的顺序不同(例如,用于绕轴12x的每个旋转增量绕轴12y旋转)。可供选择地,计算机可以具有指定CAD模型10旋转到的位置的旋转坐标的预先产生的列表。
图6A-15说明了依照方法24的步骤32和34(显示在以上图3A中),用于确定和分析CAD模型10的空间方位的第二个适合方法。作为总体概述,显示在图6A-6C和图7中的方法包括将CAD模型10定位在“轴向对齐的方位”处,并标识和分析用于每个轴向对齐方位的CAD模型10的“稳定方位”;图8A-8C和图9说明了用于确定和分析CAD模型10的稳定方位的适合的方法;图10A-10D和图11说明了用于确定特定的空间方位是否为稳定方位的适合的方法;图12A-12D和图13说明了用于计算枢轴线的适合的方法;以及图14A、图14B和图15说明了用于绕枢轴线旋转CAD模型10的适合的方法。
图6A-6C是在坐标系统12中具有不同空间方位的CAD模型10的透视图(而图6C为侧视图),并提供为显示以下图7说明的方法。图6A显示了在初始空间方位的CAD模型10。延伸通过CAD模型10的轴12x、12y、以及12z的部分显示有虚线,而坐标系统12的轴12z细分成正矢量+12z和负矢量-12z。如图所示,CAD模型10具有质量中心70和主轴A、B和C。
如下将具体说明,计算机将CAD模型10的主轴与正矢量+12z和负矢量-12z对齐。这就提供了CAD模型10的六个空间方位(三个方位面对正方向,而三个方位面对负方向)。图6B显示了定位的CAD模型10,使得主轴A与正矢量+12z对齐。然后,计算机旋转CAD模型10到稳定的方位,如果需要,根据选择的一个或多个标准分析稳定方位中的CAD模型10。例如,术语“稳定的”、“稳定性”等指目标的位置的稳定性(即,防止下倾)。图6C显示了当从显示在图6B中的空间方位旋转后,具有稳定的方位的CAD模型10。
图7是用于标识和分析CAD模型10的稳定的方位的方法72的方框图。如图6A所示,方法72包括步骤74-84,且初始包括当CAD模型10在初始空间方位时,计算体积、质量的中心70、以及CAD模型10的惯性张量(步骤74)。CAD模型10的体积基于相应的几何尺寸,而质量的中心70是使用的构建材料的体积和密度的函数(或可以使用恒定值)。惯性张量说明CAD模型10具有的角力矩的量,其允许计算机通过沿对角斜线计算主轴A、B和C(步骤76)。
然后,计算机利用作为枢轴点的质量的中心70将CAD模型10旋转到其中主轴A与正矢量+12z对齐的第一轴向对齐的方位(步骤78)。此将CAD模型10从图6A中显示的初始空间方位旋转到图6B所示的轴向对齐方位。
然后,计算机从轴向对齐方位标识稳定的方位,并根据一个或多个选择的标准分析在稳定方位的CAD模型10(步骤80)。用于进行步骤80的适合的方法将在以下图8A、图8B和图9中说明。在当前的实例中,计算机将CAD模型10从图6B中显示的轴向对齐方位重新定位到在上图6C显示的稳定方位。然后,根据一个或多个选择的标准,计算机分析在稳定方位的CAD模型10。
然后,计算机确定最后的轴向对齐方位(即,主轴A与正矢量+12z对齐)是否为六个轴向对齐方位的最后一个(步骤82)。在此点处,具有仍然没有分析的五个剩余的轴向对齐方位。因此,计算机将CAD模型10旋转到下一个轴向对齐方位(例如,主轴B与正矢量+12z对齐)(步骤84)。然后,根据此下一个的轴向对齐方位,计算机标识稳定的方位,并根据一个或多个选择的标准在稳定的方位分析CAD模型10(步骤80)。
然后,计算机重复步骤80-84,直到分析了所有的六个轴向对齐方位为止。这就提供了用于CAD模型10的六个轴向对齐方位的分析结果。然后,如在方法24的步骤36和38(显示在以上图3A中)中的说明,计算机比较六个轴向对齐方位的分析结果,并标识用于一个或多个标准的CAD模型10的“最佳空间方位”。因此,方法72有利于限制分析的空间方位的数量(即,六个对齐的空间方位),其中分析的空间方位为稳定的方位。
虽然已经参照主轴A、B和C进行了说明,但方法72可供选择地利用另外或少于以上说明的主轴进行,其确定分析的空间方位的数量。例如,子主轴可以由主轴计算并以同样的方式使用。这就提供了用于对包括计算的数量的更高的控制水平。
图8A-8C和图9说明了依照方法72的步骤80(显示在图7中),确定和分析CAD模型10的稳定方位。图8A-8C提供用于说明在以下图9中说明的方法。
图8A是显示在以上图6B中的轴向对齐方位的CAD模型10的透视图。如图8A所示,CAD模型10进一步包括为CAD模型10的底表面的表面86。CAD模型的外部表面包括指定CAD模型的角和弯曲位置的多个顶点(即,数据点)。每个顶点都包括坐标系统12中的x-y坐标位置,而矢量部分与顶点相互连接,以限定CAD模型的外部表面。因此,表面86为包括垂直沿轴12z的CAD模型10的“最低”顶点的CAD模型10的底表面。
部分基于表面86,计算机计算水平面88和枢轴线90以标识CAD模型10的稳定方位。水平面88是水平的x-y平面,其沿轴12z的垂直水平具有表面86,并表示用于构建3D目标的平台。枢轴线90为CAD模型10旋转以达到稳定方位的轴。
图8B是图8A中的剖面8B-8B的表面86的剖视图(省略了水平面88)。图8B进一步显示了称为顶点86A-86D的CAD模型10的“最低”顶点。如图所示,顶点86A-86D位于表面86的角处,从而限定与由轴12x和12y限定的平面平行的矩形区域。
图8C是显示在以上图6C中的稳定方位中的CAD模型10的侧视图。如图8C所示,计算机绕枢轴线90旋转(箭头91显示)CAD模型10到达稳定方位,其当CAD模型10的顶点92到达水平面88时出现。顶点92为CAD模型10的外部表面的“非最低”数据点。
图9是依照方法72的步骤80以标识和分析CAD模型10的稳定方位的方法93的方框图。方法93包括步骤94-104,且初始包括确定CAD模型10的一个或多个“最低”顶点(即,CAD模型10的外部表面的一个或多个最低数据点)。如上所述,CAD模型10的最低顶点为限定表面86的顶点86A-86D。然后,计算机在为沿轴12z的CAD模型10的顶点86A-86D的垂直平面(即,具有表面86的垂直平面)的位置处产生x-y平面88(步骤96)。
接着,计算机确定在以上图8A中显示的轴向对齐方位是否在稳定方位(步骤98)。用于依照步骤98确定稳定性的适合的方法将在以下图10和图11中说明,并总体地包括确定质量的中心7070的相对位置和CAD模型10的一个或多个最低顶点。如果CAD模型10的轴向对齐方位为稳定方位,则因为CAD模型10已经在稳定方位,所以,计算机不改变CAD模型10的位置。然后,如果CAD模型10的轴向对齐方位不在稳定方位,则计算机计算枢轴线90(步骤100),并绕枢轴线90旋转CAD模型10的质量的中心7070(由箭头91表示),直到数据点92达到水平面88为止(步骤102)。这样就将CAD模型10从显示在图8A中的轴向对齐方位重新定位到以上图8C显示的稳定方位。
在步骤98或102进行将CAD模型10定位在稳定方位后,根据一个或多个选择的标准,计算机分析CAD模型10(步骤104)。然后,依照方法72的步骤82(显示在以上图7中),计算机确定以上图8A显示的轴向对齐方位是否是六个轴向对齐方位的最后。如上所述,方法93用利于在分析CAD模型10之前在稳定的方位定位CAD模型10。这就降低了在非稳定方位构建3D目标的风险。
图10A-10D和图11说明了依照方法93的步骤98(显示在以上图9中),用于确定特定的空间方位是否为稳定方位的适合的方法。图10A-10D显不了不同CAD模型的实例(即,CAD模型10A-10D),并提供为显示在以下图11中说明的方法。
图10A相对应显示在图8A中的轴向对齐方位中的CAD模型10的CAD模型10A的透视图。如图10A所示,产生的数据还包括周界106和投影点108。术语CAD模型10A的“周界”(例如,周界106)指在与CAD模型的所有最低点相互连接的水平面88上的边界。在此实例中,CAD模型10A的最低点为顶点86A-86D。这样,周界106为与顶点86A-86D相互连接的边界,从而包括与表面86同样的矩形面积。投影点108为沿轴12z垂直到质量的中心70的下方的水平面88上的点。如此实例所示,投影点108位于周界106的外部。
图10B是CAD模型10B的透视图,其为CAD模型10A的第一可供选择的实例,并包括第二表面110。第二表面110为由顶点110A-110D(未显示)限定的第二平面表面。顶点110A-110D为与顶点86A-86D在同样水平面的CAD模型10B的另外最低顶点,并限定第二表面110。产生的数据还包括周界112和投影点108,其中周界112为由CAD模型10B的所有最低顶点(即,顶点86A-86D和110A-110D)限定的水平面88上的边界。在此实例中,周界112包括表面86和110的面积的面积、以及表面86和110之间的面积(由虚线表示)。投影点108与以上图10A中说明的相同,在此实例中,位于周界112内。
图10C是CAD模型10C的透视图,其为CAD模型10A的第二可供选择的实例,并包括代替表面86的边缘114。边缘114由为CAD模型10C的最低顶点(CAD模型10C的最低数据点)的CAD模型10C的顶点114A和114B限定。产生的数据还包括为与以上图10A中说明相同的投影点108。
图10D是CAD模型10D的透视图,其为CAD模型10A的第二可供选择的实例。CAD模型10D包括代替表面86的喷嘴116,在此,喷嘴116位于CAD模型10D的一个最低顶点处(即,CAD模型10D的外表面的最低数据点)。产生的数据还包括与以上图10A中说明相同的投影点108。
图11是依照方法93的步骤98,用于确定特定的空间方位是否为稳定方位的方法118的方框图。方法118的以下说明将参照显示在以上图10A中的CAD模型10A进行。
方法118包括步骤120-124,且初始包括确定CAD模型10A的最低顶点(即,顶点86A-86D)是否限定平面(步骤120)。此情况当最低顶点包括为非共线的至少三个最低顶点时出现。在此实例中,顶点86A-86D限定具有为非共线的至少三个最低顶点的平面(即,表面86)。因此,计算机进行确定周界106,如上所述,其为包括顶点86A-86D并包括与表面86同样的矩形面积的边界(步骤122)。
然后,计算机确定质量的中心70的投影108是否位于周界106内(步骤124)。此决定总体地依赖于3D目标的质量中心是否在3D目标的支撑表面的上平衡的概念,然后,3D目标在稳定方位。然而,在此实例中,投影108设置在周界106的外部。因此,计算机确定显示在图10A中的轴向对齐方位不是稳定方位。然后,计算机进入方法93的步骤100(显示在以上图9中)以计算用于将CAD模型10A旋转到稳定方位的枢轴线。
下面将参照显示在图10B中的实例,计算机确定CAD模型10B的最低顶点(即,顶点86A-86D和110A-110D)是否限定平面(步骤120)。在此实例中,顶点86A-86D和110A-110D限定具有为非共线的至少三个最低顶点的平面(即,包括表面86和110的平面)。因此,计算机进行确定基于顶点86A-86D和110A-110D的周界112(步骤122)。如上所述,周界112具有相对应表面86和110的面积的面积、以及在表面86和110之间的面积。
然后,计算机确定质量的中心70的投影108是否位于周界112内(步骤124)。如以上图10B所示,在此实例中,投影108位于周界112内。因此,计算机确定显示在图10B中的轴向对齐方位在稳定方位,且不进一步旋转CAD模型10B。计算机进入方法93的步骤104(显示在以上图9中),以根据一个或多个选择的标准,分析在轴向对齐方位中的CAD模型10B
下面参照图10C的实例,计算机确定CAD模型10C的最低顶点是否限定平面(步骤120)。在此实例中,CAD模型10C的最低顶点(即,顶点114A-114D)只限定线而不是平面。因为没有限定平面,所以,不能确定最低顶点的周界。反之,计算机确定质量的中心70是否垂直沿轴12z直接位于最低顶点的上方(即,顶点114A或114B)(步骤126)。
如果质量的中心70直接位于最低顶点114A或顶点114B的上方,则计算机确定特定的轴向对齐方位在稳定方位,且不旋转CAD模型。然后,计算机进入方法93的步骤104(显示在以上图9中),以根据一个或多个选择的标准,分析在特定的轴向对齐方位中的CAD模型。
然而,如图10C所示,质量的中心70不直接位于顶点114A或顶点114B的上方。因此,计算机确定显示在图C中的轴向对齐方位不在稳定的方位。然后,计算机进入方法93的步骤100(显示在以上图9中),以计算用于将CAD模型10C旋转到稳定方位的枢轴线。
下面参照图10D的实例,计算机确定CAD模型10D的最低顶点是否限定平面(步骤120)。在此实例中,CAD模型10D在喷嘴116处具有不限定平面的一个最低顶点。因此,计算机确定质量的中心70是否直接位于CAD模型10D的最低顶点的上方(即,直接在喷嘴116的上方)(步骤126)。如图10D所示,质量的中心70不直接位于喷嘴116的上方,因此,计算机确定显示在以上图10D中的轴向对齐方位不在稳定方位。然后,计算机进入方法93的步骤100(显示在以上图9中),以计算用于将CAD模型10D旋转到稳定方位的枢轴线。
应该注意,如果喷嘴116直接位于CAD模型10D的质量的中心70的下方,则除了特定的方位将实际不稳定外,计算机将确定特定的轴向对齐方位在稳定的方位。在此情况下,计算机可以在由轴12x和12y限定的平面内调节质量的中心70的位置少量的值。此较少的调节可以防止质量的中心70直接位于喷嘴116的上方,依照步骤126,此定位将造成计算机确定轴向对齐方位为不稳定的方位。
图12A-12D和图13说明了依照方法93的步骤100(显示在以上图9中),用于计算枢轴线(例如,枢轴线90)的适合的方法。如下所述,枢轴线用于确定计算机旋转特定的CAD模型的枢轴点和方向。图12A-12D显示了不同CAD模型的实例,并提供为显示在以下图13中说明的方法。
图12A为进一步包括枢轴线90的CAD模型10A(显示在以上图10A中)的透视图。枢轴线90与图8A所示相同,并用于将CAD模型10A从显示在图12A中的轴向对齐方位旋转到稳定方位。
图12B是图12A中的剖面12B-12B的表面86的剖视图(省略了水平面88)。图12B进一步显示了线126和顶点部分128AB、128BC、128CD和128AD。顶点部分128AB、128BC、128CD和128AD为分别相互连接顶点86A-86D的矢量部分,以限定周界106。线126表示在周界106和质量的中心70的投影108之间的最短距离,并在中间点位置处交叉矢量部分128AD
图12C是进一步包括枢轴线130的CAD模型10C的透视图。枢轴线130以与枢轴线90(显示在以上图8A中)同样的方式起作用,用于将CAD模型10C从显示在图12C中的轴向对齐方位旋转到稳定方位。
图12D是进一步包括部分132和枢轴线134的CAD模型10D的透视图,其部分132在质量的中心70和喷嘴116之间延伸。延伸通过CAD模型10D的部分132的部分用虚线显示。枢轴线134以与枢轴线90(显示在以上图8A中)同样的方式起作用,用于将CAD模型10D从显示在图12D中的轴向对齐方位旋转到稳定方位。
图13是依照方法93的步骤100,用于计算枢轴线的方法136的方框图。方法136的以下说明将参照显示在以上图12D中的CAD模型10D进行。方法118包括步骤138-152,且初始包括确定CAD模型10D是否具有一个最低的顶点(步骤138)。在此实例中,CAD模型10D在喷嘴116处具有一个最低的顶点。因此,计算机计算在质量的中心70和喷嘴116之间的部分132(步骤140)。
然后,计算机计算作为以下轴的枢轴线(1)垂直于部分132,(2)位于水平面88中,以及(3)相交喷嘴116(步骤142)。这就提供了在以上图10D中显示的枢轴线134。然后,依照方法93的步骤102(显示在以上图9中),计算机将质量的中心70绕枢轴线134旋转,直到CAD模型10D达到稳定方位为止。
下面参照图12C所示的实例,计算机确定CAD模型10C是否具有一个最低的顶点(步骤138)。在此实例中,CAD模型10C包括一对的最低顶点(顶点114A和114B)。因此,计算机确定CAD模型10C的最低顶点限定平面(即,至少为非共线的三个最低顶点)(步骤144)。如上所述,顶点114A和114B限定线而不是平面。因此,计算机标识沿顶点114A和114B的共线路径(即,边缘114),并计算作为沿共线路径延伸的轴的枢轴线。这就提供了显示在以上图10C中的枢轴线130。然后,依照方法93的步骤102(显示在以上图9中),计算机将质量的中心70绕枢轴线130旋转,直到CAD模型10C达到稳定方位为止。
下面参照图12A和12B所示的实例,计算机确定CAD模型10A是否具有一个最低的顶点(步骤138)。在此实例中,CAD模型10A包括四个最低顶点(即,顶点86A-86D)。因此,计算机确定CAD模型10A的最低顶点限定平面(步骤144)。如上所述,顶点86A-86D限定具有至少非共线的三个最低顶点的平面(即,表面86)。
因为CAD模型10A的最低顶点限定平面,所以,计算机分析顶点86A-86D,并标识最低顶点靠近质量的中心70的投影108(步骤148)。在此实例中,顶点86A-86D等距地靠近投影108。然后,计算机分析顶点部分128AB、128BC、128CD和128AD,并标识最靠近质量的中心70的投影108的顶点部分(步骤150)。在此实例中,如图12B所示,顶点部分128AD为最靠近投影108的顶点部分(由图12B中的线126表示)。然后,计算机确定标识的最低顶点(即,顶点86A或86D)是否比标识的顶点部分(即,顶点部分128AD)更靠近投影108(步骤152)。
如果标识的最低顶点比标识的顶点部分更靠近投影108,则计算机将计算在标识的最低顶点和质量的中心70之间的部分,并根据该部分,以与上述步骤140和142同样的方式计算枢轴线。然而,在当前的实例中,顶点部分128AD比顶点86A或86D更靠近投影108。因此,计算机以与上述步骤146同样的方式标识沿顶点部分128AD的共线路径。这就提供了显示在以上图12A和图12B中的枢轴线90。当计算枢轴线90后,依照方法93的步骤102(显示在以上图9中),计算机将质量的中心70绕枢轴线90旋转,直到CAD模型10A达到稳定方位为止。
图14A、图14B和图15说明了依照方法93的步骤102(显示在以上图9中),用于绕枢轴线90旋转CAD模型10的适合的方法。图14A和图14B是相对应以上图12A所示的CAD模型10A的CAD模型10的侧视图,其提供为说明以下图15的方法。
如图14A所示,产生的数据进一步包括顶点154以及部分156和158。与顶点92一样,顶点154为CAD模型10的第二顶点。作为以上一般的说明,并显示在图14A中,顶点92和154为CAD模型10的“非最低”顶点的实例。部分156在枢轴线90和顶点92之间延伸,并设置在与水平面88为角度156a处。同样地,部分158在枢轴线90和顶点154之间延伸,并设置在与水平面88为角度158a处。
图14B显示了当质量的中心70绕枢轴线90旋转角度156a后,在稳定的方位的CAD模型10。在稳定的方位中,CAD模型10的顶点92位于水平面88处。
图15是用于绕枢轴线90旋转CAD模型10的方法160的方框图,并包括步骤162-174。方法160初始包括标识在CAD模型10的外表面上的第一“非最低”顶点(步骤162)。如下所述,CAD模型10的外表面包括多个顶点(即,数据点)。因此,在步骤162-170期间,计算机顺序标识CAD模型10的每个非最低顶点。
标识的非最低顶点的总数量可以改变。例如,计算机可以标识CAD模型10的每个非最低顶点,从而计算用于CAD模型10的每个非最低顶点的角度。可供选择地,如果CAD模型10包括大量的非最低顶点,则计算机可以限制标识的顶点的数量,例如,标识非最低顶点的均匀分布,标识非最低顶点的任意组,或通过标识在CAD模型10的具体位置处的非最低顶点组。
在此实例中,让我们假设第一非最低顶点为顶点154。则计算机计算枢轴线90和顶点154之间的部分158(步骤164),并计算部分158和水平面88之间的角度(即,角度158a)(步骤166)。如图14A所示,水平面88沿轴12y延伸到枢轴线90的任意一侧。因此,为基于倾斜的水平面88的侧面(相对枢轴线90)投影108定位的侧面。此作为图14A中的水平面88的左侧显示。
然后,计算机检测当前的非最低顶点(即,顶点154)是否为CAD模型10的最后的非最低顶点。如上所述,CAD模型10的标识的非最低顶点的数量可以改变。在此点上,具有存在的另外的非最低顶点。因此,计算机进行下一个非最低顶点(步骤170)。在此实例中,假设下一个非最低顶点为顶点92。然后,计算机对顶点92重复步骤164和166,从而提供部分156和角度156a。然后计算机对CAD模型10的外表面的每个顶点重复步骤164-168。
当分析最后的非最低顶点时,计算机标识部分和水平面88之间的最低计算角度(步骤172),在当前的实例中,角度156a为计算的最低角度。结果,计算机将CAD模型10的质量的中心70绕枢轴线90旋转等于角度156a的角度数量(步骤174)。这样就将CAD模型10旋转到在以上图14B中显示的稳定的方位,在此,顶点92定位在水平面88处。然后,依照方法92的步骤104(显示在以上图9中),根据选择的一个或多个标准,计算机分析在稳定方位的CAD模型10。
如上所述,在以上图6A-15中说明的方法有利于标识CAD模型10的稳定方位。这就使最终的3D目标以相对应CAD模型10的特定的稳定方位的物理方位构建,从而降低在构建加工期间碰撞3D目标的危险。另外,该方法有利于限制分析的空间方位的数量(例如,六个轴向对齐的方位),其相应地限制了计算机需要的计算数量。
如上所述,本发明可以用于根据一个或多个标准标识最终的空间方位。适合的标准的实例包括可测量的快速制造构建性质的任何形式,例如,减少构建时间、最小化体积Volumersm、改进3D目标的表面光洁度、增加3D目标的零件强度、减少覆盖区的尺寸(在水平x-y平面中)、减少3D目标的高度(沿轴12z)、改进填充模式、获得使用者特定的方位、改进材料的选择及其组合。以下说明提供了用于根据具体的标准分析特定的空间方位的适合的技术:
1.最小化支撑材料的要求体积
当通过包括沉积加工(例如,熔融沉积成型和水墨喷射)的快速制造技术创建3D目标时,支撑结构可以在构造下方的悬挂部分的下方或3D目标的空腔中使用,其不直接通过构建材料本身直接支撑。构建材料可以利用同样的快速制造技术和沉积构建材料的系统构建。
由于数据产生和支撑层的沉积,造成使用支撑材料以支撑3D目标的悬挂部分基本地增加构建时间。总体地,构建时间正比于体积Volumersm。因此,理想地将CAD模型10定位在最小化体积Volumersm的空间方位。
用于CAD模型10的特定的空间方位的体积Volumersm通过在每个悬挂部分下方产生支撑圆柱计算。用于产生CAD模型的支撑圆柱的适合的技术在克鲁波(Crump)等的美国专利第No.5,503,785号中、阿布莱姆斯(Abrams)等的美国专利第No.5,587,913号中说明。用于产生支撑圆柱的特别适合的技术通过由美国明尼苏达州的艾登.普来瑞(Eden Prairie)的斯特拉塔西斯(Stratasys)公司生产的商标名称为“INSIGHT”的快速制造软件提供。然后,计算机测量产生用于特定的空间方位的产生的支撑圆柱的总体积。这些测量的体积为在方法24的步骤38(显示在以上图3中)中顺序比较的分析的结果。
2.改进表面光洁度
由快速制造技术构建的3D目标通常具有“楼梯台阶”的外观,特别地,在弯曲或倾斜的外部表面处。楼梯台阶效果由具有正方形边轮廓的截面形状的分层造成,且对这层厚度的增加更显著。虽然楼梯台阶效果总体地不影响3D目标的强度,但其显著地降低了美观质量。
3D目标的表面光洁度的一个方面基于沿轴12z垂直延伸的弯曲或倾斜表面,从而产生楼梯台阶状外观。表面光洁度可以通过降低垂直延伸的弯曲或倾斜表面的表面面积改进。因此,在步骤62期间,计算机测量用于特定的空间方位的CAD模型10的弯曲或倾斜表面的总的表面面积。测量的表面面积为接下来在方法24的步骤38中比较的分析结果。
3.增加零件的强度
3D目标的零件强度可能受到在构建加工期间使用的产生的构建路径的影响,特别地,在薄零件位置处。因此,在此实施例中,计算机扫描特定的空间方位,并标识可能影响3D目标的强度的具体因素,例如,在薄零件位置处的构建路径的矢量方向。在方法24的步骤38中,计算机比较空间方位,以确定增加或减少零件的强度。
4.降低覆盖区的尺寸
降低在水平x-y平面中的CAD模型10的覆盖区的尺寸有利于最佳化快速制造系统中分构建空间。这就允许在一个构建加工期间构建多个3D目标。因此,在此实施例中,对于特定的空间方位,计算机测量沿轴12z的多个增量上的CAD模型10的水平面积。然后,计算机记录对每个空间方位测量的最宽的面积,其在接下来的方法24的步骤38中比较。
5.降低垂直的高度
降低沿轴12z的3D目标的高度有利于降低需要构建的3D目标的垂直增量的数量,其为影响快速制造期间的构建时间的另一因素。因此,计算机测量在用于特定的空间方位的CAD模型10的最高顶点和最低顶点之间沿轴12z的距离。然后,将距离在方法24的步骤38中比较。
6.提高填充模式
当产生用于切片层的构建路径时,小的空区域可以导致小空腔在沉积通道和构建材料之间形成,其相应地增加了最终3D目标的孔隙滤,从而降低了最终3D目标的结构的整体性。因此,在此实施例中,计算机测量出现在用于特定的空间方位的构建路径中的空区域的数量和溶剂。用于标识小的空区域的适合的技术的实例公开在Holzwarth的美国专利申请系列号No.11/343,355号中,其标题为“用于用基于挤出分层沉积成型构建三维目标的方法”。可供选择地,计算机可以标识典型地导致形成小的空区域的已知几何因素。
如上所述,本发明的方法14根据一个或多个标准,有利于优化CAD模型(例如,CAD模型10)的空间方位(例如,最小化体积rms)。结果,可以改进最终3D目标的物理特征和/或改进在快速制造期间的构建性能。
图16是方法176的方框图,其为用于依照以上说明的方法14构建多个3D目标的可供选择的方法。方法176包括步骤178-180,且初始包括提供3D目标的多个CAD模型10,在此需要构建与在一个构建周期期间的快速制造系统的构建空间中的多个3D目标一样多的3D目标(步骤178)。然后,计算机确定以与上述方法14的步骤18中的相同方式确定用于第一和第二CAD模型的最佳空间方位(步骤180和182)。
然后,计算机确定第二CAD模型是否配合在具有第一CAD模型的构建空间内(步骤184)。此确定基于第一和第二CAD模型的覆盖区的尺寸。如果两个CAD模型都配合在具有第一CAD模型的构建空间内(步骤184)。则重复步骤182和184,直到没有另外的CAD模型需要构建或如果没有另外的CAD模型将配合在构建空间内为止。
然后,根据一个或多个选择的标准,计算机确定用于配合在构建空间内的CAD模型的更新的最佳空间方位(步骤186)。这样,除了考虑多个CAD模型的相对位置外,以与上述方法14的步骤18同样的方式进行(例如,用于减少体积Volumersm)。
然后,计算机将一个或多个CAD模型切片,并以与上述方法14的步骤20和2同样的方式构建3D目标,从而在一个构建循环中构建多个3D目标。因此,方法176有利于增加可以在一个构建循环中构建的CAD模型的数量,且当根据减少CAD模型的覆盖区的面积的标准分析CAD模型时特别适合。
图17是依照上述具有各种实施步骤的方法14,用于构建3D目标的系统192的流程图。系统192包括计算机194以及快速制造系统196,其通过线198彼此通讯。计算机194可以为能直接或间接与一个或多个快速制造系统通讯的任何形式的基于计算机的系统,并可以包括打印机服务操作、3D CAD环境以及客户环境。
计算机194可以在初始空间方位从各种来源(例如,网络线)接收CAD模型10或CAD模型10可以在具有计算机194的初始空间方位中产生。在任一情况下,计算机194保持CAD模型10在初始空间方位中。然后,计算机194进入方法14的步骤16-20(显示在以上图2中),包括在以上图3A-16中说明的任何适合的方法,并将产生的构建路径通过线198传递到快速制造系统。
快速制造系统196是一种用于通过一个或多个基于分层的添加技术构建3D目标的系统。用于快速制造系统196的适合系统的实例包括熔化的熔融沉积成型系统(例如,美国明尼苏达州的Eden Prairie的Stratasys公司的商标为“FDM”的商业适用的系统)、水墨喷射系统、选择的激光烧结系统、电子束熔化系统、以及立体平版印刷系统。
一旦接收到产生的构建路径,根据一个或多个选择的标准,则快速制造系统196将根据在坐标系统12中具有最佳空间方位,构建基于CAD模型10的3D目标。因此,在基于一个或多个选择的标准的快速制造期间,CAD模型10的优化的空间方位改进了构建性能。
虽然本发明已经参照优选实施例进行了说明,但本领域的普通技术人员应该认识到,可以在此基础上对形式和细节上做出改变,而不脱离本发明的主题精神和范围。

Claims (21)

1.一种用于构建一个或多个三维目标的方法,所述方法包括:
提供三维目标的计算机辅助设计(CAD)模型,CAD模型在坐标系统中具有初始空间方位;
根据一个或多个标准,在所述坐标系统中确定CAD模型的最佳空间方位。
2.根据权利要求1所述的方法,进一步包括:选择所述一个或多个标准。
3.根据权利要求1所述的方法,进一步包括:分配从相对权重、阈值以及其组合组成的组中选择的一个或多个标准。
4.根据权利要求1所述的方法,其中:所述一个或多个标准从由减少构建时间、最小化构建三维目标需要的支撑材料的体积、改进三维目标的表面光洁度、增加三维目标的零件强度、减少覆盖区的尺寸、减少三维目标的高度、改进填充模式、获得使用者特定的方位、改进材料的选择及其组合组成的组中选择。
5.根据权利要求1所述的方法,其中:确定最佳的空间方位包括计算用于在坐标系统中的CAD模型的多个空间方位的支撑材料的需要体积。
6.根据权利要求1所述的方法,其中:确定最佳的空间方位包括根据一个或多个标准,分析在坐标系统中的CAD模型的一个或多个可供选择的空间方位。
7.根据权利要求6所述的方法,其中:一个或多个可供选择的空间方位通过绕坐标系统的至少一个轴旋转CAD模型而获得。
8.根据权利要求1所述的方法,其中:确定最佳的空间方位包括
旋转CAD模型到坐标系统内的多个空间方位;
根据一个或多个标准,分析多个空间方位的每个以提供分析的结果;以及
比较分析的结果以标识最佳的空间方位。
9.根据权利要求1所述的方法,进一步包括:
将在最佳空间方位中的CAD模型切片成多个切片的层;
产生用于所述切片的层的构建路径;以及
根据所述构建路径,用快速制造系统构建三维目标。
10.根据权利要求1所述的方法,进一步包括:
提供第二个三维目标的第二CAD模型,第二CAD模型在所述坐标系统中具有初始空间方位;
根据一个或多个标准,确定第二CAD模型在坐标系统中的最佳空间方位;以及
至少部分根据一个或多个标准,确定第一和第二CAD模型的更新的最佳空间方位。
11.一种用于构建三维目标的方法,所述方法包括:
将三维目标的CAD模型的多个主轴与坐标系统的垂直轴对齐,从而将CAD模型定位在坐标系统中的多个轴向对齐的方位中;
将CAD模型定位在坐标系统中的稳定方位处;
根据一个或多个标准,分析在稳定方位中的CAD模型,以提供分析的结果。
比较分析的结果,以标识用于一个或多个标准的CAD模型的最佳空间方位。
12.根据权利要求11所述的方法,其中:在稳定方位处定位CAD模型包括确定CAD模型在轴向对齐方位处是否稳定。
13.根据权利要求12所述的方法,其中:在稳定方位处定位CAD模型进一步包括从至少一个轴向对齐方位将CAD模型旋转到一个稳定方位。
14.根据权利要求12所述的方法,其中定位CAD模型在稳定方位处进一步包括:
计算CAD模型的质量中心;
部分根据质量中心,计算用于至少一个轴向对齐方位的枢轴线;以及
绕枢轴线旋转CAD模型的质量中心。
15.根据权利要求11所述的方法,其中:所述一个或多个标准从由减少构建时间、最小化构建三维目标需要的支撑材料的体积、改进三维目标的表面光洁度、增加三维目标的零件强度、减少覆盖区的尺寸、减少三维目标的高度、改进填充模式、获得使用者特定的方位、改进材料的选择及其组合组成的组中选择。
16.根据权利要求11所述的方法,其中:所述分析包括计算用于一个或多个可供选择的空间方位的每个的支撑材料所需要的体积。
17.一种用于根据3D目标的CAD模型构建三维目标的系统,所述系统包括:
计算机,所述计算机设置为将CAD模型保持在坐标系统的初始空间方位中,其中计算机进一步设置为根据一个或多个标准以确定坐标系统中的CAD模型的最佳空间方位;以及
快速制造系统,所述快速制造系统设置为与计算机通讯,并根据CAD模型的最佳空间方位构建三维目标。
18.根据权利要求17所述的系统,其中:计算机进一步设置为将在最佳空间方位中的CAD模型切片成多个切片的层,并产生用于切片的层的构建路径。
19.根据权利要求17所述的系统,其中:所述一个或多个标准从由减少构建时间、最小化构建三维目标需要的支撑材料的体积、改进三维目标的表面光洁度、增加三维目标的零件强度、减少覆盖区的尺寸、减少三维目标的高度、改进填充模式、获得使用者特定的方位、改进材料的选择及其组合组成的组中选择。
20.根据权利要求17所述的系统,其中:计算机设置为通过计算用于在坐标系统中的CAD模型的多个空间方位的支撑材料需要的体积以确定最佳空间方位。
21.根据权利要求17所述的系统,其中:计算机设置为根据一个或多个标准,通过分析在坐标系统中的CAD模型的一个或多个可供选择的空间方位以确定最佳空间方位。
CN2007800206375A 2006-04-03 2007-03-15 用于优化计算机辅助设计模型的空间方位的方法 Active CN101542490B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/396,792 2006-04-03
US11/396,792 US7403833B2 (en) 2006-04-03 2006-04-03 Method for optimizing spatial orientations of computer-aided design models
PCT/US2007/006560 WO2007130225A2 (en) 2006-04-03 2007-03-15 Method for optimizing spatial orientations of computer-aided design models

Publications (2)

Publication Number Publication Date
CN101542490A true CN101542490A (zh) 2009-09-23
CN101542490B CN101542490B (zh) 2011-09-21

Family

ID=38560374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800206375A Active CN101542490B (zh) 2006-04-03 2007-03-15 用于优化计算机辅助设计模型的空间方位的方法

Country Status (5)

Country Link
US (1) US7403833B2 (zh)
EP (1) EP2013798B1 (zh)
JP (1) JP5064486B2 (zh)
CN (1) CN101542490B (zh)
WO (1) WO2007130225A2 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093023A (zh) * 2011-11-07 2013-05-08 波音公司 计算机辅助设计模型分析系统
CN105492981A (zh) * 2013-06-26 2016-04-13 瑞尼斯豪公司 用于产生在增材制造中使用的几何数据的方法和设备
CN105745652A (zh) * 2014-08-29 2016-07-06 微软技术许可有限责任公司 制造三维对象
CN107077519A (zh) * 2014-09-19 2017-08-18 西门子产品生命周期管理软件公司 用于增材制造的构建取向
CN109202087A (zh) * 2017-06-30 2019-01-15 苏尔寿管理有限公司 制造旋转式机械的叶轮的方法和用这样的方法制造的叶轮
CN109834927A (zh) * 2017-11-29 2019-06-04 Cl产权管理有限公司 用于操作至少一个用于制造三维物体的设备的方法
CN110770734A (zh) * 2017-06-02 2020-02-07 德普技术公司 用于零件构建的方法、设备和系统
US20210124670A1 (en) * 2019-10-23 2021-04-29 Fuji Xerox Co., Ltd. 3d model evaluation system
CN112789158A (zh) * 2018-10-04 2021-05-11 惠普发展公司,有限责任合伙企业 增材制造中的物体的方位和/或位置
CN114897448A (zh) * 2022-07-12 2022-08-12 成都飞机工业(集团)有限责任公司 飞机活动部件评估方法、装置、存储介质及设备

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219234B2 (en) 2007-03-07 2012-07-10 Objet Geometries Ltd. Rapid production apparatus with production orientation determination
US8050786B2 (en) * 2007-07-11 2011-11-01 Stratasys, Inc. Method for building three-dimensional objects with thin wall regions
US7625200B2 (en) * 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
EP2481555B1 (en) 2007-09-17 2021-08-25 3D Systems, Inc. Region-based supports for parts produced by solid freeform fabrication
GB0719747D0 (en) * 2007-10-10 2007-11-21 Materialise Nv Method and apparatus for automatic support generation for an object made by means of a rapid prototype production method
US8858856B2 (en) 2008-01-08 2014-10-14 Stratasys, Inc. Method for building and using three-dimensional objects containing embedded identification-tag inserts
US8070473B2 (en) * 2008-01-08 2011-12-06 Stratasys, Inc. System for building three-dimensional objects containing embedded inserts, and method of use thereof
US7917243B2 (en) * 2008-01-08 2011-03-29 Stratasys, Inc. Method for building three-dimensional objects containing embedded inserts
US20100092907A1 (en) * 2008-10-10 2010-04-15 Align Technology, Inc. Method And System For Deriving A Common Coordinate System For Virtual Orthodontic Brackets
US11305501B2 (en) 2009-06-25 2022-04-19 Beijing Advanced Medical Technologies, Co., Ltd. Methods and apparatus for fabricating porous three-dimensional tubular scaffolds
US8983643B2 (en) * 2010-01-15 2015-03-17 Stratasys, Inc. Method for generating and building support structures with deposition-based digital manufacturing systems
JP5628083B2 (ja) * 2011-04-13 2014-11-19 株式会社日立製作所 計算機システム、及び組立アニメーション生成方法
US8818544B2 (en) 2011-09-13 2014-08-26 Stratasys, Inc. Solid identification grid engine for calculating support material volumes, and methods of use
CN103177135A (zh) * 2011-12-23 2013-06-26 鸿富锦精密工业(深圳)有限公司 三次元坐标系图形化创建系统及方法
US9245061B2 (en) * 2012-04-25 2016-01-26 Shapeways, Inc. Weight-based identification of three dimensional printed parts
US9364986B1 (en) 2012-05-22 2016-06-14 Rapid Prototype and Manufacturing LLC Method for three-dimensional manufacturing and high density articles produced thereby
US9308690B2 (en) * 2012-07-31 2016-04-12 Makerbot Industries, Llc Fabrication of objects with enhanced structural characteristics
WO2014059619A1 (en) * 2012-10-17 2014-04-24 Microsoft Corporation Object profile for object machining
US10054932B2 (en) * 2013-03-11 2018-08-21 Autodesk, Inc. Techniques for two-way slicing of a 3D model for manufacturing
US11024080B2 (en) 2013-03-11 2021-06-01 Autodesk, Inc. Techniques for slicing a 3D model for manufacturing
US9740989B2 (en) 2013-03-11 2017-08-22 Autodesk, Inc. Techniques for slicing a 3D model for manufacturing
US9754412B2 (en) 2013-03-11 2017-09-05 Autodesk, Inc. Techniques for slicing a 3D model for manufacturing
US20140303942A1 (en) 2013-04-05 2014-10-09 Formlabs, Inc. Additive fabrication support structures
US9676019B2 (en) * 2013-06-13 2017-06-13 The Boeing Company Determining part orientation for incremental sheet forming
US10226895B2 (en) * 2013-12-03 2019-03-12 Autodesk, Inc. Generating support material for three-dimensional printing
US9636872B2 (en) * 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
JP2015217538A (ja) * 2014-05-14 2015-12-07 株式会社リコー 三次元造形装置、三次元造形方法、及びプログラム
US9792391B2 (en) 2014-06-06 2017-10-17 Siemens Product Lifecyle Management Software Inc. Refining of material definitions for designed parts
US9690883B2 (en) 2014-06-06 2017-06-27 Siemens Product Lifecycle Management Software Inc. Associating materials with bodies in a computer-aided design file
WO2016026820A1 (en) * 2014-08-19 2016-02-25 Materialise N.V. Slice area distribution for obtaining improved performance in additive manufacturing techniques
WO2016088118A1 (en) * 2014-12-04 2016-06-09 Assembrix Ltd. Orientation optimization in 3d printing
KR20160073188A (ko) * 2014-12-16 2016-06-24 한국전자통신연구원 3d 프린팅 결과물의 거치 안정성 사전 검증 시스템 및 방법
US10421238B2 (en) 2014-12-31 2019-09-24 Makerbot Industries, Llc Detection and use of printer configuration information
JP6154543B2 (ja) * 2015-01-30 2017-06-28 技術研究組合次世代3D積層造形技術総合開発機構 3次元造形システム、情報処理装置、3次元造形モデル配置方法および3次元造形モデル配置プログラム
US10046522B2 (en) * 2015-02-26 2018-08-14 Stratasys, Inc. Surface angle model evaluation process for additive manufacturing
KR101682296B1 (ko) * 2015-05-11 2016-12-02 삼성에스디에스 주식회사 3차원 프린터 장치 및 상기 장치에서의 3차원 오브젝트 배치 방법
JP6579815B2 (ja) * 2015-06-17 2019-09-25 ローランドディー.ジー.株式会社 サポートの配置決定装置、3次元造形システム、および、サポートの配置決定方法
JP2017007126A (ja) * 2015-06-17 2017-01-12 ローランドディー.ジー.株式会社 サポートの配置決定装置、3次元造形システム、および、サポートの配置決定方法
US10696038B2 (en) 2015-12-16 2020-06-30 Stratasys, Inc. Multi-user access to fabrication resources
US10921780B2 (en) 2016-07-20 2021-02-16 Assembrix Ltd. Nesting procedures and management of 3D printing
CN106227199B (zh) * 2016-08-31 2019-01-04 王小兰 一种汽车故障监控专家系统
US11087535B2 (en) 2016-10-14 2021-08-10 Hewlett-Packard Development Company, L.P. Rebuilding three-dimensional models to provide simplified three-dimensional models
US11040491B2 (en) 2016-10-19 2021-06-22 Shapeways, Inc. Systems and methods for identifying three-dimensional printed objects
US10409264B2 (en) * 2016-10-27 2019-09-10 Voodoo Manufacturing, Inc. Fabrication of three-dimensional part with two-dimensional image applied thereon
JP6961972B2 (ja) * 2017-03-24 2021-11-05 富士フイルムビジネスイノベーション株式会社 立体形状成形装置、情報処理装置及びプログラム
CN109304870B (zh) * 2017-07-27 2020-03-24 珠海赛纳打印科技股份有限公司 3d打印方法及设备
JP6275315B1 (ja) 2017-08-07 2018-02-07 株式会社松浦機械製作所 アンダーカット領域における造形角度の設定を伴う三次元造形物の造形方法
WO2020027789A1 (en) * 2018-07-31 2020-02-06 Hewlett-Packard Development Company, L.P. Three-dimensional object production
US10838402B2 (en) * 2018-08-22 2020-11-17 University Of Central Florida Research Foundation, Inc. Deformation-based additive manufacturing optimization
US11498132B2 (en) * 2019-01-30 2022-11-15 General Electric Company Additive manufacturing systems and methods of calibrating for additively printing on workpieces
US11358221B2 (en) * 2019-09-30 2022-06-14 The Boeing Company Build part and method of additively manufacturing the build part
US11654616B2 (en) * 2021-01-22 2023-05-23 Palo Alto Research Center Incorporated Controller and 3D printing apparatus for varying density support structures through interpolation of support polygon boundaries with scalar density fields
US11639023B2 (en) 2021-01-22 2023-05-02 Palo Alto Research Center Incorporated Interactive design tool for varying density support structures
WO2022191823A1 (en) * 2021-03-09 2022-09-15 Hewlett-Packard Development Company, L.P. 3d structures to encapsulate build material

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168615A (ja) 1984-02-13 1985-09-02 Fujitsu Ltd 三次元物体の形成方法
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4749347A (en) 1985-08-29 1988-06-07 Viljo Valavaara Topology fabrication apparatus
US5263130A (en) 1986-06-03 1993-11-16 Cubital Ltd. Three dimensional modelling apparatus
ATE113746T1 (de) 1986-06-03 1994-11-15 Cubital Ltd Gerät zur entwicklung dreidimensionaler modelle.
JPS63141725A (ja) 1986-12-04 1988-06-14 Fujitsu Ltd 立体形状形成装置
US5141680A (en) 1988-04-18 1992-08-25 3D Systems, Inc. Thermal stereolighography
US5184307A (en) 1988-04-18 1993-02-02 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
GB2229702B (en) 1989-02-04 1992-09-30 Draftex Ind Ltd Strip handling apparatus
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
US5216616A (en) 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
CA2040273C (en) * 1990-04-13 1995-07-18 Kazu Horiuchi Image displaying system
US5257657A (en) 1990-07-11 1993-11-02 Incre, Inc. Method for producing a free-form solid-phase object from a material in the liquid phase
US5208763A (en) * 1990-09-14 1993-05-04 New York University Method and apparatus for determining position and orientation of mechanical objects
JP2597778B2 (ja) 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
US6175422B1 (en) 1991-01-31 2001-01-16 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5594652A (en) 1991-01-31 1997-01-14 Texas Instruments Incorporated Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data
US5474719A (en) 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
JP2558431B2 (ja) 1993-01-15 1996-11-27 ストラタシイス,インコーポレイテッド 3次元構造体を製造するシステムを作動する方法及び3次元構造体製造装置
US5557714A (en) * 1993-01-29 1996-09-17 Microsoft Corporation Method and system for rotating a three-dimensional model about two orthogonal axes
US5426722A (en) 1993-09-09 1995-06-20 Stratasys, Inc. Method for optimizing the motion of a multi-axis robot
US5741215A (en) * 1993-09-10 1998-04-21 The University Of Queensland Stereolithographic anatomical modelling process
US5491643A (en) 1994-02-04 1996-02-13 Stratasys, Inc. Method for optimizing parameters characteristic of an object developed in a rapid prototyping system
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
JP3333319B2 (ja) * 1994-06-03 2002-10-15 三菱電機株式会社 2次元3次元統合型cadシステム
US5594651A (en) * 1995-02-14 1997-01-14 St. Ville; James A. Method and apparatus for manufacturing objects having optimized response characteristics
US6016147A (en) * 1995-05-08 2000-01-18 Autodesk, Inc. Method and system for interactively determining and displaying geometric relationships between three dimensional objects based on predetermined geometric constraints and position of an input device
US5653925A (en) 1995-09-26 1997-08-05 Stratasys, Inc. Method for controlled porosity three-dimensional modeling
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6270335B2 (en) 1995-09-27 2001-08-07 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5738817A (en) 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6228923B1 (en) 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6073056A (en) * 1997-04-08 2000-06-06 Larry J. Winget Method and system for building a data model of a physical part in a data format useful for and reproduction of the part
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US6022207A (en) 1998-01-26 2000-02-08 Stratasys, Inc. Rapid prototyping system with filament supply spool monitoring
US6129872A (en) 1998-08-29 2000-10-10 Jang; Justin Process and apparatus for creating a colorful three-dimensional object
WO2000038117A1 (en) * 1998-12-23 2000-06-29 Washington State University Research Foundation Method and system for a virtual assembly design environment
US6054077A (en) 1999-01-11 2000-04-25 Stratasys, Inc. Velocity profiling in an extrusion apparatus
US6028410A (en) 1999-01-11 2000-02-22 Stratasys, Inc. Resonance detection and resolution
US6490496B1 (en) 1999-02-25 2002-12-03 3D Systems, Inc. Method, apparatus, and article of manufacture for a control system in a selective deposition modeling system
US6645412B2 (en) 1999-04-20 2003-11-11 Stratasys, Inc. Process of making a three-dimensional object
US6776602B2 (en) 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
US7502027B1 (en) * 1999-09-13 2009-03-10 Solidworks Corporation Electronic drawing viewer
US6214279B1 (en) 1999-10-02 2001-04-10 Nanotek Instruments, Inc. Apparatus and process for freeform fabrication of composite reinforcement preforms
US6367791B1 (en) 2000-07-07 2002-04-09 Stratasys, Inc. Substrate mounting system for a three-dimensional modeling machine
US6629011B1 (en) 2000-07-17 2003-09-30 Stratasys, Inc. Autoinitialization in a three-dimensional modeling machine
US6823230B1 (en) 2000-09-07 2004-11-23 Honeywell International Inc. Tool path planning process for component by layered manufacture
US6730252B1 (en) 2000-09-20 2004-05-04 Swee Hin Teoh Methods for fabricating a filament for use in tissue engineering
US6572807B1 (en) 2000-10-26 2003-06-03 3D Systems, Inc. Method of improving surfaces in selective deposition modeling
US6813594B2 (en) 2001-05-03 2004-11-02 3D Systems, Inc. Automatic determination and selection of build parameters for solid freeform fabrication techniques based on automatic part feature recognition
US20030076371A1 (en) 2001-10-24 2003-04-24 3D Systems, Inc. Scanning techniques in selective deposition modeling
US6936212B1 (en) 2002-02-07 2005-08-30 3D Systems, Inc. Selective deposition modeling build style providing enhanced dimensional accuracy
AU2003226224A1 (en) 2002-04-17 2003-11-03 Stratasys, Inc. Layered deposition bridge tooling
US7024272B2 (en) * 2002-04-26 2006-04-04 Delphi Technologies, Inc. Virtual design, inspect and grind optimization process
US6907307B2 (en) 2002-07-02 2005-06-14 3D Systems, Inc. Support volume calculation for a CAD model
US20060155418A1 (en) * 2003-04-14 2006-07-13 Therics, Inc. Apparatus, method and article for direct slicing of step based nurbs models for solid freeform fabrication
US6898477B2 (en) 2003-08-14 2005-05-24 Hewlett-Packard Development Company, L.P. System and method for performing adaptive modification of rapid prototyping build files
US7546841B2 (en) 2003-11-19 2009-06-16 David Jonathan Tafoya Apparatus and method of removing water soluble support material from a rapid prototype part
US7526359B2 (en) * 2004-10-01 2009-04-28 Delphi Technologies, Inc. Enhanced digital process design methodology for process centric CAD systems

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9619586B2 (en) 2011-11-07 2017-04-11 The Boeing Company Computer aided design model analysis system
CN103093023A (zh) * 2011-11-07 2013-05-08 波音公司 计算机辅助设计模型分析系统
CN103093023B (zh) * 2011-11-07 2017-05-17 波音公司 用于管理对象的计算机辅助设计模型的方法和系统
CN105492981B (zh) * 2013-06-26 2018-06-15 瑞尼斯豪公司 用于产生在增材制造中使用的几何数据的方法和设备
CN108829942B (zh) * 2013-06-26 2022-12-02 瑞尼斯豪公司 用于产生在增材制造中使用的几何数据的方法和设备
CN108829942A (zh) * 2013-06-26 2018-11-16 瑞尼斯豪公司 用于产生在增材制造中使用的几何数据的方法和设备
US10191476B2 (en) 2013-06-26 2019-01-29 Renishaw Plc Method and apparatus for generating geometric data for use in additive manufacturing
CN105492981A (zh) * 2013-06-26 2016-04-13 瑞尼斯豪公司 用于产生在增材制造中使用的几何数据的方法和设备
US10890893B2 (en) 2013-06-26 2021-01-12 Renishaw Plc Method and apparatus for generating geometric data for use in additive manufacturing
CN105745652A (zh) * 2014-08-29 2016-07-06 微软技术许可有限责任公司 制造三维对象
US10452053B2 (en) 2014-08-29 2019-10-22 Microsoft Technology Licensing, Llc Fabricating three dimensional objects
CN105745652B (zh) * 2014-08-29 2020-02-11 微软技术许可有限责任公司 制造三维对象
CN107077519A (zh) * 2014-09-19 2017-08-18 西门子产品生命周期管理软件公司 用于增材制造的构建取向
CN110770734A (zh) * 2017-06-02 2020-02-07 德普技术公司 用于零件构建的方法、设备和系统
CN109202087A (zh) * 2017-06-30 2019-01-15 苏尔寿管理有限公司 制造旋转式机械的叶轮的方法和用这样的方法制造的叶轮
CN109834927A (zh) * 2017-11-29 2019-06-04 Cl产权管理有限公司 用于操作至少一个用于制造三维物体的设备的方法
CN109834927B (zh) * 2017-11-29 2022-04-26 Cl产权管理有限公司 用于操作至少一个用于制造三维物体的设备的方法
US11338518B2 (en) 2017-11-29 2022-05-24 Concept Laser Gmbh Method for operating at least one apparatus for manufacturing of three-dimensional objects
CN112789158A (zh) * 2018-10-04 2021-05-11 惠普发展公司,有限责任合伙企业 增材制造中的物体的方位和/或位置
CN112789158B (zh) * 2018-10-04 2023-08-08 惠普发展公司,有限责任合伙企业 用于选择物体的方位和/或位置的方法、装置和介质
US20210124670A1 (en) * 2019-10-23 2021-04-29 Fuji Xerox Co., Ltd. 3d model evaluation system
US11586523B2 (en) * 2019-10-23 2023-02-21 Fujifilm Business Innovation Corp. 3D model evaluation system
CN114897448A (zh) * 2022-07-12 2022-08-12 成都飞机工业(集团)有限责任公司 飞机活动部件评估方法、装置、存储介质及设备

Also Published As

Publication number Publication date
JP2009532804A (ja) 2009-09-10
WO2007130225A3 (en) 2008-12-24
EP2013798B1 (en) 2021-06-23
US7403833B2 (en) 2008-07-22
EP2013798A4 (en) 2014-05-21
EP2013798A2 (en) 2009-01-14
US20070233298A1 (en) 2007-10-04
CN101542490B (zh) 2011-09-21
WO2007130225A2 (en) 2007-11-15
JP5064486B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
CN101542490B (zh) 用于优化计算机辅助设计模型的空间方位的方法
US11203162B2 (en) Additive fabrication support structures
Pandey et al. Part deposition orientation studies in layered manufacturing
CN102905848B (zh) 三维流体射流切割中射流取向参数的自动确定
Ahsan et al. Resource based process planning for additive manufacturing
Thrimurthulu et al. Optimum part deposition orientation in fused deposition modeling
Delfs et al. Optimized build orientation of additive manufactured parts for improved surface quality and build time
Peytavie et al. Arches: a framework for modeling complex terrains
CN106354932B (zh) 平滑曲面间弧面型曲面过渡区域的机器人喷涂及轨迹设定方法
CN107430592A (zh) 用于增材制造的表面角模型评估工艺
US11073824B1 (en) System and method of simulating and optimizing surface quality based on location and orientation of additively manufactured build parts
WO2021236281A1 (en) Computer aided generative design with tool size control to facilitate 2.5-axis subtractive manufacturing processes
CN106393693A (zh) 三维模型的位图生成方法及用于执行该方法的装置和系统
CN115577439B (zh) 一种用于医药工艺多级布局的生成方法及装置
EP4154156A1 (en) Computer aided generative design with layer boundary determination to facilitate 2.5-axis subtractive manufacturing processes
CN112380601A (zh) 一种增材制造建造方向优化方法及系统
US6492993B1 (en) Method and system for generating railing objects
CN110415289A (zh) 一种三维模型的生成方法及装置
CN112002012A (zh) 城市区域的可视性分析方法
CN100395867C (zh) 形貌仿真系统和形貌仿真方法
EP1226552B1 (en) Method for manufacturing a product having locally specific properties
CN108153975A (zh) 余量设置系统、设置方法及电子设备
CN107729615A (zh) 地面装修非标准铺贴系统、铺贴方法、电子设备及计算机程序产品
US20200004907A1 (en) Additive swept wedge buildup toolpath
CN117301527B (zh) 四轴3d打印片状模型的单路切片方法及打印方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant