CN101401080B - 在光学计量中增强测量衍射信号的权重函数 - Google Patents

在光学计量中增强测量衍射信号的权重函数 Download PDF

Info

Publication number
CN101401080B
CN101401080B CN2007800082940A CN200780008294A CN101401080B CN 101401080 B CN101401080 B CN 101401080B CN 2007800082940 A CN2007800082940 A CN 2007800082940A CN 200780008294 A CN200780008294 A CN 200780008294A CN 101401080 B CN101401080 B CN 101401080B
Authority
CN
China
Prior art keywords
diffracted signal
weighting function
records
wafer
define
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007800082940A
Other languages
English (en)
Other versions
CN101401080A (zh
Inventor
维·翁
鲍君威
李世芳
陈燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN101401080A publication Critical patent/CN101401080A/zh
Application granted granted Critical
Publication of CN101401080B publication Critical patent/CN101401080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general

Abstract

本发明涉及在光学计量中增强测量衍射信号的权重函数。获得权重函数以使光学计量中所用的测得衍射信号增强。为了获得权重函数,获得测得衍射信号。测得衍射信号是用光计量装置从晶片上的位置测量的。根据测得衍射信号中存在的噪声来定义第一权重函数。根据测得衍射信号的精度来定义第二权重函数。根据测得衍射信号的灵敏度来定义第三权重函数。根据第一权重函数、第二权重函数和第三权重函数中的一个或多个来定义第四权重函数。

Description

在光学计量中增强测量衍射信号的权重函数
技术领域
本发明涉及光学计量,尤其涉及定义权重函数来增强光学计量中所用的测量衍射信号。
背景技术
光学计量包括将入射光束导向晶片上的特征,测量所得的衍射信号,并对测得的衍射信号进行分析以确定特征的各种特性。在半导体制造中,光学计量通常用于确保质量。例如,在半导体晶片上的半导体芯片附近制造周期性光栅之后,使用光学计量系数来确定周期性光栅的轮廓。通过确定周期性光栅的轮廓,可以估计用于形成该周期性光栅的制造处理的质量,并延伸到估计该周期性光栅附近的半导体芯片的质量。
由于多种原因,测得的衍射信号可能较弱。例如,测得衍射信号可能包括与获得测得衍射信号所用的硬件以及被测特征有关的噪声。较弱的测得衍射信号可能降低光学计量处理的精度。
发明内容
在一种示例性实施例中,获得权重函数以使光学计量中所用的测得衍射信号增强。为了获得权重函数,获得测得衍射信号。测得衍射信号是用光计量装置从晶片上的位置测量的。根据测得衍射信号中存在的噪声来定义第一权重函数。根据测得衍射信号的精度来定义第二权重函数。根据测得衍射信号的灵敏度来定义第三权重函数。根据第一权重函数、第二权重函数和第三权重函数中的一项或多项来定义第四权重函数。
附图说明
参照下文结合附图进行的说明,可以对本申请有最佳的理解,在附图中,相同的部分可由相同的标号来表示:
图1示出了一种示例性光学计量系统;
图2A—2E示出了结构的各种光学计量模型;
图3示出了一种示例性噪声分布;
图4示出了示例性权重函数;
图5示出了另一种示例性噪声分布;
图6示出了一种示例性测得衍射信号和示例性模拟衍射信号;
图7示出了一种示例性误差分布;
图8示出了一种示例性权重函数;
图9示出了测得衍射信号的组;
图10示出了经转换衍射信号的组;
图11示出了图10所示经转换衍射信号对图9所示测得衍射信号的比率;以及
图12、13、14示出了示例性聚焦/曝光晶片(FEM)分析的结果。
具体实施方式
下面的描述阐述了多种具体构造、参数等。但是应当明白,这种描述不应认为是对本发明范围的限制,而是作为对示例性实施例的说明而提供的。
1.光学计量
参照图1,光学计量系统100可用来检查和分析晶片上形成的结构。例如,光学计量系统100可用来确定晶片104上形成的周期性光栅102的轮廓。如前所述,周期性光栅102可以形成于晶片104上的测试区域,例如晶片104上形成的器件附近。或者,周期性光栅102可以形成于器件的不对器件工作造成干扰的区域中或者沿着晶片104上的划线而形成。
如图1所示,光学计量系统100可以包括带有光源106和检测器112的光计量装置。周期性光栅102由来自光源106的入射光束108照射。在本示例性实施例中,入射光束108以相对于周期性光栅102的法线
Figure G2007800082940D0002145334QIETU
的入射角度θi和方位角度Φ(即入射光束108的平面与周期性光栅102的周期性方向之间的角度)导向到周期性光栅102上。衍射光束110以相对于周期性光栅102的法线
Figure G2007800082940D0003145352QIETU
的角度θd离开并由检测器112接收。检测器112将衍射光束110转换成测得衍射信号。
为了确定周期性光栅102的轮廓,光学计量系统100包括处理模块114,该模块配置成接收测得衍射信号并分析该测得衍射信号。然后可以用基于库的光学计量处理或基于回归的光学计量处理来确定周期性光栅102的轮廓。另外,也可以想到其他的线性或非线性轮廓提取技术。
应当明白,光学计量系统100可以用来检查和分析除了周期性光栅102之外的其他类型结构,例如薄膜层、实际器件的特征等。另外,也可以用基于库的光学计量处理或基于回归的光学计量处理来确定除了轮廓之外的其他特性,例如薄膜层的厚度。
2.基于库的光学计量处理
在基于库的光学计量处理中,将测得衍射信号与模拟衍射信号的库进行比较。具体而言,库中的每个模拟衍射信号都与该特征的光学计量模型相关联。在测得衍射信号与库中的模拟衍射信号之一之间建立匹配时,或当测得衍射信号与这些模拟衍射信号之一之间的差处于预设判据(即匹配判据)之内时,就假定与匹配的模拟衍射信号相关联的光学计量模型代表了该特征。然后可以利用匹配的模拟衍射信号和/或光学计量模型来判定该特征是否已经根据规格制造的。
因此,再参照图1,在一种示例性实施例中,在获得测得衍射信号之后,处理模块114然后将测得衍射信号与存储在库116中的模拟衍射信号进行比较。库116中的每个模拟衍射信号可以与光学计量模型相关联。这样,在测得衍射信号与库116中的模拟衍射信号之一之间建立匹配时,就可以假定与匹配的模拟衍射信号相关联的光学计量模型代表了周期性光栅102的实际轮廓。
库116中存储的光学计量模型组可以通过下述方式产生:用轮廓参数组对周期性光栅102的轮廓进行表征,并改变轮廓参数组以产生不同形状和尺寸的光学计量模型。用轮廓参数组表征轮廓的处理可以称为参数化。
例如,如图2A所示,假定用光学计量模型200对特征的轮廓进行表征,光学计量模型200具有分别定义了其高度和宽度的轮廓参数h1和w1。如图2B至2E所示,可以通过增加光学计量模型200中所用的轮廓参数的数目来对轮廓的附加的形状和特征进行表征。例如,如图2B所示,光学计量模型200可以包括分别定义了其高度、底部宽度和顶部宽度的轮廓参数h1、w1和w2。注意,光学计量模型200的宽度可以称为临界尺寸(CD)。例如在图2B中,可以说轮廓参数w1和w2分别定义了光学计量模型200的底部CD和顶部CD。
如上所述,库116(图1)中存储的光学计量模型组可以通过改变光学计量模型中所用的轮廓参数来产生。例如,参照图2B,通过改变轮廓参数h1、w1和w2,可以产生不同形状和尺寸的光学计量模型。注意,可以使一个、两个或全部三个轮廓参数相对于彼此发生改变。
再参照图1,在光学计量模型的组和库116中存储的模拟衍射信号中,光学计量模型以及相应的模拟衍射信号的数目(即,库116的范围和/或分辨率)部分地取决于轮廓参数组的范围以及轮廓参数组变化的增量。在一种示例性实施例中,光学计量模型和库116中存储的模拟衍射信号是在获得来自实际特征的测得衍射信号之前产生的。因此,可以根据对特征的制造工艺的熟悉情况以及变动范围可能如何,来选择产生库116时所用的范围和增量(即范围和分辨率)。也可以根据经验性测量(例如使用AFM、X-SEM等进行的测量)来选择库116的范围和/或分辨率。
对于基于库的处理的更详细的描述,可以参见2001年7月16日提交的名为“GENERATION OF A LIBRARY OF RERIODIC GRATINGDIFFRACTION SIGNALS”的美国专利申请序号09/907,488,其全部内容通过引用结合于此。
3.基于回归的光学计量处理
在基于回归的光学计量处理中,将测得衍射信号与模拟衍射信号(即试验性衍射信号)进行比较。模拟衍射信号是在比较之前,使用用于光学计量模型的轮廓参数(即试验性轮廓参数)的组产生的。如果测得衍射信号与模拟衍射信号不匹配,或当测得衍射信号与模拟衍射信号之一的差不在预设判据(即匹配判据)范围内时,使用用于另一光学计量模型的另一轮廓参数组产生另一模拟衍射信号,然后将测得衍射信号与新产生的模拟衍射信号进行比较。在测得衍射信号与模拟衍射信号匹配时,或测得衍射信号与模拟衍射信号之一的差处于预设判据(即匹配判据)范围内时,就假定与匹配的模拟衍射信号相关联的光学计量模型代表了实际特征。然后可以用匹配的模拟衍射信号和/或光学计量模型来判定该特征是否是按照规格制造的。
这样,再参照图1,在一种示例性实施例中,处理模块114可以产生用于光学计量模型的模拟衍射信号,然后将测得衍射信号与模拟衍射信号进行比较。如上所述,如果测得衍射信号与模拟衍射信号不匹配,或在测得衍射信号与模拟衍射信号之一的差不在预设判据(即匹配判据)范围内时,则处理模块114可以迭代产生用于另一光学计量模型的另一模拟衍射信号。在一种示例性实施例中,随后产生的模拟衍射信号可以用优化算法来产生,优化算法例如全局优化技术(包括模拟退火)和局部优化技术(包括最速下降算法)。
在一种示例性实施例中,模拟衍射信号和光学计量模型可以存储在库116(即动态库)中。随后存储在库116中的模拟衍射信号和光学计量模型可以用在对测得衍射信号进行匹配中。
对于基于回归的处理的更详细说明,可以参见2001年8月6日提交的名为“METHOD AND SYSTEM OF DYNAMIC LEARNING THROUGH AREGRES SION-BASED LIBRARY GENERATION PROCES S”的美国专利申请序号09/923,578,该申请于2004年8月31日授权成为美国专利No.6,785,638,其全部内容通过引用方式结合在这里。
4.严格耦合波分析
如上所述,产生模拟衍射信号来与测得衍射信号进行比较。在一种示例性实施例中,模拟衍射信号可以通过应用麦克斯韦方程组来产生,该方程组可以用各种数值分析技术(包括严格耦合波分析(RCWA))来求解。对于RCWA的更详细说明,参见2001年1月25日提交的名为“CACHING OF INTRA-LAYER CALCULATIONS FOR RAPIDRIGOROUS COUPLED-WAVE ANALYSES”的美国专利申请序号09/770,997,该申请于2005年5月10日授权成为美国专利No.6,891,626,其全部内容通过引用方式结合在这里。
5.机器学习系统
在一种示例性实施例中,可以使用采用了机器学习算法的机器学习系统来产生模拟衍射信号,机器学习算法例如后向传播、径向基函数、支持矢量、核回归等。对于机器学习系统及算法的更详细说明,参见“NeuralNetworks”,Simon Haykin,Prentice Hall,1999,其全部内容通过引用方式结合在这里。还可参见2003年6月27日提交的名为“OPTICALMETROLOGY OF STRUCTURES FORMED ON SEMIC ON DUCTORWAFERS USING MACHINE LEARNING SYSTEMS”的美国专利申请序号10/608,300,该申请的全部内容通过引用方式结合在这里。
6.权重函数
再参照图1,如上所述,可以用包括光源106和检测器112的光计量装置来产生来自晶片104上的特征的测得衍射信号。由于多种原因,测得衍射信号可能较弱,这可能降低光学计量处理的精度。
因此,在一种示例性实施例中,定义了权重函数来增强测得衍射信号。具体而言,从待检查的特征获得测得衍射信号。将权重函数与测得衍射信号相乘以产生强化测得衍射信号。然后在光学计量处理中使用该强化测得衍射信号来提高光学计量处理的精度。
在一种示例性实施例中,根据用光计量装置获得测得衍射信号时存在的噪声来定义权重函数。噪声可以与获得测得衍射信号所用的硬件(例如光计量装置中所用的光学器件和电子器件)有关。噪声还可能与被测的特征(例如由光源造成的光刻胶漂白(resist bleaching)现象)有关。
参照图3,在这种示例性实施例中,为了根据噪声定义权重函数,首先产生噪声分布302。具体而言,获得测得衍射信号的组。可以用光计量装置从晶片上的单一位置预先获得测得衍射信号的组。注意,获得测得衍射信号的组的位置可以在与在其上形成要检查的特征的晶片不同的晶片上。
从测得衍射信号的组计算平均测得衍射信号。噪声分布302是各个测得衍射信号与平均测得衍射信号之间的差。图3所示的噪声分布302是从50个测得衍射信号计算的。但是应当明白,可以获得任意数目的测得衍射信号来产生噪声分布。由于从测得衍射信号产生噪声分布302,所以噪声分布302既考虑了与硬件有关的噪声造成的噪声,又考虑了与特征有关的噪声造成的噪声。
在获得噪声分布302之后,根据噪声分布302来定义噪声包络线304。在这种示例性实施例中,用噪声分布302的最大值和曲线平滑化技术来定义噪声包络线304。但是应当明白,可以用各种数值技术来定义噪声包络线304。
参照图4,在这种示例性实施例中,通过对噪声包络线304(图3)求反函数(invert)来定义权重函数wb。权重函数wb可以被修改以产生附加权重函数。例如,可以通过对权重函数wb进行定标(scaling)和截头(truncating)来产生权重函数wc。
图5图示了用权重函数wc(图4)来增强噪声分布302(图3)所产生的噪声分布502。具体而言,噪声分布302(图3)被乘以权重函数wc(图4)来产生噪声分布502。如图5所示,权重函数wc减少了噪声量并提高了噪声分布502的均匀性。但是注意,权重函数wc并未完全消除噪声。完全消除噪声可能使测得衍射信号变差,这可能降低光学计量处理的精度。
因此,在这种示例性实施例中,权重函数被修改以从测得衍射信号中除去期望量的噪声,而不使测得衍射信号过度变差。另外,权重函数还可被修改以影响测得衍射信号的噪声减小量。例如,权重函数可以被修改以使得与测得衍射信号的一部分相比,测得衍射信号的另一部分处减小的噪声更少。
在另一种示例性实施例中,根据测量精度来定义权重函数。具体而言,获得测得衍射信号。可以用光计量装置从基准晶片上的位置处预先获得测得衍射信号。注意,获得测得衍射信号的组的位置可以在与在其上形成待检查的特征的晶片不同的晶片上。例如,图6图示了从带有裸硅层的基准晶片获得的测得衍射信号602,所述裸硅层是薄膜并且未被图案化。
在这种示例性实施例中,对于基准晶片上的获得了测得衍射信号的位置获得模拟衍射信号。如上所述,可以用各种数值技术(例如RCWA)或MLS系统获得模拟衍射信号。例如,图6图示了对于裸硅层的模拟衍射信号604。
在这种示例性实施例中,根据测得衍射信号和模拟衍射信号来产生误差分布。例如,图7图示了根据图6所示测得衍射信号与模拟衍射信号之间的差而产生的误差分布702。
对误差分布702定义误差包络线704。可以根据误差包络线704来定义权重函数。例如,图8图示了通过对误差包络线704求反函数而定义的权重函数wa。应当明白,可以通过修改权重函数wa来产生附加权重函数。
在另一种示例性实施例中,根据测得衍射信号的灵敏度来定义权重函数。具体而言,用一个或多个处理参数中已知的变动(即,制造被检查的结构的方式的特性)来获得测得衍射信号的组或模拟衍射信号的组。例如,可以用曝光剂量、剂量、温度、材料特性等中的已知变动来获得测得衍射信号的组或模拟衍射信号的组。
下文中将会更详细地说明,在这种示例性实施例中,用多变量分析对测得衍射信号的组或模拟衍射信号的组获得一个或多个基本变量。利用这一个或多个基本变量,测得衍射信号被转换成经转换衍射信号。可以根据经转换衍射信号与测得衍射信号来定义权重函数。具体而言,权重函数可以定义为经转换衍射信号对测得衍射信号的比率。
应当明白,根据经转换衍射信号和测得衍射信号的组,可以定义多个权重函数。例如,图9图示了测得衍射信号的组。图10图示了将一个或多个基本变量应用于测得衍射信号的组所得到的经转换衍射信号的组。图11图示了根据图10所示经转换衍射信号的组以及图9所示测得衍射信号的组所确定的权重函数。具体而言,图11图示的权重函数是图10所示经转换衍射信号的组对图9所示测得衍射信号的组的比率。此外,图11所示的一个权重函数是图10所示一个经转换衍射信号对图9所示一个测得衍射信号的比率,所述一个测得衍射信号是用来产生图10所示经转换衍射信号。
如上所述,可以用多变量分析来对测得衍射信号或模拟衍射信号的组确定一个或多个基本变量。具体而言,可以由实际测量结果获得测得衍射信号的组,所述实际测量结果来自在晶片上形成被检查结构所用的实际半导体制造处理。或者,可以用对在晶片上形成被检查结构的制造处理的模拟来获得模拟衍射信号的组。
可以以数据矩阵X的形式来记录和存储测得衍射信号或模拟衍射信号的组,对于每组处理参数所述测得衍射信号或模拟衍射信号的组包括作为波长的函数的光强度。例如,针对处理参数中的给定变动,矩阵X的每行对应于衍射信号(光强度随波长的变化)。这样,对于处理参数中的不同变动,矩阵X的不同行对应于不同衍射信号。矩阵X的每列对应于衍射信号中的具体波长。因此,由测得衍射信号或模拟衍射信号的组组成的矩阵X具有m×n的维度,其中,例如m为测量结果的数目,而n为波长的数目。
在一种示例性实施例中,可以对测得衍射信号或模拟衍射信号的组执行统计学数据计算。例如,如果需要,存储在矩阵X中的数据可以进行均值对中(mean-centered)或者归一化。对矩阵列中存储的数据进行对中包括计算列元素的平均值并将其从各个元素中减去。此外,可以用列中数据的标准偏差来对处于矩阵该列中的数据进行归一化。此外,还可以在每次获取新的测得衍射信号或模拟衍射信号之后更新对中系数和/或归一化系数。对于更多细节,参见2003年9月12日提交的名为“METHOD ANDSYSTEM OF DIAGNOSING A PROCESSING SYSTEM USING ADAPTIVEMULTIVARIATE ANALYSIS”的美国专利申请序号10/660,697,该申请的全部内容以引用方式结合在这里。应当明白,在某些应用中,可以省略执行统计学数据计算的步骤。
在一种示例性实施例中,利用多变量分析来确定处理参数中的变动对于测得衍射信号或模拟衍射信号的改变的贡献程度。例如,为了确定处理参数的变动与测得衍射信号或模拟衍射信号之间的相互关系,矩阵X可以受到多变量分析。
在一种示例性实施例中,采用主成分分析(PCA),通过用较低维度的矩阵乘积
Figure G2007800082940D00101
加上误差矩阵E来对矩阵X进行近似,从而求得矩阵X内的相关结构:
X ‾ = TP T ‾ + E ‾ - - - ( 1 )
其中,T为概括了X变量的(m×n)得分矩阵,而P为示出这些变量影响的(n×p,其中p≤n)负荷矩阵。应当明白,可以执行各种类型的多变量分析,例如独立成分分析、互相关分析、线性近似分析等。
总体而言,负荷矩阵P可被表示为包括了X的协方差的本征矢量,其中协方差矩阵S可以表示为:
S=XTX   (2)
协方差矩阵S为实对称矩阵,因此可以表述为:
S=UΛUT     (3)
其中,实对称本征矢量矩阵U包括归一化本征矢量作为各个列,而Λ为对角矩阵,沿对角线包括与各个本征矢量对应的本征值。
利用式子(1)和(3)(对于p=n的满矩阵,即没有误差的矩阵),可以表示如下:
P=U      (4)
以及
TTT=Λ       (5)
上述本征分析的结果是,各个本征值代表了n维空间中沿相应本征矢量方向的测得衍射信号或者模拟衍射信号的方差。因此,最大的本征值对应于n维空间中测得衍射信号或模拟衍射信号中的最大方差,而最小的本征值代表测得衍射信号或模拟衍射信号中的最小方差。根据定义,所有的本征矢量是正交的,因此,第二大的本征值对应于沿与第一本征矢量方向正交的相应本征矢量方向的测得衍射信号或模拟衍射信号中第二大的方差。
在这种示例性实施例中,来自多变量分析的一个或多个本征值和本征矢量被选择为一个或多个基本变量。然后可以用这一个或多个基本变量对新获取的测得衍射信号进行转换来产生经转换衍射信号。
在这种示例中,在执行PCA分析之后,可以通过将新的测得衍射信号投影到负荷矩阵P(即主成分的组)上以产生得分的组(例如,经转换衍射信号),来用负荷矩阵P将新的测得衍射信号转换成经转换衍射信号。
在一种实施例中,在产生负荷矩阵P时使用全部本征矢量(即主成分)(n)。在另一种实施例中,在产生负荷矩阵P时使用一部分(<n)本征矢量(即主成分)。例如,选择最大的三个到四个本征值(以及相应的本征矢量)来对数据进行近似并组成负荷矩阵P。通过这样的近似,误差E被引入式子(1)的表达式中。
支持PCA建模的一种商用软件示例是MATLAB,另一种是SIMCA-P8.0;对于更多细节,参见用户手册(User Guide to SIMCA-P8.0:A newstandard in multivariate data analysis,Umetrics AB,Version8.0,September1999)。对于确定基本变量的更多说明,参见2006年2月7日提交的名为“TRANSFORMING METROLOGY DATA FROM A SEMICONDUCTORTREATMENT SYSTEM USING MULTIVARIATE ANALYSIS”的美国专利申请序号11/349,773,该申请的全部内容以引用方式结合在这里。
在一种示例性实施例中,根据基于噪声、精度和灵敏度定义的初始权重函数中的一个或多个,来定义最终权重函数。具体而言,可以选择初始权重函数中的一个作为最终权重函数。或者,也可以将初始权重函数中的两个或更多个进行组合来定义最终权重函数。
例如,用聚焦/曝光晶片(FEM)来获得晶片内CD变动。图12图示了不使用权重函数而执行FEM分析以确定中间临界尺寸(CD)的结果。图13图示了使用权重函数wa执行FEM分析的结果。图14图示了使用权重函数wc执行FEM分析的结果。由图12、13、14可见,权重函数wc对于确定CD时聚焦和剂量的改变造成了更大的灵敏度。
因此,根据上述趋势分析,在这种示例中,优先于权重函数wa选择权重函数wc。应当明白,不同的用户需求可以被分解成在不同的权重函数之间进行选择。例如,有些用户可能优先于权重函数wc而选择权重函数wa,因为也许可以接收降低灵敏度以获得更高精度。
尽管已经描述了各种示例性实施例,但是在不脱离本发明的精神和/或范围的情况下可以进行各种变化。因此,本发明不应认为局限于附图所示以及上文所述的具体形式。

Claims (19)

1.一种获得权重函数以使光学计量中所用的测得衍射信号增强的方法,所述方法包括:
获得测得衍射信号,其中,所述测得衍射信号是用光计量装置从晶片上的位置测量的;
根据所述测得衍射信号中存在的噪声来定义第一权重函数,其中,定义第一权重函数的步骤包括:
根据所述测得衍射信号的组来产生噪声分布;
根据所述噪声分布来定义噪声包络线;和
根据所述噪声包络线来定义所述第一权重函数;
根据所述测得衍射信号的精度来定义第二权重函数;
根据所述测得衍射信号的灵敏度来定义第三权重函数;
根据所述第一权重函数、所述第二权重函数和所述第三权重函数中的一个或多个来定义第四权重函数。
2.根据权利要求1所述的方法,其中,定义所述第一权重函数的步骤包括:
将初始权重函数定义为所述噪声包络线的反函数;和
修改所述初始权重函数来定义所述第一权重函数。
3.根据权利要求2所述的方法,其中,修改所述初始权重函数的步骤包括:
对所述初始权重函数进行定标;和
对所述初始权重函数进行截头。
4.根据权利要求1所述的方法,其中,产生噪声分布的步骤包括:
对于所述测得衍射信号的组计算平均测得衍射信号;
计算所述测得衍射信号的组中的各个测得衍射信号与所述平均测得衍射信号之间的差,其中,所述噪声分布为计算出的差除以所述平均测得衍射信号。
5.根据权利要求1所述的方法,其中,所述晶片是基准晶片,并且其中,定义第二权重函数的步骤包括:
获得与所述基准晶片上的所述位置对应的模拟衍射信号;
将所述测得衍射信号与所述模拟衍射信号进行比较;
根据所述测得衍射信号与所述模拟衍射信号的比较来定义误差分布;
根据所述误差分布来定义误差包络线;和
根据所述误差包络线来定义所述第二权重函数。
6.根据权利要求5所述的方法,其中,所述第二权重函数被定义为所述误差包络线的反函数。
7.根据权利要求1所述的方法,还包括:
获得测得衍射信号或模拟衍射信号的组;
用多变量分析对于所获得的测得衍射信号或模拟衍射信号的组确定一个或多个基本变量;和
利用所述一个或多个基本变量将所获得的测得衍射信号转换成经转换衍射信号,
其中,根据所述经转换衍射信号和所述测得衍射信号来定义所述第三权重函数。
8.根据权利要求7所述的方法,其中,所述第三权重函数是所述经转换衍射信号对所述测得衍射信号的比率。
9.根据权利要求1所述的方法,还包括:
用所述第一权重函数、所述第二权重函数和所述第三权重函数执行趋势分析,
其中,根据所述趋势分析来定义所述第四权重函数。
10.根据权利要求9所述的方法,其中,执行趋势分析的步骤包括:
用所述第一权重函数获得聚焦/曝光晶片的晶片内临界尺寸变动;
用所述第二权重函数获得聚焦/曝光晶片的晶片内临界尺寸变动;
用所述第三权重函数获得聚焦/曝光晶片的晶片内临界尺寸变动;和
对使用所述第一权重函数、所述第二权重函数和所述第三权重函数获得聚焦/曝光晶片的晶片内临界尺寸变动的结果进行比较。
11.根据权利要求9所述的方法,其中,执行趋势分析的步骤还包括:
用所述第一权重函数获得带有氮氧化硅层的聚焦/曝光晶片的晶片内临界尺寸变动;
用所述第二权重函数获得带有氮氧化硅层的聚焦/曝光晶片的晶片内临界尺寸变动;
用所述第三权重函数获得带有氮氧化硅层的聚焦/曝光晶片的晶片内临界尺寸变动;和
对使用所述第一权重函数、所述第二权重函数和所述第三权重函数获得带有氮氧化硅层的晶片的聚焦/曝光晶片的晶片内临界尺寸变动的结果进行比较。
12.一种用权重函数对光学计量中所用的测得衍射信号进行增强的方法,所述方法包括:
获得第一测得衍射信号,所述第一测得衍射信号是从晶片上的特征测量的;
将所述第一测得衍射信号与权重函数相乘,以产生强化测得衍射信号,
其中,所述权重函数是根据第二测得衍射信号的噪声、精度和灵敏度而定义的,所述第二测得衍射信号是从另一晶片测量的;和
用所述强化测得衍射信号来确定所述特征的特性;并且
其中,所述第二测得衍射信号是从单一位置测量的测得衍射信号的组,并且其中,所述权重函数是通过下述方式定义的:
根据所述测得衍射信号的组来产生噪声分布;
根据所述噪声分布来定义噪声包络线;和
根据所述噪声包络线来定义所述权重函数。
13.根据权利要求12所述的方法,其中,所述第二测得衍射信号是从基准晶片测量的,并且其中,所述权重函数是通过下述方式定义的:
获得与所述基准晶片上的位置对应的模拟衍射信号;
将所述第二测得衍射信号与所述模拟衍射信号进行比较;
根据所述第二测得衍射信号和所述模拟衍射信号的比较来定义误差分布;
根据所述误差分布来定义误差包络线;和
根据所述误差包络线来定义所述权重函数。
14.根据权利要求12所述的方法,其中,所述第二测得衍射信号包括从单一位置测量的测得衍射信号的组以及从基准晶片测量的第三测得衍射信号,并且其中,所述权重函数是通过下述方式定义的:
根据所述测得衍射信号的组来产生噪声分布;
根据所述噪声分布来定义噪声包络线;
根据所述噪声包络线来定义第一权重函数;
获得与所述基准晶片上的位置对应的模拟衍射信号;
将所述第三测得衍射信号与所述模拟衍射信号进行比较;
根据所述第三测得衍射信号与所述模拟衍射信号的比较来定义误差分布;
根据所述误差分布来定义误差包络线;
根据所述误差包络线来定义第二权重函数;
获得测得衍射信号或模拟衍射信号的组;
用多变量分析对所获得的测得衍射信号或模拟衍射信号的组确定一个或多个基本变量;
利用所述一个或多个基本变量将所述测得衍射信号的组转换成经转换衍射信号的组;
根据所述经转换衍射信号的组中的一者和所述测得衍射信号的组中的一者来定义第三权重函数,
其中,所述权重函数是根据所述第一权重函数、所述第二权重函数和所述第三权重函数中一个或者多个来定义的。
15.一种用权重函数来对光学计量中使用的测得衍射信号进行增强的系统,包括:
光计量装置,其从晶片上的特征产生第一测得衍射信号;
用于将所述第一测得衍射信号与权重函数相乘以产生强化测得衍射信号的装置;以及
用于用所述强化测得衍射信号来确定所述特征的特性的装置,
其中,所述权重函数是根据第二测得衍射信号的噪声、精度和灵敏度而定义的,所述第二测得衍射信号是从另一晶片测量的;并且
其中,所述第二测得衍射信号是从单一位置测量的测得衍射信号的组,并且其中,所述权重函数是通过下述方式定义的:
根据所述测得衍射信号的组来产生噪声分布;
根据所述噪声分布来定义噪声包络线;和
根据所述噪声包络线来定义所述权重函数。
16.一种获得权重函数以增强光学计量中所用的测得衍射信号的方法,所述方法包括:
获得测得衍射信号的组,其中,所述测得衍射信号的组是用光计量装置从晶片上的单一位置测量的;
根据所述测得衍射信号的组来产生噪声分布;
根据所述噪声分布来定义噪声包络线;和
根据所述噪声包络线来定义权重函数。
17.一种使用权重函数来增强光学计量中所用的测得衍射信号的系统,包括:
光计量装置,其从晶片上的特征产生测得衍射信号;
用于将所述测得衍射信号与权重函数相乘以产生强化测得衍射信号的装置,以及
用于利用所述强化测得衍射信号来确定所述特征的特性的装置,
其中,所述权重函数是根据噪声包络线来定义的,所述噪声包络线是根据噪声分布来定义的,其中,所述噪声分布是用所述光计量装置根据从所述晶片上的单一位置测量的衍射信号组产生的。
18.一种获得权重函数以增强光学计量中所用的测得衍射信号的方法,所述方法包括:
获得测得衍射信号,其中,所述测得衍射信号是用光计量装置从基准晶片上的位置测量的;
获得与所述基准晶片上的所述位置对应的模拟衍射信号;
将所述测得衍射信号与所述模拟衍射信号进行比较;
根据所述测得衍射信号与所述模拟衍射信号的比较来定义误差分布;
根据所述误差分布来定义误差包络线;和
根据所述误差包络线来定义权重函数。
19.一种用权重函数增强光学计量中使用的测得衍射信号的系统,包括:
光计量装置,其从晶片上的特征产生测得衍射信号;
用于将所述测得衍射信号与权重函数相乘以产生强化测得衍射信号的装置,以及
用于利用所述强化测得衍射信号来确定所述特征的特性的装置,
其中,所述权重函数是根据误差包络线来定义的,所述误差包络线是根据误差分布来定义的,其中,所述误差分布是根据用所述光计量装置从基准晶片上的位置测量的衍射信号与对应于所述基准晶片上的所述位置的模拟衍射信号的比较来产生的。
CN2007800082940A 2006-03-08 2007-03-05 在光学计量中增强测量衍射信号的权重函数 Active CN101401080B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/371,752 2006-03-08
US11/371,752 US7523021B2 (en) 2006-03-08 2006-03-08 Weighting function to enhance measured diffraction signals in optical metrology
PCT/US2007/005573 WO2007103302A2 (en) 2006-03-08 2007-03-05 Weighting function of enhance measured diffraction signals in optical metrology

Publications (2)

Publication Number Publication Date
CN101401080A CN101401080A (zh) 2009-04-01
CN101401080B true CN101401080B (zh) 2012-03-21

Family

ID=38475463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800082940A Active CN101401080B (zh) 2006-03-08 2007-03-05 在光学计量中增强测量衍射信号的权重函数

Country Status (6)

Country Link
US (1) US7523021B2 (zh)
JP (1) JP2009529138A (zh)
KR (1) KR101387868B1 (zh)
CN (1) CN101401080B (zh)
TW (1) TWI375289B (zh)
WO (1) WO2007103302A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525673B2 (en) * 2006-07-10 2009-04-28 Tokyo Electron Limited Optimizing selected variables of an optical metrology system
US7428044B2 (en) * 2006-11-16 2008-09-23 Tokyo Electron Limited Drift compensation for an optical metrology tool
US8275584B2 (en) * 2006-12-12 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Unified model for process variations in integrated circuits
US7372583B1 (en) * 2007-04-12 2008-05-13 Tokyo Electron Limited Controlling a fabrication tool using support vector machine
US7627392B2 (en) * 2007-08-30 2009-12-01 Tokyo Electron Limited Automated process control using parameters determined with approximation and fine diffraction models
US8069020B2 (en) * 2007-09-19 2011-11-29 Tokyo Electron Limited Generating simulated diffraction signal using a dispersion function relating process parameter to dispersion
US7636649B2 (en) * 2007-09-21 2009-12-22 Tokyo Electron Limited Automated process control of a fabrication tool using a dispersion function relating process parameter to dispersion
JP5637836B2 (ja) * 2010-12-17 2014-12-10 株式会社キーエンス 光学式変位計
US8381140B2 (en) * 2011-02-11 2013-02-19 Tokyo Electron Limited Wide process range library for metrology
US10354929B2 (en) 2012-05-08 2019-07-16 Kla-Tencor Corporation Measurement recipe optimization based on spectral sensitivity and process variation
JP6353831B2 (ja) 2012-06-26 2018-07-04 ケーエルエー−テンカー コーポレイション 角度分解反射率測定における走査および回折の光計測からのアルゴリズム的除去
US9490182B2 (en) * 2013-12-23 2016-11-08 Kla-Tencor Corporation Measurement of multiple patterning parameters
JP6269213B2 (ja) * 2014-03-19 2018-01-31 アイシン精機株式会社 距離測定装置及び距離測定方法
NL2017857A (en) 2015-12-18 2017-06-26 Asml Netherlands Bv Process flagging and cluster detection without requiring reconstruction
CN108120371A (zh) * 2016-11-30 2018-06-05 中国科学院福建物质结构研究所 亚波长尺度微电子结构光学关键尺寸测试分析方法及装置
IL253578B (en) 2017-07-19 2018-06-28 Nova Measuring Instr Ltd Measurement of patterns using x-rays
US11422095B2 (en) * 2019-01-18 2022-08-23 Kla Corporation Scatterometry modeling in the presence of undesired diffraction orders

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525808A (en) * 1992-01-23 1996-06-11 Nikon Corporaton Alignment method and alignment apparatus with a statistic calculation using a plurality of weighted coordinate positions
CN1529827A (zh) * 2000-09-15 2004-09-15 �����ʼ� 周期性栅衍射信号库的生成
CN1672012A (zh) * 2002-07-25 2005-09-21 音质技术公司 光计量术中模型和参数的选择

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1257781A4 (en) 2000-01-26 2006-12-13 Timbre Tech Inc USE OF A MEMORY IN IN-LINE LAYER CALCULATIONS FOR QUICK RIGOROUS ANALYSIS OF COUPLED WAVES
US6785638B2 (en) 2001-08-06 2004-08-31 Timbre Technologies, Inc. Method and system of dynamic learning through a regression-based library generation process
US7092110B2 (en) 2002-07-25 2006-08-15 Timbre Technologies, Inc. Optimized model and parameter selection for optical metrology
US20040267397A1 (en) 2003-06-27 2004-12-30 Srinivas Doddi Optical metrology of structures formed on semiconductor wafer using machine learning systems
US7328126B2 (en) 2003-09-12 2008-02-05 Tokyo Electron Limited Method and system of diagnosing a processing system using adaptive multivariate analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525808A (en) * 1992-01-23 1996-06-11 Nikon Corporaton Alignment method and alignment apparatus with a statistic calculation using a plurality of weighted coordinate positions
CN1529827A (zh) * 2000-09-15 2004-09-15 �����ʼ� 周期性栅衍射信号库的生成
CN1672012A (zh) * 2002-07-25 2005-09-21 音质技术公司 光计量术中模型和参数的选择

Also Published As

Publication number Publication date
KR101387868B1 (ko) 2014-04-22
CN101401080A (zh) 2009-04-01
JP2009529138A (ja) 2009-08-13
TW200746335A (en) 2007-12-16
US20070211260A1 (en) 2007-09-13
TWI375289B (en) 2012-10-21
WO2007103302A2 (en) 2007-09-13
US7523021B2 (en) 2009-04-21
WO2007103302A3 (en) 2008-08-28
KR20090009797A (ko) 2009-01-23

Similar Documents

Publication Publication Date Title
CN101401080B (zh) 在光学计量中增强测量衍射信号的权重函数
CN100559156C (zh) 使用抽样衍射信号选择假想剖面用于光学计量的方法
JP5855728B2 (ja) 計測ターゲットを設計するための方法、装置および媒体
US7171284B2 (en) Optical metrology model optimization based on goals
US7428060B2 (en) Optimization of diffraction order selection for two-dimensional structures
CN101393881B (zh) 检查形成在半导体晶片上的结构的系统和方法
US7525673B2 (en) Optimizing selected variables of an optical metrology system
US20050192914A1 (en) Selecting a profile model for use in optical metrology using a machine learining system
CN101413791B (zh) 在光学计量中用近似和精细衍射模型确定结构的轮廓参数
US9523800B2 (en) Computation efficiency by iterative spatial harmonics order truncation
US20080049214A1 (en) Measuring Diffractive Structures By Parameterizing Spectral Features
US7487053B2 (en) Refining a virtual profile library
US7542859B2 (en) Creating a virtual profile library
US20110276319A1 (en) Determination of material optical properties for optical metrology of structures
US7305322B2 (en) Using a virtual profile library
US9625937B2 (en) Computation efficiency by diffraction order truncation
Germer et al. A traceable scatterometry measurement of a silicon line grating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant