CN101511493A - 用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积 - Google Patents

用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积 Download PDF

Info

Publication number
CN101511493A
CN101511493A CNA2006800396712A CN200680039671A CN101511493A CN 101511493 A CN101511493 A CN 101511493A CN A2006800396712 A CNA2006800396712 A CN A2006800396712A CN 200680039671 A CN200680039671 A CN 200680039671A CN 101511493 A CN101511493 A CN 101511493A
Authority
CN
China
Prior art keywords
substrate
target
described method
perovskite
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800396712A
Other languages
English (en)
Other versions
CN101511493B (zh
Inventor
张红梅
理查德·E·德马雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Symmorphix Inc
Original Assignee
Symmorphix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symmorphix Inc filed Critical Symmorphix Inc
Publication of CN101511493A publication Critical patent/CN101511493A/zh
Application granted granted Critical
Publication of CN101511493B publication Critical patent/CN101511493B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/085Vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure

Abstract

根据本发明,提出了通过脉冲dc物理气相沉积方法或通过RF溅射方法沉积钙钛矿材料例如钛酸锶钡(BST)膜。这样一种沉积可以提供钙钛矿层的高沉积速率的沉积。所述沉积的一些实施方案解决了对钙钛矿膜的高速率沉积的需要,所述钙钛矿膜可以用作电容器、其它能量储存器件和微电子应用中的电介质层。根据本发明的方法的实施方案可以消除常规上使所述BST层结晶所需的高温(>700℃)退火步骤。

Description

用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积
发明领域
[001]本发明涉及介电薄膜的生产和应用,并且特别是涉及用于介电应用的钙钛矿诸如钛酸锶钡(BST)膜和其它陶瓷氧化物的沉积。
相关技术讨论
[002]钙钛矿膜,例如钛酸锶钡(BST)膜,对于用于高密度器件应用的电容器中的用途是一种有吸引力的材料,原因在于它的较高介电常数、低泄漏电流密度、高介电击穿强度和不表现出疲劳的铁电性钙钛矿相。然而,所述钙钛矿膜的电性质非常依赖于沉积方法、衬底、后处理和相关的膜结构。对于全部电势,薄膜钙钛矿很少应用在制造中,主要因为难以控制钙钛矿薄膜材料的晶相和非晶相的物理和化学性质以及它们与金属的和导电的电极的相互作用。
[003]固态薄膜器件一般是通过将金属和电介质的薄膜层叠在衬底上形成的。所述薄膜一般包括两个金属电极以及在之间的电介质层。可以利用许多沉积方法,包括溅射、电镀、化学气相沉积、溶胶凝胶或氧化来沉积所述薄膜。适于这些应用的衬底常规上是高温材料,该高温材料能够经受住至少一个至少650-750℃的高温退火过程,使得钙钛矿电介质膜结晶以增加它的介电常数。这样一种衬底可以是具有适当结构和材料性质的任何适合的材料,例如半导体晶片、难熔金属片(例如,钛、锆或不锈钢),陶瓷诸如氧化铝,或能经受住后来的高温处理的其它材料。
[004]然而,常规材料和生产方法可能限制可用于器件制造的材料类型。一般,将电介质材料以非晶态形式沉积,并且然后在退火处理中加热所述材料以形成结晶材料。例如,常规上形成钙钛矿层需要650℃以上的退火以将沉积的非晶膜转变成晶态。然而,这样一种高温退火严格限制可以用作衬底的材料,并且经常需要使用昂贵的贵金属诸如铂以防止所述衬底与电极材料反应。这种高温处理的温度与标准半导体或MEM器件加工是不相容的,并且限制在其上可以形成层的衬底材料的选择,从而增加成本并且降低用所述层形成的这些器件的产量。
[005]因此,需要用于将结晶材料,例如钙钛矿材料和其它陶瓷氧化物沉积到衬底上的低温方法。
概述
[006]根据本发明,提出了在脉冲DC物理气相沉积方法中由导电陶瓷靶沉积层。在一些实施方案中,所述沉积可以提供来自导电BST靶的BST致密非晶层的低温、高沉积速率的沉积,所述非晶层可以在远远更低的温度下退火以产生结晶的BST。所述沉积的一些实施方案解决了对钙钛矿膜例如BST膜的低温、高速率沉积的需要,所述钙钛矿膜可以用作高比电容器件的电介质层,所述高比电容器件是例如,去耦电容器、能量储存器件、电压可调电容器或其它微电子器件。
[007]根据本发明的一些实施方案的沉积钙钛矿或陶瓷氧化物层的方法包括将衬底放在反应器中;使气体混合物例如氩气和氧气流过所述反应器;并且将脉冲DC功率施加到相对所述衬底放置的靶上,所述靶由导电的钙钛矿或陶瓷氧化物材料诸如BST形成。
[008]在一些实施方案中,可以利用射频(RF)溅射形成钙钛矿层。通过宽面积靶在溅射气体存在下、在均匀靶侵蚀的条件下的RF溅射沉积所述钙钛矿。将所述衬底相对由钙钛矿例如BST形成的平面靶放置,所述靶的面积大于所述衬底的面积。与所述衬底相同尺寸并且覆盖所述衬底的靶的中心区域暴露于均匀的等离子体环境下,这提供均匀靶侵蚀的条件。在没有称为二极管溅射的磁性增强的情况下,或者通过在平行于靶平面的平面中跨过靶扫描磁铁而提供时间平均的均匀磁场,可以产生均匀的等离子体环境。
[009]利用采用导电陶瓷靶的脉冲直流、偏压PVD方法产生的膜可以以比需要RF溅射方法的绝缘陶瓷方法高得多的速率沉积。另外,相对于金属靶,在存在于气流中的少得多的氧气的情况下发生沉积而提供充分氧化的膜。得到的膜在密度方面比低速率膜更高。所述膜可以是理想配比的、均匀的、高度致密的,具有低烧结温度和得到的高介电性质。
[010]在一些实施方案中,将所述衬底预热。可以将所述衬底加热到在用于低温钙钛矿沉积的沉积中的约400℃或更低的温度,或在能经受住这种温度条件的衬底上的钙钛矿沉积的更高温度。适于低温钙钛矿沉积的衬底包括玻璃、塑料、金属箔、不锈钢和铜。虽然可以形成任何厚度的层,但是可以沉积厚度高达几微米厚的钙钛矿层。
[011]在一些实施方案中,随后将形成在所述衬底上的钙钛矿层退火。对于低温退火,所述退火温度可以低到400℃,而对于能经受住这种更高温度条件的衬底上的钙钛矿沉积,所述退火温度可以是更高的。在一些实施方案中,所述钙钛矿靶可以掺杂有过渡金属掺杂剂,例如锰,过渡元素,镧系元素(包括稀土离子)和/或两性元素。
[012]在一些实施方案中,可以形成叠层式电容器结构。所述叠层式电容器结构包括沉积在薄衬底上的一个或多个电容器叠层,其中每个电容器叠层包括:下电极层,钙钛矿例如BST;沉积在所述下电极层上的电介质层;和沉积在所述电介质层上的上电极层。顶部导电层可以沉积在所述电容器叠层上。
[013]在一些实施方案中,可以在群集设备(cluster tool)中形成电容器结构。在群集设备中生产电容器的示例性方法包括将衬底装载到所述群集设备中;在所述群集设备的第一室中将电极层沉积在所述衬底上;在所述群集设备的第二室中将钙钛矿电介质层沉积在所述电极层上;在第三室中将第二电极层沉积在所述电介质层上。在一些实施方案中,可以在相同室中沉积第一和第二电极层。
[014]用于固定薄衬底的固定设备可以包括顶部部分;和底部部分,其中当将所述顶部部分附于所述底部部分上时固定所述薄衬底。
[015]在一些实施方案中,所述陶瓷层可以沉积在用铱或其它难熔导电材料涂覆的衬底上以提供低温退火处理的电容结构。
[016]下面参考下列附图,进一步讨论本发明的这些和其它实施方案。应当理解,上面的总体描述和下列详细说明仅是示例性和说明性的,并且不限制所要求保护的本发明。另外,关于根据本发明的材料的沉积或性能的具体说明或理论只是为了说明而提出的,并且不被认为是对本发明的内容或权利要求的范围的限制。
附图简述
[017]图1A和1B说明可以在根据本发明的沉积方法中使用的脉冲DC偏压的反应沉积装置。
[018]图1C说明RF溅射沉积装置。
[019]图2显示可以在图1A、1B、和1C中说明的反应器中使用的靶的一个实例。
[020]图3A和3B说明根据本发明的一些实施方案的一种薄膜电容器设计。
[021]图4A、4B、4C和4D说明可以在介电钙钛矿层,例如根据本发明的一些实施方案沉积的BST膜的沉积中使用的薄衬底支架和掩模配置。
[022]图5说明可以用于形成具有根据本发明的一些实施方案沉积的介电钙钛矿层的电池的群集设备。
[023]图6说明具有根据本发明的一些实施方案沉积的介电钙钛矿层的叠层式电容器结构的一个实例。
[024]在所述图中,具有相同标记的元件具有相同或类似的功能。
详述
[025]根据本发明的实施方案,利用导电的陶瓷靶,通过脉冲DC物理气相沉积(PVD)方法,将介电钙钛矿膜或其它陶瓷氧化物膜沉积在衬底上。在一些实施方案中,可以通过RF溅射沉积所述膜。
[026]在一些实施方案中,仅在低温退火情况下,将介电钙钛矿层例如BST材料直接沉积在所述衬底上,从而消除随后使所述膜结晶的高温退火的需要。消除所述高温退火允许在重量轻的、低温和低成本衬底诸如铜箔和塑料片上形成电容器结构,从而减少电容器的重量和成本,同时保持钙钛矿例如BST,即高密度电介质膜的高介电常数。
[027]通过脉冲DC、RF偏压反应性离子沉积的材料沉积在张红梅等的2002年3月16日提交的美国专利申请序号10/101,863中有描述,其标题为“氧化物膜的偏压脉冲DC反应性溅射(biased Pulse DC reactiveSputtering of Oxide Films)”。靶的制备在Vassiliki Milonopoulou等的2002年3月16日提交的美国专利申请序号10/101,341中有描述,其标题为“用于介电平面应用的稀土预合金化的PVD靶(Rare-Earth Pre-Alloyed PVDtargets for Dielectric Planar Applications)”。与本公开一样,美国专利申请序号10/101,863和美国专利申请序号10/101,341各自被转让给相同的受让人并且它们的全部内容各自结合在此。在美国专利号6,506,289中也描述了通过RF溅射的氧化物材料的沉积,该美国专利的全部内容通过引用结合在此。利用与具体描述在美国专利号6,506,289和美国申请序号10/101,863中的方法类似的方法,可以沉积透明的氧化物膜。
[028]图1A显示根据本发明用于从靶12溅射材料的反应器装置10的示意图。在一些实施方案中,例如,装置10可以由来自Applied Komatsu的AKT-1600 PVD(400×500mm衬底尺寸)系统或来自Applied Komatsu,SantaClara,CA的AKT-4300(600×720mm衬底尺寸)的系统来改装。例如,AKT-1600反应器具有通过真空传输室连接的三个沉积室。可以改进这些AKT反应器使得在材料膜的沉积过程中,将脉冲DC功率供应到靶上并且将RF功率供应到衬底上。
[029]装置10包括靶12,该靶12通过滤波器15与脉冲DC电源14电连接。在一些实施方案中,靶12是提供沉积在衬底16上的材料的宽面积溅射源的靶。将衬底16与靶12平行并且相对放置。靶12在从脉冲DC电源14将功率施加到其上时起着阴极的作用,并且被等效称为阴极。将功率施加到靶12上产生等离子体53。将衬底16通过绝缘体54与电极17电容连接。可以将电极17连接到RF电源18上。将磁铁20跨过靶12的顶部扫描。
[030]对于如通过装置10进行的脉冲反应性DC磁控管溅射,通过电源14供应到靶12上的电源的极性在负电压和正电压之间振荡。在正的周期中,在靶12的表面上的绝缘层放电。为了获得无电弧沉积,脉冲频率超过临界频率,所述临界频率可以取决于靶材料、阴极电流和反向时间。使用如装置10中所示的反应性脉冲DC磁控管溅射,可以制备高质量膜。
[031]脉冲DC电源14可以是任何脉冲DC电源,例如Advanced Energy,Inc的AE Pinnacle plus 10K。使用这种DC电源,可以以在0和350kHz之间的频率供应高达10kW的脉冲DC功率。反向电压可以是负的靶电压的10%。使用其它电源可能导致不同的功率特性、频率特性和反向电压百分比。可以将关于电源14的这种实施方案的反向时间调整在0和5μs之间。
[032]滤波器15防止来自电源18的偏压功率耦合到脉冲DC电源14中。在一些实施方案中,电源18可以是2MHzRF电源,例如由ENI,ColoradoSprings,Co.制造的Nova-25电源。
[033]在一些实施方案中,滤波器15可以是2MHz正弦波带阻滤波器。在一些实施方案中,滤波器的带宽可以是约100kHz。因此,滤波器15防止来自对衬底16的偏压的2MHz功率损害电源14,同时允许脉冲DC电源的满(full)带宽通过。
[034]脉冲DC沉积的膜不是充分致密的,并且可能具有柱状结构。由于在柱状物之间的边界,柱状结构可能对高密度是重要的薄膜应用如阻挡膜和电介质膜有害。所述柱状物起着降低材料的介电强度的作用,但是可以提供使电流、离子电流、气体或其它化学试剂如水传输或扩散的扩散通道。
[035]在AKT-1600基系统中,例如,靶12可以具有约675.70×582.48×4mm的有效尺寸,以便在具有约400×500mm的尺寸的衬底16上沉积膜。衬底16的温度可以调节到-50℃和500℃之间。靶12和衬底16之间的距离可以在约3和约9cm之间。可以将工艺气体以高达200sccm的速率引入到装置10的室中,同时可以将在装置10的室中的压力保持在约.7和6毫托之间。磁铁20提供被定向在靶12的平面内、强度在约400和约600高斯之间的磁场,并且以小于约20-30秒/扫描的速率横跨靶12移动。在使用AKT 1600反应器的一些实施方案中,磁铁20可以是尺寸为约150mm×600mm的跑道形磁铁。
[036]在本发明的一些实施方案中,通过使用宽面积靶和均匀靶侵蚀条件的RF溅射沉积钙钛矿层。在图1C中示意性说明了用于RF溅射的示例性装置30。装置30包括连接到宽面积溅射源靶12的RF电源60,所述宽面积溅射源靶12提供要沉积在衬底16上的材料。将衬底16平行于并且相对靶12放置。靶12在将RF功率施加到其上时起着阴极的作用,并等效地称为阴极。在本公开中,靶12可以由钙钛矿材料例如BST形成以沉积介电钙钛矿膜。衬底16是固体的光滑表面。一般将衬底16支撑在可以大于衬底16的支架或载体片17上。
[037]在一些实施方案中,RF溅射方法的特征是,宽面积靶12的面积大于在其上实现物理和化学均匀沉积的载体片上的面积。其次,覆盖衬底16的靶12上的中心区域可以具有非常均匀的靶材料溅射侵蚀的条件。均匀的靶侵蚀是均匀的等离子体环境的结果。在下列讨论中,将靶侵蚀的均匀条件的全部叙述认为是等效于均匀的等离子体环境。均匀的靶侵蚀是通过在整个长期的靶寿命中膜均匀性的持久性而证实的。将均匀沉积的膜定义为,当在衬底晶片的整个表面上的代表性点测量时,厚度不均匀性小于约5%的膜。按照惯例,将厚度不均匀性定义为最小和最大厚度之间的差除以两倍的平均厚度。如果从恒定的工艺条件之下已经除去大于靶重量的约20%的靶所沉积的膜继续表现出厚度均匀性,则将溅射过程判断为在靶寿命期间沉积的所有膜均处于均匀的靶侵蚀条件中。
[038]因而,可以在覆盖所述衬底的靶和衬底之间的区域中产生均匀的等离子体环境。在图1B的分解图中显示了均匀等离子体环境的区域。在表示为51的区域中产生等离子体,该区域在整个靶12之下延伸。靶52的中心区域经历均匀溅射侵蚀的条件。如下进一步讨论,沉积在被放置于中心区域52下面的任何地方的衬底上的层将具有均匀的膜厚度。
[039]另外,其中沉积提供均匀膜厚度的区域大于其中沉积提供具有均匀物理或光学性质诸如化学组成或折射率的膜的区域。在本发明中,所述靶可以是平坦的或近似平坦的,以在将涂覆有靶材料的平坦衬底上形成膜。在实践中,靶的平面化指的是区域52中的靶表面的全部部分在理想平坦表面的几毫米之内,一般在0.5mm之内。
[040]图2说明了靶12的一个实例。在被放置在直接相对于靶12的区域52的载体片17上的衬底上沉积的膜具有良好的厚度均匀性。区域52是暴露于均匀等离子体环境下的图1B中显示的区域。在一些实施方案中,载体17可以是随着区域52同延的。图2中显示的区域24表示在其下面可以实现物理和化学均匀沉积的区域,例如物理和化学的均匀性提供折射率均匀性的区域。图2显示提供厚度均匀性的靶12的区域52,其通常大于对所述沉积膜提供厚度和化学均匀性的靶12的区域24。然而,在优化的方法中,区域52和24可以是同延的。
[041]在一些实施方案中,磁铁20在一个方向,例如图2中的Y方向上延伸到区域52以外,所以扫描仅在一个方向例如X方向上是必要的,以提供时间平均的均匀磁场。如图1A和1B所示,可以在跨过靶12的整个范围上扫描磁铁20,所述靶12大于均匀溅射侵蚀的区域52。磁铁20在平行于靶12的平面中移动。
[042]均匀靶12与大于衬底16的面积的靶区域52的组合可以提供高度均匀的厚度的膜。另外,沉积的膜的材料性质可以是高度均匀的。在靶表面的溅射条件诸如侵蚀的均匀性,在靶表面的等离子体的平均温度和靶表面与处理的气相环境的平衡在大于或等于涂有均匀膜厚度的区域的区域上是均匀的。另外,均匀膜厚度的区域大于或等于具有高度均匀的光学性质诸如折射率、密度、透射或吸收的膜的区域。
[043]在本公开中,靶12可以由钙钛矿材料例如BST形成,以沉积介电钙钛矿膜。在本发明的一些实施方案中,钙钛矿靶掺杂有过渡金属掺杂剂例如锰、过渡元素、镧系元素(包括稀土离子)和/或两性元素。在本发明的一些实施方案中,钙钛矿靶中的掺杂剂的百分比是0.1%至几%。
[044]在本发明的一些实施方案中,形成材料砖(tile)。可以将这些砖安装在垫板上以形成用于装置10的靶。宽面积的溅射阴极靶可以由更小的砖的密集阵列形成。因此,靶12可以包含多块砖,例如在2至60块之间的独立砖。可以将砖精加工成一定尺寸,使得提供小于约0.010"至约0.020"或小于半毫米的非接触的砖与砖的边宽(margin),以消除可能发生在砖30的相邻砖之间的等离子体处理。在图1B中,在靶12的砖和暗区阳极或接地屏蔽19之间的距离可以略大,以提供非接触组件或者在处理室调节或操作过程中提供热膨胀公差。
[045]如在图1B中所示,在覆盖衬底16的区域中,可以在靶12和衬底16之间的区域内产生均匀的等离子体环境。可以在整个靶12下面延伸的区域51中产生等离子体53。靶12的中心区域52可以经受均匀的溅射侵蚀的条件。如在此进一步论述那样,那么沉积在置于中心区域52下面的任何地方的衬底上的层在厚度和其它性能方面(即,介电性、光学指数或材料浓度)可以是均匀的。另外,在区域52中,所述沉积提供沉积膜的均匀性,所述沉积膜可以大于其中所述沉积提供具有均匀物理或光学性质诸如化学组成或折射率的膜的区域。在一些实施方案中,靶12基本上是平坦的,以便在衬底16沉积的膜中提供均匀性。在实践中,靶12的平面性可以指的是,区域52中的靶表面的全部部分在平坦表面的几毫米之内,并且一般可以在平坦表面的0.5mm之内。
[046]提供恒定的氧气供应以保持靶表面氧化的反应性气体可以被提供以扩大方法窗口(window)。可以用于控制表面氧化的气体的一些实例是O2、水蒸气、氢、N2O、氟、氦和铯。另外,可以合并反馈控制系统以控制反应室中的氧分压。因此,可以控制各种氧气流速以保持得到的等离子体中稳定的氧分压。其它类型的控制系统诸如靶电压控制和光学等离子体发射控制系统也可以用于控制所述靶的表面氧化。在一些实施方案中,可以在供应14的反馈回路中控制靶12的功率。另外,氧分压控制器20可以控制等离子体53中的氧分压或氩分压。在本发明一些实施方案中,氧流或分压可以用于保持来自靶12的恒定的放电电压。
[047]图3A和3B显示具有根据本发明的一些实施方案沉积的介电钙钛矿层的电容器结构。如图3A中所示,介电钙钛矿层302沉积在衬底301上。在一些实施方案中,可以将电介质层302在衬底301的沉积以前以多种方式形成图案。在一些实施方案中,第一电极层303可以沉积在所述衬底上并且电介质层302沉积在第一电极层上。然后将第二电极层304沉积在电介质层302上。在本发明的一些实施方案中,介电钙钛矿层302是结晶的,并且具有足够高的介电常数,而无需高温退火。因此,衬底301可以是硅晶片、钛金属、氧化铝或其它常规的高温衬底,而且还可以是低温材料诸如塑料、玻璃或可能易受来自高温退火的损害的其它材料。该特征可以具有减少通过本发明形成的电容器结构的费用和重量的巨大优点。钙钛矿材料的低温沉积允许一个接一个地连续沉积钙钛矿和电极层。这种一种方法具有下列优点:电容器结构的连续层是在不包括衬底层的情况下以叠层状态获得的。与具有较小表面积的单层器件相比,叠层层状电容器提供更高的电容和更高的能量储存。另外,可以获得具有更低电感的电容器。
[048]根据本发明,可以使用如上所述的脉冲DC偏压的PVD系统在衬底302上沉积钙钛矿膜。特别是,可以改进AKT 1600 PVD系统以提供RF偏压,并且可以使用Advanced Energy Pinnacle plus 10K脉冲DC电源对靶提供功率。电源的脉冲频率可以从约0KHz变化至约350KHz。电源的输出功率在0和约10kW之间。
[049]在高速率脉冲dc溅射的情况下,可以使用电阻率在小于约数兆欧的范围内的钛酸钡锶的靶。如上所述,所述靶可以被安装在如2005年8月26日提交的美国临时申请{律师备案号09140.6013}中描述的单片垫板上,该美国临时申请的全部内容也通过引用结合于此。
[050]通常,靶12可以是具有小于约一兆欧姆的电阻率的电介质材料,并且因此可以被描述为导电陶瓷靶。通过配制以含有过量的金属组成,或通过添加提供足够的电导率的掺杂剂,使由可能不是固有导电的介电钙钛矿材料形成的靶12变得导电。适合的掺杂剂的实例包括硼、锑、砷、磷、或其它掺杂剂。在BST靶的实例中,可以在还原环境的存在下进行烧结处理以实现充分导电的靶材料。导电陶瓷靶材料的应用可以利用反应性脉冲DC技术以高速率溅射以形成致密的理想配比电介质膜。
[051]可以利用含有氧气和氩气的气流。在一些实施方案中,氧气与氩气的比率在0至约50%的范围内,以及总气流在约60至约80sccm之间。在沉积期间,脉冲频率在约200kHz至约350kHz的范围内。还可以将RF偏压施加到所述衬底。在许多试验中,根据O2/Ar比率以及衬底偏压,沉积速率从约2埃/(kW sec)变化至约1埃/(kW sec)。
[052]图3A说明根据本发明的一些实施方案沉积在薄衬底301上的钙钛矿材料302的层。衬底301可以由薄金属片(例如,铜、钛、不锈钢、或其它适合的薄金属片)形成,可以由高温塑料材料形成,或可以由陶瓷、玻璃或聚合物材料形成。
[053]在薄衬底上沉积材料涉及在沉积期间固定并放置所述衬底。图4A、4B、4C和4D说明用于固定薄膜衬底的可重复使用的固定设备400。如图4A中所示,可重复使用的固定设备400包括固定在一起以紧固所述衬底的顶部部分401和底部部分402。薄衬底301被放置在顶部部分401和底部部分402之间。如图7B中所示,顶部部分701和底部部分702使得当将顶部部分401闭合到底部部分402中时,衬底301达到平面状态,随后被夹紧。衬底301可以容易地被固定设备400固定,使得可以操作并放置衬底301。在一些实施方案中,除去衬底301的角,即区域403,以便在将顶部部分401闭合到底部部分402中时,通过避免“卷绕”夹角效应而更容易展开衬底301。
[054]如图4C中所示,可以将掩模412附着到固定设备400上。在一些实施方案中,固定设备400包括导向装置以使固定设备400相对于掩模412对准。在一些实施方案中,可以将掩模412附着到固定设备400上,并且与固定设备400一起移动。可以将掩模412放置在固定设备400中的衬底301上的任何适宜的高度。因此,掩模412可以起着接触或接近式掩模的作用。在一些实施方案中,掩模412由安装在类似于固定设备400的固定设备中的另一个薄衬底形成。
[055]如图4C和4D中所示,可以将固定设备400和掩模412相对于支架410放置。例如,支架410可以是处理室的基座、支架或静电卡盘,例如图1A和1B所示的支架。固定设备400和掩模412可以具有允许相互并且相对于支架410容易对准的特征。在一些实施方案中,掩模412居于处理室之中,并且如图4D中所示,在将固定设备400放置在支架410上的过程中与固定设备400对准。
[056]利用如图4A、4B、4C和4D中所示的固定设备400允许在处理室中处理薄膜衬底。在一些实施方案中,薄膜衬底可以约为1μm或更大。此外,一旦被安装在固定设备400中,就可以将薄膜衬底301处理并且从处理室移动到处理室。因此,可以使用多处理器室系统形成层的叠层,包括根据本发明实施方案沉积的一层或多层钙钛矿膜。
[057]图5说明了用于处理薄膜衬底的群集设备500。例如,群集设备500可以包括装载锁(load lock)502和装载锁503,通过所述装载锁装载被安装的薄膜衬底301并且从群集设备500中取出得到的器件。室504、505、506、507和508是用于材料的沉积、热处理、蚀刻或其它处理的处理室。室504、505、506、507和508中的一个或多个可以是上面对图1A和1B所述,以及在其中可以根据本发明的实施方案沉积介电钙钛矿膜的脉冲DC PVD室或RF PVD室。
[058]处理室504、505、506、507和508以及装载锁502和503是由传输室501连接的。传输室501包括在处理室504、505、506、507及508与装载锁502及503之间来回移动各个晶片的衬底传输机械手臂。
[059]在薄膜电容器的生产中,将衬底装载到装载锁503中。可以在室504中沉积电极层,随后在室505中进行钙钛矿沉积。然后通过装载锁503将衬底取出,用于在群集设备500外面的空气中的热处理。然后可以通过装载锁502将处理的晶片重新装载到群集设备500中。然后可以再次将所述晶片从群集设备500取出,用于第二电极层的沉积,或有时可以改装室506以沉积第二电极层。可以重复所述方法以形成电容器叠层。然后将完成的电容器结构从装载锁502中的群集设备500卸载。通过传输室501中的机械手臂从室到室来回移动晶片。
[060]根据本发明产生的电容器结构可以利用装载在固定设备诸如固定设备400中的薄膜衬底。然后将固定设备400装载到装载锁503中。室504还可以包括所述电极层的沉积。然后,室505包括根据本发明的实施方案的钙钛矿层的沉积。然后可以在室506中沉积第二电极层。在该方法中,仅利用低温退火以增加结晶度和所述钙钛矿层的介电常数。
[061]薄膜电容器方法的另一个优点是层叠电容器结构的能力。换言之,装载到群集设备500中的衬底可以多次横穿处理室504、505、506、507和508以便产生多层叠层式电容器结构。图6A和6B说明了这种结构。
[062]图6A说明了并联连接的叠层。如图6A中所示,将例如可以是高温塑料衬底诸如聚酰亚胺的衬底301装载到装载锁503中。可以将例如电极层303在室504中沉积。然后将介电钙钛矿层302沉积在电极层303上。根据本发明的实施方案,钙钛矿层302可以是约0.1至1μm,并且可以在室505中沉积。然后可以将所述晶片移动至室506中,在此沉积厚度约为0.1μm或更大的下一个电极层304。然后可以将第二电容器叠层沉积在第一电容器叠层上,所述第一电容器叠层由第一电极层303,钙钛矿层302和第二电极层304形成。该电容器叠层包括第二钙钛矿层305和第三电极层306。在一些实施方案中,可以形成另外的叠层。在一些实施方案中,金属层303、304和306区别在于在沉积中使用以形成用于层的电连接的接头的掩模。
[063]如上所述,可以形成许多单独的电容器叠层,以形成并联的电容器结构。电容器叠层结构的这种并联配置可以由电极和钙钛矿电介质层的交替层形成,并且可以具有许多电介质层。
[064]为了形成图6中所示的结构,使衬底再次循环穿过群集设备500的室以便沉积多组电容器。通常,可以以这种方式沉积许多电容器的叠层。
[065]表I和II说明了根据本发明的钙钛矿材料,例如BST的一些实施例沉积。在这些实施例中,BST膜是利用来自Applied Komatsu的AKT-1600 PVD(400×500mm衬底尺寸)系统沉积的。电源是具有ENI匹配箱的ENI 13.56 MHz RF电源。所述靶材料是具有在数kΩ或更小的范围内的电阻率的BST。例如,可以将靶材料烧结。将硅晶片用于初始的实验。0.1-1微米的BST膜沉积在Si晶片上,所述Si晶片具有各种下电极材料诸如:n++Si、Ir、Pt、IrO2以及Ti4O7、Ti3O5、Nb、Os。氧与氩的比率在0至50%的范围内。处理压力在3-10mT的范围内。对于一些实施例,将RF偏压施加到衬底上。所沉积的膜的介电常数在13至123的范围内并且在沉积后退火以后增加至大于1000。
[066]本领域技术人员应当认识到在本公开中具体讨论的实施例的变化和修改。这些变化和修改意在本公开的范围和精神内。同样,该范围仅由后附权利要求所限制。
Figure A200680039671D00181

Claims (31)

1.一种在衬底上沉积钙钛矿层的方法,所述方法包括:
将所述衬底放到反应器中;
使气体混合物流过所述反应器;和
将功率提供到相对所述衬底放置的靶上,所述靶由钙钛矿材料形成。
2.权利要求1所述的方法,其中将功率提供到导电靶上包括将脉冲DC功率施加到所述导电靶上。
3.权利要求2所述的方法,还包括在允许所述脉冲DC功率通过滤波器时,对所述脉冲DC功率滤波以防止脉冲DC电源受到偏压功率。
4.权利要求2所述的方法,所述方法还包括将RF偏压功率供应到所述衬底上。
5.权利要求1所述的方法,其中将功率提供到导电靶上包括将RF功率施加到所述导电靶上。
6.权利要求1所述的方法,其中将钙钛矿层形成于所述衬底上。
7.权利要求6所述的方法,其中所述钙钛矿层是钛酸锶钡(BST)层。
8.权利要求6所述的方法,其中所形成的钙钛矿层的厚度大于约0.1微米。
9.权利要求6所述的方法,其中所形成的钙钛矿层的厚度小于约1微米。
10.权利要求6所述的方法,所述方法还包括将形成于所述衬底上的所述钙钛矿层退火。
11.权利要求10所述的方法,其中将所述钙钛矿层退火包括将所述钙钛矿层加热到约500℃和约800℃之间的退火温度。
12.权利要求1所述的方法,所述方法还包括在将功率施加到导电靶上以前预热所述衬底。
13.权利要求12所述的方法,其中预热所述衬底包括将所述衬底加热到低温钙钛矿沉积的约400℃的温度。
14.权利要求1所述的方法,其中所述衬底是低温衬底。
15.权利要求14所述的方法,其中所述低温衬底是包括玻璃、塑料、金属箔、铜和不锈钢的一组衬底中的一种。
16.权利要求1所述的方法,其中导电靶掺杂有过渡金属掺杂剂、过渡元素、镧系元素、和/或两性元素。
17.权利要求16所述的方法,其中所述靶掺杂有锰。
18.权利要求17所述的方法,其中所述靶中的锰水平是至少0.1%。
19.权利要求1所述的方法,其中所述钙钛矿靶是导电靶。
20.一种电容器结构,所述电容器结构包括:
第一导电电极层;
在第一导电电极层上沉积的介电钙钛矿层;和
在所述介电钙钛矿层上沉积的第二导电电极层。
21.权利要求20所述的电容器,其中第一导电层是铜片。
22.一种叠层式电容器结构,所述叠层式电容器结构包括:
沉积在衬底上的一个或多个电容器叠层,其中每个电容器叠层包括:
下电极层,
沉积在所述电极层上的介电钙钛矿层,和
沉积在所述一个或多个电容器叠层上的上电极层。
23.权利要求22所述的叠层式电容器结构,其中所述电容器叠层形成并联的叠层式电容器结构。
24.权利要求22所述的叠层式电容器结构,其中所述电容器叠层形成串联叠层式电容器结构。
25.一种生产电容器的方法,所述方法包括:
将衬底装载到群集设备中;
在所述群集设备的室中将介电钙钛矿层沉积在衬底上。
26.权利要求25所述的方法,其中沉积所述介电钙钛矿层包括用脉冲DC PVD方法沉积钙钛矿膜。
27.权利要求25所述的方法,其中沉积所述介电钙钛矿层包括用RF溅射PVD方法沉积钙钛矿膜。
28.权利要求25所述的方法,其中沉积所述介电钙钛矿层包括通过掩模沉积所述钙钛矿材料。
29.权利要求25所述的方法,所述方法还包括将下电极层沉积在所述衬底上,其中将所述介电钙钛矿层沉积在所述下电极层上。
31.权利要求25所述的方法,所述方法还包括将上电极层沉积在所述介电钙钛矿层上。
32.一种用于固定薄衬底的固定设备,所述固定设备包括:
顶部部分;和
底部部分,其中
当将所述顶部部分附于所述底部部分上时固定所述薄衬底。
CN2006800396712A 2005-09-02 2006-08-24 用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积 Expired - Fee Related CN101511493B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/218,652 US7838133B2 (en) 2005-09-02 2005-09-02 Deposition of perovskite and other compound ceramic films for dielectric applications
US11/218,652 2005-09-02
PCT/US2006/033315 WO2007027535A2 (en) 2005-09-02 2006-08-24 Deposition of perovskite and other compound ceramic films for dielectric applications

Publications (2)

Publication Number Publication Date
CN101511493A true CN101511493A (zh) 2009-08-19
CN101511493B CN101511493B (zh) 2012-05-30

Family

ID=37809389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800396712A Expired - Fee Related CN101511493B (zh) 2005-09-02 2006-08-24 用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积

Country Status (5)

Country Link
US (1) US7838133B2 (zh)
EP (1) EP1929491A4 (zh)
CN (1) CN101511493B (zh)
TW (1) TWI404814B (zh)
WO (1) WO2007027535A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110419127A (zh) * 2017-03-16 2019-11-05 株式会社村田制作所 锂离子二次电池
CN111094205A (zh) * 2017-06-23 2020-05-01 辛麦特有限公司 用于向陶瓷材料施加压缩应力的膜

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378356B2 (en) * 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
EP1624938B1 (en) * 2003-05-20 2011-03-16 James F. Collins Ophthalmic drug delivery system
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
JP5095412B2 (ja) 2004-12-08 2012-12-12 シモーフィックス,インコーポレーテッド LiCoO2の堆積
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications
WO2007042394A1 (en) * 2005-10-13 2007-04-19 Nv Bekaert Sa A method to deposit a coating by sputtering
WO2007106788A2 (en) 2006-03-10 2007-09-20 Advanced Technology Materials, Inc. Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
US20080047826A1 (en) * 2006-08-23 2008-02-28 Atomic Energy Council-Institute Of Nuclear Energy Research Protective coating method of pervoskite structure for SOFC interconnection
CN101523571A (zh) 2006-09-29 2009-09-02 无穷动力解决方案股份有限公司 柔性基板上沉积的电池层的掩模和材料限制
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
EP2225406A4 (en) 2007-12-21 2012-12-05 Infinite Power Solutions Inc PROCEDURE FOR SPUTTER TARGETS FOR ELECTROLYTE FILMS
EP2229706B1 (en) 2008-01-11 2014-12-24 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
EP2266183B1 (en) 2008-04-02 2018-12-12 Sapurast Research LLC Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
EP2321832A1 (en) * 2008-07-08 2011-05-18 Technical University of Denmark Magnetocaloric refrigerators
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
CN102150185B (zh) 2008-09-12 2014-05-28 无穷动力解决方案股份有限公司 具有经由电磁能进行数据通信的组成导电表面的能量装置及其方法
WO2010042594A1 (en) 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
KR20120016044A (ko) * 2009-03-27 2012-02-22 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 진성 다이오드를 갖는 스위칭 가능한 접합부
EP2474056B1 (en) 2009-09-01 2016-05-04 Sapurast Research LLC Printed circuit board with integrated thin film battery
US9312076B1 (en) * 2009-12-30 2016-04-12 University Of West Florida Very high energy-density ultracapacitor apparatus and method
CN102947976B (zh) 2010-06-07 2018-03-16 萨普拉斯特研究有限责任公司 可充电、高密度的电化学设备
WO2012177642A2 (en) * 2011-06-20 2012-12-27 Advanced Technology Materials, Inc. High-k perovskite material and methods of making and using the same
US20230118610A1 (en) * 2011-06-29 2023-04-20 Space Charge, LLC Electrochemical energy storage devices
CN102423168A (zh) * 2011-11-04 2012-04-25 昆山龙鹰金属制品有限公司 201不锈钢中底生产工艺
CN104937135B (zh) * 2013-01-28 2018-01-19 应用材料公司 基板载体配置与夹持基板的方法
WO2014124056A1 (en) 2013-02-08 2014-08-14 Advanced Technology Materials, Inc. Ald processes for low leakage current and low equivalent oxide thickness bitao films
WO2014189895A1 (en) * 2013-05-20 2014-11-27 Advantech Global, Ltd Small feature size fabrication using a shadow mask deposition process
US10355624B2 (en) * 2014-10-09 2019-07-16 Carnegie Mellon University Electrostatic clutch
US10818909B2 (en) 2016-05-09 2020-10-27 Demaray, Llc Energy storage device with a first metal layer formed from a precursor layer upon charge and diffused into a cathode during discharge
US10861992B2 (en) 2016-11-25 2020-12-08 The Boeing Company Perovskite solar cells for space
KR20180090116A (ko) * 2017-02-02 2018-08-10 삼성전자주식회사 광 필터 및 이를 포함하는 광 분광기
RU2671614C1 (ru) * 2017-06-19 2018-11-02 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Способ получения сегнетоэлектрических пленок Ba1-xSrx TiO3
US10578684B2 (en) * 2018-01-12 2020-03-03 Allegro Microsystems, Llc Magnetic field sensor having magnetoresistance elements with opposite bias directions
US10509058B2 (en) 2018-01-12 2019-12-17 Allegro Microsystems, Llc Current sensor using modulation of or change of sensitivity of magnetoresistance elements
WO2019173643A1 (en) * 2018-03-09 2019-09-12 Hrl Laboratories, Llc Electrically reconfigurable optical apparatus using electric field
US10734443B2 (en) 2018-08-27 2020-08-04 Allegro Microsystems, Llc Dual manetoresistance element with two directions of response to external magnetic fields
US10746820B2 (en) 2018-10-11 2020-08-18 Allegro Microsystems, Llc Magnetic field sensor that corrects for the effect of a stray magnetic field using one or more magnetoresistance elements, each having a reference layer with the same magnetic direction
US10670669B2 (en) 2018-10-11 2020-06-02 Allegro Microsystems, Llc Magnetic field sensor for measuring an amplitude and a direction of a magnetic field using one or more magnetoresistance elements having reference layers with the same magnetic direction
US10866287B1 (en) 2019-07-10 2020-12-15 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements arranged in a bridge and having a common reference direction and opposite bias directions
EP4153797A1 (en) 2020-05-20 2023-03-29 Hrl Laboratories, Llc Method of growing crystalline optical films on si substrates which may optionally have an extremely small optical loss in the infra-red spectrum with hydrogenation of the crystalline optical films
CN115443421B (zh) 2020-05-20 2023-10-27 Hrl实验室有限责任公司 固态电动可变焦距透镜
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309302A (en) 1963-10-07 1967-03-14 Varian Associates Method of preparing an electron tube including sputtering a suboxide of titanium on dielectric components thereof
US3616403A (en) 1968-10-25 1971-10-26 Ibm Prevention of inversion of p-type semiconductor material during rf sputtering of quartz
GB1365492A (en) 1971-02-05 1974-09-04 Triplex Safety Glass Co Metal oxide films
US3850604A (en) 1972-12-11 1974-11-26 Gte Laboratories Inc Preparation of chalcogenide glass sputtering targets
US4111523A (en) 1973-07-23 1978-09-05 Bell Telephone Laboratories, Incorporated Thin film optical waveguide
US4099091A (en) 1976-07-28 1978-07-04 Matsushita Electric Industrial Co., Ltd. Electroluminescent panel including an electrically conductive layer between two electroluminescent layers
US4082569A (en) 1977-02-22 1978-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cell collector
US4437966A (en) 1982-09-30 1984-03-20 Gte Products Corporation Sputtering cathode apparatus
DE3345659A1 (de) 1983-06-16 1984-12-20 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Keramikkoerper aus zirkoniumdioxid (zro(pfeil abwaerts)2(pfeil abwaerts)) und verfahren zu seiner herstellung
AU573631B2 (en) 1983-10-17 1988-06-16 Tosoh Corporation High strength zirconia type sintered body
DE3417732A1 (de) 1984-05-12 1986-07-10 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum aufbringen von siliziumhaltigen schichten auf substraten durch katodenzerstaeubung und zerstaeubungskatode zur durchfuehrung des verfahrens
GB8414878D0 (en) 1984-06-11 1984-07-18 Gen Electric Co Plc Integrated optical waveguides
US5173271A (en) 1985-12-04 1992-12-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US5296089A (en) 1985-12-04 1994-03-22 Massachusetts Institute Of Technology Enhanced radiative zone-melting recrystallization method and apparatus
US5141603A (en) * 1988-03-28 1992-08-25 The United States Of America As Represented By The Secretary Of The Air Force Capacitor method for improved oxide dielectric
US4915810A (en) 1988-04-25 1990-04-10 Unisys Corporation Target source for ion beam sputter deposition
JP2501118B2 (ja) 1988-06-17 1996-05-29 忠弘 大見 半導体装置の製造方法
US5792550A (en) 1989-10-24 1998-08-11 Flex Products, Inc. Barrier film having high colorless transparency and method
JP2758948B2 (ja) 1989-12-15 1998-05-28 キヤノン株式会社 薄膜形成方法
DE4022090A1 (de) 1989-12-18 1991-06-20 Forschungszentrum Juelich Gmbh Elektro-optisches bauelement und verfahren zu dessen herstellung
US5252194A (en) 1990-01-26 1993-10-12 Varian Associates, Inc. Rotating sputtering apparatus for selected erosion
US5085904A (en) 1990-04-20 1992-02-04 E. I. Du Pont De Nemours And Company Barrier materials useful for packaging
US5306569A (en) 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
JP2755471B2 (ja) 1990-06-29 1998-05-20 日立電線株式会社 希土類元素添加光導波路及びその製造方法
US5225288A (en) 1990-08-10 1993-07-06 E. I. Du Pont De Nemours And Company Solvent blockers and multilayer barrier coatings for thin films
US5645626A (en) 1990-08-10 1997-07-08 Bend Research, Inc. Composite hydrogen separation element and module
US5110696A (en) 1990-11-09 1992-05-05 Bell Communications Research Rechargeable lithiated thin film intercalation electrode battery
NL9002844A (nl) 1990-12-21 1992-07-16 Philips Nv Systeem omvattende een apparaat en een cassette, alsmede een apparaat en een cassette geschikt voor toepassing in een dergelijk systeem.
US5119460A (en) 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
US5200029A (en) 1991-04-25 1993-04-06 At&T Bell Laboratories Method of making a planar optical amplifier
US5107538A (en) 1991-06-06 1992-04-21 At&T Bell Laboratories Optical waveguide system comprising a rare-earth Si-based optical device
US5196041A (en) 1991-09-17 1993-03-23 The Charles Stark Draper Laboratory, Inc. Method of forming an optical channel waveguide by gettering
US5355089A (en) 1992-07-22 1994-10-11 Duracell Inc. Moisture barrier for battery with electrochemical tester
JP2755844B2 (ja) 1991-09-30 1998-05-25 シャープ株式会社 プラスチック基板液晶表示素子
SG44695A1 (en) 1991-12-11 1997-12-19 Mobil Oil Corp High barrier film
JPH06145975A (ja) 1992-03-20 1994-05-27 Komag Inc 炭素フィルムをスパタリングする方法及びその製造物
US5287427A (en) 1992-05-05 1994-02-15 At&T Bell Laboratories Method of making an article comprising an optical component, and article comprising the component
US5338625A (en) 1992-07-29 1994-08-16 Martin Marietta Energy Systems, Inc. Thin film battery and method for making same
JP3214910B2 (ja) 1992-08-18 2001-10-02 富士通株式会社 平面導波路型光増幅器の製造方法
US5538796A (en) 1992-10-13 1996-07-23 General Electric Company Thermal barrier coating system having no bond coat
JP3231900B2 (ja) 1992-10-28 2001-11-26 株式会社アルバック 成膜装置
US5942089A (en) 1996-04-22 1999-08-24 Northwestern University Method for sputtering compounds on a substrate
US5789071A (en) 1992-11-09 1998-08-04 Northwestern University Multilayer oxide coatings
JPH06158308A (ja) 1992-11-24 1994-06-07 Hitachi Metals Ltd インジウム・スズ酸化物膜用スパッタリング用ターゲットおよびその製造方法
US6022458A (en) 1992-12-07 2000-02-08 Canon Kabushiki Kaisha Method of production of a semiconductor substrate
AU669754B2 (en) 1992-12-18 1996-06-20 Becton Dickinson & Company Barrier coating
US5303319A (en) 1992-12-28 1994-04-12 Honeywell Inc. Ion-beam deposited multilayer waveguides and resonators
US5427669A (en) 1992-12-30 1995-06-27 Advanced Energy Industries, Inc. Thin film DC plasma processing system
US5718813A (en) 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
JPH06279185A (ja) 1993-03-25 1994-10-04 Canon Inc ダイヤモンド結晶およびダイヤモンド結晶膜の形成方法
US5613995A (en) 1993-04-23 1997-03-25 Lucent Technologies Inc. Method for making planar optical waveguides
SG74667A1 (en) 1993-07-28 2000-08-22 Asahi Glass Co Ltd Method of an apparatus for sputtering
US5499207A (en) 1993-08-06 1996-03-12 Hitachi, Ltd. Semiconductor memory device having improved isolation between electrodes, and process for fabricating the same
JP2642849B2 (ja) 1993-08-24 1997-08-20 株式会社フロンテック 薄膜の製造方法および製造装置
US5478456A (en) 1993-10-01 1995-12-26 Minnesota Mining And Manufacturing Company Sputtering target
EP0652308B1 (en) 1993-10-14 2002-03-27 Neuralsystems Corporation Method of and apparatus for forming single-crystalline thin film
US5738731A (en) 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
US5487822A (en) 1993-11-24 1996-01-30 Applied Materials, Inc. Integrated sputtering target assembly
WO1996023085A1 (en) 1995-01-25 1996-08-01 Applied Komatsu Technology, Inc. Autoclave bonding of sputtering target assembly
US5433835B1 (en) 1993-11-24 1997-05-20 Applied Materials Inc Sputtering device and target with cover to hold cooling fluid
US5654984A (en) 1993-12-03 1997-08-05 Silicon Systems, Inc. Signal modulation across capacitors
US5569520A (en) 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5561004A (en) 1994-02-25 1996-10-01 Bates; John B. Packaging material for thin film lithium batteries
US5475528A (en) 1994-03-25 1995-12-12 Corning Incorporated Optical signal amplifier glasses
JP3947575B2 (ja) 1994-06-10 2007-07-25 Hoya株式会社 導電性酸化物およびそれを用いた電極
US5472795A (en) 1994-06-27 1995-12-05 Board Of Regents Of The University Of The University Of Wisconsin System, On Behalf Of The University Of Wisconsin-Milwaukee Multilayer nanolaminates containing polycrystalline zirconia
US5457569A (en) 1994-06-30 1995-10-10 At&T Ipm Corp. Semiconductor amplifier or laser having integrated lens
WO1996000996A1 (en) 1994-06-30 1996-01-11 The Whitaker Corporation Planar hybrid optical amplifier
JP3407409B2 (ja) 1994-07-27 2003-05-19 富士通株式会社 高誘電率薄膜の製造方法
US5483613A (en) 1994-08-16 1996-01-09 At&T Corp. Optical device with substrate and waveguide structure having thermal matching interfaces
US5909346A (en) 1994-08-26 1999-06-01 Aiwa Research & Development, Inc. Thin magnetic film including multiple geometry gap structures on a common substrate
CN1075243C (zh) 1994-12-28 2001-11-21 松下电器产业株式会社 集成电路用电容元件及其制造方法
US6204111B1 (en) 1994-12-28 2001-03-20 Matsushita Electronics Corporation Fabrication method of capacitor for integrated circuit
US5555342A (en) 1995-01-17 1996-09-10 Lucent Technologies Inc. Planar waveguide and a process for its fabrication
US5607789A (en) 1995-01-23 1997-03-04 Duracell Inc. Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
US6444750B1 (en) 1995-03-06 2002-09-03 Exxonmobil Oil Corp. PVOH-based coating solutions
NL1000138C2 (nl) * 1995-04-13 1996-10-15 Od & Me Bv Inrichtingen voor het bewerken van een substraat alsmede werkwijze geschikt voor toepassing bij dergelijke inrichtingen.
AUPN258095A0 (en) 1995-04-21 1995-05-18 Unisearch Limited Low temperature fabrication of silica-based pecvd channel waveguides
CA2218279A1 (en) 1995-04-25 1996-10-31 The Boc Group, Inc. Sputtering system using cylindrical rotating magnetron electrically powered using alternating current
US5771562A (en) 1995-05-02 1998-06-30 Motorola, Inc. Passivation of organic devices
JP3827725B2 (ja) 1995-05-18 2006-09-27 旭硝子セラミックス株式会社 スパッタリング用ターゲットの製造方法
KR100342189B1 (ko) 1995-07-12 2002-11-30 삼성전자 주식회사 휘발성복합체를사용한희토류원소첨가광섬유제조방법
EP0761838B1 (de) 1995-08-18 2001-08-08 W.C. Heraeus GmbH & Co. KG Target für die Kathodenzerstäubung und Verfahren zur Herstellung eines solchen Targets
US5563979A (en) 1995-08-31 1996-10-08 Lucent Technologies Inc. Erbium-doped planar optical device
US5689522A (en) 1995-10-02 1997-11-18 The Regents Of The University Of California High efficiency 2 micrometer laser utilizing wing-pumped Tm3+ and a laser diode array end-pumping architecture
US5719976A (en) 1995-10-24 1998-02-17 Lucent Technologies, Inc. Optimized waveguide structure
US5830272A (en) * 1995-11-07 1998-11-03 Sputtered Films, Inc. System for and method of providing a controlled deposition on wafers
JP3298799B2 (ja) 1995-11-22 2002-07-08 ルーセント テクノロジーズ インコーポレイテッド クラッディングポンプファイバとその製造方法
US5811177A (en) 1995-11-30 1998-09-22 Motorola, Inc. Passivation of electroluminescent organic devices
US5686360A (en) 1995-11-30 1997-11-11 Motorola Passivation of organic devices
US5955161A (en) 1996-01-30 1999-09-21 Becton Dickinson And Company Blood collection tube assembly
AU1978497A (en) 1996-03-22 1997-10-10 Materials Research Corporation Method and apparatus for rf diode sputtering
US5930584A (en) 1996-04-10 1999-07-27 United Microelectronics Corp. Process for fabricating low leakage current electrode for LPCVD titanium oxide films
JPH1010675A (ja) 1996-04-22 1998-01-16 Fuji Photo Film Co Ltd 記録材料
JP3346167B2 (ja) 1996-05-27 2002-11-18 三菱マテリアル株式会社 高強度誘電体スパッタリングターゲットおよびその製造方法並びに膜
WO1997047695A1 (en) 1996-06-12 1997-12-18 Hoechst Trespaphan Gmbh Transparent barrier coatings exhibiting reduced thin film interference
US5731661A (en) 1996-07-15 1998-03-24 Motorola, Inc. Passivation of electroluminescent organic devices
US5855744A (en) 1996-07-19 1999-01-05 Applied Komatsu Technology, Inc. Non-planar magnet tracking during magnetron sputtering
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
JPH1056145A (ja) * 1996-08-07 1998-02-24 Hitachi Ltd 半導体集積回路装置の製造方法
JP3631341B2 (ja) 1996-10-18 2005-03-23 Tdk株式会社 積層型複合機能素子およびその製造方法
US5841931A (en) 1996-11-26 1998-11-24 Massachusetts Institute Of Technology Methods of forming polycrystalline semiconductor waveguides for optoelectronic integrated circuits, and devices formed thereby
US6144795A (en) 1996-12-13 2000-11-07 Corning Incorporated Hybrid organic-inorganic planar optical waveguide device
JPH10195649A (ja) 1996-12-27 1998-07-28 Sony Corp マグネトロンスパッタ装置および半導体装置の製造方法
JPH10229201A (ja) 1997-02-14 1998-08-25 Sony Corp 薄膜半導体装置の製造方法
US5847865A (en) 1997-02-18 1998-12-08 Regents Of The University Of Minnesota Waveguide optical amplifier
JP3098204B2 (ja) 1997-03-07 2000-10-16 ティーディーケイ株式会社 光磁気記録用合金ターゲット、その製造方法およびその再生方法
US5952778A (en) 1997-03-18 1999-09-14 International Business Machines Corporation Encapsulated organic light emitting device
JPH10265948A (ja) 1997-03-25 1998-10-06 Rohm Co Ltd 半導体装置用基板およびその製法
EP0867985B1 (en) 1997-03-27 2001-02-14 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Erbium-doped planar waveguide
US6117345A (en) 1997-04-02 2000-09-12 United Microelectronics Corp. High density plasma chemical vapor deposition process
US6106933A (en) 1997-04-03 2000-08-22 Toray Industries, Inc. Transparent gas barrier biaxially oriented polypropylene film, a laminate film, and a production method thereof
US6242132B1 (en) 1997-04-16 2001-06-05 Ut-Battelle, Llc Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
US5948215A (en) 1997-04-21 1999-09-07 Tokyo Electron Limited Method and apparatus for ionized sputtering
JP3290375B2 (ja) 1997-05-12 2002-06-10 松下電器産業株式会社 有機電界発光素子
US5830330A (en) 1997-05-22 1998-11-03 Tokyo Electron Limited Method and apparatus for low pressure sputtering
US5977582A (en) 1997-05-23 1999-11-02 Lucent Technologies Inc. Capacitor comprising improved TaOx -based dielectric
US6051114A (en) 1997-06-23 2000-04-18 Applied Materials, Inc. Use of pulsed-DC wafer bias for filling vias/trenches with metal in HDP physical vapor deposition
US5831262A (en) 1997-06-27 1998-11-03 Lucent Technologies Inc. Article comprising an optical fiber attached to a micromechanical device
JP3813740B2 (ja) 1997-07-11 2006-08-23 Tdk株式会社 電子デバイス用基板
US6041734A (en) 1997-12-01 2000-03-28 Applied Materials, Inc. Use of an asymmetric waveform to control ion bombardment during substrate processing
US6052397A (en) 1997-12-05 2000-04-18 Sdl, Inc. Laser diode device having a substantially circular light output beam and a method of forming a tapered section in a semiconductor device to provide for a reproducible mode profile of the output beam
US5976327A (en) 1997-12-12 1999-11-02 Applied Materials, Inc. Step coverage and overhang improvement by pedestal bias voltage modulation
US6344413B1 (en) * 1997-12-22 2002-02-05 Motorola Inc. Method for forming a semiconductor device
CA2320278C (en) 1998-02-12 2006-01-03 Acm Research, Inc. Plating apparatus and method
US6004660A (en) 1998-03-12 1999-12-21 E.I. Du Pont De Nemours And Company Oxygen barrier composite film structure
US6563998B1 (en) 1999-04-15 2003-05-13 John Farah Polished polymide substrate
JP3126698B2 (ja) 1998-06-02 2001-01-22 富士通株式会社 スパッタ成膜方法、スパッタ成膜装置及び半導体装置の製造方法
US6093944A (en) 1998-06-04 2000-07-25 Lucent Technologies Inc. Dielectric materials of amorphous compositions of TI-O2 doped with rare earth elements and devices employing same
KR100287176B1 (ko) 1998-06-25 2001-04-16 윤종용 고온산화를이용한반도체소자의커패시터형성방법
US6058233A (en) 1998-06-30 2000-05-02 Lucent Technologies Inc. Waveguide array with improved efficiency for wavelength routers and star couplers in integrated optics
US6358810B1 (en) 1998-07-28 2002-03-19 Applied Materials, Inc. Method for superior step coverage and interface control for high K dielectric capacitors and related electrodes
US6146225A (en) 1998-07-30 2000-11-14 Agilent Technologies, Inc. Transparent, flexible permeability barrier for organic electroluminescent devices
US6362916B2 (en) 1998-09-25 2002-03-26 Fiver Laboratories All fiber gain flattening optical filter
KR100283954B1 (ko) 1998-10-13 2001-03-02 윤종용 광증폭기용 광섬유
KR100282487B1 (ko) 1998-10-19 2001-02-15 윤종용 고유전 다층막을 이용한 셀 캐패시터 및 그 제조 방법
US6605228B1 (en) 1998-10-19 2003-08-12 Nhk Spring Co., Ltd. Method for fabricating planar optical waveguide devices
US6157765A (en) 1998-11-03 2000-12-05 Lucent Technologies Planar waveguide optical amplifier
US6117279A (en) 1998-11-12 2000-09-12 Tokyo Electron Limited Method and apparatus for increasing the metal ion fraction in ionized physical vapor deposition
US6365300B1 (en) 1998-12-03 2002-04-02 Sumitomo Electric Industries, Ltd. Lithium secondary battery
WO2000036665A1 (en) 1998-12-16 2000-06-22 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
US6379835B1 (en) 1999-01-12 2002-04-30 Morgan Adhesives Company Method of making a thin film battery
US6290822B1 (en) 1999-01-26 2001-09-18 Agere Systems Guardian Corp. Sputtering method for forming dielectric films
US6302939B1 (en) 1999-02-01 2001-10-16 Magnequench International, Inc. Rare earth permanent magnet and method for making same
US6306265B1 (en) 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
US6210544B1 (en) 1999-03-08 2001-04-03 Alps Electric Co., Ltd. Magnetic film forming method
US6280875B1 (en) 1999-03-24 2001-08-28 Teledyne Technologies Incorporated Rechargeable battery structure with metal substrate
US6168884B1 (en) 1999-04-02 2001-01-02 Lockheed Martin Energy Research Corporation Battery with an in-situ activation plated lithium anode
US6242129B1 (en) 1999-04-02 2001-06-05 Excellatron Solid State, Llc Thin lithium film battery
US6416598B1 (en) 1999-04-20 2002-07-09 Reynolds Metals Company Free machining aluminum alloy with high melting point machining constituent and method of use
US6281142B1 (en) 1999-06-04 2001-08-28 Micron Technology, Inc. Dielectric cure for reducing oxygen vacancies
US6046081A (en) 1999-06-10 2000-04-04 United Microelectronics Corp. Method for forming dielectric layer of capacitor
JP2001021744A (ja) 1999-07-07 2001-01-26 Shin Etsu Chem Co Ltd 光導波路基板の製造方法
JP2001020065A (ja) 1999-07-07 2001-01-23 Hitachi Metals Ltd スパッタリング用ターゲット及びその製造方法ならびに高融点金属粉末材料
JP4230642B2 (ja) * 1999-07-08 2009-02-25 株式会社荏原製作所 基板搬送治具及び基板搬送装置
JP2001025666A (ja) 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd 積層体およびその製造方法
US6290821B1 (en) 1999-07-15 2001-09-18 Seagate Technology Llc Sputter deposition utilizing pulsed cathode and substrate bias power
US6537428B1 (en) 1999-09-02 2003-03-25 Veeco Instruments, Inc. Stable high rate reactive sputtering
JP4240679B2 (ja) 1999-09-21 2009-03-18 ソニー株式会社 スパッタリング用ターゲットの製造方法
DE19948839A1 (de) 1999-10-11 2001-04-12 Bps Alzenau Gmbh Leitende transparente Schichten und Verfahren zu ihrer Herstellung
US6413645B1 (en) 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US6210545B1 (en) * 1999-11-23 2001-04-03 International Business Machines Corporation Method for forming a perovskite thin film using a sputtering method with a fully oxidized perovskite target
US6350353B2 (en) 1999-11-24 2002-02-26 Applied Materials, Inc. Alternate steps of IMP and sputtering process to improve sidewall coverage
US6344419B1 (en) 1999-12-03 2002-02-05 Applied Materials, Inc. Pulsed-mode RF bias for sidewall coverage improvement
US6534809B2 (en) 1999-12-22 2003-03-18 Agilent Technologies, Inc. Hardmask designs for dry etching FeRAM capacitor stacks
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
US6451177B1 (en) 2000-01-21 2002-09-17 Applied Materials, Inc. Vault shaped target and magnetron operable in two sputtering modes
US6627056B2 (en) 2000-02-16 2003-09-30 Applied Materials, Inc. Method and apparatus for ionized plasma deposition
TW523615B (en) 2000-02-17 2003-03-11 L3 Optics Inc Guided wave optical switch based on an active semiconductor amplifier and a passive optical component
TW584905B (en) 2000-02-25 2004-04-21 Tokyo Electron Ltd Method and apparatus for depositing films
US6410471B2 (en) 2000-03-07 2002-06-25 Shin-Etsu Chemical Co., Ltd. Method for preparation of sintered body of rare earth oxide
US7433655B2 (en) 2000-03-24 2008-10-07 Cymbet Corporation Battery-operated wireless-communication apparatus and method
GB2361244B (en) 2000-04-14 2004-02-11 Trikon Holdings Ltd A method of depositing dielectric
US6365319B1 (en) 2000-04-20 2002-04-02 Eastman Kodak Company Self-contained imaging media comprising opaque laminated support
KR100341407B1 (ko) 2000-05-01 2002-06-22 윤덕용 플라즈마 처리에 의한 리튬전이금속 산화물 박막의 결정화방법
US6423776B1 (en) 2000-05-02 2002-07-23 Honeywell International Inc. Oxygen scavenging high barrier polyamide compositions for packaging applications
US6261917B1 (en) 2000-05-09 2001-07-17 Chartered Semiconductor Manufacturing Ltd. High-K MOM capacitor
DE10023459A1 (de) 2000-05-12 2001-11-15 Balzers Process Systems Gmbh Indium-Zinn-Oxid (ITO)-Schicht und Verfahren zur Herstellung derselben
EP1160900A3 (en) 2000-05-26 2007-12-12 Kabushiki Kaisha Riken Embossed current collector separator for electrochemical fuel cell
US6506289B2 (en) 2000-08-07 2003-01-14 Symmorphix, Inc. Planar optical devices and methods for their manufacture
US6632563B1 (en) 2000-09-07 2003-10-14 Front Edge Technology, Inc. Thin film battery and method of manufacture
US6628876B1 (en) 2000-09-15 2003-09-30 Triquint Technology Holding Co. Method for making a planar waveguide
TW448318B (en) 2000-09-18 2001-08-01 Nat Science Council Erbium, Yttrium co-doped Titanium oxide thin film material for planar optical waveguide amplifier
DE10165080B4 (de) 2000-09-20 2015-05-13 Hitachi Metals, Ltd. Siliciumnitrid-Pulver und -Sinterkörper sowie Verfahren zu deren Herstellung und Leiterplatte damit
US6372098B1 (en) * 2000-09-28 2002-04-16 The Boc Group, Inc. High target utilization magnet array and associated methods
US6660660B2 (en) 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US6488822B1 (en) 2000-10-20 2002-12-03 Veecoleve, Inc. Segmented-target ionized physical-vapor deposition apparatus and method of operation
US6413382B1 (en) 2000-11-03 2002-07-02 Applied Materials, Inc. Pulsed sputtering with a small rotating magnetron
US20020106297A1 (en) 2000-12-01 2002-08-08 Hitachi Metals, Ltd. Co-base target and method of producing the same
US6533907B2 (en) 2001-01-19 2003-03-18 Symmorphix, Inc. Method of producing amorphous silicon for hard mask and waveguide applications
US6673716B1 (en) 2001-01-30 2004-01-06 Novellus Systems, Inc. Control of the deposition temperature to reduce the via and contact resistance of Ti and TiN deposited using ionized PVD techniques
US6558836B1 (en) 2001-02-08 2003-05-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Structure of thin-film lithium microbatteries
JP2002258037A (ja) 2001-03-05 2002-09-11 Alps Electric Co Ltd 積層膜を有する光フィルタおよびその製造方法
US7164206B2 (en) 2001-03-28 2007-01-16 Intel Corporation Structure in a microelectronic device including a bi-layer for a diffusion barrier and an etch-stop layer
US6797137B2 (en) 2001-04-11 2004-09-28 Heraeus, Inc. Mechanically alloyed precious metal magnetic sputtering targets fabricated using rapidly solidfied alloy powders and elemental Pt metal
US6743488B2 (en) 2001-05-09 2004-06-01 Cpfilms Inc. Transparent conductive stratiform coating of indium tin oxide
US7469558B2 (en) 2001-07-10 2008-12-30 Springworks, Llc As-deposited planar optical waveguides with low scattering loss and methods for their manufacture
US20030029715A1 (en) 2001-07-25 2003-02-13 Applied Materials, Inc. An Apparatus For Annealing Substrates In Physical Vapor Deposition Systems
JP4108602B2 (ja) 2001-08-28 2008-06-25 Tdk株式会社 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
US7115516B2 (en) 2001-10-09 2006-10-03 Applied Materials, Inc. Method of depositing a material layer
US6666982B2 (en) 2001-10-22 2003-12-23 Tokyo Electron Limited Protection of dielectric window in inductively coupled plasma generation
US6750156B2 (en) 2001-10-24 2004-06-15 Applied Materials, Inc. Method and apparatus for forming an anti-reflective coating on a substrate
US7404877B2 (en) 2001-11-09 2008-07-29 Springworks, Llc Low temperature zirconia based thermal barrier layer by PVD
US20030097858A1 (en) 2001-11-26 2003-05-29 Christof Strohhofer Silver sensitized erbium ion doped planar waveguide amplifier
US20030143853A1 (en) 2002-01-31 2003-07-31 Celii Francis G. FeRAM capacitor stack etch
US6884327B2 (en) 2002-03-16 2005-04-26 Tao Pan Mode size converter for a planar waveguide
US20030174391A1 (en) 2002-03-16 2003-09-18 Tao Pan Gain flattened optical amplifier
US20030175142A1 (en) 2002-03-16 2003-09-18 Vassiliki Milonopoulou Rare-earth pre-alloyed PVD targets for dielectric planar applications
US7378356B2 (en) 2002-03-16 2008-05-27 Springworks, Llc Biased pulse DC reactive sputtering of oxide films
US7083270B2 (en) * 2002-06-20 2006-08-01 Matsushita Electric Industrial Co., Ltd. Piezoelectric element, ink jet head, angular velocity sensor, method for manufacturing the same, and ink jet recording apparatus
US6818356B1 (en) 2002-07-09 2004-11-16 Oak Ridge Micro-Energy, Inc. Thin film battery and electrolyte therefor
WO2004021532A1 (en) 2002-08-27 2004-03-11 Symmorphix, Inc. Optically coupling into highly uniform waveguides
CN1756856B (zh) 2003-02-27 2011-10-12 希莫菲克斯公司 电介质阻挡层膜
US7238628B2 (en) 2003-05-23 2007-07-03 Symmorphix, Inc. Energy conversion and storage films and devices by physical vapor deposition of titanium and titanium oxides and sub-oxides
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
KR20060061366A (ko) * 2003-09-03 2006-06-07 가부시키 가이샤 닛코 마테리알즈 스퍼터링용 타겟트
JP5095412B2 (ja) 2004-12-08 2012-12-12 シモーフィックス,インコーポレーテッド LiCoO2の堆積
US7838133B2 (en) 2005-09-02 2010-11-23 Springworks, Llc Deposition of perovskite and other compound ceramic films for dielectric applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110419127A (zh) * 2017-03-16 2019-11-05 株式会社村田制作所 锂离子二次电池
CN111094205A (zh) * 2017-06-23 2020-05-01 辛麦特有限公司 用于向陶瓷材料施加压缩应力的膜

Also Published As

Publication number Publication date
CN101511493B (zh) 2012-05-30
WO2007027535A2 (en) 2007-03-08
EP1929491A2 (en) 2008-06-11
EP1929491A4 (en) 2012-02-08
US7838133B2 (en) 2010-11-23
US20070053139A1 (en) 2007-03-08
TW200724700A (en) 2007-07-01
WO2007027535A3 (en) 2009-04-16
TWI404814B (zh) 2013-08-11

Similar Documents

Publication Publication Date Title
CN101511493B (zh) 用于介电应用的钙钛矿和其它化合物陶瓷膜的沉积
CN101931097B (zh) LiCoO2的沉积
US7959769B2 (en) Deposition of LiCoO2
Yang et al. Lead-free A2Bi4Ti5O18 thin film capacitors (A= Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability
CN102065650B (zh) 印刷电路板及其制造方法
JP5129530B2 (ja) LiCoO2の堆積
CN1826424A (zh) 由钛和钛氧化物和低氧化物物理气相沉积的能量转换和储存膜和器件
US20130242461A1 (en) Multi layer chip capacitor, and method and apparatus for manufacturing the same
CN101255545B (zh) LICoO2的沉积
CN104024467B (zh) SrRuO3膜的沉积方法
CN109082642A (zh) 一种具有高储能密度与优良热稳定性的无铅外延多层薄膜及其制备方法
US10026551B2 (en) Magnetic capacitor structures
Li et al. Low temperature deposition of high performance lead strontium titanate thin films by in situ RF magnetron sputtering
Ni et al. Effects of annealing temperatures on energy storage performance of sol-gel derived (Ba0. 95, Sr0. 05)(Zr0. 2, Ti0. 8) O3 thin films
Song et al. Lead-free Ba2Bi4Ti5O18 thin film capacitors for energy storage applications
EP1900845A1 (en) Deposition of LiCoO2
Weiss et al. Compositionally graded ferroelectric multilayers for frequency agile tunable devices
Cernea Methods for preparation of BaTiO3 thin films
Aygun Processing science of barium titanate
Yu et al. Manganese optimized bismuth magnesium titanate as a high energy storage density of lead-free capacitors
JP2004253535A (ja) 誘電体薄膜形成装置および誘電体薄膜形成方法
Wang et al. Low-temperature processing of ferroelectric thin films on Si substrates
US20100072057A1 (en) Process for forming a ceramic oxide material with a pyrochlore structure having a high dielectric constant and implementation of this process for applications in microelectronics
Kumar et al. Integration Issues of Barium Strontium Titanate thin Film for Tunable Microwave Applications
KR20120130815A (ko) 저온공정용 유전체 박막 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20180824