CN101533853A - 半导体结构 - Google Patents

半导体结构 Download PDF

Info

Publication number
CN101533853A
CN101533853A CN200810215842A CN200810215842A CN101533853A CN 101533853 A CN101533853 A CN 101533853A CN 200810215842 A CN200810215842 A CN 200810215842A CN 200810215842 A CN200810215842 A CN 200810215842A CN 101533853 A CN101533853 A CN 101533853A
Authority
CN
China
Prior art keywords
stress
layer
strain bar
semiconductor structure
active area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810215842A
Other languages
English (en)
Other versions
CN101533853B (zh
Inventor
王彦森
林仲德
曹敏
杨胜杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN101533853A publication Critical patent/CN101533853A/zh
Application granted granted Critical
Publication of CN101533853B publication Critical patent/CN101533853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer

Abstract

本发明公开一种半导体结构,包括:一有源区(active region)、位于有源区上方的一栅极带层、以及一金属-氧化物-半导体(MOS)装置。一部份的栅极带层构成MOS装置的栅极。一部份的有源区构成MOS装置的源极/漏极(source/drain)区。半导体结构还包括:位于MOS装置上方的一应激(stressor)区以及位于应激区内部且位于有源区上方外侧的一无应激(stressor-free)区。通过本发明的半导体结构可以改善施加于MOS装置的应力,进而改善MOS装置的效能。

Description

半导体结构
技术领域
本发明涉及一种半导体装置,尤其涉及一种金属-氧化物-半导体(metal-oxide-semiconductor,MOS)装置,尤其更涉及MOS装置中应力的改善。
背景技术
在半导体装置中,例如MOS装置,尺寸及原有特征(inherent feature)的缩小,能够持续改善过去数年来集成电路的速度、效能、密度以及每单位运作的成本。根据MOS装置的设计及其中一原有特征,调整栅极下方位于MOS装置的源极与漏极之间的通道区(channel region)长度,改变通道区的阻值,进而影响MOS装置的效能。更特别的是假设MOS装置其他参数相对维持不变,缩短通道区的长度而降低MOS装置中源极至漏极的阻值,可在MOS装置的栅极施加适当的电压时,增加源极与漏极之间的电流。
为了进一步提升MOS装置的效能,在MOS装置的通道区导入应力,以改善其载流子迁移率(carrier mobility)。一般而言,会在N型MOS装置(NMOS)的通道区的源极至漏极的方向(通道区长度方向)导入一伸张应力,而在P型MOS装置(PMOS)的通道区的通道区长度方向导入一压缩应力。
一种常用的方法用于施加压缩应力于MOS装置的通道区为形成受应力的接触孔蚀刻终止层(contact etch stop layer,CESL),其施加应力于MOS装置下方。由于CESL为MOS装置现有的部件,故很少采用受应力的CESL,若有的话,也会额外增加制造成本。对于NMOS装置而言,上方的CESL需具备原有的伸张应力并施加伸张应力至通道区。对于PMOS装置而言,上方的CESL需具备原有的压缩应力并施加压缩应力至通道区。
CESL在所有方向都施加一相同的应力(伸张或压缩其中一者)至MOS装置下方。然而,MOS装置较倾向不同方向有不同类型的应力。举例而言,PMOS装置倾向在通道长度方向为压缩应力,而在通道宽度方向为伸张应力。因此,在PMOS装置的通道宽度方向施加压缩应力,实际上是会降低PMOS装置的效能。本发明提供一种新的结构可解决MOS装置特定应力需求的问题。
发明内容
根据本发明的一型态,一种半导体结构包括:一有源区、位于有源区上方的一栅极带层、以及一金属-氧化物-半导体(MOS)装置。一部份的栅极带层构成MOS装置的栅极。一部份的有源区构成MOS装置的源极/漏极区。半导体结构还包括:位于MOS装置上方的一应激区以及位于应激区内部且位于有源区上方外侧的一无应激区。
根据本发明的另一型态,一种半导体结构包括:一半导体基底、位于半导体基底内的一有源区、位于半导体基底内且与有源区相邻的一隔离区,以及一MOS装置。MOS装置包括:位于有源区上方的一栅极电极以及位于栅极电极的相对侧的一源极区及一漏极区,其中源极区及漏极区与部份的有源区重叠。半导体结构还包括:位于有源区及隔离区上方一应激层、被应激层所围绕且位于隔离区正上方的一无应激区、以及位于无应激区的一应变条层。
根据本发明的另一型态,一种半导体结构包括:一半导体基底、位于半导体基底内的一有源区、位于半导体基底内且与有源区相邻的一浅沟槽隔离(shallow trench isolation,STI)区,以及一MOS装置。MOS装置包括:位于有源区上方的一栅极电极以及位于栅极电极的相对侧的一源极区及一漏极区,其中源极区及漏极区与部份的有源区重叠。半导体结构还包括:位于有源区及STI区上方一接触孔蚀刻终止层(CESL)、位于STI区上方且被CESL所围绕的一无应激区、填入无应激区的一应变条层、位于CESL上方的一层间介电(inter-layer dielectric,ILD)层、以及位于ILD层内,且与源极区及漏极区其中的一接触的一接触插塞。
根据本发明的另一型态,一种半导体结构制造方法包括:提供一半导体基底,其内包括一有源区;提供一隔离区,其位于半导体基底内且与有源区相邻的;以及形成一MOS装置。形成MOS装置的步骤包括:在有源区上方形成一栅极电极;以及在栅极电极的相对侧形成一源极区及一漏极区。上述方法还包括:在有源区及隔离区上方形成一应激层;以及在隔离区上方形成一应变条层,其中应变条层被应激层所围绕。
根据本发明的另一型态,一种半导体结构制造方法包括:提供一半导体基底,其内包括一有源区;提供一STI区,其位于半导体基底内且与有源区相邻;以及形成一MOS装置。形成MOS装置的步骤包括:在有源区上方形成一栅极电极;以及在栅极电极的相对侧形成一源极区及一漏极区。上述方法还包括:在有源区及STI区上方形成一CESL;在CESL内且位于STI区正上方形成一开口;以及填充开口以形成一应变条层。
本发明的优点包括改善施加于MOS装置的应力,进而改善MOS装置的效能。
附图说明
图1示出了应变条层形成于PMOS装置上方压缩应激层内的平面示意图;
图2示出了应变条层形成于PMOS装置上方伸张应激层内的平面示意图;
图3A和图3B示出了应变条层形成于NMOS装置上方压缩应激层内的平面示意图;
图4示出了没有应变条层形成于NMOS装置上方伸张应激层内的平面示意图;
图5示出了单一应激层平面示意图,其中一相同的伸张应激层形成于PMOS装置与NMOS装置上方;
图6示出了单一应激层平面示意图,其中一相同的压缩应激层形成于PMOS装置与NMOS装置上方;
图7示出了具有不规则外型的应变条层平面示意图;
图8和图9示出了形成图2结构的中间步骤剖面示意图,其中应变条层由层间介电层所构成;
图10示出了图1结构的剖面示意图;
图11至图13示出了形成图2结构的中间步骤剖面示意图,其中应变条层由相同于接触插塞的材料所构成;
图14至图17示出了形成图2结构的中间步骤剖面示意图,其中应变条层由与应激层具有相反应力类型的介电材料所构成;
图18示出了用于进行实验的一样品结构平面示意图;及
图19和图20示出了应激层的尺寸影响的实验结果。
其中,附图标记说明如下:
10~半导体基底;
30~接触插塞;
30’~接触开口;
31~辅助接触插塞;
31’~辅助接触开口;
100~PMOS装置;
110、210~有源区;
112、212~多晶硅带层(栅极带层);
114、214、314、CESL1、CESL2~应激层;
116、216~应变条层;
118、218~层间介电层;
200~NMOS装置;216’~应变条层开口;
Dx、Dy、Enx、Eny~距离;
L1、L2~长度;STI~浅沟槽隔离区;
W1、W2~宽度。
具体实施方式
以下详细说明本发明实施例的制造与使用。然而,必须了解的是本发明提供许多适当的发明概念,可实施于不同的特定背景。述及的特定实施例仅仅用于说明以特定方法来制造及使用本发明,并非用以限定本发明范围。
以下说明一种新的应激层,其用来施加应力于MOS装置。接着说明较佳实施例的制造方法。而在本发明实施例中,所有相同的部件使用相同的标号。
图1示出了本发明一实施例的PMOS装置100及围绕区的平面示意图。PMOS装置100包括有源区110以及延伸跨越有源区110的多晶硅带层(栅极带层)112。在以下的说明,“多晶硅带层”一词表示由多晶硅或其他导电材料所构成的导电带层,例如金属、金属硅化物、或金属氮化物等等。有源区110被绝缘区所围绕,例如浅沟槽隔离区(STI,参见图10)。应激层114形成于多晶硅带层112及有源区110上方。应激层114可为一接触孔蚀刻终止层(CESL)或形成于PMOS装置100上方的其他介电层。
由公知技术可知,PMOS装置较佳为受到压缩应力。在本实施例中,应激层114具有原有(inherent)压缩应力。因此,压缩应力自X方向及Y方向施加于PMOS装置100。X方向(通道长度的方向)的压缩应力(应激层114的原有应力以及施加于PMOS装置100的应力)有助于改善PMOS装置100的驱动电流,因而最好将其保留。而Y方向(通道宽度的方向)的压缩应力则不利于PMOS装置100的驱动电流,因而最好将其排除。在较佳的实施例中,二应变条层116形成于浅沟槽隔离(STI)区(有源区110外侧)上方,且位于应激层114内。通过蚀刻应激层114而形成开口并于开口内填入不同于应激层114的材料便可形成应变条层116。因此,应变条层116所在区域也是无应激区。在一实施例中,应变条层116填入层间介电材料。在其他实施例中,应变条层116填入相同于接触插塞(contact plug)的材料。又另一实施例中,应变条层116填入具有中性应力(无应力)或具有与应激层114相反应力类型的材料。又另一实施例中,应变条层116甚至可填入具有相同应力类型的材料,但是其应力小于应激层114的应力。本文稍后将进一步说明应变条层116的材料以及制造方法。有源区110的作侧及右侧并无形成应变条层。
应变条层116有助于阻断Y方向的应变途径,进而降低Y方向中有害原有压缩应力。因此,施加于PMOS装置100的有害原有压缩应力便可降低。位于应变条层116与有源区100所对应的边缘之间的距离Eny最好是短的。在较佳的实施例中,上述距离Eny小于1微米(μm)且最好小于0.3μm。当距离Eny增加时,应激层114仍具有降低Y方向应力的效果。然而,降低的量将会减少。较大的应变条层116宽度W2有助于降低Y方向的压缩应力。较佳的宽度W2约为1.0μm。应变条层116的长度L2最好是大于施加于MOS装置的通道的有害应力途径。在一实施例中,应变条层116的长度L2大于栅极带层112的宽度且较佳为大于长度L1。再者,应变条层116的左端及右端最好是延伸超越有源区110所对应的左端及右端。
PMOS装置100可被具有原有伸张应力的应激层所覆盖,如图2所示。伸张应激层214自X方向及Y方向施加伸张应力于PMOS装置100。由于通道宽度W1方向(Y方向)的伸张应力有助于PMOS装置100的效能,故无应变条层形成于Y方向的原有应力的途径。另一方面,由于通道长度L1方向(X方向)的伸张应力不利于PMOS装置100的效能,故形成应变条层216平行于多晶硅带层112,且与有源区110所对应的左边缘及右边缘相邻。类似地,应变条层216的由不同于应激层214的材料所构成。应变条层216有助于降低施加于PMOS装置100的通道长度方向的伸张应力。位于应变条层216与栅极带层112所对应的侧壁之间的距离Enx较佳为小于1微米(μm)且最好小于0.3μm,使得降低有害应力的效果能增加到最大限度。
图3A至图4示出了如何形成应变条层来改善NMOS装置的效能。请参见图3A,NMOS装置200包括有源区210以及位于有源区210上方的多晶硅带层212,其中一部分的多晶硅带层212作为NMOS装置200的栅极。压缩应激层114形成于NMOS装置200上方。由于通道长度方向与通道宽度方向的压缩应力不利于NMOS装置200的效能,故应变条层116形成于应激层114内以降低应激层114内X方向及Y方向的原有应力。在图3A中,应变条层116为分离条层而彼此完全分开。然而,一或一个以上相邻的应变条层116可连接在一起。如图3B所示,应变条层116连接在一起而形成一应变圈层。类似于图1,应变条层116可填入内层介电(ILD)材料、接触插塞材料、或具有伸张或中性应力的介电材料。
可以理解的是受到表面型态(geographical)的限制,并非皆可形成所有列举应变条层。举例而言,另一MOS装置占据了一应变条层的位置。然而,尽管在尺寸缩小的情形下,只有形成部分的应变条层仍可改善所对应的MOS装置的效能。举例而言,可在图1和图2所示的结构中仅形成一应变条层,也可在图3A中形成一个、二个、或三个应变条层。
请参见图4,NMOS装置200被具有伸张应力的应激层214所覆盖。由于NMOS装置200较佳为通道长度方向与通道宽度方向受到伸张应力,故不形成应变条层。
在上述实施例中,在没有形成应变条层的方向,应激层最好作深远的延伸,以加强所需应力。举例而言,距离Dx及Dy(请参见图1、图2和图4)较佳为大于5μm。换句话说,在应激层施加有利应力于MOS装置的通道的方向上,各自方向的距离Dx及Dy并没有上限值。
图5和图6示出了形成于单一应激层的应变条层平面示意图。图5示出了一相同的伸张应激层214覆盖PMOS装置100及NMOS装置200。该实施例实质上是图2及图4实施例的结合。图6示出了一单一压缩应激层114形成于PMOS装置100及NMOS装置200上方。该实施例实质上是图1及图3A实施例的结合。
在双重应激结构中,较佳为一压缩应激层形成于PMOS装置上方,而一伸张应激层形成于NMOS装置上方。因此,各自的实施利可通过结合图1及图4实施例而得。
可以理解的是虽然图1至图6所示的应变条层为矩形条层,但是其可为任何外型,只要其形成于应激层内不要的原有应力途径上。图7示出了不规则外型的应变条层116形成于应激层114内。在此情形中,相邻的MOS装置的应变条层连接在一起。再者,原本形成于MOS装置两侧的应变条层可仅形成于MOS装置的一侧,如图7所示。
图8至图17示出了本发明实施例的剖面示意图并用于解释前述实施例形成过程。图8和图9示出了沿图2的A-A’线形成该结构的中间步骤剖面示意图。请参见图8,形成PMOS装置100,其有源区110由浅沟槽隔离区STI所定义而成。有源区110包括一半导体基底10表面。形成应激层214以覆盖整个PMOS装置100。于应激层214内形成应变条层开口216’,例如该应变条层开口216’可以通过蚀刻而形成。为了形成应变条层开口216’,需要一额外的掩模(mask)。请参见图9,形成一层间介电(ILD)层218,且在应变条层开口216’内填入层间介电层218。接着,形成接触开口以贯穿ILD层218及应激层214,其中应激层214可作为CESL。接着在接触开口内形成接触插塞30。在本实施例中,以ILD层218的底部作为应变条层216。因此,应变条层216(及应变条层116)的形成方法可包括:次常压化学气相沉积(sub-atmospheric pressure chemical vapor deposition,SACVD)、高密度等离子体(high density plasma,HDP)、及旋转涂覆(spin-on)等等。应变条层216/116可包括一般所使用的ILD材料,例如含碳低介电材料、未掺杂硅玻璃(un-doped silicate glass,USG)、或是其他介电材料。图10示出了沿图1的B-B’线的结构剖面示意图。类似于图8和图9所示的实施例,应变条层116由塡入ILD层118而成。形成接触插塞30以贯穿ILD层118及应激层114。
图11至图13示出了另一实施例沿图2的A-A’线形成该结构的剖面示意图。请参见图11,形成PMOS装置100,接着形成应激层214及ILD层218。请参见图12,同时形成接触开口30’及辅助接触开口31’以贯穿ILD层218及应激层214。如图13所示,辅助接触开口31’形成于应变条层216所在位置,且位于浅沟槽隔离区STI上方。请参见图13,形成接触插塞30及辅助接触插塞31。辅助接触插塞31较佳为浮置(floating)的。应激层214内的辅助接触插塞31作为应变条层216。因此,应变条层216(及其他实施例的应变条层116)可包括钨、铝、铜、钽、钛、其氮化物、其组合及其构成的多层结构等等。形成应变条层216的适当方法包括物理气相沉积(physicalvapor deposition,PVD)、原子层沉积(atomic layer deposition,ALD)、溅镀(sputtering)、及电镀(plating)等等。在本实施例中,好处在于无需额外的掩模及额外的制造工艺步骤来形成应变条层216。
图14至图17示出了又另一实施例,其中应变条层具有与应激层相反的应力类型。再次以图2中沿A-A’线的剖面示意图作为范例说明。请参见图14,首先在PMOS装置100上方形成压缩应激层314。接着,请参见图15,将应激层314图案化且留下一部分而形成应变条层216,其位于浅沟槽隔离区STI上方。请参见图16,伸张应激层214全面性覆盖PMOS装置100及应变条层216。再一次实施图案化以去除位于应变条层216正上方的应激层214,以形成图17所示的结构。在该结构中,应变条层216具有与应激层314相反的应力类型且对于降低有害应力非常有效。然而,本实施例需要二个额外的掩模,一个用于应激层314图案化,而另一个则用于应激层214图案化。
虽然图8至图17仅示出了本发明若干实施例的制造工艺步骤,任何本领域普通技术人员可知本发明其他实施例可运用上述的技术并配合选择适当的材料及图案。
应变条层116及216可使用逻辑操作进行设计,其包括掩模的图形数据系统(graphic data system,GDS)文件的布局调整(layout modification)。举例而言,在逻辑操作中,首先找出MOS装置及其上方CESL的掩模,并确定CESL所施加的有害应力的方向,之后决定出应变条层的适当位置及尺寸并将应变条层的图案加入至掩模。另外,应变条层也可手动加入。应变条层较佳为形成于STI区或场氧化物(field oxide)区正上方,而不是有源区正上方。在其他实施例中,应变条层也可形成于有源区正上方。
图19和图20示出了应激层尺寸对于装置效能改善的影响的实验结果。图18示出了使用于上述实验的样品,其包括PMOS装置100(包括多晶带层112即有源区110)及形成于PMOS装置100上方的压缩应激层CESL1。应激层CESL2围绕应激层CESL1且具有伸张应力。图19示出了驱动电流ΔIdsat(%)的增量与距离Dy之间函数关系图,该距离示出了于图18。不同的样品实验结果以不同外型类别进行区分。由图19可知在有害应力的施加方向,距离Dy的缩减能增进更多驱动电流直至某一距离(在这些样品中约为0.1μm)为止,驱动电流的增进达到饱和。因此,应变条层较佳为形成于靠近有源区的地方。
图20示出了驱动电流ΔIdsat(%)的降低量与距离Dx之间函数关系图,该距离也示出了于图18。由图20可知在有利应力的施加方向,距离Dx的增加有较少的驱动电流降低量(换句话说,驱动电流的增加与距离Dx呈一函数关系)直至某一距离(在这些样品中约为3.0μm)为止,驱动电流的降低量达到饱和。因此,没有应变条层形成于施加有利应力的方向。
利用本发明的实施例,应激层所施加的有害应力可达到最小程度,同时由相同应激层所施加的有利应力则得以维持,因而改善MOS装置的效能。本发明实施例所需的额外步骤及掩模最少,故制造成本实质上并未增加。
虽然本发明已以较佳实施例公开如上,然其并非用以限定本发明,任何本领域普通技术人员,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当以随附的权利要求所界定的范围为准。

Claims (20)

1.一种半导体结构,包括:
一有源区;
一栅极带层,位于该有源区上方;
一金属-氧化物-半导体装置,其中一部份的该栅极带层构成该金属-氧化物-半导体装置的一栅极;
一部份的该有源区构成该金属-氧化物-半导体装置的一源极/漏极区;
一应激区,位于该金属-氧化物-半导体装置上方;以及
一无应激区,位于该应激区内部与其外部的该有源区上方。
2.如权利要求1所述的半导体结构,其中该无应激区与该有源区的一边缘相邻,且具有一长度大于有害应力施加于该金属-氧化物-半导体装置的通道的途径。
3.如权利要求1所述的半导体结构,其中该无应激区位于该应激区内一有害原有应力的途径,且其中位于该应激区内一有利原有应力的途径没有应变条层形成于内。
4.如权利要求3所述的半导体结构,其中该金属-氧化物-半导体装置为P型金属-氧化物-半导体装置,该应激区具有一压缩应力,且其中该无应激区位于该金属-氧化物-半导体装置的栅极宽度方向的一原有应力途径。
5.如权利要求3所述的半导体结构,其中该金属-氧化物-半导体装置为P型金属-氧化物-半导体装置,该应激区具有一伸张应力,且其中该无应激区位于该金属-氧化物-半导体装置的栅极长度方向的一原有应力途径。
6.如权利要求3所述的半导体结构,其中该金属-氧化物-半导体装置为N型金属-氧化物-半导体装置,该应激区具有一压缩应力,且其中该无应激区位于该金属-氧化物-半导体装置的栅极宽度方向的一原有应力途径。
7.如权利要求6所述的半导体结构,还包括一额外的无应激区,位于该金属-氧化物-半导体装置的栅极长度方向的该原有应力途径。
8.如权利要求1所述的半导体结构,还包括一层间介电层,位于该应激区上方,其中该层间介电层延伸至该无应激区内。
9.如权利要求1所述的半导体结构,还包括:
一层间介电层,位于该应激区上方;
一辅助接触插塞,延伸至该层间介电层内以及该无应激区内。
10.如权利要求1所述的半导体结构,其中该无应激区包括一介电材料,其具有与该应激区相反类型的原有应力。
11.一种半导体结构,包括:
一半导体基底;
一有源区,位于该半导体基底内;
一隔离区,位于该半导体基底内且与该有源区相邻;
一金属-氧化物-半导体装置,包括:
一栅极电极,位于该有源区上方;以及
一源极区及一漏极区位于该栅极电极的相对侧,其中该源极区及该漏极区与部份的该有源区重叠;
一应激层,位于该有源区及该隔离区上方;
一无应激区,被该应激层所围绕且位于该隔离区正上方;以及
一第一应变条层,位于该无应激区。
12.如权利要求11所述的半导体结构,其中该第一应变条层与该有源区一最靠近的边界之间的距离小于0.3微米。
13.如权利要求11所述的半导体结构,其中该第一应变条层具有一应力类型相反于该应激层的应力类型。
14.如权利要求11所述的半导体结构,其中该第一应变条层大体平行于该有源区一最靠近的边缘,其中该第一应变条层具有一长度大于有害应力施加于该金属-氧化物-半导体装置的通道的途径。
15.如权利要求11所述的半导体结构,还包括一第二应变条层,位于与该第一应变条层相对侧的该有源区内,其中该第二应变条层被该应激层所围绕且位于一第二隔离区正上方。
16.如权利要求15所述的半导体结构,还包括一第三应变条层,大体垂直该第一及该第二应变条层,其中该第三应变条层被该应激层所围绕且位于一第三隔离区正上方。
17.如权利要求15所述的半导体结构,其中该第一及该第二应变条层与多个额外应变条层形成一封闭圈,且其中所述多个额外应变条层被该应激层所围绕且位于具有该第一及该第二隔离区的一连续隔离区上方。
18.一种半导体结构,包括:
一半导体基底;
一有源区,位于该半导体基底内;
一浅沟槽隔离区,位于该半导体基底内且与该有源区相邻;
一金属-氧化物-半导体装置,包括:
一栅极电极,位于该有源区上方;以及
一源极区及一漏极区位于该栅极电极的相对侧,其中该源极区及该漏极区与部份的该有源区重叠;
一接触孔蚀刻终止层,位于该有源区及该浅沟槽隔离区上方;
一无应激区,位于该浅沟槽隔离区上方且被该接触孔蚀刻终止层所围绕;
一应变条层,填入该无应激区;
一层间介电层,位于该接触孔蚀刻终止层上方;以及
一接触插塞,位于该层间介电层内,且与该源极区及该漏极区其中的一接触。
19.如权利要求18所述的半导体结构,其中该层间介电层延伸至该无应激区内以形成该应变条层。
20.如权利要求18所述的半导体结构,还包括一辅助接触插塞,位于该层间介电层内,其中该辅助接触插塞延伸至该无应激区内以形成该应变条层。
CN2008102158423A 2008-03-13 2008-09-05 半导体结构 Active CN101533853B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/048,135 2008-03-13
US12/048,135 US7943961B2 (en) 2008-03-13 2008-03-13 Strain bars in stressed layers of MOS devices

Publications (2)

Publication Number Publication Date
CN101533853A true CN101533853A (zh) 2009-09-16
CN101533853B CN101533853B (zh) 2011-05-18

Family

ID=41062063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102158423A Active CN101533853B (zh) 2008-03-13 2008-09-05 半导体结构

Country Status (2)

Country Link
US (2) US7943961B2 (zh)
CN (1) CN101533853B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088778A1 (zh) * 2010-12-29 2012-07-05 中国科学院微电子研究所 半导体器件及其形成方法
WO2013006990A1 (zh) * 2011-07-13 2013-01-17 中国科学院微电子研究所 隔离结构以及半导体结构的形成方法
CN102903751A (zh) * 2011-07-28 2013-01-30 联华电子股份有限公司 半导体元件及其制作方法
CN103779321A (zh) * 2012-10-25 2014-05-07 联华电子股份有限公司 具有接触插栓的半导体结构与其形成方法
CN103855077A (zh) * 2012-12-05 2014-06-11 联华电子股份有限公司 具有接触插栓的半导体结构与其形成方法
US8772127B2 (en) 2010-12-29 2014-07-08 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device and method for manufacturing the same
US10049929B2 (en) 2012-12-05 2018-08-14 United Microelectronics Corp. Method of making semiconductor structure having contact plug

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8558278B2 (en) 2007-01-16 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Strained transistor with optimized drive current and method of forming
JP5212362B2 (ja) * 2007-03-29 2013-06-19 富士通セミコンダクター株式会社 半導体装置の製造方法
US7943961B2 (en) 2008-03-13 2011-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Strain bars in stressed layers of MOS devices
US7808051B2 (en) 2008-09-29 2010-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Standard cell without OD space effect in Y-direction
JP5499641B2 (ja) * 2009-11-04 2014-05-21 富士通セミコンダクター株式会社 半導体装置及びその設計方法並びに半導体装置の製造方法
US8502316B2 (en) * 2010-02-11 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned two-step STI formation through dummy poly removal
US8354714B2 (en) * 2010-07-13 2013-01-15 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences SOI MOS device having BTS structure and manufacturing method thereof
US9202913B2 (en) * 2010-09-30 2015-12-01 Institute of Microelectronics, Chinese Academy of Sciences Method for manufacturing semiconductor structure
US8765561B2 (en) 2011-06-06 2014-07-01 United Microelectronics Corp. Method for fabricating semiconductor device
US8921944B2 (en) 2011-07-19 2014-12-30 United Microelectronics Corp. Semiconductor device
US8647941B2 (en) 2011-08-17 2014-02-11 United Microelectronics Corp. Method of forming semiconductor device
US8691659B2 (en) 2011-10-26 2014-04-08 United Microelectronics Corp. Method for forming void-free dielectric layer
US20130240997A1 (en) * 2012-03-19 2013-09-19 International Business Machines Corporation Contact bars for modifying stress in semiconductor device and related method
US8835243B2 (en) 2012-05-04 2014-09-16 United Microelectronics Corp. Semiconductor process
US8772120B2 (en) 2012-05-24 2014-07-08 United Microelectronics Corp. Semiconductor process
US8951876B2 (en) 2012-06-20 2015-02-10 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
EP2693462B1 (en) * 2012-07-31 2016-06-01 Imec Method for manufacturing semiconductor devices
FR3007195A1 (fr) * 2013-06-13 2014-12-19 St Microelectronics Rousset Transistor nmos a region active a contraintes en compression relachees, et procede de fabrication
FR3007198B1 (fr) * 2013-06-13 2015-06-19 St Microelectronics Rousset Composant, par exemple transistor nmos, a region active a contraintes en compression relachees, et procede de fabrication
US8895396B1 (en) 2013-07-11 2014-11-25 United Microelectronics Corp. Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures
US9728637B2 (en) 2013-11-14 2017-08-08 Taiwan Semiconductor Manufacturing Co., Ltd. Mechanism for forming semiconductor device with gate
US9343320B2 (en) 2013-12-06 2016-05-17 Globalfoundries Inc. Pattern factor dependency alleviation for eDRAM and logic devices with disposable fill to ease deep trench integration with fins
FR3018139B1 (fr) 2014-02-28 2018-04-27 Stmicroelectronics (Rousset) Sas Circuit integre a composants, par exemple transistors nmos, a regions actives a contraintes en compression relachees
FR3020499A1 (fr) * 2014-04-25 2015-10-30 St Microelectronics Sa Transistor pmos a mobilite des porteurs amelioree
US9947659B2 (en) * 2014-05-27 2018-04-17 Mediatek Inc. Fin field-effect transistor gated diode
KR102219096B1 (ko) 2014-08-06 2021-02-24 삼성전자주식회사 성능 개선을 위한 패턴 구조가 적용된 반도체 장치
FR3025335B1 (fr) 2014-08-29 2016-09-23 Stmicroelectronics Rousset Procede de fabrication d'un circuit integre rendant plus difficile une retro-conception du circuit integre et circuit integre correspondant
US10510751B2 (en) * 2017-08-25 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. FinFET isolation structure and method for fabricating the same
US10749036B2 (en) * 2018-08-03 2020-08-18 Shenzhen China Star Optoelectronics Technology Co., Ltd. Oxide semiconductor thin film transistor having spaced channel and barrier strips and manufacturing method thereof
KR20210153385A (ko) 2020-06-10 2021-12-17 삼성전자주식회사 집적회로 장치

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069094A (en) * 1976-12-30 1978-01-17 Rca Corporation Method of manufacturing apertured aluminum oxide substrates
JPS551103A (en) * 1978-06-06 1980-01-07 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor resistor
US4497683A (en) * 1982-05-03 1985-02-05 At&T Bell Laboratories Process for producing dielectrically isolated silicon devices
US4631803A (en) 1985-02-14 1986-12-30 Texas Instruments Incorporated Method of fabricating defect free trench isolation devices
US4892614A (en) * 1986-07-07 1990-01-09 Texas Instruments Incorporated Integrated circuit isolation process
JPH0640583B2 (ja) 1987-07-16 1994-05-25 株式会社東芝 半導体装置の製造方法
US4946799A (en) 1988-07-08 1990-08-07 Texas Instruments, Incorporated Process for making high performance silicon-on-insulator transistor with body node to source node connection
JPH0394479A (ja) * 1989-06-30 1991-04-19 Hitachi Ltd 感光性を有する半導体装置
US5155571A (en) 1990-08-06 1992-10-13 The Regents Of The University Of California Complementary field effect transistors having strained superlattice structure
JP3019430B2 (ja) * 1991-01-21 2000-03-13 ソニー株式会社 半導体集積回路装置
US5525828A (en) * 1991-10-31 1996-06-11 International Business Machines Corporation High speed silicon-based lateral junction photodetectors having recessed electrodes and thick oxide to reduce fringing fields
US5338960A (en) 1992-08-05 1994-08-16 Harris Corporation Formation of dual polarity source/drain extensions in lateral complementary channel MOS architectures
US5461250A (en) 1992-08-10 1995-10-24 International Business Machines Corporation SiGe thin film or SOI MOSFET and method for making the same
US5273915A (en) 1992-10-05 1993-12-28 Motorola, Inc. Method for fabricating bipolar junction and MOS transistors on SOI
EP0655785B1 (en) * 1993-11-30 2001-10-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and its manufacturing method
JPH0846139A (ja) 1994-05-06 1996-02-16 Texas Instr Inc <Ti> ポリシリコン抵抗器とその作成法
US5534713A (en) 1994-05-20 1996-07-09 International Business Machines Corporation Complementary metal-oxide semiconductor transistor logic using strained SI/SIGE heterostructure layers
US5479033A (en) 1994-05-27 1995-12-26 Sandia Corporation Complementary junction heterostructure field-effect transistor
US5447884A (en) 1994-06-29 1995-09-05 International Business Machines Corporation Shallow trench isolation with thin nitride liner
US6433382B1 (en) 1995-04-06 2002-08-13 Motorola, Inc. Split-gate vertically oriented EEPROM device and process
US5629544A (en) * 1995-04-25 1997-05-13 International Business Machines Corporation Semiconductor diode with silicide films and trench isolation
US5783850A (en) * 1995-04-27 1998-07-21 Taiwan Semiconductor Manufacturing Company Undoped polysilicon gate process for NMOS ESD protection circuits
US5955766A (en) 1995-06-12 1999-09-21 Kabushiki Kaisha Toshiba Diode with controlled breakdown
US5708288A (en) * 1995-11-02 1998-01-13 Motorola, Inc. Thin film silicon on insulator semiconductor integrated circuit with electrostatic damage protection and method
EP1008927A4 (en) * 1996-03-15 2007-04-18 Hitachi Ltd DISPLAY DEVICE AND WORKING METHOD FOR THE USE THEREOF
DE69624107T2 (de) 1996-07-18 2003-06-05 St Microelectronics Srl Flash-EEPROM-Zelle mit einziger Polysiliziumschicht und Verfahren zur Herstellung
TW335558B (en) 1996-09-03 1998-07-01 Ibm High temperature superconductivity in strained SiSiGe
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US5789807A (en) 1996-10-15 1998-08-04 International Business Machines Corporation On-chip power distribution for improved decoupling
US5811857A (en) 1996-10-22 1998-09-22 International Business Machines Corporation Silicon-on-insulator body-coupled gated diode for electrostatic discharge (ESD) and analog applications
US5763315A (en) * 1997-01-28 1998-06-09 International Business Machines Corporation Shallow trench isolation with oxide-nitride/oxynitride liner
US5714777A (en) * 1997-02-19 1998-02-03 International Business Machines Corporation Si/SiGe vertical junction field effect transistor
US5906951A (en) * 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
DE19720008A1 (de) 1997-05-13 1998-11-19 Siemens Ag Integrierte CMOS-Schaltungsanordnung und Verfahren zu deren Herstellung
US6027988A (en) * 1997-05-28 2000-02-22 The Regents Of The University Of California Method of separating films from bulk substrates by plasma immersion ion implantation
US5894152A (en) 1997-06-18 1999-04-13 International Business Machines Corporation SOI/bulk hybrid substrate and method of forming the same
JP3535527B2 (ja) 1997-06-24 2004-06-07 マサチューセッツ インスティテュート オブ テクノロジー 傾斜GeSi層と平坦化を用いたゲルマニウム・オン・シリコンの貫通転位の制御
US6221709B1 (en) 1997-06-30 2001-04-24 Stmicroelectronics, Inc. Method of fabricating a CMOS integrated circuit device with LDD N-channel transistor and non-LDD P-channel transistor
US6096591A (en) 1997-06-30 2000-08-01 Advanced Micro Devices, Inc. Method of making an IGFET and a protected resistor with reduced processing steps
US6103599A (en) 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
US6495900B1 (en) 1997-11-12 2002-12-17 Micron Technology, Inc. Insulator for electrical structure
EP0923116A1 (en) 1997-12-12 1999-06-16 STMicroelectronics S.r.l. Process for manufacturing integrated multi-crystal silicon resistors in MOS technology and integrated MOS device comprising multi-crystal silicon resistors
US6100153A (en) 1998-01-20 2000-08-08 International Business Machines Corporation Reliable diffusion resistor and diffusion capacitor
US5972722A (en) 1998-04-14 1999-10-26 Texas Instruments Incorporated Adhesion promoting sacrificial etch stop layer in advanced capacitor structures
JP3265569B2 (ja) * 1998-04-15 2002-03-11 日本電気株式会社 半導体装置及びその製造方法
US6558998B2 (en) * 1998-06-15 2003-05-06 Marc Belleville SOI type integrated circuit with a decoupling capacity and process for embodiment of such a circuit
JP3403076B2 (ja) * 1998-06-30 2003-05-06 株式会社東芝 半導体装置及びその製造方法
US6100204A (en) 1998-07-28 2000-08-08 Advanced Micro Devices, Inc. Method of making ultra thin gate oxide using aluminum oxide
US6387739B1 (en) * 1998-08-07 2002-05-14 International Business Machines Corporation Method and improved SOI body contact structure for transistors
US6008095A (en) 1998-08-07 1999-12-28 Advanced Micro Devices, Inc. Process for formation of isolation trenches with high-K gate dielectrics
US6015993A (en) * 1998-08-31 2000-01-18 International Business Machines Corporation Semiconductor diode with depleted polysilicon gate structure and method
JP2000132990A (ja) * 1998-10-27 2000-05-12 Fujitsu Ltd 冗長判定回路、半導体記憶装置及び冗長判定方法
US5965917A (en) 1999-01-04 1999-10-12 Advanced Micro Devices, Inc. Structure and method of formation of body contacts in SOI MOSFETS to elimate floating body effects
US6258664B1 (en) * 1999-02-16 2001-07-10 Micron Technology, Inc. Methods of forming silicon-comprising materials having roughened outer surfaces, and methods of forming capacitor constructions
TW403969B (en) * 1999-04-09 2000-09-01 United Microelectronics Corp Method for manufacturing metal oxide semiconductor
US6358791B1 (en) * 1999-06-04 2002-03-19 International Business Machines Corporation Method for increasing a very-large-scale-integrated (VLSI) capacitor size on bulk silicon and silicon-on-insulator (SOI) wafers and structure formed thereby
US6362082B1 (en) * 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
US6737710B2 (en) * 1999-06-30 2004-05-18 Intel Corporation Transistor structure having silicide source/drain extensions
US6339232B1 (en) * 1999-09-20 2002-01-15 Kabushika Kaisha Toshiba Semiconductor device
US6303479B1 (en) 1999-12-16 2001-10-16 Spinnaker Semiconductor, Inc. Method of manufacturing a short-channel FET with Schottky-barrier source and drain contacts
US6541343B1 (en) * 1999-12-30 2003-04-01 Intel Corporation Methods of making field effect transistor structure with partially isolated source/drain junctions
US7391087B2 (en) 1999-12-30 2008-06-24 Intel Corporation MOS transistor structure and method of fabrication
US6255175B1 (en) 2000-01-07 2001-07-03 Advanced Micro Devices, Inc. Fabrication of a field effect transistor with minimized parasitic Miller capacitance
TW503439B (en) 2000-01-21 2002-09-21 United Microelectronics Corp Combination structure of passive element and logic circuit on silicon on insulator wafer
US6475838B1 (en) 2000-03-14 2002-11-05 International Business Machines Corporation Methods for forming decoupling capacitors
US6396137B1 (en) * 2000-03-15 2002-05-28 Kevin Mark Klughart Integrated voltage/current/power regulator/switch system and method
JP3504212B2 (ja) 2000-04-04 2004-03-08 シャープ株式会社 Soi構造の半導体装置
US6420264B1 (en) * 2000-04-12 2002-07-16 Ultratech Stepper, Inc. Method of forming a silicide region in a Si substrate and a device having same
US6420218B1 (en) * 2000-04-24 2002-07-16 Advanced Micro Devices, Inc. Ultra-thin-body SOI MOS transistors having recessed source and drain regions
US6281059B1 (en) 2000-05-11 2001-08-28 Worldwide Semiconductor Manufacturing Corp. Method of doing ESD protective device ion implant without additional photo mask
DE10025264A1 (de) 2000-05-22 2001-11-29 Max Planck Gesellschaft Feldeffekt-Transistor auf der Basis von eingebetteten Clusterstrukturen und Verfahren zu seiner Herstellung
JP2001338988A (ja) 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
WO2001093338A1 (en) * 2000-05-26 2001-12-06 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
KR100393205B1 (ko) 2000-05-30 2003-07-31 삼성전자주식회사 자기정렬 콘택구조를 가진 메모리영역과 샐리사이디드된듀얼 게이트 구조의 로직영역이 병합된 mml 반도체소자 및 그 제조방법
JP3843708B2 (ja) * 2000-07-14 2006-11-08 日本電気株式会社 半導体装置およびその製造方法ならびに薄膜コンデンサ
JP2002043576A (ja) * 2000-07-24 2002-02-08 Univ Tohoku 半導体装置
US6429061B1 (en) 2000-07-26 2002-08-06 International Business Machines Corporation Method to fabricate a strained Si CMOS structure using selective epitaxial deposition of Si after device isolation formation
FR2812764B1 (fr) * 2000-08-02 2003-01-24 St Microelectronics Sa Procede de fabrication d'un substrat de type substrat-sur- isolant ou substrat-sur-vide et dispositif obtenu
JP2002076287A (ja) * 2000-08-28 2002-03-15 Nec Kansai Ltd 半導体装置およびその製造方法
JP4044276B2 (ja) * 2000-09-28 2008-02-06 株式会社東芝 半導体装置及びその製造方法
US6413802B1 (en) * 2000-10-23 2002-07-02 The Regents Of The University Of California Finfet transistor structures having a double gate channel extending vertically from a substrate and methods of manufacture
JP4597479B2 (ja) * 2000-11-22 2010-12-15 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP2004523103A (ja) 2000-12-04 2004-07-29 アンバーウェーブ システムズ コーポレイション 歪みシリコン表面チャネルmosfetを用いるcmosインバータ回路
US6414355B1 (en) * 2001-01-26 2002-07-02 Advanced Micro Devices, Inc. Silicon-on-insulator (SOI) chip having an active layer of non-uniform thickness
US6894324B2 (en) * 2001-02-15 2005-05-17 United Microelectronics Corp. Silicon-on-insulator diodes and ESD protection circuits
US6518610B2 (en) * 2001-02-20 2003-02-11 Micron Technology, Inc. Rhodium-rich oxygen barriers
US6475869B1 (en) 2001-02-26 2002-11-05 Advanced Micro Devices, Inc. Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
US6646322B2 (en) 2001-03-02 2003-11-11 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6603156B2 (en) 2001-03-31 2003-08-05 International Business Machines Corporation Strained silicon on insulator structures
US6867101B1 (en) * 2001-04-04 2005-03-15 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having a nitride/high-k/nitride gate dielectric stack by atomic layer deposition (ALD) and a device thereby formed
US6645861B2 (en) * 2001-04-18 2003-11-11 International Business Machines Corporation Self-aligned silicide process for silicon sidewall source and drain contacts
US6593181B2 (en) 2001-04-20 2003-07-15 International Business Machines Corporation Tailored insulator properties for devices
US6586311B2 (en) * 2001-04-25 2003-07-01 Advanced Micro Devices, Inc. Salicide block for silicon-on-insulator (SOI) applications
JP2002329861A (ja) 2001-05-01 2002-11-15 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6489684B1 (en) 2001-05-14 2002-12-03 Taiwan Semiconductor Manufacturing Company Reduction of electromigration in dual damascene connector
US6952040B2 (en) * 2001-06-29 2005-10-04 Intel Corporation Transistor structure and method of fabrication
US6576526B2 (en) * 2001-07-09 2003-06-10 Chartered Semiconductor Manufacturing Ltd. Darc layer for MIM process integration
US7138649B2 (en) 2001-08-09 2006-11-21 Amberwave Systems Corporation Dual-channel CMOS transistors with differentially strained channels
WO2003017336A2 (en) * 2001-08-13 2003-02-27 Amberwave Systems Corporation Dram trench capacitor and method of making the same
US6690082B2 (en) * 2001-09-28 2004-02-10 Agere Systems Inc. High dopant concentration diffused resistor and method of manufacture therefor
US6521952B1 (en) * 2001-10-22 2003-02-18 United Microelectronics Corp. Method of forming a silicon controlled rectifier devices in SOI CMOS process for on-chip ESD protection
US6555883B1 (en) * 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6621131B2 (en) * 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
US6703271B2 (en) 2001-11-30 2004-03-09 Taiwan Semiconductor Manufacturing Company Complementary metal oxide semiconductor transistor technology using selective epitaxy of a strained silicon germanium layer
US6657259B2 (en) 2001-12-04 2003-12-02 International Business Machines Corporation Multiple-plane FinFET CMOS
JP2003179157A (ja) * 2001-12-10 2003-06-27 Nec Corp Mos型半導体装置
US6657276B1 (en) 2001-12-10 2003-12-02 Advanced Micro Devices, Inc. Shallow trench isolation (STI) region with high-K liner and method of formation
US6600170B1 (en) 2001-12-17 2003-07-29 Advanced Micro Devices, Inc. CMOS with strained silicon channel NMOS and silicon germanium channel PMOS
FI119215B (fi) 2002-01-31 2008-08-29 Imbera Electronics Oy Menetelmä komponentin upottamiseksi alustaan ja elektroniikkamoduuli
JP4173672B2 (ja) 2002-03-19 2008-10-29 株式会社ルネサステクノロジ 半導体装置及びその製造方法
JP2003282726A (ja) 2002-03-27 2003-10-03 Nec Electronics Corp 半導体装置及びその製造方法
US6784101B1 (en) 2002-05-16 2004-08-31 Advanced Micro Devices Inc Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation
JP4136452B2 (ja) 2002-05-23 2008-08-20 株式会社ルネサステクノロジ 半導体装置及びその製造方法
WO2003105204A2 (en) * 2002-06-07 2003-12-18 Amberwave Systems Corporation Semiconductor devices having strained dual channel layers
US6900521B2 (en) * 2002-06-10 2005-05-31 Micron Technology, Inc. Vertical transistors and output prediction logic circuits containing same
US6812103B2 (en) 2002-06-20 2004-11-02 Micron Technology, Inc. Methods of fabricating a dielectric plug in MOSFETS to suppress short-channel effects
US6680240B1 (en) * 2002-06-25 2004-01-20 Advanced Micro Devices, Inc. Silicon-on-insulator device with strained device film and method for making the same with partial replacement of isolation oxide
US6617643B1 (en) 2002-06-28 2003-09-09 Mcnc Low power tunneling metal-oxide-semiconductor (MOS) device
US6740535B2 (en) 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6686247B1 (en) * 2002-08-22 2004-02-03 Intel Corporation Self-aligned contacts to gates
US6969618B2 (en) 2002-08-23 2005-11-29 Micron Technology, Inc. SOI device having increased reliability and reduced free floating body effects
JP4030383B2 (ja) 2002-08-26 2008-01-09 株式会社ルネサステクノロジ 半導体装置およびその製造方法
DE10240423B4 (de) 2002-09-02 2007-02-22 Advanced Micro Devices, Inc., Sunnyvale Halbleiterelement mit einem Feldeffekttransistor und einem passiven Kondensator mit reduziertem Leckstrom und einer verbesserten Kapazität pro Einheitsfläche und Verfahren zu dessen Herstellung
US6573172B1 (en) * 2002-09-16 2003-06-03 Advanced Micro Devices, Inc. Methods for improving carrier mobility of PMOS and NMOS devices
US6828211B2 (en) * 2002-10-01 2004-12-07 Taiwan Semiconductor Manufacturing Co., Ltd. Shallow trench filled with two or more dielectrics for isolation and coupling or for stress control
US6730573B1 (en) * 2002-11-01 2004-05-04 Chartered Semiconductor Manufacturing Ltd. MIM and metal resistor formation at CU beol using only one extra mask
US7022561B2 (en) * 2002-12-02 2006-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS device
US6734527B1 (en) * 2002-12-12 2004-05-11 Advanced Micro Devices, Inc. CMOS devices with balanced drive currents based on SiGe
US6720619B1 (en) * 2002-12-13 2004-04-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating partially-depleted, fully-depleted, and multiple-gate devices
US6919233B2 (en) 2002-12-31 2005-07-19 Texas Instruments Incorporated MIM capacitors and methods for fabricating same
US6924181B2 (en) 2003-02-13 2005-08-02 Taiwan Semiconductor Manufacturing Co., Ltd Strained silicon layer semiconductor product employing strained insulator layer
US6921913B2 (en) 2003-03-04 2005-07-26 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel transistor structure with lattice-mismatched zone
US6794764B1 (en) 2003-03-05 2004-09-21 Advanced Micro Devices, Inc. Charge-trapping memory arrays resistant to damage from contact hole information
US6845034B2 (en) 2003-03-11 2005-01-18 Micron Technology, Inc. Electronic systems, constructions for detecting properties of objects, and assemblies for identifying persons
US6762448B1 (en) 2003-04-03 2004-07-13 Advanced Micro Devices, Inc. FinFET device with multiple fin structures
US6900502B2 (en) * 2003-04-03 2005-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel on insulator device
US6882025B2 (en) * 2003-04-25 2005-04-19 Taiwan Semiconductor Manufacturing Company, Ltd. Strained-channel transistor and methods of manufacture
US6867433B2 (en) * 2003-04-30 2005-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating strained-channel partially-depleted, fully-depleted, and multiple-gate transistors
US7045849B2 (en) * 2003-05-21 2006-05-16 Sandisk Corporation Use of voids between elements in semiconductor structures for isolation
US6936506B1 (en) 2003-05-22 2005-08-30 Advanced Micro Devices, Inc. Strained-silicon devices with different silicon thicknesses
US7081395B2 (en) 2003-05-23 2006-07-25 Taiwan Semiconductor Manufacturing Co., Ltd. Silicon strain engineering accomplished via use of specific shallow trench isolation fill materials
US6982433B2 (en) * 2003-06-12 2006-01-03 Intel Corporation Gate-induced strain for MOS performance improvement
US20040266116A1 (en) 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
US20040262683A1 (en) 2003-06-27 2004-12-30 Bohr Mark T. PMOS transistor strain optimization with raised junction regions
US20050012087A1 (en) * 2003-07-15 2005-01-20 Yi-Ming Sheu Self-aligned MOSFET having an oxide region below the channel
US7078742B2 (en) * 2003-07-25 2006-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel semiconductor structure and method of fabricating the same
US6940705B2 (en) * 2003-07-25 2005-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor with enhanced performance and method of manufacture
US6936881B2 (en) 2003-07-25 2005-08-30 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor that includes high permittivity capacitor dielectric
US6891192B2 (en) * 2003-08-04 2005-05-10 International Business Machines Corporation Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions
US6830962B1 (en) 2003-08-05 2004-12-14 International Business Machines Corporation Self-aligned SOI with different crystal orientation using wafer bonding and SIMOX processes
US7101742B2 (en) 2003-08-12 2006-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Strained channel complementary field-effect transistors and methods of manufacture
US20050035369A1 (en) * 2003-08-15 2005-02-17 Chun-Chieh Lin Structure and method of forming integrated circuits utilizing strained channel transistors
US20050035410A1 (en) * 2003-08-15 2005-02-17 Yee-Chia Yeo Semiconductor diode with reduced leakage
US7112495B2 (en) 2003-08-15 2006-09-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method of a strained channel transistor and a second semiconductor component in an integrated circuit
US7071052B2 (en) 2003-08-18 2006-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Resistor with reduced leakage
US6939814B2 (en) * 2003-10-30 2005-09-06 International Business Machines Corporation Increasing carrier mobility in NFET and PFET transistors on a common wafer
US6872610B1 (en) * 2003-11-18 2005-03-29 Texas Instruments Incorporated Method for preventing polysilicon mushrooming during selective epitaxial processing
US7662689B2 (en) * 2003-12-23 2010-02-16 Intel Corporation Strained transistor integration for CMOS
US20050186722A1 (en) 2004-02-25 2005-08-25 Kuan-Lun Cheng Method and structure for CMOS device with stress relaxed by ion implantation of carbon or oxygen containing ions
US7224068B2 (en) 2004-04-06 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Stable metal structure with tungsten plug
US7115974B2 (en) 2004-04-27 2006-10-03 Taiwan Semiconductor Manfacturing Company, Ltd. Silicon oxycarbide and silicon carbonitride based materials for MOS devices
US7220630B2 (en) * 2004-05-21 2007-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method for selectively forming strained etch stop layers to improve FET charge carrier mobility
US20050266632A1 (en) 2004-05-26 2005-12-01 Yun-Hsiu Chen Integrated circuit with strained and non-strained transistors, and method of forming thereof
JP4700295B2 (ja) 2004-06-08 2011-06-15 富士通セミコンダクター株式会社 半導体装置とその製造方法
US7064066B1 (en) * 2004-12-07 2006-06-20 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric and a titanium carbide gate electrode
KR100585180B1 (ko) 2005-02-21 2006-05-30 삼성전자주식회사 동작 전류가 개선된 반도체 메모리 소자 및 그 제조방법
US7164163B2 (en) * 2005-02-22 2007-01-16 Taiwan Semiconductor Manufacturing Company, Ltd. Strained transistor with hybrid-strain inducing layer
US7528028B2 (en) * 2005-06-17 2009-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Super anneal for process induced strain modulation
KR100632046B1 (ko) * 2005-07-05 2006-10-04 동부일렉트로닉스 주식회사 반도체 소자의 게이트 라인 및 그 제조 방법
US7470943B2 (en) * 2005-08-22 2008-12-30 International Business Machines Corporation High performance MOSFET comprising a stressed gate metal silicide layer and method of fabricating the same
JP2007311491A (ja) 2006-05-17 2007-11-29 Toshiba Corp 半導体集積回路
US8558278B2 (en) 2007-01-16 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Strained transistor with optimized drive current and method of forming
US7800150B2 (en) * 2007-05-29 2010-09-21 United Microelectronics Corp. Semiconductor device
US7943961B2 (en) 2008-03-13 2011-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Strain bars in stressed layers of MOS devices
US7808051B2 (en) 2008-09-29 2010-10-05 Taiwan Semiconductor Manufacturing Company, Ltd. Standard cell without OD space effect in Y-direction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088778A1 (zh) * 2010-12-29 2012-07-05 中国科学院微电子研究所 半导体器件及其形成方法
US8772127B2 (en) 2010-12-29 2014-07-08 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device and method for manufacturing the same
WO2013006990A1 (zh) * 2011-07-13 2013-01-17 中国科学院微电子研究所 隔离结构以及半导体结构的形成方法
CN102903751A (zh) * 2011-07-28 2013-01-30 联华电子股份有限公司 半导体元件及其制作方法
CN102903751B (zh) * 2011-07-28 2017-06-06 联华电子股份有限公司 半导体元件及其制作方法
CN103779321A (zh) * 2012-10-25 2014-05-07 联华电子股份有限公司 具有接触插栓的半导体结构与其形成方法
CN103855077A (zh) * 2012-12-05 2014-06-11 联华电子股份有限公司 具有接触插栓的半导体结构与其形成方法
CN103855077B (zh) * 2012-12-05 2018-07-10 联华电子股份有限公司 具有接触插栓的半导体结构与其形成方法
US10049929B2 (en) 2012-12-05 2018-08-14 United Microelectronics Corp. Method of making semiconductor structure having contact plug

Also Published As

Publication number Publication date
US8389316B2 (en) 2013-03-05
US20090230439A1 (en) 2009-09-17
CN101533853B (zh) 2011-05-18
US7943961B2 (en) 2011-05-17
US20110195554A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
CN101533853B (zh) 半导体结构
CN108735816B (zh) 邻近垂直晶体管装置的底部源/漏区的气隙
CN100385626C (zh) 形成用于半导体器件的栅极结构的方法和半导体器件
US7285488B2 (en) Method of fabricating strained channel field effect transistor pair having underlapped dual liners
US20170278837A1 (en) Semiconductor power device having shielded gate structure and esd clamp diode manufactured with less mask process
TWI382533B (zh) 改良式雙重應力襯墊
US20180301559A1 (en) Semiconductor device and method of forming the same
US6518622B1 (en) Vertical replacement gate (VRG) MOSFET with a conductive layer adjacent a source/drain region and method of manufacture therefor
US20120273891A1 (en) Semiconductor device with reduced surface field effect and methods of fabrication the same
US9263392B1 (en) Semiconductor device and method for fabricating the same
US7230270B2 (en) Self-aligned double gate device and method for forming same
CN106992173B (zh) 包括场效应晶体管的半导体器件
US20160336417A1 (en) Semiconductor device and method for fabricating the same
US9406771B1 (en) Semiconductor structure and manufacturing method thereof
US20200127089A1 (en) Semiconductor device and manufacturing method thereof
US20190074211A1 (en) Semiconductor device
US20090309169A1 (en) Structure for Preventing Leakage of a Semiconductor Device
JP2006059841A (ja) 半導体装置及び半導体装置の製造方法
US7863646B2 (en) Dual oxide stress liner
US20130009250A1 (en) Dummy patterns for improving width dependent device mismatch in high-k metal gate process
US20040135234A1 (en) Semiconductor device with MOS transistors with an etch-stop layer having an improved residual stress level and method for fabricating such a semiconductor device
US9847403B2 (en) Semiconductor device and a fabrication method thereof
US20140131804A1 (en) Semiconductor structure
CN109427680B (zh) 半导体装置及其制造方法
US9349728B1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant