CN101501859B - 高功率绝缘栅双极晶体管 - Google Patents

高功率绝缘栅双极晶体管 Download PDF

Info

Publication number
CN101501859B
CN101501859B CN2007800294605A CN200780029460A CN101501859B CN 101501859 B CN101501859 B CN 101501859B CN 2007800294605 A CN2007800294605 A CN 2007800294605A CN 200780029460 A CN200780029460 A CN 200780029460A CN 101501859 B CN101501859 B CN 101501859B
Authority
CN
China
Prior art keywords
type
layer
gate oxide
annealing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800294605A
Other languages
English (en)
Other versions
CN101501859A (zh
Inventor
张清纯
S·-H·刘
C·乔纳斯
A·K·阿加沃尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Research Inc filed Critical Cree Research Inc
Publication of CN101501859A publication Critical patent/CN101501859A/zh
Application granted granted Critical
Publication of CN101501859B publication Critical patent/CN101501859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Abstract

一种绝缘栅双极晶体管(IGBT)包括具有第一导电类型的衬底(12),具有与第一导电类型相反的第二导电类型的漂移层(16),以及在漂移层中并具有第一导电类型的阱区(18)。外延沟道调节层(40)在漂移层上并且具有第二导电类型。发射极区域(22)从外延沟道调节层的表面延伸通过外延沟道调节层并进入阱区。发射极区域具有第二导电类型并且至少部分定义了阱区中相邻于发射极区域的沟道区。栅极氧化物层(26)在沟道区域上,并且栅极(28)在栅极氧化物层上。相关的方法也被公开。

Description

高功率绝缘栅双极晶体管
美国政府利益的陈述
本发明是在ONR/DARPA授予的合同号为N00014-05-C-0202的政府支持下完成的。政府对本发明具有一定的权利。
对相关申请的交叉引用以及要求优先权
本申请要求以2006年8月17日提交的,美国临时专利申请号为60/838,249,发明名称是“高功率绝缘栅双极晶体管”的申请为优先权并请求其利益,该公开的全部内容引入本文作为参考。
背景技术
本发明涉及电子器件。更确切地说,本发明涉及高功率绝缘栅双极晶体管。
由于SiC的高临界场和宽带隙,相对于那些硅上的功率器件,由碳化硅(SiC)制成的功率器件被预期在高速、高功率和/或高温的应用上展现出巨大的优势。对于可以阻断高压的器件,例如超过大约5kV的电压,可能希望具备双极操作以通过从注入的少数载流子获得的电导率调制降低漂移层阻抗。然而,碳化硅双极器件的一个技术难题是随时间的正向电压退化,或许是由于在碳化硅的单晶中基面差排(BPD)的存在。因此,例如SiC肖特基二极管和MOSFET的单极器件典型地运用在高功率应用中。
已经制造出具有10kV阻断能力的SiC DMOSFET,具有大约100mΩ×cm2的比导通电阻。例如,由于它们的多数载流子本性,DMOSFET器件可以展现出例如比100ns还小的非常快的切换速度。然而,随着期望的器件阻断电压增加,例如高达15kV或更高,由于漂移层厚度中对应的增加,MOSFET器件的导通电阻可能显著地增加。由于体迁移率的降低在高温下这种问题可能恶化,其可导致过多的功耗。
随着SiC晶体材料生长的进步,已经发展了一些减少BPD相关问题的途径。例如,来看B.Hull,M.Das,J.Sumakeris,J.Richmond,和S.Krishinaswami,“无漂移10-kv,20-A4H-SiC PiN二极管”,电学材料杂志,2005年第34卷第4号。这些进步可以增强例如半导体闸流管、GTO等的SiC双极器件的开发和/或潜在的应用。即使半导体闸流管和/或GTO可以提供低正向电压降,它们将需要庞大的用于栅极驱动和保护的整流电路。因此,期望具有栅极关断能力的SiC双极器件。由于它们良好的导通态特性,合理的切换速度,和/或极好的安全操作区(SOA),4H-SiC绝缘栅极双极晶体管(IGBT)变得更加适合于功率切换应用。
发明内容
根据一些实施例的基于碳化硅的绝缘栅双极晶体管(IGBT)包括具有第一导电类型的碳化硅衬底,具有与第一导电类型相反的第二导电类型的碳化硅漂移层和位于该漂移层中的阱区,该阱区具有第一导电类型。碳化硅外延沟道调节层在该漂移层上并且具有第二导电类型。发射极区域自外延沟道调节层的表面延伸通过外延沟道调节层并进入该阱区。该发射极区域具有第二导电类型并且至少部分定义了阱区中相邻于发射极区域的沟道区。栅极氧化物层位于沟道区上,栅极位于栅极氧化物层上。
碳化硅漂移层可以包括相邻于阱区的JFET区。发射极区域可以与JFET区隔开并可定义在发射极区域和JFET区之间的沟道区。
在一些实施例中,第一导电类型可以是n型并且第二导电类型可以是p型。
晶体管可以进一步包括:具有第一导电类型的连接器区,从沟道调节层的表面延伸进入阱区;在连接器区上的第一欧姆接触;在发射极区域上并包括不同于第一欧姆接触的材料的第二欧姆接触;以及电连接第一欧姆接触和第二欧姆接触的金属重迭层。
第一欧姆接触可以包括基于镍的导电材料并且第二欧姆接触可以包括基于铝的导电材料。
沟道调节层可以具有大约是0.25μm或更厚的厚度。而且,从发射极区域的底部到阱区的底部大约是0.45μm或更长的距离。沟道调节层可以具有大约0.1μm到大约0.5μm的厚度,并具有大约1×1016cm-3到大约5×1018cm-3的净掺杂浓度。
本发明的一些实施例提供了在碳化硅中形成绝缘栅双极晶体管(IGBT)器件的方法。这些方法包括在n型碳化硅衬底上形成p型碳化硅漂移层,在p型碳化硅漂移层中形成n型阱,并在p型碳化硅漂移层上和n型阱上外延生长p型沟道调节层。可以注入p型掺杂离子以形成延伸通过沟道层进入碳化硅层的表面的n型阱的p型发射极区域。P型发射极区域至少部分定义了n型阱中相邻于p型发射极区域的沟道区域。这些方法进一步包括注入n型掺杂离子以形成n型连接器区,其延伸通过沟道层进入碳化硅层的表面的n型阱中。对注入离子退火。在沟道区上形成栅极氧化物层,并且在栅极氧化物层上形成栅极。
这些方法可进一步包括为注入激活形成石墨覆盖层并且在对注入离子退火后移除石墨覆盖层。对注入离子退火可包括对碳化硅层和石墨覆盖层退火。这些方法可进一步包括在对注入离子退火前晶体化石墨覆盖层。
对注入离子的退火可包括在高于1700℃的温度下对注入离子退火,在一些实施例中高于1800℃。形成栅极氧化物层可以包括在干O2中形成栅极氧化物层,这些方法可进一步包括在湿O2中对栅极氧化物层退火。特别是,形成栅极氧化物层可以包括在干O2中在低于或等于约1200℃的温度下形成栅极氧化物层。
这些方法可进一步包括在形成栅极氧化物层之后且在湿O2中对栅极氧化物层退火之前,在惰性气氛中在低于或等于大约1200℃的温度下对栅极氧化物层退火。
在湿氧中对栅极氧化物层退火可包括在湿O2中在低于或等于大约950℃的温度下对栅极氧化物层退火至少一个小时。
在湿O2中对氧化物层退火可包括在热室内生成高热蒸汽,将高热蒸汽提供给退火室,并在退火室里对氧化物层退火。生成高热蒸汽可以包括对热室加热,给热室提供氢气和氧气,并且燃烧氢气和氧气以形成高热蒸汽,提供给热室的氢气和氧气的氢对氧的分子比大约是1.8或更高。
这些方法可以进一步包括对漂移层注入p型掺杂离子以形成相邻于n型阱的JFET区。p型发射极区域可与JFET区隔开并且可以定义在p型发射极区域和JFET区之间的沟道区。
沟道调节层可以具有大约0.1μm到大约0.5μm的厚度,并且净受主浓度是大约1×1016cm-3到大约5×1018cm-3
附图说明
所包括的附图有助于对本发明进一步的理解并且构成本申请的一部分,说明了本发明的特定实施例。在附图中:
图1是根据根据本发明的一些实施例的碳化硅绝缘栅双极晶体管(IGBT)器件的截面图。
图2A到2D是展示了根据本发明的一些实施例的IGBT器件的形成中的中间结构的截面图。
图3是说明了根据本发明的一些实施例可能使用的热室和退火室的示意图。
图4-5是根据本发明的一些实施例的IGBT器件的导通状态I-V特性的图。
图6是根据本发明的一些实施例的IGBT器件的漏电流密度相对于阻断电压的曲线图。
图7是根据本发明的一些实施例的用于测试器件的切换特性的钳位电感性切换测试电路拓扑结构的图。
图8是根据本发明的一些实施例的器件的电感性切换波形的图。
具体实施方式
在下文中参照展示本发明的实施例的附图,将更加充分地描述本发明的实施例。然而,本发明可以具体化为很多不同的形式并且不应将其解释为局限于在此提到的实施例中。更合适地,提供这些实施例以使直接并完整地描述公开的发明,并且向本领域技术人员充分传达本发明的范围。相同的数字始终对应相同或相似的部件。
在这里即使称谓第一、第二等用于描述不同的部件,可以理解这些部件不应局限于这些称谓。这些称谓仅仅是用于把一个部件和另一个部件区分开。例如,在并不脱离本发明的范围下,第一部件可以叫做第二部件,并且,类似地,第二部件可以叫做第一部件。在此使用的称谓“和/或”包括相关的列出的一个或多个项目的任意和所有组合。
在此使用的术语目的仅是描述特定的实施例并不是限制本发明。在此采用单数形式“一”和“该”目的是也包括复数形式,除非上下文另外清晰指出。可以进一步理解当在此使用称谓“包括”、“包含”、和/或“含”,明确说明所述的特征、整体、步骤、操作、部件、和/或组件的存在,但是不排除一个或多个其他的特征、整体、步骤、操作、部件、组件,和/或其组合的存在或增加。
除非另外定义,在此采用的所有的称谓(包括技术和科学术语)具有与本发明所属领域的技术人员一般理解相同的意思。可以进一步理解在此使用的称谓应当认为是具有与它们在说明书上下文和相关领域中所一致的意思,并且不能以理想的或过于字面的意思来解释,除非在此被清楚地定义。
可以理解当部件,例如一个层、区或衬底被称为“在”另一个部件“之上”或延伸到另一个部件“之上”时,其可以直接地在另一个部件之上或延伸到直接在另一个部件之上,或也可存在居间的部件。相反地,当部件被称为“直接地在”另一部件“之上”或延伸到“直接在”另一个部件“之上”时,将没有居间部件存在。也可以理解为当部件被称为“连接”或“耦接”到另一部件时,它可以直接地连接或耦接到该另一部件或可以存在居间部件。相反地,当部件被称为“直接连接”或“直接耦接”到另一个部件时,将不存在居间部件。
在此可使用相对性术语例如“在..之下”或“在..之上”或“上部”或“下部”或“水平”或“横向”或“垂直”以描述在图中所示的一个部件、层或区与另一个部件、层、或区的关系。可以理解为这些术语目的是包含器件除了图中所示的方向以外的不同的方向。
在此参考截面图描述的本发明的实施例是本发明的理想化的实施例(和中间结构)的示意图。为了清楚起见图中的层和区的厚度被放大。另外,可以预期到例如,由于制造工艺和/或误差容限而产生从示例的形状的变化。因此,本发明的实施例不应被认为局限于在此所示的特定区域形状,而应该包括例如由于制造而产生的变形。例如,典型地,被示为矩形的注入区域会具有圆形或弯曲的特征和/或在其边缘的注入浓度存在梯度而不是从注入区域到非注入区域的不连续变化。同样地,注入形成的掩埋区可以导致在掩埋区和注入通过其发生的表面之间的区域中的一些注入。因此,图中所示的区域实质上是示意性的并且它们的形状不能代表器件区域的真实形状并且并不意在限制本发明的范围。
本发明一些实施例的描述参考特征化为具有例如n型或p型的导电类型的半导体层和/或区,n型或p型指的是层和/或区中的多数载流子浓度。因此,n型材料具有负电荷电子的多数平衡浓度,同时p型材料具有正电荷空穴的多数平衡浓度。一些材料可以被分配“+”或“-”(如n+,n-,p+,p-,n ++,n--,p++,p--,等),以指示相对于另一层或区的多数载流子的相对大(“+”)或小(“-”)的浓度。然而,这种符号并不意味着在一个层或区中多数或少数载流子的特定浓度的存在。
本发明的一些实施例提供了适用于高功率和/或高温应用的绝缘栅双极晶体管(IGBT)。本发明的一些实施例提供了高压平面IGBT。虽然在此描述的本发明的一些实施例包括碳化硅衬底和外延层,采用其他材料,例如硅、锗、砷化镓、和氮化镓及其合金制成的器件采用在此所述的原理和结构可能是有利的。
首次报道,于2005年,在n型衬底上构造的平面栅5.8kV的SiC中的IGBT。参见2006年ISPSD Proceeding,Q.Zhang,C.Jonas,S.Ryu,A.AgaRwal和J.Palmour的“4H-SiC上的高压IGBT的设计和制造”。由于缺少n沟道IGBT需要的高质量低电阻率p-SiC衬底,选择了p沟道IGBT。该器件在25℃下栅偏压为-30V时展示大约为570mΩ×cm2的微分导通电阻(Rdiff,导通),并且在200℃下衰减到约118mΩ×cm2。高导通电阻主要是由于低的体载流子寿命,以及低的空穴沟道迁移率。
根据本发明的一些实施例的IGBT结构如图1所示。平面器件结构,例如图1的器件10的结构,可以提供工艺简单化和/或增强器件可靠性。然而,可有利地采用其他的器件结构。
图1的器件10包括在n型衬底12上的p型缓冲层14和p漂移外延层16。衬底12可以包括n+型离轴8度的4H-SiC衬底。P漂移层16可以具有大约为110μm的厚度并可以用p型掺杂物以选择为提供期望的阻断电压的掺杂浓度掺杂。例如,为了得到10kV的阻断能力,p漂移层16可以用p型掺杂物掺杂到大约2×1014cm-3到大约6×1014cm-3的掺杂浓度。p型缓冲层14可以具有大约1μm到大约2μm的厚度并且可以用p型掺杂物掺杂到掺杂浓度约1×1017cm-3。提供p型缓冲层14作为沟道停止层以阻碍穿通现象。
在p型漂移层16的表面形成N+阱区18。该n+阱区18可由离子注入形成,可以延伸进入漂移层16大约0.5μm的距离。
在漂移层16上是一外延p型沟道调节层40。该沟道调节层40可具有大约0.1μm到大约0.5μm的厚度,并且可以掺杂p型掺杂物以具有大约1×1016cm-3到大约5×1018cm-3的净受主浓度。特别地,外延p型沟道调节层40可以具有大约0.25μm的厚度并且可以用受主离子例如铝离子以大约为1×1017cm-3的掺杂浓度掺杂。p型沟道调节层40的存在可以调整阈电压和/或提高器件10的反型沟道迁移率。
器件10进一步包括n+型连接器区24和p+型发射极区域22,其可以分别通过例如氮和铝的选择注入来形成。n+连接器区24和p+型发射极区域22延伸通过p型沟道调节层40进入n+阱区18。在一些实施例中,p+发射极区域22的底部和n+阱区18的底部之间的距离d可以是约0.45μm或更多。增加的距离d可以提供n+阱区18更低的电阻,其可导致器件10的改进的导通状态电阻。
可以在器件外围提供基于保护环的边缘终止(未示出)。可以采用其他类型的边缘终止。
器件10包括在相邻的n+阱区18之间的漂移层16中的JFET区20。可以用p型掺杂物注入JFET区20以减少来自相邻的n+阱区18的JFET电阻。在一些实施例中,通过外延生长工艺形成JFET区20。
器件10进一步包括栅极绝缘层26,其可以包括具有约400-1000
Figure G2007800294605D00071
的厚度的二氧化硅。
例如,在栅极绝缘层26上形成多晶硅的栅极28。层间介电层33在器件10的表面上并且电隔离栅极28。
对n+连接器区24形成n型欧姆接触35,并对p+发射极区域22形成p型欧姆接触37。n型欧姆接触35可以包括基于镍的导电层,例如Ni和/或NiSi。p型欧姆接触37可以包括基于铝的导电层,例如Al和/或AlSi。金属重迭层39在层间介电层33上形成并通过n型连接器区24和p型发射极区域22各自的欧姆接触35、37电连接n型连接器区24和p型发射极区域22。在衬底12上形成n型欧姆金属集电极接触32。
图2A到2D展示了可执行的一些操作和可在器件10的形成过程中形成的中间结构10A到10D。参考图2A,在n+型离轴8度的4H-SiC衬底12上通过外延生长形成p型SiC缓冲层14和p-SiC漂移层16。P型缓冲层14可以具有约1μm到约2μm的厚度并以约1×1017cm-3的掺杂浓度用p型掺杂物掺杂。在p型漂移层16形成后,例如,通过施主离子,例如氮,注入在漂移层16中形成n+阱区18。希望注入n+阱区18越深越好。可用的注入能量会限制n+阱区18的深度。
然后在大约1600℃或更高的温度下对结构退火以激活注入离子。特别是,可以在本领域公知的标准SiC激活退火条件下对该结构退火以激活n型掺杂物。
例如,通过在相邻的n+阱区18之间的漂移层16中注入铝形成JFET区20。可以用p型掺杂物注入JFET区20以降低来自相邻n+阱区18的JFET电阻。特别地,可以选择JFET注入量以在将注入损伤保持在可接受的水平的同时降低JFET电阻。在一些实施例中,以足够的量执行JFET注入以在JFET区20中提供约1×1016cm-3的掺杂浓度。在一些实施例中,通过外延生长工艺形成JFET区。
参考图2B,在漂移层16上形成外延沟道调节层40,例如采用公知的SiC外延再生长技术。可以约1×1017cm-3掺杂浓度用受主离子对沟道调节层40掺杂。
该外延沟道调节层40可以调节阈电压和/或提高器件的反型沟道迁移率。而且,该沟道调节层40也可以允许相对于n型阱区18更浅的p型源极区22的形成。通过将p型发射极注入22提升到再生长沟道调节层40的表面来提供更深的n型阱区18,可以减少或防止器件中的闩锁效应。由于p型发射极区域22的底部和n+阱18的底部之间的间距d的增加,深n+阱18可以导致更低的N阱电阻。更低的n阱电阻可以增加器件闩锁效应电流和/或提供更好的导通状态电阻。
参考图2C,例如,分别通过施主和受主离子的选择注入进入或通过外延沟道调节层40形成n型连接器区24和p型发射极区域22。
将理解图2C所示的距离d是n型阱区18垂直范围和p型发射极区域22的垂直范围的函数。一般的,期望使得在p型发射极区域22的底部和n+阱区18的底部之间的间距d越大越好。而且,如上所述,可以在形成p型外延沟道调节层40后形成p型发射极区域22。因此,用于制造器件的系统的最大注入能量决定阱区18的厚度(深度)。然而,p+发射极区域22进入n型阱区18的穿透深度可能会被可大约为0.25μm的外延沟道调节层40的厚度减小。
仍然参考图2C,可以通过硅过压(silicon over pressure)和/或用例如石墨膜的密封层覆盖该结构的情况下,对该结构在大约1600℃或更高的温度下退火,来激活注入掺杂物。在一些实施例中,可以通过采用石墨密封层的在高于1700℃的温度下的退火来激活注入杂质。
高温激活退火(例如1700℃或者更高)可以提高阈电压调节离子的活性,以及对沟道区40中的缺陷退火。然而,该高温退火可能损伤碳化硅漂移层16的表面。
参考图2C,为了减少高温退火导致的损伤,石墨覆盖层50可以优先于形成栅极氧化物26、栅极接触28和发射极接触30而形成在结构10C的表面上。也就是,可优先于为激活注入离子而对结构10C的退火,在结构10C的顶/正面施加石墨覆盖层50,以便在退火中保护该结构的表面。可以通过常规的光致抗蚀剂涂覆方法来施加石墨覆盖层50,并且其可以具有足够在高温退火中保护下面的SiC层的厚度。例如,石墨覆盖层50可以具有约1μm的厚度。可以加热石墨覆盖层50以在沟道调节层40上形成晶体覆盖层。例如,可以通过可以在约1700℃或更高的温度下在惰性气体中执行的热退火激活注入离子。特别地,可以在约1850℃的温度下在氩气中执行热退火5分钟。在高温退火中石墨覆盖层50可以有助于保护外延沟道调节层40和/或漂移层16的表面。
例如,可以通过灰化和热氧化将石墨覆盖层50移除。
注入退火之后,例如,可以沉积具有约1μm厚度的二氧化硅构成的场氧化物(未示出),并对其图案化以暴露器件的有源区。
参考图2D,可以通过最终栅氧化物厚度为400-600
Figure G2007800294605D00091
的栅氧化工艺形成栅极绝缘层26。
可以在移除石墨覆盖层50之后在漂移层16的暴露表面上生长栅极绝缘层26。栅极绝缘层26可以包括通过干-湿氧化工艺生长的氧化物层,所述干-湿氧化工艺包括在干氧气中生长体氧化物接着在湿氧气中对体氧化物退火,例如,如美国专利5972801中所述,在此引入其全部公开作为参考。如在此所用的,氧化物在湿氧气中的退火指的是在包含氧气和水蒸气两者的环境中对氧化物的退火。可以在干氧化物生长和湿氧化物生长之间执行退火。例如,在石英炉管中在高达大约为1200℃温度下在干氧中执行干氧氧化物生长至少约2.5个小时的时间。执行干氧化物生长以生长体氧化物层至期望的厚度。干氧化物生长的温度将影响氧化物生长率。例如,更高的工艺温度可以导致更高的氧化物生长率。生长温度的最大值取决于采用的系统。例如,通过采用碳化硅炉替代石英管,干氧生长可以达到更高的温度。然而,更高的温度可能不会改善氧化物的质量。
在一些实施例中,可以在约1175℃的温度下在干氧中执行干氧化物生长约3.5个小时。可以在高达约1200℃的温度下在惰性气氛中对这样生成的氧化物层退火。特别是,得到的氧化物层可以在约1175℃的温度下在Ar中退火大约1小时。
可以在大约950℃或更低的温度下执行湿氧氧化物退火至少约1小时的时间。可限制湿氧退火的温度以阻止SiC/SiO2界面上进一步的热氧化物生长,其可以引入额外的界面态。特别地,可以在大约950℃的温度下在湿氧中执行湿氧退火大约3个小时。由此得到的栅极绝缘层26可以具有大约为500
Figure G2007800294605D00092
的厚度。
在一些实施例中,可以采用高热工艺生成在湿氧退火步骤中采用的蒸汽,因而得到的湿氧退火可以称为“高热氧化”。参考图3,在高热氧化中,将氧(O2)气和氢(H2)气流进热室210内,热室210与退火室220分离,并且热室210加热到例如约为800℃的高温。在热室210中氢气和氧气燃烧并形成水蒸汽(H2O)和氧气(O2)的混合物,将其供应给退火室220。
在一些情况下,希望调节氢气和氧气进入热室210的流速以使得氢和氧的分子比接近但不超过2∶1的比率。也就是说,希望提供给退火室220的混合物在合理的安全限制内尽可能地湿。在一些情况下,可以采用1.8∶1或1.9∶1的氢/氧比。
再次参考图2D,栅极绝缘层26形成之后,沉积并例如用硼掺杂多晶硅栅极28,随后进行金属化工艺以减小栅极电阻。例如由二氧化硅构成的层间介电层33形成于结构10D上并且覆盖栅极28和结构10D的暴露部分。在层间介电层33中形成通路孔,并且对p型发射极区域22和n型连接器区24形成欧姆接触。可以沉积基于铝的导电材料,例如Al和/或AlSi作为p型欧姆金属发射极接触37,并且沉积例如Ni和/或NiSi的基于Ni的导电层作为n型欧姆金属接触35。可以在快速热退火装置中对所有接触烧结。如图1所示,金属重迭层39,例如厚的Ti/Au层,可以沉积在层间介电层上以电连接p型发射极区域22和n型连接器区24。形成n型连接器接触32作为器件10上的背面接触。
制造如上所述并且具有0.4mm2的面积的有源区的平面IGBT,并在栅极和集电极具有负电势下描绘导通状态和阻断特性。室温下的0.4mm2IGBT的导通态特性如图4所示,其具有约-20V的最大栅极偏压。膝处电压大约为-3V,其显示发射极和集电极良好的欧姆接触。微分导通电阻是88mΩ×cm2,其是高压IGBT的最小值。将这种器件的功耗设置在300W/cm2,集电极电流密度大约为50A/cm2。在该电流密度水平下,集电极电压降大约是-8.65V,其对应的比导通电阻大约是173mΩ×cm2
在导通状态下,根据本发明实施例的IGBT可以显示正温度系数。对同一个器件图5示出了在200℃下的I-V特性。膝处电压相对保持恒定在-3V。微分导通电阻在栅极偏压为-20V下进一步减小到大约25mΩ×cm2。在集电极电流密度为50A/cm2时,集电极电压降降低到约-5.30V,其对应的比导通电阻约为106mΩ×cm2。高温下的导通电阻减小可能反映了目前采用的SiC材料中的载流子寿命是与IGBT导通状态电流传导能力相关的主要因素。相对于10kV级的SiCDMOSFET,根据本发明一些实施例的IGBT大概是由于不充分的电阻率调制,在室温下仍然显示了较高的电压降。然而,在高温下电压降变得比DMOSFET的值低。
图6展示了在室温下的相同器件的电压阻断特性。特别是,如上所述的IGBT器件在栅电极与发射极接地并浸泡在氟油(Fluorinert)中以防止空气中的电弧的条件下测试。如图6所示,具有比约为0.1mA/cm2还小的漏电流密度的9kV的阻断电压在0V的栅极偏压下已经达到。在器件终止外围中发生了击穿,这可能说明利用更好的边缘终止设计来接近漂移层厚度决定的阻断电压还有余地。
与IGBT结合制造的横向4H-SiC p-MOSFET的空穴迁移率和MOS阈电压的测量显示了MOSFET器件在室温下具有约6.5cm2/V-s的峰值沟道迁移率和约-7.5V的阈电压。当阈电压随着温度降低时,沟道迁移率在100℃下达到约为8.2cm2/V-s的最大值。
在根据本发明的实施例的IGBT器件上执行切换测试。切换测试采用图7所示的钳位电感性切换测试电路拓扑结构。在切换测试中测试的IGBT器件10具有4mm2面积的有源区以达到高导通电流,但是在其他方面测试器件具有和以上所述类似的设计。在该测试电路中,IGBT 10耦接到1.1mH的由续流二极管D1钳位的电感性负载L1。该二极管D1包括两个串联的具有零反向恢复的CreeCSD10120SiC肖特基二极管。一个CSD10120二极管额定为1200V和10A,串联起来的两个可以提供2400V的阻断能力。电容器C1具有2μF的电容并且可以处理高达4kV的电压。电源Vin的从0到-20V的负脉冲用于开启IGBT。电源电压Vss是-500V。
图8显示了25℃下的集电极电压为-500V的切换波形。在图8中,水平轴以500nsec/div测量时间,同时垂直轴以200V/div测量电压和以1A/div测量电流。定义下降时间tfall为关断时集电极电流从峰值2A的90%降落到5%的时间。上升时间trise为开启时集电极电流从2A电流峰值的5%上升到90%的时间。开启延迟时间在施加-20栅极偏压和集电极电流上升到2A峰值之间的时间。关断延迟时间是在栅极偏压的移除和集电极电流降落到0之间的时间。
表格1展示了对不同温度的切换时间。切换时间在室温下总共是约350ns并且在200℃增加到约460ns。该IGBT特征是快速切换能力,其可以在高频下在宽温度范围内工作。关断延迟时间是总的切换时间的主要部分,其主要由输入电容器决定。
表格1-切换时间
  温度(℃)   tfall(ns)   trise(ns)   Tdelay(on)(ns)  Tdelay(off)(ns)   ttotal(ns)
  25   64   14   40   220   338
  50   81   16   20   220   337
  100   51   10   18   220   299
  150   75   14   18   320   427
  200   77   7   36   340   460
根据本发明的一些实施例的SiC IGBT适合于高功率和/或高温操作。本发明的一些实施例提供了在n型4H-SiC衬底上的高压平面IGBT。在一些实施例中,在25℃约-20V的栅极偏压下达到约88mΩ×cm2的微分导通电阻,并且在200℃降低到约24.8mΩ×cm2。根据本发明的实施例的器件可以展现具有约0.1mA/cm2或更小的漏电流密度的约9kV的阻断电压。在室温下阈电压为-6.5V时达到约6.5cm2/V-s的空穴沟道迁移率,导致增强的导电能力。电感性切换测试显示了根据本发明的一些实施例的IGBT可以在室温和提高的温度下都展现快的切换能力。
根据本发明的一些实施例的IGBT器件可展现出低导通状态电阻。特别是,通过采用掩埋沟道注入/再生长、热氧化、高温注入激活和/或注入激活中的石墨密封中之一或更多,可以达到高沟道迁移率。本发明的一些实施例可以提供优化的单元设计,其具有在高沟道密度和低JFET电阻间更好的平衡。而且,本发明的一些实施例可以提供场停止层,其被配置以在保持期望的阻断能力的同时提高载流子注入效率。通过外延沟道再生长和/或采用高温退火和/或石墨密封的阈值调节/掩埋沟道注入离子的激活可以获得高沟道迁移率。可以通过为获得高空穴载流子浓度的p型外延生长获得来自p型发射极的高多数载流子注入。而且,本发明的一些实施例可以提供降低的n和p型材料上的欧姆接触电阻。
在附图和说明书中,已经揭示了发明的典型实施例并且,虽然采用了专门的术语,但它们仅仅用于普通的和叙述性的意思并且其目的并非在于限制,在接下来的权利要求中将阐述本发明的范围。

Claims (22)

1.一种绝缘栅双极晶体管,包括:
具有第一导电类型的衬底;
具有与第一导电类型相反的第二导电类型的漂移层;
在漂移层中并具有第一导电类型的阱区;
在漂移层上并具有第二导电类型的外延沟道调节层;
从外延沟道调节层的表面延伸通过外延沟道调节层并进入阱区的发射极区域,发射极区域具有第二导电类型并且至少部分定义了阱区中相邻于发射极区域的沟道区;
在沟道区上的栅极氧化物层;
在栅极氧化物层上的栅极;
从沟道调节层的表面延伸进入阱区的具有第一导电类型的连接器区;
在连接器区上的第一欧姆接触;
在发射极区域上并且包含不同于第一欧姆接触的材料的第二欧姆接触;以及
电连接第一欧姆接触和第二欧姆接触的金属重迭层。
2.如权利要求1所述的晶体管,其中漂移层包括相邻于阱区的JFET区,并且其中发射极区域与JFET区隔开并且定义在发射极区域和JFET区之间的沟道区。
3.如权利要求1所述的晶体管,其中第一导电类型是n型并且第二导电类型是p型。
4.如权利要求1所述的晶体管,其中第一欧姆接触包括基于镍的导电材料并且其中第二欧姆接触包含基于铝的导电材料。
5.如权利要求1所述的晶体管,其中发射极区域的底部和阱区的底部之间的距离为0.45μm或更大。
6.如权利要求1所述的晶体q管,其中沟道调节层具有0.1μm到0.5μm的厚度并且具有1×1016cm-3到5×1018cm-3的净掺杂浓度。
7.如权利要求1所述的晶体管,其中衬底包括碳化硅衬底并且其中漂移层包括衬底上的碳化硅外延层。
8.一种晶体管,包括:
n型衬底;
p型漂移层;
在漂移层中的n型阱;
在漂移层上的p型沟道调节层;
延伸通过沟道调节层并进入n型阱的p型发射极区域,p型发射极区域至少部分定义了n型阱中相邻于p型发射极区域的沟道区;
延伸通过沟道调节层并进入n型阱的n型连接器区;
在p型发射极区域上的包括铝的第一欧姆接触;
在n型连接器区上的包括不同于第一欧姆接触的金属的第二欧姆接触,第二欧姆接触包括镍;
在沟道区上的栅极氧化物层;
在栅极氧化物层上的栅极;
棚极上的层间介电层,该层间介电层包括暴露第一欧姆接触的第一开口和暴露第二欧姆接触的第二开口;以及
在层间介电层上并且电连接第一欧姆接触和第二欧姆接触的金属重迭层。
9.一种形成绝缘栅双极晶体管(IGBT)器件的方法,包括:
在n型衬底上形成p型漂移层;
在p型漂移层中形成n型阱;
在p型漂移层和n型阱上外延生长p型沟道调节层;
注入p型掺杂物离子以形成延伸通过沟道调节层并进入漂移层表面的n型阱的p型发射极区域,p型发射极区域至少部分定义了n型阱中相邻于p型发射极区域的沟道区;
注入n型掺杂物离子以形成延伸通过沟道层并进入漂移层表面的n型阱的n型连接器区;
在沟道调节层上形成石墨覆盖层;
对注入离子和石墨覆盖层退火;
在对注入离子退火之后移除石墨覆盖层;
在沟道区上形成栅极氧化物层;以及
在栅极氧化物层上形成栅极。
10.如权利要求9所述的方法,进一步包括在对注入离子退火之前晶体化石墨覆盖层。
11.如权利要求9所述的方法,其中对注入离子的退火包括在高于1700℃的温度下对注入离子退火。
12.如权利要求9所述的方法,其中对注入离子的退火包括在高于1800℃的温度下对注入离子退火。
13.如权利要求9所述的方法,其中形成栅极氧化物层包括在干O2中形成栅极氧化物层,该方法进一步包括在湿O2中对栅极氧化物层退火。
14.如权利要求13所述的方法,其中形成栅极氧化物层包括在低于或等于1200℃的温度下在干O2中形成栅极氧化物层。
15.如权利要求13所述的方法,进一步包括在形成栅极氧化物层之后且在湿O2中对栅极氧化物层退火之前,在低于或等于1200℃的温度下在惰性气氛里对栅极氧化物层退火。
16.如权利要求13所述的方法,其中在湿O2中对栅极氧化物层退火包括在低于或等于950℃的温度下在湿O2中对栅极氧化物层退火。
17.如权利要求16所述的方法,其中在湿O2中对栅极氧化物层退火包括在湿O2中对栅极氧化物层退火至少一小时。
18.如权利要求13所述的方法,其中在湿O2中对氧化物层退火包括在热室中生成高热蒸汽,给退火室提供高热蒸汽,以及在退火室中对氧化物层退火。
19.如权利要求18所述的方法,其中生成高热蒸汽包括对热室加热,给热室提供氢气和氧气,以及燃烧氢气和氧气以形成高热蒸汽,其中以1.8或更高的氢与氧的分子比将氢气和氧气提供给热室。
20.如权利要求9所述的方法,进一步包括注入p型掺杂物离子到漂移层中以形成相邻于n型阱的JFET区,并且其中p型发射极区域与JFET区隔开并且定义p型发射极区域和JFET区之间的沟道区。
21.如权利要求9所述的方法,其中沟道调节层形成为具有0.1μm到0.5μm的厚度,并且其中沟道调节层具有1×1016cm-3到5×1018cm-3的净受主浓度。
22.如权利要求9所述的方法,其中衬底包括碳化硅,并且其中漂移层包括外延碳化硅层。
CN2007800294605A 2006-08-17 2007-06-18 高功率绝缘栅双极晶体管 Active CN101501859B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US83824906P 2006-08-17 2006-08-17
US60/838,249 2006-08-17
PCT/US2007/014139 WO2008020911A2 (en) 2006-08-17 2007-06-18 High power insulated gate bipolar transistors

Publications (2)

Publication Number Publication Date
CN101501859A CN101501859A (zh) 2009-08-05
CN101501859B true CN101501859B (zh) 2011-05-25

Family

ID=38896818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800294605A Active CN101501859B (zh) 2006-08-17 2007-06-18 高功率绝缘栅双极晶体管

Country Status (6)

Country Link
US (2) US8710510B2 (zh)
EP (2) EP2631951B1 (zh)
JP (2) JP5645404B2 (zh)
KR (1) KR101529331B1 (zh)
CN (1) CN101501859B (zh)
WO (1) WO2008020911A2 (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2033212B1 (en) * 2006-06-29 2013-10-16 Cree, Inc. Method of forming a silicon carbide pmos device
US7728402B2 (en) 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
KR101529331B1 (ko) 2006-08-17 2015-06-16 크리 인코포레이티드 고전력 절연 게이트 바이폴라 트랜지스터
US8835987B2 (en) * 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US7687825B2 (en) * 2007-09-18 2010-03-30 Cree, Inc. Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
US8043978B2 (en) * 2007-10-11 2011-10-25 Riken Electronic device and method for producing electronic device
US7989882B2 (en) * 2007-12-07 2011-08-02 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
US9640609B2 (en) * 2008-02-26 2017-05-02 Cree, Inc. Double guard ring edge termination for silicon carbide devices
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US8097919B2 (en) 2008-08-11 2012-01-17 Cree, Inc. Mesa termination structures for power semiconductor devices including mesa step buffers
US8288220B2 (en) 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures
WO2010119491A1 (ja) * 2009-04-16 2010-10-21 三菱電機株式会社 炭化珪素半導体装置の製造方法
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8637386B2 (en) 2009-05-12 2014-01-28 Cree, Inc. Diffused junction termination structures for silicon carbide devices and methods of fabricating silicon carbide devices incorporating same
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8629509B2 (en) * 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
US8541787B2 (en) * 2009-07-15 2013-09-24 Cree, Inc. High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability
US8314462B2 (en) * 2009-07-28 2012-11-20 Cree, Inc. Semiconductor devices including electrodes with integrated resistances
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US8563986B2 (en) * 2009-11-03 2013-10-22 Cree, Inc. Power semiconductor devices having selectively doped JFET regions and related methods of forming such devices
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
US8525239B2 (en) 2010-05-27 2013-09-03 Panasonic Corporation Semiconductor device and method for driving same
CN102263127B (zh) * 2010-05-29 2013-06-19 比亚迪股份有限公司 一种mos型功率器件及其制造方法
JP2011253883A (ja) * 2010-06-01 2011-12-15 On Semiconductor Trading Ltd 半導体装置及びその製造方法
GB2484506A (en) * 2010-10-13 2012-04-18 Univ Warwick Heterogrowth
DE112010005980T5 (de) * 2010-11-08 2013-08-14 Hitachi, Ltd. Halbleiterelement
US8803277B2 (en) 2011-02-10 2014-08-12 Cree, Inc. Junction termination structures including guard ring extensions and methods of fabricating electronic devices incorporating same
CN102760759B (zh) * 2011-04-29 2016-02-03 比亚迪股份有限公司 一种半导体功率器件
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9171977B2 (en) * 2011-06-17 2015-10-27 Cree, Inc. Optically assist-triggered wide bandgap thyristors having positive temperature coefficients
CN102244099B (zh) * 2011-06-23 2013-04-17 西安电子科技大学 外延沟道的SiCIEMOSFET器件及制备方法
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US8618582B2 (en) 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
JP2014531752A (ja) 2011-09-11 2014-11-27 クリー インコーポレイテッドCree Inc. 改善したレイアウトを有するトランジスタを備える高電流密度電力モジュール
GB2495949B (en) * 2011-10-26 2015-03-11 Anvil Semiconductors Ltd Silicon carbide epitaxy
CN103151262A (zh) * 2011-12-07 2013-06-12 无锡华润华晶微电子有限公司 平面型绝缘栅双极型晶体管及其制备方法
JP5611184B2 (ja) * 2011-12-14 2014-10-22 三菱電機株式会社 半導体装置の製造における熱処理方法
JP2013258333A (ja) * 2012-06-13 2013-12-26 Toshiba Corp 電力用半導体装置
US9054183B2 (en) * 2012-07-13 2015-06-09 United Silicon Carbide, Inc. Trenched and implanted accumulation mode metal-oxide-semiconductor field-effect transistor
US9496345B2 (en) * 2012-07-31 2016-11-15 National Institute Of Advanced Industrial Science And Technology Semiconductor structure, semiconductor device, and method for producing semiconductor structure
CN103973960B (zh) * 2013-02-01 2017-05-24 华晶科技股份有限公司 摄像装置及对焦方法
US9306061B2 (en) * 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
US9240476B2 (en) 2013-03-13 2016-01-19 Cree, Inc. Field effect transistor devices with buried well regions and epitaxial layers
US9142668B2 (en) 2013-03-13 2015-09-22 Cree, Inc. Field effect transistor devices with buried well protection regions
US9012984B2 (en) 2013-03-13 2015-04-21 Cree, Inc. Field effect transistor devices with regrown p-layers
JP6189131B2 (ja) * 2013-08-01 2017-08-30 株式会社東芝 半導体装置およびその製造方法
US9331197B2 (en) 2013-08-08 2016-05-03 Cree, Inc. Vertical power transistor device
US10868169B2 (en) * 2013-09-20 2020-12-15 Cree, Inc. Monolithically integrated vertical power transistor and bypass diode
US9214572B2 (en) * 2013-09-20 2015-12-15 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices
WO2015048445A1 (en) * 2013-09-27 2015-04-02 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Elimination of basal plane dislocations in post growth silicon carbide epitaxial layers by high temperature annealing while preserving surface morphology
CN104517837B (zh) * 2013-09-29 2017-10-10 无锡华润上华科技有限公司 一种绝缘栅双极型晶体管的制造方法
US9111919B2 (en) * 2013-10-03 2015-08-18 Cree, Inc. Field effect device with enhanced gate dielectric structure
JP6119577B2 (ja) * 2013-11-26 2017-04-26 三菱電機株式会社 半導体装置
US9318587B2 (en) * 2014-05-30 2016-04-19 Alpha And Omega Semiconductor Incorporated Injection control in semiconductor power devices
JP6425950B2 (ja) * 2014-09-12 2018-11-21 株式会社Screenホールディングス 半導体製造方法および半導体製造装置
CN104319292A (zh) * 2014-11-06 2015-01-28 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法
CN104282766A (zh) * 2014-11-06 2015-01-14 株洲南车时代电气股份有限公司 一种新型碳化硅mosfet及其制造方法
JP2016127177A (ja) * 2015-01-06 2016-07-11 住友電気工業株式会社 炭化珪素基板、炭化珪素半導体装置および炭化珪素基板の製造方法
KR101692000B1 (ko) * 2015-01-08 2017-01-09 메이플세미컨덕터(주) SiC 전력 반도체 소자용 열산화막의 제조 방법 및 SiC 전력 반도체 소자의 제조 방법
CN104966735A (zh) * 2015-05-26 2015-10-07 株洲南车时代电气股份有限公司 一种碳化硅mosfet器件及其制备方法
JP6706786B2 (ja) * 2015-10-30 2020-06-10 一般財団法人電力中央研究所 エピタキシャルウェハの製造方法、エピタキシャルウェハ、半導体装置の製造方法及び半導体装置
JP6657963B2 (ja) * 2016-01-05 2020-03-04 富士電機株式会社 Mosfet
JP6544252B2 (ja) * 2016-01-26 2019-07-17 豊田合成株式会社 半導体装置、電力変換装置及び半導体装置の製造方法
JP6711100B2 (ja) * 2016-04-15 2020-06-17 富士電機株式会社 炭化珪素半導体装置、炭化珪素半導体装置の製造方法および炭化珪素半導体装置の制御方法
CN106024627A (zh) * 2016-07-22 2016-10-12 泰科天润半导体科技(北京)有限公司 具有低关态损耗的SiC基超结IGBT的制作方法
CN107785365B (zh) * 2016-08-31 2021-08-06 无锡华润上华科技有限公司 集成有结型场效应晶体管的器件及其制造方法
DE102019117897B4 (de) * 2018-09-28 2024-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Halbleitervorrichtung zur logik- und speicher-co-optimierung sowie schaltung
US10763863B2 (en) 2018-09-28 2020-09-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device for logic and memory co-optimization
US20200105874A1 (en) 2018-10-01 2020-04-02 Ipower Semiconductor Back side dopant activation in field stop igbt
JP7189848B2 (ja) * 2019-08-07 2022-12-14 株式会社東芝 半導体装置およびその製造方法
KR102251761B1 (ko) * 2019-11-27 2021-05-14 현대모비스 주식회사 전력 반도체 소자
CN111682063B (zh) * 2020-05-22 2022-05-13 东莞市天域半导体科技有限公司 一种超高压P沟道SiC-IGBT器件材料及其制造方法
JP2022049822A (ja) 2020-09-17 2022-03-30 キオクシア株式会社 半導体記憶装置
CN112750807B (zh) * 2021-02-26 2022-09-09 东莞市中之电子科技有限公司 一种具有屏蔽缓冲结构的mosfet管
CN113284954B (zh) * 2021-07-22 2021-09-24 成都蓉矽半导体有限公司 一种高沟道密度的碳化硅mosfet及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712502A (en) * 1994-07-27 1998-01-27 Siemens Aktiengesellschaft Semiconductor component having an edge termination means with high field blocking capability
US5972801A (en) * 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
CN1395746A (zh) * 2000-11-21 2003-02-05 松下电器产业株式会社 半导体器件及其制造方法
CN1439172A (zh) * 2000-05-05 2003-08-27 国际整流器公司 用于穿通非外延型绝缘栅双极型晶体管的缓冲区的氢注入

Family Cites Families (250)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439189A (en) 1965-12-28 1969-04-15 Teletype Corp Gated switching circuit comprising parallel combination of latching and shunt switches series-connected with input-output control means
US3629011A (en) 1967-09-11 1971-12-21 Matsushita Electric Ind Co Ltd Method for diffusing an impurity substance into silicon carbide
US3924024A (en) 1973-04-02 1975-12-02 Ncr Co Process for fabricating MNOS non-volatile memories
FR2347780A1 (fr) 1976-07-21 1977-11-04 Bicosa Recherches Perfectionnements apportes a un element bistable et circuit interrupteur comportant un tel element bistable
US4242690A (en) 1978-06-06 1980-12-30 General Electric Company High breakdown voltage semiconductor device
US4466172A (en) 1979-01-08 1984-08-21 American Microsystems, Inc. Method for fabricating MOS device with self-aligned contacts
US4581542A (en) 1983-11-14 1986-04-08 General Electric Company Driver circuits for emitter switch gate turn-off SCR devices
US4644637A (en) 1983-12-30 1987-02-24 General Electric Company Method of making an insulated-gate semiconductor device with improved shorting region
JPS60177266U (ja) 1984-05-02 1985-11-25 株式会社 大井製作所 ドアチエツク装置
JPS60240158A (ja) 1984-05-14 1985-11-29 Mitsubishi Electric Corp 半導体回路
EP0176778B1 (de) 1984-09-28 1991-01-16 Siemens Aktiengesellschaft Verfahren zum Herstellen eines pn-Übergangs mit hoher Durchbruchsspannung
US4811065A (en) 1987-06-11 1989-03-07 Siliconix Incorporated Power DMOS transistor with high speed body diode
JPS6449273A (en) 1987-08-19 1989-02-23 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH0734470B2 (ja) * 1987-09-24 1995-04-12 三菱電機株式会社 電界効果型半導体装置
US5011549A (en) 1987-10-26 1991-04-30 North Carolina State University Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
US4875083A (en) 1987-10-26 1989-10-17 North Carolina State University Metal-insulator-semiconductor capacitor formed on silicon carbide
US4866005A (en) 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
US4945394A (en) 1987-10-26 1990-07-31 North Carolina State University Bipolar junction transistor on silicon carbide
JPH0614763Y2 (ja) 1988-01-29 1994-04-20 一雄 上田 降下避難具
JP2843037B2 (ja) * 1988-09-20 1999-01-06 株式会社日立製作所 半導体装置の製造方法
JP2680083B2 (ja) 1988-12-06 1997-11-19 富士通株式会社 半導体基板及びその製造方法
JPH02275675A (ja) 1988-12-29 1990-11-09 Fuji Electric Co Ltd Mos型半導体装置
DE59010606D1 (de) 1989-03-29 1997-01-30 Siemens Ag Verfahren zur Herstellung eines planaren pn-Übergangs hoher Spannungsfestigkeit
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
US4927772A (en) 1989-05-30 1990-05-22 General Electric Company Method of making high breakdown voltage semiconductor device
JPH0766971B2 (ja) 1989-06-07 1995-07-19 シャープ株式会社 炭化珪素半導体装置
US5028977A (en) 1989-06-16 1991-07-02 Massachusetts Institute Of Technology Merged bipolar and insulated gate transistors
JP2623850B2 (ja) 1989-08-25 1997-06-25 富士電機株式会社 伝導度変調型mosfet
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
JPH03157974A (ja) 1989-11-15 1991-07-05 Nec Corp 縦型電界効果トランジスタ
JPH03225870A (ja) 1990-01-31 1991-10-04 Toshiba Corp ヘテロ接合バイポーラトランジスタの製造方法
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
JP2542448B2 (ja) 1990-05-24 1996-10-09 シャープ株式会社 電界効果トランジスタおよびその製造方法
US5292501A (en) 1990-06-25 1994-03-08 Degenhardt Charles R Use of a carboxy-substituted polymer to inhibit plaque formation without tooth staining
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
US5270554A (en) 1991-06-14 1993-12-14 Cree Research, Inc. High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
US5155289A (en) 1991-07-01 1992-10-13 General Atomics High-voltage solid-state switching devices
JPH0529628A (ja) * 1991-07-19 1993-02-05 Fuji Electric Co Ltd 絶縁ゲート型バイポーラトランジスタ
US5170455A (en) 1991-10-30 1992-12-08 At&T Bell Laboratories Optical connective device
US5242841A (en) 1992-03-25 1993-09-07 Texas Instruments Incorporated Method of making LDMOS transistor with self-aligned source/backgate and photo-aligned gate
US5612260A (en) 1992-06-05 1997-03-18 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US6344663B1 (en) 1992-06-05 2002-02-05 Cree, Inc. Silicon carbide CMOS devices
US5459107A (en) 1992-06-05 1995-10-17 Cree Research, Inc. Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
US5726463A (en) 1992-08-07 1998-03-10 General Electric Company Silicon carbide MOSFET having self-aligned gate structure
US5587870A (en) 1992-09-17 1996-12-24 Research Foundation Of State University Of New York Nanocrystalline layer thin film capacitors
JP3146694B2 (ja) 1992-11-12 2001-03-19 富士電機株式会社 炭化けい素mosfetおよび炭化けい素mosfetの製造方法
US5506421A (en) 1992-11-24 1996-04-09 Cree Research, Inc. Power MOSFET in silicon carbide
KR100305123B1 (ko) 1992-12-11 2001-11-22 비센트 비.인그라시아, 알크 엠 아헨 정적랜덤액세스메모리셀및이를포함하는반도체장치
JPH0799312A (ja) 1993-02-22 1995-04-11 Texas Instr Inc <Ti> 半導体装置とその製法
JP2811526B2 (ja) 1993-04-19 1998-10-15 東洋電機製造株式会社 静電誘導ショットキー短絡構造を有する静電誘導型半導体素子
US5371383A (en) * 1993-05-14 1994-12-06 Kobe Steel Usa Inc. Highly oriented diamond film field-effect transistor
JP3310386B2 (ja) * 1993-05-25 2002-08-05 忠弘 大見 絶縁酸化膜の形成方法及び半導体装置
US5539217A (en) 1993-08-09 1996-07-23 Cree Research, Inc. Silicon carbide thyristor
US5479316A (en) 1993-08-24 1995-12-26 Analog Devices, Inc. Integrated circuit metal-oxide-metal capacitor and method of making same
US5510630A (en) 1993-10-18 1996-04-23 Westinghouse Electric Corporation Non-volatile random access memory cell constructed of silicon carbide
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5396085A (en) 1993-12-28 1995-03-07 North Carolina State University Silicon carbide switching device with rectifying-gate
US5385855A (en) 1994-02-24 1995-01-31 General Electric Company Fabrication of silicon carbide integrated circuits
US5488236A (en) 1994-05-26 1996-01-30 North Carolina State University Latch-up resistant bipolar transistor with trench IGFET and buried collector
CN1040814C (zh) 1994-07-20 1998-11-18 电子科技大学 一种用于半导体器件的表面耐压区
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
JPH08213607A (ja) 1995-02-08 1996-08-20 Ngk Insulators Ltd 半導体装置およびその製造方法
US5510281A (en) 1995-03-20 1996-04-23 General Electric Company Method of fabricating a self-aligned DMOS transistor device using SiC and spacers
JP3521246B2 (ja) 1995-03-27 2004-04-19 沖電気工業株式会社 電界効果トランジスタおよびその製造方法
EP0735591B1 (en) 1995-03-31 1999-09-08 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno Improved DMOS device structure, and related manufacturing process
SE9501310D0 (sv) 1995-04-10 1995-04-10 Abb Research Ltd A method for introduction of an impurity dopant in SiC, a semiconductor device formed by the mehtod and a use of a highly doped amorphous layer as a source for dopant diffusion into SiC
US5734180A (en) 1995-06-02 1998-03-31 Texas Instruments Incorporated High-performance high-voltage device structures
US6693310B1 (en) 1995-07-19 2004-02-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5967795A (en) 1995-08-30 1999-10-19 Asea Brown Boveri Ab SiC semiconductor device comprising a pn junction with a voltage absorbing edge
FR2738394B1 (fr) 1995-09-06 1998-06-26 Nippon Denso Co Dispositif a semi-conducteur en carbure de silicium, et son procede de fabrication
JPH11261061A (ja) 1998-03-11 1999-09-24 Denso Corp 炭化珪素半導体装置及びその製造方法
US6573534B1 (en) * 1995-09-06 2003-06-03 Denso Corporation Silicon carbide semiconductor device
JP4001960B2 (ja) 1995-11-03 2007-10-31 フリースケール セミコンダクター インコーポレイテッド 窒化酸化物誘電体層を有する半導体素子の製造方法
US6136728A (en) 1996-01-05 2000-10-24 Yale University Water vapor annealing process
US6133587A (en) 1996-01-23 2000-10-17 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
JPH09205202A (ja) 1996-01-26 1997-08-05 Matsushita Electric Works Ltd 半導体装置
JPH09232332A (ja) * 1996-02-27 1997-09-05 Fuji Electric Co Ltd 半導体装置
SE9601174D0 (sv) 1996-03-27 1996-03-27 Abb Research Ltd A method for producing a semiconductor device having a semiconductor layer of SiC and such a device
US5877045A (en) 1996-04-10 1999-03-02 Lsi Logic Corporation Method of forming a planar surface during multi-layer interconnect formation by a laser-assisted dielectric deposition
US5719409A (en) 1996-06-06 1998-02-17 Cree Research, Inc. Silicon carbide metal-insulator semiconductor field effect transistor
US5763905A (en) 1996-07-09 1998-06-09 Abb Research Ltd. Semiconductor device having a passivation layer
SE9602745D0 (sv) 1996-07-11 1996-07-11 Abb Research Ltd A method for producing a channel region layer in a SiC-layer for a voltage controlled semiconductor device
US6002159A (en) 1996-07-16 1999-12-14 Abb Research Ltd. SiC semiconductor device comprising a pn junction with a voltage absorbing edge
US5917203A (en) 1996-07-29 1999-06-29 Motorola, Inc. Lateral gate vertical drift region transistor
SE9602993D0 (sv) 1996-08-16 1996-08-16 Abb Research Ltd A bipolar semiconductor device having semiconductor layers of SiC and a method for producing a semiconductor device of SiC
US5939763A (en) 1996-09-05 1999-08-17 Advanced Micro Devices, Inc. Ultrathin oxynitride structure and process for VLSI applications
EP0837508A3 (en) 1996-10-18 1999-01-20 Hitachi, Ltd. Semiconductor device and electric power conversion apparatus therewith
US6028012A (en) 1996-12-04 2000-02-22 Yale University Process for forming a gate-quality insulating layer on a silicon carbide substrate
JP3225870B2 (ja) 1996-12-05 2001-11-05 トヨタ車体株式会社 ルーフスポイラの取付構造
US5837572A (en) 1997-01-10 1998-11-17 Advanced Micro Devices, Inc. CMOS integrated circuit formed by using removable spacers to produce asymmetrical NMOS junctions before asymmetrical PMOS junctions for optimizing thermal diffusivity of dopants implanted therein
SE9700141D0 (sv) 1997-01-20 1997-01-20 Abb Research Ltd A schottky diode of SiC and a method for production thereof
SE9700156D0 (sv) 1997-01-21 1997-01-21 Abb Research Ltd Junction termination for Si C Schottky diode
US6180958B1 (en) 1997-02-07 2001-01-30 James Albert Cooper, Jr. Structure for increasing the maximum voltage of silicon carbide power transistors
JP3206727B2 (ja) 1997-02-20 2001-09-10 富士電機株式会社 炭化けい素縦型mosfetおよびその製造方法
DE19809554B4 (de) 1997-03-05 2008-04-03 Denso Corp., Kariya Siliziumkarbidhalbleitervorrichtung
EP0865085A1 (en) 1997-03-11 1998-09-16 STMicroelectronics S.r.l. Insulated gate bipolar transistor with high dynamic ruggedness
JPH10284718A (ja) 1997-04-08 1998-10-23 Fuji Electric Co Ltd 絶縁ゲート型サイリスタ
US5969378A (en) 1997-06-12 1999-10-19 Cree Research, Inc. Latch-up free power UMOS-bipolar transistor
US6121633A (en) 1997-06-12 2000-09-19 Cree Research, Inc. Latch-up free power MOS-bipolar transistor
US6063698A (en) 1997-06-30 2000-05-16 Motorola, Inc. Method for manufacturing a high dielectric constant gate oxide for use in semiconductor integrated circuits
US5877041A (en) 1997-06-30 1999-03-02 Harris Corporation Self-aligned power field effect transistor in silicon carbide
DE19832329A1 (de) 1997-07-31 1999-02-04 Siemens Ag Verfahren zur Strukturierung von Halbleitern mit hoher Präzision, guter Homogenität und Reproduzierbarkeit
JP3180895B2 (ja) 1997-08-18 2001-06-25 富士電機株式会社 炭化けい素半導体装置の製造方法
WO1999009598A1 (de) 1997-08-20 1999-02-25 Siemens Aktiengesellschaft Halbleiterstruktur mit einem alpha-siliziumcarbidbereich sowie verwendung dieser halbleiterstruktur
US6239463B1 (en) 1997-08-28 2001-05-29 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
WO1999013512A1 (de) 1997-09-10 1999-03-18 Infineon Technologies Ag Halbleiterbauelement mit einer driftzone
SE9704150D0 (sv) 1997-11-13 1997-11-13 Abb Research Ltd Semiconductor device of SiC with insulating layer a refractory metal nitride layer
JP3085272B2 (ja) * 1997-12-19 2000-09-04 富士電機株式会社 炭化けい素半導体装置の熱酸化膜形成方法
JPH11191559A (ja) 1997-12-26 1999-07-13 Matsushita Electric Works Ltd Mosfetの製造方法
JPH11251592A (ja) 1998-01-05 1999-09-07 Denso Corp 炭化珪素半導体装置
JP3216804B2 (ja) 1998-01-06 2001-10-09 富士電機株式会社 炭化けい素縦形fetの製造方法および炭化けい素縦形fet
JPH11266017A (ja) 1998-01-14 1999-09-28 Denso Corp 炭化珪素半導体装置及びその製造方法
JPH11238742A (ja) 1998-02-23 1999-08-31 Denso Corp 炭化珪素半導体装置の製造方法
JP3893725B2 (ja) 1998-03-25 2007-03-14 株式会社デンソー 炭化珪素半導体装置の製造方法
JPH11330468A (ja) * 1998-05-20 1999-11-30 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
US6627539B1 (en) 1998-05-29 2003-09-30 Newport Fab, Llc Method of forming dual-damascene interconnect structures employing low-k dielectric materials
US6303410B1 (en) * 1998-06-01 2001-10-16 North Carolina State University Methods of forming power semiconductor devices having T-shaped gate electrodes
US6100169A (en) 1998-06-08 2000-08-08 Cree, Inc. Methods of fabricating silicon carbide power devices by controlled annealing
US6107142A (en) 1998-06-08 2000-08-22 Cree Research, Inc. Self-aligned methods of fabricating silicon carbide power devices by implantation and lateral diffusion
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP4003296B2 (ja) 1998-06-22 2007-11-07 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US5960289A (en) 1998-06-22 1999-09-28 Motorola, Inc. Method for making a dual-thickness gate oxide layer using a nitride/oxide composite region
JP4123636B2 (ja) 1998-06-22 2008-07-23 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP2000106371A (ja) 1998-07-31 2000-04-11 Denso Corp 炭化珪素半導体装置の製造方法
US6221700B1 (en) 1998-07-31 2001-04-24 Denso Corporation Method of manufacturing silicon carbide semiconductor device with high activation rate of impurities
JP3959856B2 (ja) 1998-07-31 2007-08-15 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6246076B1 (en) 1998-08-28 2001-06-12 Cree, Inc. Layered dielectric on silicon carbide semiconductor structures
SE9802909L (sv) 1998-08-31 1999-10-13 Abb Research Ltd Metod för framställning av en pn-övergång för en halvledaranordning av SiC samt en halvledaranordning av SiC med pn-övergång
ATE533178T1 (de) 1998-09-09 2011-11-15 Texas Instruments Inc Integrierter schaltkreis mit kondensator und diesbezügliches herstellungsverfahren
JP4186337B2 (ja) 1998-09-30 2008-11-26 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US6204203B1 (en) 1998-10-14 2001-03-20 Applied Materials, Inc. Post deposition treatment of dielectric films for interface control
US6048766A (en) 1998-10-14 2000-04-11 Advanced Micro Devices Flash memory device having high permittivity stacked dielectric and fabrication thereof
US6239466B1 (en) 1998-12-04 2001-05-29 General Electric Company Insulated gate bipolar transistor for zero-voltage switching
US6190973B1 (en) 1998-12-18 2001-02-20 Zilog Inc. Method of fabricating a high quality thin oxide
WO2000042662A1 (de) 1999-01-12 2000-07-20 eupec Europäische Gesellschaft für Leistungshalbleiter mbH & Co. KG Leistungshalbleiterbauelement mit mesa-randabschluss
US6335295B1 (en) * 1999-01-15 2002-01-01 Lsi Logic Corporation Flame-free wet oxidation
US6228720B1 (en) 1999-02-23 2001-05-08 Matsushita Electric Industrial Co., Ltd. Method for making insulated-gate semiconductor element
JP3943749B2 (ja) 1999-02-26 2007-07-11 株式会社日立製作所 ショットキーバリアダイオード
JP3443589B2 (ja) 1999-03-01 2003-09-02 独立行政法人産業技術総合研究所 半導体装置の製造方法
US6420225B1 (en) 1999-04-01 2002-07-16 Apd Semiconductor, Inc. Method of fabricating power rectifier device
US6399996B1 (en) 1999-04-01 2002-06-04 Apd Semiconductor, Inc. Schottky diode having increased active surface area and method of fabrication
US6448160B1 (en) 1999-04-01 2002-09-10 Apd Semiconductor, Inc. Method of fabricating power rectifier device to vary operating parameters and resulting device
US6238967B1 (en) 1999-04-12 2001-05-29 Motorola, Inc. Method of forming embedded DRAM structure
US6218680B1 (en) 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination
US6137139A (en) 1999-06-03 2000-10-24 Intersil Corporation Low voltage dual-well MOS device having high ruggedness, low on-resistance, and improved body diode reverse recovery
JP2000349081A (ja) 1999-06-07 2000-12-15 Sony Corp 酸化膜形成方法
US6218254B1 (en) 1999-09-22 2001-04-17 Cree Research, Inc. Method of fabricating a self-aligned bipolar junction transistor in silicon carbide and resulting devices
US6329675B2 (en) * 1999-08-06 2001-12-11 Cree, Inc. Self-aligned bipolar junction silicon carbide transistors
US6365932B1 (en) * 1999-08-20 2002-04-02 Denso Corporation Power MOS transistor
JP3760688B2 (ja) 1999-08-26 2006-03-29 富士電機ホールディングス株式会社 炭化けい素半導体素子の製造方法
JP4192353B2 (ja) 1999-09-21 2008-12-10 株式会社デンソー 炭化珪素半導体装置及びその製造方法
JP4160752B2 (ja) 1999-09-22 2008-10-08 サイスド エレクトロニクス デヴェロプメント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト 炭化珪素からなる半導体装置とその製造方法
US6373076B1 (en) 1999-12-07 2002-04-16 Philips Electronics North America Corporation Passivated silicon carbide devices with low leakage current and method of fabricating
US6303508B1 (en) 1999-12-16 2001-10-16 Philips Electronics North America Corporation Superior silicon carbide integrated circuits and method of fabricating
US7186609B2 (en) 1999-12-30 2007-03-06 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
US6703642B1 (en) 2000-02-08 2004-03-09 The United States Of America As Represented By The Secretary Of The Army Silicon carbide (SiC) gate turn-off (GTO) thyristor structure for higher turn-off gain and larger voltage blocking when in the off-state
US7125786B2 (en) 2000-04-11 2006-10-24 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6475889B1 (en) 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6429041B1 (en) 2000-07-13 2002-08-06 Cree, Inc. Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
DE10036208B4 (de) 2000-07-25 2007-04-19 Siced Electronics Development Gmbh & Co. Kg Halbleiteraufbau mit vergrabenem Inselgebiet und Konaktgebiet
JP4750933B2 (ja) * 2000-09-28 2011-08-17 株式会社東芝 薄型パンチスルー型パワーデバイス
US6767843B2 (en) 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US6956238B2 (en) 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
US6593620B1 (en) 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
JP3881840B2 (ja) 2000-11-14 2007-02-14 独立行政法人産業技術総合研究所 半導体装置
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP3940560B2 (ja) 2001-01-25 2007-07-04 独立行政法人産業技術総合研究所 半導体装置の製造方法
US6551865B2 (en) 2001-03-30 2003-04-22 Denso Corporation Silicon carbide semiconductor device and method of fabricating the same
JP4892787B2 (ja) 2001-04-09 2012-03-07 株式会社デンソー ショットキーダイオード及びその製造方法
US6524900B2 (en) 2001-07-25 2003-02-25 Abb Research, Ltd Method concerning a junction barrier Schottky diode, such a diode and use thereof
US20030025175A1 (en) 2001-07-27 2003-02-06 Sanyo Electric Company, Ltd. Schottky barrier diode
JP4026339B2 (ja) 2001-09-06 2007-12-26 豊田合成株式会社 SiC用電極及びその製造方法
JP2003086792A (ja) * 2001-09-10 2003-03-20 National Institute Of Advanced Industrial & Technology 半導体装置の作製法
JP3559971B2 (ja) 2001-12-11 2004-09-02 日産自動車株式会社 炭化珪素半導体装置およびその製造方法
US6855970B2 (en) 2002-03-25 2005-02-15 Kabushiki Kaisha Toshiba High-breakdown-voltage semiconductor device
JP3906105B2 (ja) * 2002-03-29 2007-04-18 株式会社東芝 半導体装置
JP4114390B2 (ja) * 2002-04-23 2008-07-09 株式会社デンソー 半導体装置及びその製造方法
SE525574C2 (sv) 2002-08-30 2005-03-15 Okmetic Oyj Lågdopat kiselkarbidsubstrat och användning därav i högspänningskomponenter
US7132321B2 (en) 2002-10-24 2006-11-07 The United States Of America As Represented By The Secretary Of The Navy Vertical conducting power semiconductor devices implemented by deep etch
DE10259373B4 (de) 2002-12-18 2012-03-22 Infineon Technologies Ag Überstromfeste Schottkydiode mit niedrigem Sperrstrom
US7221010B2 (en) 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
JP2004221263A (ja) * 2003-01-14 2004-08-05 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
US7026650B2 (en) 2003-01-15 2006-04-11 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
JP2004247545A (ja) 2003-02-14 2004-09-02 Nissan Motor Co Ltd 半導体装置及びその製造方法
WO2004079789A2 (en) 2003-03-05 2004-09-16 Rensselaer Polytechnic Institute Interstage isolation in darlington transistors
CN1532943B (zh) 2003-03-18 2011-11-23 松下电器产业株式会社 碳化硅半导体器件及其制造方法
KR100900562B1 (ko) 2003-03-24 2009-06-02 페어차일드코리아반도체 주식회사 향상된 uis 내성을 갖는 모스 게이트형 트랜지스터
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US20050012143A1 (en) * 2003-06-24 2005-01-20 Hideaki Tanaka Semiconductor device and method of manufacturing the same
JP3711989B2 (ja) * 2003-06-24 2005-11-02 日産自動車株式会社 半導体装置およびその製造方法
JP2005033030A (ja) * 2003-07-07 2005-02-03 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US7138668B2 (en) 2003-07-30 2006-11-21 Nissan Motor Co., Ltd. Heterojunction diode with reduced leakage current
US20050104072A1 (en) 2003-08-14 2005-05-19 Slater David B.Jr. Localized annealing of metal-silicon carbide ohmic contacts and devices so formed
US7018554B2 (en) 2003-09-22 2006-03-28 Cree, Inc. Method to reduce stacking fault nucleation sites and reduce forward voltage drift in bipolar devices
EP1690301B1 (en) 2003-11-12 2012-08-15 Cree, Inc. Methods of processing semiconductor wafer backsides having light emitting diodes (leds) thereon
JP2005167035A (ja) 2003-12-03 2005-06-23 Kansai Electric Power Co Inc:The 炭化珪素半導体素子およびその製造方法
US7005333B2 (en) 2003-12-30 2006-02-28 Infineon Technologies Ag Transistor with silicon and carbon layer in the channel region
US7407837B2 (en) 2004-01-27 2008-08-05 Fuji Electric Holdings Co., Ltd. Method of manufacturing silicon carbide semiconductor device
KR20060125700A (ko) * 2004-02-06 2006-12-06 마츠시타 덴끼 산교 가부시키가이샤 탄화규소 반도체소자 및 그 제조방법
DE102005017814B4 (de) * 2004-04-19 2016-08-11 Denso Corporation Siliziumkarbid-Halbleiterbauelement und Verfahren zu dessen Herstellung
US7071518B2 (en) 2004-05-28 2006-07-04 Freescale Semiconductor, Inc. Schottky device
JP4666200B2 (ja) 2004-06-09 2011-04-06 パナソニック株式会社 SiC半導体装置の製造方法
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
EP1619276B1 (en) 2004-07-19 2017-01-11 Norstel AB Homoepitaxial growth of SiC on low off-axis SiC wafers
US20060211210A1 (en) 2004-08-27 2006-09-21 Rensselaer Polytechnic Institute Material for selective deposition and etching
JP4777630B2 (ja) * 2004-09-21 2011-09-21 株式会社日立製作所 半導体装置
JP3914226B2 (ja) 2004-09-29 2007-05-16 株式会社東芝 高耐圧半導体装置
JP4954463B2 (ja) 2004-10-22 2012-06-13 三菱電機株式会社 ショットキーバリアダイオード
US7304363B1 (en) 2004-11-26 2007-12-04 United States Of America As Represented By The Secretary Of The Army Interacting current spreader and junction extender to increase the voltage blocked in the off state of a high power semiconductor device
US7615774B2 (en) 2005-04-29 2009-11-10 Cree.Inc. Aluminum free group III-nitride based high electron mobility transistors
US7544963B2 (en) 2005-04-29 2009-06-09 Cree, Inc. Binary group III-nitride based high electron mobility transistors
US8901699B2 (en) 2005-05-11 2014-12-02 Cree, Inc. Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection
US7679223B2 (en) 2005-05-13 2010-03-16 Cree, Inc. Optically triggered wide bandgap bipolar power switching devices and circuits
US7414268B2 (en) * 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7528040B2 (en) * 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US20060267021A1 (en) 2005-05-27 2006-11-30 General Electric Company Power devices and methods of manufacture
JP4777699B2 (ja) 2005-06-13 2011-09-21 本田技研工業株式会社 バイポーラ型半導体装置およびその製造方法
US7548112B2 (en) 2005-07-21 2009-06-16 Cree, Inc. Switch mode power amplifier using MIS-HEMT with field plate extension
EP2546865B1 (en) 2005-09-16 2023-12-06 Wolfspeed, Inc. Methods of processing semiconductor wafers having silicon carbide power devices thereon
US7304334B2 (en) 2005-09-16 2007-12-04 Cree, Inc. Silicon carbide bipolar junction transistors having epitaxial base regions and multilayer emitters and methods of fabricating the same
JP2007103784A (ja) 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd ヘテロ接合バイポーラトランジスタ
JP2006086549A (ja) * 2005-12-12 2006-03-30 Nissan Motor Co Ltd 電界効果トランジスタ及びその製造方法
US7345310B2 (en) 2005-12-22 2008-03-18 Cree, Inc. Silicon carbide bipolar junction transistors having a silicon carbide passivation layer on the base region thereof
US7592211B2 (en) 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US20070228505A1 (en) 2006-04-04 2007-10-04 Mazzola Michael S Junction barrier schottky rectifiers having epitaxially grown p+-n junctions and methods of making
JP5560519B2 (ja) 2006-04-11 2014-07-30 日産自動車株式会社 半導体装置及びその製造方法
JP2007287782A (ja) 2006-04-13 2007-11-01 Hitachi Ltd メサ型バイポーラトランジスタ
US7372087B2 (en) 2006-06-01 2008-05-13 Northrop Grumman Corporation Semiconductor structure for use in a static induction transistor having improved gate-to-drain breakdown voltage
EP2033212B1 (en) 2006-06-29 2013-10-16 Cree, Inc. Method of forming a silicon carbide pmos device
US7728402B2 (en) 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
KR101529331B1 (ko) 2006-08-17 2015-06-16 크리 인코포레이티드 고전력 절연 게이트 바이폴라 트랜지스터
US8384181B2 (en) 2007-02-09 2013-02-26 Cree, Inc. Schottky diode structure with silicon mesa and junction barrier Schottky wells
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
JP4450241B2 (ja) 2007-03-20 2010-04-14 株式会社デンソー 炭化珪素半導体装置の製造方法
JP4356767B2 (ja) 2007-05-10 2009-11-04 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
US8866150B2 (en) 2007-05-31 2014-10-21 Cree, Inc. Silicon carbide power devices including P-type epitaxial layers and direct ohmic contacts
JP4539684B2 (ja) 2007-06-21 2010-09-08 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US7687825B2 (en) 2007-09-18 2010-03-30 Cree, Inc. Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
CN101855726B (zh) 2007-11-09 2015-09-16 克里公司 具有台面结构及包含台面台阶的缓冲层的功率半导体器件
US9640609B2 (en) 2008-02-26 2017-05-02 Cree, Inc. Double guard ring edge termination for silicon carbide devices
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
US8097919B2 (en) 2008-08-11 2012-01-17 Cree, Inc. Mesa termination structures for power semiconductor devices including mesa step buffers
US8536582B2 (en) 2008-12-01 2013-09-17 Cree, Inc. Stable power devices on low-angle off-cut silicon carbide crystals
US8497552B2 (en) 2008-12-01 2013-07-30 Cree, Inc. Semiconductor devices with current shifting regions and related methods
US8288220B2 (en) 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712502A (en) * 1994-07-27 1998-01-27 Siemens Aktiengesellschaft Semiconductor component having an edge termination means with high field blocking capability
US5972801A (en) * 1995-11-08 1999-10-26 Cree Research, Inc. Process for reducing defects in oxide layers on silicon carbide
CN1439172A (zh) * 2000-05-05 2003-08-27 国际整流器公司 用于穿通非外延型绝缘栅双极型晶体管的缓冲区的氢注入
CN1395746A (zh) * 2000-11-21 2003-02-05 松下电器产业株式会社 半导体器件及其制造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Junji Senzaki etc..Effects of Pyrogenic Reoxiation Annealing on InversionChannel Mobility of 4H-SiC Metal-Oxide-Semiconductor field-Effect Transistor Fabricated on (1120) Face.Jpn.J.Appl.Phys40 2001.2001,40(2001),1201-1203.
Junji Senzaki etc..Effects of Pyrogenic Reoxiation Annealing on InversionChannel Mobility of 4H-SiC Metal-Oxide-Semiconductor field-Effect Transistor Fabricated on (1120) Face.Jpn.J.Appl.Phys40 2001.2001,40(2001),1201-1203. *
Wilfrid B. Veldkamp etc..Coherent summation of laser beams using binary phasegratings.Optics Letters11 5.1986,11(5),303-305.
Wilfrid B. Veldkamp etc..Coherent summation of laser beams using binary phasegratings.Optics Letters11 5.1986,11(5),303-305. *

Also Published As

Publication number Publication date
CN101501859A (zh) 2009-08-05
KR20090052878A (ko) 2009-05-26
EP2631951B1 (en) 2017-10-11
US20150287805A1 (en) 2015-10-08
WO2008020911A2 (en) 2008-02-21
EP2052414B1 (en) 2016-03-30
US9548374B2 (en) 2017-01-17
EP2631951A3 (en) 2013-09-04
EP2052414A2 (en) 2009-04-29
JP2014078747A (ja) 2014-05-01
JP2010521799A (ja) 2010-06-24
WO2008020911A3 (en) 2008-04-10
US20080105949A1 (en) 2008-05-08
EP2631951A2 (en) 2013-08-28
JP5645404B2 (ja) 2014-12-24
JP5771678B2 (ja) 2015-09-02
KR101529331B1 (ko) 2015-06-16
US8710510B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
CN101501859B (zh) 高功率绝缘栅双极晶体管
CN103620749B (zh) 具有低源极电阻的场效应晶体管器件
CN105793991B (zh) 半导体装置
CN104321873B (zh) 半导体装置以及半导体装置的制造方法
CN101536194B (zh) 包括整流结分流器的功率开关半导体器件
CN106128946B (zh) 半导体装置及半导体装置的制造方法
CN104779278B (zh) 双极半导体器件及其制造方法
US7602045B2 (en) Semiconductor device and inverter device using the same
US20110254010A1 (en) Wide Band-Gap MOSFETs Having a Heterojunction Under Gate Trenches Thereof and Related Methods of Forming Such Devices
CN103890920A (zh) 半导体装置以及半导体装置的制造方法
US9349797B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
CN103035691A (zh) 逆导型igbt半导体器件及其制造方法
CN109616523B (zh) 一种4H-SiC MOSFET功率器件及其制造方法
CN109196655A (zh) 半导体装置及半导体装置的制造方法
CN109461768A (zh) 一种SiC结势垒肖特基二极管及其制造方法
CN107305909A (zh) 一种逆导型igbt背面结构及其制备方法
CN107256884B (zh) 一种碳化硅功率二极管器件及其制作方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
WO2013119548A1 (en) Sic devices with high blocking voltage terminated by a negative bevel
CN109904225A (zh) 一种高可靠性igbt及其制造方法
CN101512738B (zh) 半导体器件和形成半导体器件的方法
CN106098767A (zh) P沟肖特基栅碳化硅静电感应晶闸管及其制造方法
CN111129109A (zh) 一种碳化硅高压mos器件及其制造方法
CN110504298B (zh) 碳化硅半导体器件
Li et al. Research and Development of 1200V 4H-SiC Trench JBS Diode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant