Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberCN101365375 B
Publication typeGrant
Application numberCN 200680040503
PCT numberPCT/US2006/038541
Publication date11 Sep 2013
Filing date29 Sep 2006
Priority date29 Sep 2005
Also published asCA2624109A1, CN101304682A, CN101304682B, CN101304683A, CN101304683B, CN101360447A, CN101360447B, CN101365375A, CN103479331A, EP1928305A1, EP1928306A1, EP1937137A1, EP1940286A1, EP2275026A1, EP2279691A1, US7843572, US7847949, US7872759, US8149418, US8289522, US8384907, US8760663, US8928889, US9304121, US9513276, US20070081236, US20070121196, US20070229801, US20070233396, US20110058178, US20110144504, US20110149296, US20130100455, US20130148106, US20130176571, US20150049339, WO2007038787A1, WO2007041376A1, WO2007041382A1, WO2007041412A1
Publication number200680040503.5, CN 101365375 B, CN 101365375B, CN 200680040503, CN-B-101365375, CN101365375 B, CN101365375B, CN200680040503, CN200680040503.5, PCT/2006/38541, PCT/US/2006/038541, PCT/US/2006/38541, PCT/US/6/038541, PCT/US/6/38541, PCT/US2006/038541, PCT/US2006/38541, PCT/US2006038541, PCT/US200638541, PCT/US6/038541, PCT/US6/38541, PCT/US6038541, PCT/US638541
Inventors吉列尔莫J蒂尔尼, 德维尔叶林, 布雷特尤金鲍马
Applicant通用医疗公司
Export CitationBiBTeX, EndNote, RefMan
External Links: SIPO, Espacenet
Method and apparatus for optical imaging via spectral encoding
CN 101365375 B
Abstract  translated from Chinese
提供了根据本发明的示范性实施例的方法、设备和装置,用于生成解剖结构的至少一个部分的图像。 It provides methods, devices and device according to an exemplary embodiment of the present invention, at least one portion of the image to generate anatomical structures. 例如,该部分具有大于大约1mm2的面积,并且该图像具有在大约10μm之下的横向分辨率。 For example, the portion having greater than about 1mm2 of area, and the image has a lateral resolution below about 10μm. 例如,光在这样的部分之上进行扫描,以便生成与该部分相关的第一信息,其中所述光可以被提供通过衍射装置以生成谱分散线。 For example, the light on this part of the scan, in order to generate first information associated with the portion, wherein the light may be provided by diffractive means to generate a line spectral dispersion. 提供了根据本发明的进一步的示范性实施例的方法、设备和装置,用于在解剖结构之内定位辐射束或光束,该定位基于通过使用相同或不同射束来扫描该结构的一部分而生成的信号。 It provides methods, devices and apparatus according to a further exemplary embodiment of the present invention, the radiation beam or beams for positioning within the anatomy of the locator on by using the same or a different part of the beam to scan the structure and generate signal.
Claims(15)  translated from Chinese
1.一种用于在解剖结构之内定位电磁辐射的设备,包括: 至少一个第一装置,其配置成将至少一个电磁辐射转送到所述解剖结构,并且通过使用所述至少一个电磁辐射扫描所述解剖结构的至少一个部分,基于与所述至少一个辐射相关联的从所述解剖结构返回的进一步辐射来生成至少一个信号;以及至少一个第二装置,其配置成将所述至少一个第一装置的焦点的位置作为特定信号的函数自动地控制到所述解剖结构之内的预定位置,其中,所述至少一个第一装置是共焦显微镜装置,所述至少一个信号是谱编码的信号,并且所述特定信号为干涉测量信号、飞行时间信号或电磁辐射的强度信号中的至少一个。 1. An apparatus for positioning within the anatomy of electromagnetic radiation, comprising: at least one first device, which is configured to transfer at least one electromagnetic radiation to said anatomical structure, and by using the at least one electromagnetic radiation scan at least one portion of the anatomical structure based on the at least one radiation generating radiation from the anatomical structure further returns at least one signal associated; and at least one second device, which is configured to the at least one first a position of the focus control means automatically as a function of a particular signal to a predetermined position within the anatomical structure, wherein said at least one first means is a confocal microscope apparatus, said at least one signal is a coded signal spectrum and said at least one specific signal to interference measurement signal, or the signal strength of the signal time of flight of the electromagnetic radiation.
2.根据权利要求1所述的设备,其中,所述解剖结构为内部器官。 2. The apparatus according to claim 1, wherein the anatomical structure of internal organs.
3.根据权利要求1所述的设备,其中,所述至少一个第一装置经由光纤装置转送所述电磁辐射。 3. The apparatus according to claim 1, wherein said at least one electromagnetic radiation of said first transfer means via the optical fiber means.
4.根据权利要求3所述的设备,其中,所述光纤装置包括多个电磁辐射引导装置。 4. The apparatus according to claim 3, wherein said optical fiber means comprises a plurality of electromagnetic radiation guiding means.
5.根据权利要求1所述的设备,其中,所述至少一个电磁辐射包括多个波长。 5. The apparatus according to claim 1, wherein said at least one electromagnetic radiation comprises a plurality of wavelengths.
6.根据权利要求1所述的设备,其中,所述至少一个电磁辐射包括随时间变化的一个或多个波长。 6. The apparatus according to claim 1, wherein said at least one electromagnetic radiation comprising one or more wavelengths change over time.
7.一种用于在解剖结构之内定位电磁福射的设备,包括: 至少一个第一装置,其配置成将至少一个电磁辐射转送到所述解剖结构,并且通过使用所述电磁辐射扫描所述解剖结构的至少一个部分,基于与所述至少一个辐射相关联的从所述解剖结构返回的进一步辐射来生成数据;以及至少一个第二装置,其配置成: a)基于对所述解剖结构的特定片段的至少一个位置的确定来生成信号;以及b)作为所述信号的函数,相对于所述解剖结构之内的所述至少一个位置,自动地控制所述至少一个第一装置的焦点的移动或定位中的至少一个, 其中,所述至少一个第一装置是共焦显微镜装置,所述信号为干涉测量信号、飞行时间信号或电磁辐射的强度信号中的至少一个,并且所述数据包括谱编码的数据。 7. A method for locating an electromagnetic Fu emitted within the anatomical structure of the device, comprising: at least one first device, which is configured to transfer at least one electromagnetic radiation to said anatomical structure, and by using the electromagnetic radiation scan at least one portion of said anatomical structure based on the at least one radiation generating radiation from the anatomical structure of the returned data is further associated; and at least one second device, which is configured to: a) based on the anatomy determining the location of at least one specific fragment to generate a signal; and b) as a function of said signal, automatically controlled relative to the inner structure of the anatomical location of the at least one of said at least one focal point of the first means At least one of the movement or positioning, wherein said at least one first means is a confocal microscope, the interference signal is a measurement signal, or the signal strength of the signal time of flight of electromagnetic radiation in at least one, and the data including spectral encoded data.
8.根据权利要求7所述的设备,其中,在所述解剖结构的表面上提供所述特定片段。 8. The apparatus according to claim 7, wherein the specific segment providing on the surface of the anatomical structure.
9.根据权利要求7所述的设备,其中,所述操作a)紧接着继之以所述操作b)。 9. The apparatus according to claim 7, wherein said operation a) immediately followed by the operation b).
10.根据权利要求7所述的设备,其中,所述至少一个第二装置配置成将所述至少一个电磁辐射的焦点定位在所述解剖结构之内的多个深度处。 10. The apparatus according to claim 7, wherein said at least one second device is configured to focus the electromagnetic radiation at least one location in the anatomical structure of the plurality of depths within.
11.根据权利要求7所述的设备,其中,所述至少一个第二装置控制所述焦点在所述解剖结构之内的深度。 11. The apparatus according to claim 7, wherein said at least one second control means within the depth of focus of the anatomical structure of the.
12.根据权利要求7所述的设备,其中,基于干涉测量信号确定所述至少一个位置。 12. The apparatus according to claim 7, wherein the interferometry signal is determined based on the at least one position.
13.根据权利要求11所述的设备,其中,所述干涉测量信号至少部分地基于所述数据。 13. The apparatus of claim 11, wherein the interferometry signal at least partially based on the data.
14.一种用于在解剖结构之内定位电磁辐射的方法,包括: 通过至少一个第一装置将至少一个电磁辐射转送到解剖结构; 通过使用所述至少一个电磁辐射扫描所述解剖结构的至少一个部分,基于与所述至少一个辐射相关联的从所述解剖结构返回的进一步辐射来生成至少一个信号;以及基于特定信号将所述至少一个第一装置的焦点的位置控制到所述解剖结构之内的预定位置,其中,所述至少一个第一装置是共焦显微镜装置,所述至少一个信号是谱编码的信号,并且所述特定信号为干涉测量信号、飞行时间信号或电磁辐射的强度信号中的至少一个。 14. A method for locating an electromagnetic radiation within the anatomical structure, comprising: a first means by at least one electromagnetic radiation will be transferred to the at least one anatomical structure; by using the at least one electromagnetic radiation scanning said anatomical structure at least A portion, based on said generated at least one further radiation from the anatomical structure of the return signal associated with the at least one radiation; and the at least one specific signal to the first focus position controlling device according to the anatomical structure based on predetermined position within, wherein said at least one first means is a confocal microscope, for the at least one signal interference measurement signal, or a time of flight signal intensity of the electromagnetic radiation spectrum of the encoded signal and the particular signal at least one signal.
15.—种用于在解剖结构之内定位电磁福射的方法,包括: 通过至少一个装置将至少一个电磁辐射转送到解剖结构; 通过使用所述至少一个电磁辐射扫描所述解剖结构的至少一个部分,基于与所述至少一个辐射相关联的从所述解剖结构返回的进一步辐射来生成数据; 基于对所述解剖结构的特定片段的至少一个位置的确定来生成信号;以及基于所述信号,相对于所述至少一个位置,自动地控制所述至少一个装置的焦点的移动或定位中的至少一个, 其中,所述至少一个装置是共焦显微镜装置,所述信号为干涉测量信号、飞行时间信号或电磁辐射的强度信号中的至少一个, 并且所述数据包括谱编码的数据。 15.- Fu species for positioning emitted electromagnetic method within the anatomical structure, comprising: at least one means of at least one electromagnetic radiation transferred to the anatomical structure; by using the at least one electromagnetic radiation scanning said anatomical structure, at least one of part, based on the at least one radiation generating radiation from the anatomical structure of the returned data is further associated; based on determining at least one position of the anatomical structure of the particular segment to generate a signal; and based on the signal, with respect to said at least one position, automatically controlling at least one of said at least one focal point of the movement or positioning means, and wherein said at least one device is a confocal microscope, the measurement signal is a signal interference, time of flight Signal intensity electromagnetic radiation signal or at least one, and the coded data includes spectral data.
Description  translated from Chinese

用于经由谱编码进行光学成像的方法和设备 Method and apparatus for optical imaging via spectral encoding

[0001] 相关申请的交叉引用 Cross [0001] REFERENCE TO RELATED APPLICATIONS

[0002] 本申请基于并要求2005年9月29日提交的序列号为60/721,802的美国专利申请的权益,其整体内容通过引用结合于此。 [0002] This application is based upon and claims the serial number of September 29, 2005 filed as equity 60 / 721,802 U.S. patent application, the entire contents of which are incorporated herein by reference.

技术领域 Technical Field

[0003] 本发明涉及用于经由谱编码对上皮器官和其它生物结构进行全面光学成像的装置和方法。 [0003] The present invention relates to an apparatus and method for encoding via a spectrum of epithelial organs and other biological structures overall optical imaging.

背景技术 Background

[0004] 放射技术如X射线计算机断层扫描(“CT”)、磁共振成像(“MRI”)和超声波使得器官水平的人体病变的非侵入可视化成为可能。 [0004] Radiation techniques such as X-ray computed tomography ("CT"), magnetic resonance imaging ("MRI") and Ultrasound organ level of human disease such non-invasive visualization possible. 尽管这些医疗器械可能能够识别大尺度的病变,但是癌症的诊断需要微观结构的评估,这超出了传统成像技术的分辨率。 While these medical devices may be able to identify a large scale of disease, but the diagnosis of cancer needs assessment microstructure, which is beyond the resolution of conventional imaging techniques. 因此,诊断可能需要活组织检查和病理组织学检查。 Therefore, the diagnosis may require biopsy and histopathological examination. 因为癌症前期的生长和早期癌症常常以微观尺度出现,所以它们为识别和诊断提供显著的挑战。 Because the growth of precancerous and early cancers often appear microscopic scale, they provide a significant challenge for the identification and diagnosis. 这些病变的传统筛选和监视依赖于苏木精和伊红(“H&E”)染色玻片的无制导的活组织检查和形态分析。 These lesions traditional screening and monitoring depend on hematoxylin and eosin ("H & E") stained slides unguided biopsy and morphological analysis. 尽管这种方法可以被认为是用于微观诊断的当前标准,但是它需要从患者去除组织并且需要显著的处理时间以生成玻片。 While this approach can be considered the current standard for microscopic diagnosis, but it is necessary to remove tissue from the patient and requires significant processing time to generate the slide. 更重要地,组织病理学固有地为点采样技术;常常只有非常小的一部分的患病组织能够被切除,并且病理学家常常可能检查小于I %的活组织检查样品。 More importantly, as inherently pathological point sampling technique; often only a very small portion of the diseased tissue can be removed, and the pathologist is often possible to inspect less than I% of biopsy samples.

[0005] 可以优选的是,从活人患者的整个器官或生物系统中获得微观诊断。 [0005] It may be preferred to obtain microscopic diagnosis of the patient's whole organs from living or biological systems. 然而,合适成像技术的缺乏极大地限制了用于筛选肿瘤前的状况(例如转化)和发育异常的选项。 However, the lack of suitable imaging technique for greatly limited situation (e.g., conversion) and options dysplastic tumors before screening. 另夕卜,无能力现场识别发育异常和恶性肿瘤的区域已导致诸如像前列腺、结肠、食道和膀胱等等的随机活组织检查的筛选过程,这是高度不希望的和杂乱无章的。 Xi Bu another scene to identify dysplasia and malignancy of regional incapacity screening process has resulted in such as prostate, colon, esophagus and bladder, and so random biopsies, which is highly undesirable and disorganized. 当前涉及冷冻切片实验室的许多诊断任务如外科肿瘤边界的描绘可以通过诊断医疗器械来改进,该诊断医疗器械能够以微观尺度迅速成`像大的组织体积。 Many current diagnostic tasks involved with frozen section laboratory as depicted surgical tumor boundaries can be improved by diagnostic medical devices, diagnostic medical devices which can be microscopic scale quickly to `volume as large organizations. 能够填补病理学和放射学之间的这个空白的技术将会对患者管理和卫生保健具有重大利益。 The technology can fill the gap between pathology and radiology will have significant benefits for patient management and health care.

[0006] 已进行了技术进步以增加非侵入成像技术诸如像微CT、微PET和磁共振成像(“MRI”)显微术的分辨率。 [0006] The technological advances have been made to increase the non-invasive imaging techniques, such as micro-CT, micro-PET and magnetic resonance imaging ("MRI") microscopy resolution. 通过这些技术已实现了接近20 μ m的分辨率,但是基本的物理限制仍然阻止它们应用于患者。 These techniques have achieved nearly 20 μ m resolution, but the basic physical constraints still prevent them applied to the patient. 对于非切除的组织病理学诊断,现场进行的微观光学活组织检查技术近来已取得进展。 For histopathological diagnosis of non-removal of microscopic optical biopsy technology has been the scene of recent progress. 反射共焦显微术(“RCM”)可以特别好地适合于对患者的非侵入显微镜检查,因为它能够测量微观结构而没有组织接触,并且不需要管理外在造影剂。 Reflectance confocal microscopy ("RCM") may be particularly well suited to non-invasive patient microscopic examination, because it can be measured without contact with the tissues microstructure, and does not require management of external contrast agent. RCM能够抑制离焦光,并且检测选择性地起源于组织内单平面的背散射的光子。 RCM is possible to suppress defocused light, and detecting selectively originated in the organization of a single plane of backscattered photons. 例如通过在平行于组织表面的平面内迅速扫描电磁辐射的聚焦束,能够实施RCM,获得组织的横断或表面图像。 For example, by a plane parallel to the surface of the tissue in the rapid scanning of a focused beam of electromagnetic radiation, to implement RCM, to obtain cross-sectional images, or surface tissue. 可以用在RCM中的大数值孔径(NA)能够获得非常高的空间分辨率(1-2μπι),使得亚细胞结构的可视化成为可能。 RCM can be used in the large numerical aperture (NA) can be obtained in a very high spatial resolution (1-2μπι), such that visualization of subcellular structures possible. 然而,高NA成像对随着光传播通过不均匀的组织而出现的像差特别敏感。 However, the high NA imaging aberrations as the light propagates through inhomogeneous tissue appears particularly sensitive. 而且,使用RCM的高分辨率成像典型地被限制到大约100-400 μ m的深度。 Moreover, the use of high-resolution imaging RCM is typically limited to a depth of about 100-400 μ m.

[0007] RCM已被广泛地展示为用于表皮组织的可行成像技术。 [0007] RCM has been widely demonstrated as viable epidermal tissue imaging technique used. 内窥镜共焦显微系统的开发已变得更加困难,这至少部分地归因于涉及使扫描显微镜小型化的重要技术挑战。 Develop endoscopic confocal microscopy system has become more difficult, at least in part attributed to involve the scanning microscope miniaturization important technical challenges. 将共焦显微镜检查的概念直接应用于内窥镜检查的一个主要障碍是机构的操纵,该机构用于在小直径软质探针的远端快速扫描聚焦束。 A major obstacle to the concept of confocal microscopy is directly applied to endoscopy of the operating mechanism, the mechanism for the distal end of the small-diameter flexible probe fast scanning focused beam. 已提议了多种方法来应对这个问题,包括远端微机电系统(“MEMS”)束扫描装置的使用和单模光纤束的近端扫描。 Various methods have been proposed to address this issue, including the distal end of the micro-electromechanical systems ("MEMS") proximal to use and single-mode optical fiber bundle beam scanning device scans. 而且,RCM可以提供仅在离散位置处的微观图像——“点采样”技术。 Moreover, RCM can only at discrete locations of microscopic image - "point sampling" technique. 如当前实施的那样,点采样是RCM所固有的,因为它具有有限的视场,其可以与切除活组织检查的视场相当或比它小,并且对于全面的大视场显微镜检查,成像速率太慢。 As currently implemented as point sampling is inherent in RCM, because it has a limited field of view, which may be the field of resection or biopsy rather than its small and large field of view for a comprehensive microscopy, imaging speed too slow.

[0008] 使共焦显微镜检查适用于内窥镜应用的另一个挑战包括可以用于光学切片的高NA物镜的小型化。 [0008] Another cause confocal microscopy can be used for optical sectioning challenges include miniaturized high NA objective lens is suitable for endoscopic applications. 通过提供例如梯度指数透镜系统、双轴物镜或定制设计的小型化物镜,可以实现这样的小型化。 For example, by providing a gradient index lens system, miniaturization of the objective lens or objective lens biaxially custom design, we can achieve such miniaturization. 例如,使用耦合到小型化物镜的光纤束,可以在体内获得子宫颈上皮的形态的详细图像,并且使用商用仪器如可以从例如Olympus Corp.(奥林巴斯公司)和Pentax/Optiscan获得的商用仪器,可以得到结直肠病变的基于荧光的图像。 For example, using coupled into the fiber bundle miniaturized lens, you can get a detailed image of the cervical epithelium in vivo morphology, and commercial instruments using commercially available from, for example, such as Olympus Corp. (Olympus) and Pentax / Optiscan instrument, you can get colorectal lesion based on fluorescence images.

[0009] 尽管有这些进展,仍然需要改进的成像技术,该成像技术能够在大的区域之上现场提供生物结构的微观分辨率。 [0009] Despite these advances, still a need for improved imaging techniques, the site can provide microscopic imaging of biological structures in resolution over a large area.

发明内容 DISCLOSURE

[0010] 本发明的目的之一是要克服现有技术系统和方法的某些缺陷和缺点(包括上面在此描述的那些),并且提供方法和设备的示范性实施例,所述方法和设备能够提供对解剖结构诸如像上皮器官或其它身体组织的全面微观光学成像。 [0010] It is an object of the present invention is to overcome some of the drawbacks and disadvantages of prior art systems and methods (including those described herein above), and to provide a method and apparatus of the exemplary embodiment, the method and apparatus to provide comprehensive microscopic anatomical structures such as optical imaging of epithelial organ or other body tissue.

[0011] 例如,根据本发明的示范性实施例的设备可以采用探针或组件的形式,其可以是可置换的。 [0011] For example, the device according to an exemplary embodiment of the present invention may take the form of a probe or assembly, which may be substituted. 所述探针或组件例如可以包括:一个或多个光波导管,其能够将电磁辐射转送到所述探针或组件并形成光束;一个或多个聚焦装置,其提供在远端,可以被配置成聚焦所述光束;以及扫描装置,其配置成跨越所述解剖结构的一部分扫描所述光束。 Or the probe assembly may comprise for example: one or more optical waveguide, the electromagnetic radiation which can be transferred to the probe or component and form a beam; one or more focusing means, provided at the distal end, it can be configured focusing the beam into; and a scanning means configured to scan across a portion of the anatomical structure of the beam. 所述电磁辐射可以包括多个波长,并且所述波长可以随时间变化。 The electromagnetic radiation may comprise a plurality of wavelengths, and the wavelength can be varied over time. 所述探针还可以包括:一个或多个衍射装置,其可以配置成衍射或谱分散所述光束;一个或多个校正装置,其可以配置成校正光学像差;机械装置,其能够使所述探针或组件在被成像的所述解剖结构之内置于中心或定位;和/或引导线装置,其能够使所述探针或组件平移和/或旋转。 The probe may further comprise: one or more diffraction apparatus, which may be configured to diffract light beam or the spectral dispersion; one or more correction means, which may be configured to correct an optical aberration; mechanical device, which enables the said probes or components being imaged built in the center of the anatomical structures or positioning; and / or guide wire device, which enables the probe or component translation and / or rotation. 所述波导管例如可以是光纤或光纤束或其它波导管。 For example, the waveguide may be an optical fiber or optical fiber bundle or another waveguide. 所述探针或组件可以进一步包括谱编码装置和/或校正光学装置诸如像弯曲的透明表面,其能够用于校正光束路径中的像差如像散。 Or the probe assembly may further include a spectrum coding apparatus and / or correcting optical means such as curved transparent surface, which can be used to correct aberration in the beam path, such as astigmatism.

[0012] 在本发明的某些示范性实施例中,所述探针或组件能够配置成扫描所述解剖结构的区域,该区域能够具有大于大约Imm2的面积,并且其中所述区域可以包括表面、体积或所述解剖结构的表面之下的位置。 [0012] In some exemplary embodiment of the present invention, the probe assembly can be configured to scan or the anatomical structure of the region, the region can have an area greater than about Imm2, and wherein the surface region may include , position of the surface or volume of the anatomical structure below. 所述探针或组件可以配置成获得数据,该数据能够用于以近似10 μ m之下的分辨率生成区域的图像。 Or the probe assembly may be configured to obtain data that can be used to image at a resolution of approximately 10 μ m under generation area.

[0013] 在本发明的进一步的示范性实施例中,能够提供探针或组件,该探针或组件能够相对于所述解剖结构定位和/或聚焦所述光束。 [0013] In a further exemplary embodiment of the present invention to provide probes or components, or component of the probe relative to the anatomical structure of the positioning and / or focusing the light beam. 所述定位和/或聚焦例如能够基于干涉测量信号、飞行时间信号或电磁辐射的强度。 And / or focusing interferometry signal can be based e.g., the flight time of the signal intensity of the electromagnetic radiation or positioning. 所述探针或组件能够包括共焦光学装置。 Or the probe assembly can include a confocal optical device.

[0014] 在本发明的更进一步的示范性实施例中,所述探针或组件能够包括:定位装置,其能够确定所述探针或组件相对于所述解剖结构之内位置的位置;以及可选定位装置,其能够基于所述位置控制所述探针的移动和/或定位。 [0014] In the present invention, a further exemplary embodiment, the probe or component can include: positioning means, which can determine the position of the anatomical structure of the position of the probe relative to the component or; and optional positioning device, which can control the movement and / or position based on the position of the probe. [0015] 在本发明的其它示范性实施例中,能够提供用于获得对解剖结构进行全面微观光学成像的方法,该方法能够包括:使用电磁辐射诸如像光束,扫描大于大约Imm2的要被成像的所述解剖结构的区域;基于所述辐射接收信号;以及基于所述信号生成图像,其中所述图像能够具有大约IOym之下的横向分辨率。 [0015] In another exemplary embodiment of the present invention, can be provided for obtaining a comprehensive anatomy microscopic optical imaging, the method can include: the use of electromagnetic radiation, such as a beam, than scans to be imaged about Imm2 region of the anatomical structure; radiation based on the received signal; and a signal is generated based on the image, wherein the image can have a lateral resolution of about IOym below.

[0016] 在本发明的更进一步的示范性实施例中,提供了用于在解剖结构之内定位或指引的电磁辐射的方法,该方法能够包括:使用电磁束扫描所述解剖结构的至少一部分;以及使用可以基于所述电磁辐射的信号来控制所述辐射的位置和/或聚焦。 Using at least a portion of the electromagnetic beam scanned anatomical structure: [0016] In the present invention, a further exemplary embodiment, there is provided a method for positioning or electromagnetic radiation within the guidelines of the anatomical structure, which can include ; and can be used based on the position signal to control the electromagnetic radiation of the radiation and / or focus. 还能够提供方法,以基于从在解剖结构的区域之上扫描电磁辐射获得的信号,来控制解剖结构之内的共焦束的位置或聚焦。 We can also provide a method, based on the position signal from the electromagnetic radiation obtained on the scanning area of the anatomy to the anatomy of the control confocal beam or focusing.

[0017] 结合所附的权利要求书,当阅读以下对本发明实施例的详细描述时,本发明的其它特征和优点将会变得明显。 Book [0017] The right combination of the appended claims, when reading the following detailed description of embodiments of the present invention, other features and advantages of the invention will become apparent.

附图说明 Brief Description

[0018] 结合示出了本发明的示意性实施例的附图,从以下详细描述中,本发明的进一步的目的、特征和优点将会变得明显,其中: [0018] The combination shows a schematic drawing of an embodiment of the present invention, from the following detailed description, further objects, features and advantages of the invention will become apparent, including:

[0019] 图1是示范性谱编码共焦显微(SECM)系统的示意性图示; [0019] FIG. 1 is an exemplary schematic illustration of the spectrum encoded confocal microscopy (SECM) systems;

[0020] 图2A是使用单模源和单模检测(SM-MM)配置离组织表面100 μ m在体外获得的猪肠上皮的示范性SECM图像; [0020] FIG. 2A is a single-mode and single-mode source detection (SM-MM) configuration 100 μ m from the surface of the tissue obtained in vitro epithelial pig intestines exemplary SECM image;

[0021] 图2B是使用单模源和多模检测(SM-MM)配置获得的猪肠上皮的另一个示范性SECM图像; [0021] FIG. 2B is a single-mode and multimode source detection (SM-MM) configured to obtain a pig intestines epithelial another exemplary SECM image;

[0022] 图2C是猪肠上`皮的SECM图像的放大图; [0022] FIG. 2C is on the chitterlings `skin SECM image enlarged view;

[0023] 图3A是在以50 μ m的成像深度压缩肠壁之后在体外获得的猪肠上皮的示范性SECM图像; [0023] FIG. 3A is after image-compression depth of 50 μ m obtained in vitro intestinal epithelial pig intestines exemplary SECM image;

[0024] 图3B是在以100 μ m的成像深度压缩肠壁之后在体外获得的猪肠上皮的示范性SECM图像; [0024] FIG. 3B is after image-compression depth of 100 μ m obtained in vitro intestinal epithelial pig intestines exemplary SECM image;

[0025] 图4是示范性SECM设备的示意性图示; [0025] FIG. 4 is a schematic illustration of an exemplary SECM apparatus;

[0026] 图5是USAF图表的示范性SECM图像; [0026] FIG. 5 is an exemplary SECM image USAF chart;

[0027] 图6A是以Ix的放大率显示的基于取自镜头纸样品的数据的示范性SECM图像; [0027] FIG. 6A is based on data taken from the lens tissue samples Ix exemplary SECM image magnification display;

[0028] 图6B是以4.5x的放大率显示的基于取自镜头纸样品的数据的示范性SECM图像; [0028] FIG. 6B is based on data taken from the lens tissue sample exemplary SECM 4.5x magnification image display;

[0029] 图6C是以16.7x的放大率显示的基于取自镜头纸样品的数据的示范性SECM图像; [0029] Based on data from the lens tissue sample exemplary SECM image magnification 16.7x Fig. 6C is displayed;

[0030] 图6D是以50x的放大率显示的基于取自镜头纸样品的数据的示范性SECM图像; [0030] FIG. 6D is based on data taken from the lens tissue sample exemplary SECM 50x magnification of the image displayed;

[0031] 图6E是以125x的放大率显示的基于取自镜头纸样品的数据的示范性SECM图像; [0031] FIG. 6E is based on data taken from the lens tissue sample exemplary SECM 125x magnification image display;

[0032] 图7是在5个不同焦点位置从镜头纸样品获得的一系列示范性SECM数据以及通过组合5个各自图像中的数据生成的组合图像; [0032] FIG. 7 is a series of exemplary SECM data in five different focus position obtained from the lens tissue samples as well as a combination of image data generated by a combination of five each image;

[0033] 图8A是以Ix的放大率显示的基于取自猪肠组织片段的数据的示范性SECM图像; [0033] FIG. 8A is based on data taken from pig intestines tissue fragments exemplary SECM Ix magnification image display;

[0034] 图SB是以4x的放大率显示的基于取自猪肠组织片段的数据的示范性SECM图像; [0034] Based on data taken from pig intestines tissue fragments exemplary SECM image Figure SB is a 4x magnification display;

[0035] 图SC是以20x的放大率显示的基于取自猪肠组织片段的数据的示范性SECM图像;[0036] 图8D是以40x的放大率显示的基于取自猪肠组织片段的数据的示范性SECM图像; Based on data taken from pig intestines tissue fragments [0036] Figure 8D 40x magnification is displayed; [0035] Based on data taken from pig intestines tissue fragments exemplary SECM image Figure SC is a 20x magnification display exemplary SECM image;

[0037] 图9是能够对大组织体积进行成像的示范性SECM系统的示意性图示; [0037] FIG. 9 is a large volume of tissue can be imaged schematic illustration of an exemplary SECM system;

[0038] 图10是根据本发明的示范性实施例的可以用于成像的示范性导管的远端的示意性图示; [0038] Figure 10 is an exemplary embodiment of the present invention may be used to image the distal end of the catheter exemplary schematic illustration;

[0039] 图11是包括外部旋转扫描装置的根据本发明的示范性实施例的可以用于成像的示范性导管的示意性图示; [0039] Figure 11 comprising according to an exemplary embodiment of the present invention may be used for imaging a schematic illustration of an exemplary catheter external rotary scanning means;

[0040] 图12A是弯曲窗口和负圆柱透镜的光学效果的示意性图示; [0040] FIG. 12A is a diagram schematically illustrating the optical effect of the curved window and the negative cylindrical lens;

[0041]图12B是使用弯曲窗口的像散像差校正的示意性图示; [0041] FIG. 12B is a curved window using astigmatic aberration correction schematic illustration;

[0042] 图13A是可以用于通过单步调试聚焦深度的范围而获取预期深度范围的示范性技术的图示; [0042] FIG. 13A is used for stepping through the depth of focus range and get the expected depth range of exemplary art illustration;

[0043] 图13B是可以用于通过主动调整焦平面而在特定的深度对组织进行成像的示范性技术的图示; [0043] FIG. 13B can be used by the initiative to adjust the focal plane and the representation of the organization at a particular depth exemplary imaging technologies;

[0044] 图14A是双重双压电晶片压电弯片(dual bimorph piezoelectricbender)的不意性图示; [0044] FIG. 14A is a dual bimorph piezoelectric bender (dual bimorph piezoelectricbender) is not intended to illustration;

[0045] 图14B是使用弯曲执行器可以在透明外护套之内移动马达的示范性装置的示意性图示; [0045] FIG. 14B is a schematic illustration of the use of the bending actuator motor can be moved within a transparent outer jacket of an exemplary apparatus;

[0046] 图15是配置成通过平移准直透镜来控制聚焦的示范性气囊导管设计的示意性图示; [0046] FIG. 15 is configured to translate through the collimating lens controls the focus to a schematic illustration of an exemplary balloon catheter design;

[0047] 图16是特定可变焦透镜的照片; [0047] FIG. 16 is a specific photo zoom lens;

[0048] 图17A是具有透明圆柱形式的圆柱形内套设计的示意性图示; [0048] FIG. 17A is a transparent cylindrical form the inner cylindrical sleeve design schematic illustration;

[0049] 图17B是包括透明窗口的圆柱形内套设计的示意性图示; [0049] FIG. 17B is a transparent window within a cylindrical sleeve comprising a schematic illustration of the design;

[0050] 图17C是在套壁中包括几个开口的圆柱形内套设计的示意性图示; [0050] FIG. 17C is included within the cylindrical opening of several sets of design schematic illustration of the sleeve wall;

[0051] 图17D是在套和马达之间的连接中包括开口的圆柱形内套设计的示意性图示; [0051] FIG. 17D is a connection between the sleeve and the motor includes an inner cylindrical opening sleeve design schematic illustration;

[0052] 图18是示范性成像系统的部件之间的电连接和数据连接的示意性图示; [0052] FIG. 18 is a schematic illustration of the electrical components and data connections exemplary imaging system between;

[0053]图19A是示范性探针扫描模式的图示,在该模式下,迅速旋转射束并同时在轴向上缓慢地移动射束以提供螺旋成像模式; [0053] FIG. 19A is an exemplary illustration of a probe scanning mode, in this mode, the rapid rotation of the beam and simultaneously moved slowly in the axial direction of the beam to provide spiral imaging mode;

[0054] 图19B是示范性探针扫描模式的图示,在该模式下,迅速旋转射束然后沿轴向重新定位射束; [0054] FIG. 19B is an exemplary illustration of a probe scanning mode, in this mode, the rapid rotation of the beam and the beam axially repositioned;

[0055]图19C是示范性探针扫描模式的图示,在该模式下,在轴向上快速扫描射束,然后在旋转方向上重新定位射束; [0055] FIG. 19C is an exemplary illustration of a probe scanning mode, in this mode, a quick scan of the beam in the axial direction, and then reposition the beam in the direction of rotation;

[0056] 图19D是示范性探针扫描模式的图示,在该模式下,在圆形组织区域之上的同心圆形路径之上扫描射束; [0056] FIG 19D is an exemplary illustration of a probe scanning mode, in this mode, the concentric circular path on the tissue region above the circular scanning beam;

[0057] 图20A是包括位于套远端末端的引导线装置的快速交换气囊导管设计的示意性图示; [0057] FIG. 20A is a schematic illustration of a rapid exchange balloon catheter design cover located at the distal end of the guide wire means;

[0058] 图20B是包括位于套远端末端并且具有次级通道形式的引导线装置的快速交换气囊导管设计的示意性图示; [0058] FIG. 20B includes a sleeve having a distal end and a schematic illustration of a rapid exchange balloon catheter designed secondary channel in the form of a guide wire device;

[0059] 图20C是包括位于套近端末端并且具有次级通道形式的引导线装置的快速交换气囊导管设计的示意性图示;[0060] 图21A是用于定位线气囊导管的示范性技术中的第一步骤的示意性图示,其包括引导线的插入; [0059] FIG 20C is a schematic illustration of a rapid exchange balloon catheter design and located in the proximal end of sleeve channel having the form of a secondary guide wire means; [0060] FIG. 21A is a balloon catheter for positioning wire exemplary technique schematic illustration of a first step, which comprises inserting the guidewire;

[0061] 图21B是用于定位线气囊导管的示范性技术中的第二步骤的示意性图示,其包括在引导线之上放置气囊导管; [0061] FIG. 21B is a balloon catheter for positioning line art exemplary schematic illustration of a second step, which comprises placing the balloon catheter over the guidewire;

[0062] 图21C是用于定位线气囊导管的示范性技术中的第三步骤的示意性图示,其包括在气囊导管中放置光学装置; [0062] FIG 21C is a balloon catheter for positioning line art exemplary schematic illustration of a third step, which comprises an optical means disposed in the balloon catheter;

[0063] 图22A是示范性气囊导管的示意性图示,该气囊导管包括配置成从远程位置向气囊传递膨胀材料的单个通道; [0063] Figure 22A is an exemplary schematic illustration of a balloon catheter, the balloon catheter includes a channel configured as a single expandable material pass from a remote location to the airbag;

[0064] 图22B是示范性气囊导管的示意性图示,该气囊导管包括两个护套,其中能够在护套之间提供膨胀材料; [0064] FIG. 22B is an exemplary schematic illustration of a balloon catheter, the balloon catheter comprises two sheath, wherein the expandable material can be provided between the sheath;

[0065] 图23A是具有线笼(wire cage)形式的定心装置的示意性图示,其中该装置包含在外护套之内; Schematically illustrates [0065] FIG. 23A is a line having a cage (wire cage) in the form of a centering device, wherein the device comprises within the outer jacket;

[0066] 图23B是具有线笼形式的定心装置的示意性图示,其中该装置部分地从外护套伸出; [0066] FIG. 23B is a wire cage in the form of a schematic illustration of centering device, wherein the device is partially protruding from the outer jacket;

[0067] 图23C是具有线笼形式的定心装置的示意性图示,其中该装置完全从外护套伸出; [0067] FIG. 23C is a wire cage in the form of a schematic illustration of centering device, wherein the device is fully extending from the outer jacket;

[0068] 图24A是包括波分复用器和色散补偿器的示范性SECM/SD-0CT系统的示意性图示; [0068] FIG. 24A is a schematic illustration of a wavelength division multiplexer and dispersion compensator exemplary SECM / SD-0CT systems;

[0069] 图24B是可以通过使用线性CXD阵列的SECM/SD-0CT系统提供的示范性谱的示意性图示; [0069] FIG 24B can be provided by using a linear array CXD SECM / SD-0CT Spectrum Systems exemplary schematic illustration;

`[0070] 图25是示范性SECM/SD-0CT探针的示意性图示; `[0070] FIG. 25 is an exemplary SECM / SD-0CT schematic illustration of the probe;

[0071] 图26是包括既用于SECM装置又用于SD-OCT装置的单个光纤的示范性SECM/SD-OCT探针的示意性图示; [0071] FIG. 26 is a SECM comprising both means for schematically illustrating another for SD-OCT apparatus of a single optical fiber exemplary SECM / SD-OCT probe;

[0072] 图27是可以用于使用SD-OCT数据来为SECM图像调整聚焦的技术的示范性流程图; [0072] FIG. 27 is used to use SD-OCT data flow diagram of an exemplary SECM image adjustment focused technologies;

[0073] 图28是示范性导管线缆的横截面的示意性图示; [0073] FIG. 28 is a schematic illustration of an exemplary cross-section of the cable duct;

[0074] 图29是包括可以提供更紧凑探针配置的射束偏转光学装置的示范性探针的示意性图示; [0074] FIG. 29 is a probe including the ability to provide a more compact configuration of the beam deflection schematically illustrates an exemplary optical device of the probe;

[0075] 图30A是平移扫描技术的示意性图示,示出了在向要被成像的场所传递探针期间的探针的紧凑配置; [0075] FIG. 30A is a Pan-scan technology schematic illustration showing a compact configuration to be imaged during the transfer of the properties of the probe of the probe;

[0076] 图30B是平移扫描技术的示意性图示,示出了位于平移范围的远端极限的探针的内套; [0076] FIG. 30B is a Pan-scan technology schematic illustration showing the remotely located translation limit the scope of the probe within the sleeve;

[0077] 图30C是平移扫描技术的示意性图示,示出了位于平移范围的近端极限的探针的内套; [0077] FIG 30C is a Pan-scan technology schematic illustration showing the proximal end of the range is located in translation within the limits set probe;

[0078] 图31是包括透明开口的外套的示意性图示; [0078] FIG. 31 is a schematic illustration of the jacket comprising transparent openings;

[0079] 图32是包括偏心准直光学装置并且配置成提供外部旋转扫描的示范性紧凑探针的示意性图示; [0079] FIG. 32 is a collimating optical means includes an eccentric and is configured to provide external rotation of scanning a schematic illustration of an exemplary compact probe;

[0080] 图33A是探针的示意性图示,其包括前向可膨胀气囊和内套,配置成在扫描的同时与气囊的内壁相接触;[0081] 图33B是与膨胀气囊的内壁相接触的图33A中示出的探针的示意性图示; [0080] FIG. 33A is a schematic illustration of a probe, which comprises a forward inner sleeve and an inflatable balloon, arranged in scanning contact with the inner wall while the balloon; [0081] FIG. 33B is a phase with the inner wall of the inflatable balloon contacts shown in FIG. 33A schematically illustrates a probe;

[0082] 图34A是示范性探针的示意性图示,其包括外可膨胀气囊和内可膨胀气囊,可以配置成当膨胀时维持探针和外气囊壁之间的接触; [0082] FIG. 34A is a schematic illustration of an exemplary probe, which comprises an outer and inner inflatable balloon expandable balloon can be configured to maintain the contact between the probe and the outer balloon wall when to when the expansion;

[0083] 图34B是图34A中示出的探针的示意性图示,其中膨胀的内气囊提供在探针周围,并且配置成维持探针和膨胀的外气囊壁之间的接触; [0083] FIG. 34B is shown in Figure 34A a schematic illustration of the probe, wherein the expandable balloon provided around the probe and configured to maintain contact with the probe and the expansion of the outer wall of the balloon;

[0084] 图35A是进一步的示范性探针的示意性图示,其包括外可膨胀气囊和内可膨胀气囊,可以配置成当膨胀时维持探针和外气囊壁之间的接触; [0084] FIG. 35A is a schematic illustration of a further exemplary probe, which comprises an outer and inner inflatable balloon expandable balloon, it can be configured to maintain the contact between the probe and the outer wall of the balloon such that when expanded when;

[0085] 图35B是图35A中示出的探针的示意性图示,其中膨胀的内气囊提供在探针和外气囊之间,并且配置成维持探针和膨胀的外气囊壁之间的接触; [0085] FIG. 35B is shown in FIG. 35A schematically illustrates the probe, wherein the expandable balloon is provided between the probe and the outer balloon, and is configured to maintain the probe and the expansion of the outer wall of the balloon contacts;

[0086] 图36A是探针的底视图的示范性图示,该探针配置成在沿着回拉轴扫描的同时与可膨胀气囊的内壁相接触; [0086] FIG. 36A is an exemplary illustration of the probe bottom view of the probe is configured to pull back along the axis while scanning contact with the inner wall of the inflatable balloon;

[0087] 图36B是图36A中示出的探针的侧视图的示意性图示; [0087] FIG. 36B is shown in FIG. 36A probe schematic illustration of a side view;

[0088] 图36C是图36A中示出的探针的侧视图的示意性图示,其中该探针与膨胀的气囊的内壁相接触;以及 [0088] FIG 36C is shown in FIG. 36A probe schematic illustration of a side view, wherein an inner wall of the probe with the balloon expanded into contact; and

[0089] 图36D是图36C中示出的探针的正视图。 [0089] FIG 36D is shown in FIG. 36C a front view of the probe.

[0090] 贯穿附图,除非另外声明,否则相同的标号和字符用于指示图示实施例的相同特征、元件、部件或部分。 [0090] Throughout the drawings, unless otherwise stated, the same reference numerals and characters are used for the same characteristics indicative of the illustrated embodiment, elements, components or parts. 此外,虽然现在将参考附图详细地描述本发明,但是这将结合示意性实施例进行。 In addition, although the present invention will now be described in detail with reference to the accompanying drawings, but it will combine exemplary embodiments. 能够对描述的实施例进行改变和修改,而不认为脱离了如所附权利要求所限定的本发明的真实范围和精神。 The described embodiments can be changed and modified without departing from the true scope and that the spirit as defined in the appended claims the invention. 具体实施方式 DETAILED DESCRIPTION

[0091] 根据本发明的示范性实施例,提供了用于内窥镜共焦显微术的方法和设备,其避开了对探针之内的小型高速扫描机构的需要。 [0091] According to an exemplary embodiment of the present invention, there is provided a method and apparatus for endoscopic confocal microscopy, which avoids the need for small high-speed scanning mechanism within the probe. 谱编码共焦显微术(“SECM”)是可以使用的波分复用共焦方法。 Spectrum coding confocal microscopy ("SECM") is WDM confocal method can be used. SECM利用了宽带宽光源,并且能够对光谱中的一维空间信息进行编码。 SECM wide use of broadband light source, and is capable of spectrum in one-dimensional spatial information is encoded.

[0092] 在图1中示出了示范性SECM技术。 [0092] In Figure 1 illustrates an exemplary SECM technology. 来自可以位于探针远端的单模光纤100的输出能够被准直透镜110校准,然后照射色散光学元件(诸如透射衍射光栅120)。 The output from the distal end of the probe may be located in the single mode fiber 100 can be calibrated collimator lens 110, and then irradiated with a dispersive optical element (such as a transmission diffraction grating 120). 物镜130然后能够将每个衍射波长聚焦到样品之内的不同空间位置,导致横断线状焦点140,其中线上的每个点用不同的波长表征。 The objective lens 130 can then be focused onto each diffraction wavelength different spatial positions within the sample, leading to transverse line focus 140, wherein each point line characterized by different wavelengths. 在从可以例如是生物组织的样品反射之后,光信号可以被衍射元件120重新组合并由单模光纤100收集。 It can, for example, a sample from the biological tissue after reflection, the optical signal can be reassembled diffraction element 120 by a single-mode optical fiber 100 collects. 单模光纤100的核心孔径可以提供空间滤波机制,其能够滤去散焦光。 Single-mode fiber core aperture 100 can provide spatial filtering mechanism that can filter out defocused light. 在探针外部(并且任选地在系统控制台之内),返回的光的光谱可以被测量并被转换成作为样品之内横向位移的函数的共焦反射。 External probe (and optionally within the system console), the spectrum of the light can be returned as measured in the sample and converted into a function of transverse displacement confocal reflection. 能够快速执行谱解码。 Spectrum can quickly perform decoding. 这样一来,通过相对缓慢和直接的机械动作,就能够完成通过在正交于线状焦点的方向上扫描射束而产生的图像。 In this way, by a relatively slow and direct mechanical action, it is possible to complete the image by the direction orthogonal to the line focus of the scanning beam is generated.

[0093] SECM技术可以允许使用内窥镜RCM,并且能够通过使用高速线性CXD摄像机以极高速率提供图像数据。 [0093] SECM techniques may allow the use of an endoscope RCM, and provides the image data by using a camera with a high speed linear CXD rate. 商业上可用的线性CCD阵列能够以大于大约每秒60兆像素的速率获得数据。 Commercially available linear CCD arrays can be greater than about 60 megapixels per second rate to obtain data. 当结合到SECM分光计中时,这些阵列能够以大约10倍于典型视频速率并且一直到100倍于某些内窥镜RCM技术的速度产生共焦图像。 When incorporated into the SECM spectrometer, these arrays can be about 10 times the typical video rate and produces up to 100 times the speed of confocal images in certain endoscopic RCM techniques. 典型SECM系统的快速成像速率和光纤设计允许通过内窥镜探针的全面的大面积显微镜检查。 Fast imaging speed and fiber design typical SECM system allows a large area through a comprehensive examination of the endoscope probe microscope. [0094] 使用光学相干断层扫描(“0CT”)的技术及其变体可以用于全面的构造筛选。 [0094] using optical coherence tomography ("0CT") technology and its variants can be used to construct a comprehensive screening. 获取波长域中的而不是时域中的OCT信号,能够提供成像速度的数量级改善,同时维持良好的图像质量。 OCT signal acquisition wavelength domain rather than the time domain, it is possible to provide an order of magnitude improvement in imaging speed, while maintaining good image quality. 使用谱域0CT( “SD-0CT”)技术,通过检测组织样品和基准之间的谱分辨干涉,能够在生物组织中实施高分辨率测距。 Using spectral domain 0CT ("SD-0CT") technology to distinguish interference by spectrum detection of tissue samples and the reference between the high resolution can be implemented ranging in biological tissue. 因为SD-OCT系统能够使用与SECM系统相同的高速线性CCD,所以它们也能够以每秒60兆像素捕捉图像,这近似于两个数量级的传统时域0CT( “TD-0CT”)系统的速率。 Because the SD-OCT system can be used with the same speed SECM systems linear CCD, they can be 60 megapixels per second captured image, which is similar to the traditional time-domain rate 0CT two orders of magnitude ("TD-0CT") system . 使用这种获取速率和分辨率,SD-OCT系统能够在临床环境中以构造水平提供全面的体积显微镜检查。 With this acquisition rate and resolution, SD-OCT system can be configured in a clinical setting to provide a full volume level microscopic examination.

[0095] 示范性SD-OCT和SECM系统提供的信息可以是互补的,并且使用这两种技术的混合平台能够提供可能对于准确诊断所必需的有关组织的构造和细胞结构的信息。 [0095] An exemplary SD-OCT and SECM system information may be complementary, and the use of these two technologies can provide mixed-platform configuration information that may be relevant for the cell structure and organization necessary for an accurate diagnosis. 尽管不同技术的结合典型地需要大范围的工程并且可能损害性能,但是SECM和SD-OCT系统能够共享关键的部件,并且能够提供高性能多模态的系统,而不会显著增加单个系统的复杂性或成本。 Although the combination of different technologies typically require a wide range of engineering and may impair performance, but SECM and SD-OCT systems to share key components, and can provide high-performance multi-modal system, without significantly increasing the complexity of a single system or costs.

[0096] 根据本发明的某些示范性实施例的SECM系统能够使用波长扫描1300nm的源和单元件光检测器来获得作为时间函数的谱编码信息。 [0096] to obtain the spectrum as a function of time according to SECM system coding information to certain exemplary embodiments of the present invention can be used 1300nm wavelength scanning light source and single element detector. 使用这个系统,能够以在400 μ m视场(“F0V”)之上具有高横向(1.4μπι)和轴向分辨率的高达约30帧/秒的速率获取图像。 Using this system, capable of over 400 μ m field of view ("F0V") having a high transverse (1.4μπι) and up to 30 frames / sec acquisition rate of axial resolution image. 用高速系统在体外成像新近切除的猪十二指肠片段的图像,以展示SECM系统识别亚细胞结构的能力,该亚细胞结构例如可以在专化肠上皮化生(“SM”)或Barretts食道的化生变化中发现。 High-speed image forming system in vitro newly excised pig duodenum segment to demonstrate the ability to subcellular structures SECM system identification, the subcellular structures such specialization may be intestinal metaplasia ("SM") or Barretts esophagus metaplastic changes were found.

[0097]图2A-2C描绘了在体外获得的猪肠上皮的示范性SECM图像,其使用了两种成像模式和相应的光纤配置:具有单模检测的单模照射(“SM-SM”)以及具有多模检测的单模照射(“ SM-MM”)。 [0097] Figures 2A-2C depict the in vitro epithelial pig intestines obtained exemplary SECM image, which uses two imaging modes and the corresponding optical fiber arrangement: a single-mode single-mode detecting irradiation ("SM-SM") and singlemode irradiation ("SM-MM") with multi-mode detection. 图2A中的SM-SM图像示出了使用单模源和单模检测的距离组织表面100 μ m的上皮结构。 Fig. 2A SM-SM image shows epithelium detected using single-mode and single-mode source tissue surface distance of 100 μ m. 使用具有1: 4的核心-孔径比的单模源和多模检测(SM-MM)获得的示出在图2B中的相同组织区域的图像,因为斑点噪声减少而可以具有更加平滑的外观并且可以更加容易地解释。 Using a 1: 4 core - image singlemode and multimode source detection aperture ratio (SM-MM) obtained in the same tissue area shown in FIG. 2B, since the reduction of speckle noise can have a smoother appearance and It can be more easily explained. 图2C是图2B中示出的图像的放大图,其指示了包含不良反射的核心(例如固有层或“lp”)和较高散`射的柱状上皮的绒毛的存在。 2C is an enlarged view of Fig. 2B shows an image, which indicates the core contains inappropriate reflective (for example lamina propria or "lp") and there is a high columnar epithelium scattered `exit of fluff. 在图2C中示出了在柱状细胞的底部可见的明亮图像密度,其与核一致(用箭头指示)。 In Figure 2C shows the cells at the bottom of the pillar-shaped bright visible image density, which is consistent with the core (indicated by arrows).

[0098] 使用膨胀气囊,能够将使用OCT技术在体内成像的食道壁的厚度减少例如大约二分之一。 [0098] Using an inflatable balloon, OCT technology can be used in vivo imaging of the esophagus wall thickness is reduced by approximately half, for example. 图2A-2C中示出的猪肠样品被减少相同的量,并且使用SECM技术观察到的亚细胞特征被很好地保存。 Chitterlings in Figures 2A-2C illustrates a sample is reduced by the same amount, and observed using SECM technology sub-cellular characteristics are well preserved. 图3A和3B分别示出了在50 μ m和100 μ m的深度获得的该变薄样品的图像。 3A and 3B show the image in depth 50 μ m and 100 μ m obtained by the thinning of the sample.

[0099] 商用800nm激光扫描共焦显微镜的穿透深度被观察到与用1300nmSECM系统获得的穿透深度相比减少了大约20%。 [0099] Commercial 800nm laser scanning confocal microscope penetration depth was observed in comparison with the penetration depth with 1300nmSECM systems was reduced by approximately 20%. 减少的穿透可能是较短波长源的散射增加的结果。 Reduce penetration may be the source of a shorter wavelength scattering increase results. 这样一来,使用840nm源的SECM系统就可以提供足够的穿透,以识别例如肠上皮的亚细胞结构。 Thus, the use of a source of 840nm SECM system can provide sufficient penetration to identify subcellular structures such as the intestinal epithelium.

[0100] 在图4中示意性地图示了被配置成提供全面SECM图像的根据本发明的某些示范性实施例的设备。 [0100] In Figure 4 schematically illustrates a SECM configured to provide a comprehensive picture of the device in accordance with certain exemplary embodiments of the present invention. 这个示范性设备被配置成从圆柱形样品获得图像,该圆柱形样品具有 This exemplary device is configured to obtain an image from the cylindrical sample, the sample having a cylindrical

2.5cm的长度和2.0cm的直径,这近似为远端食道的尺度。 2.0cm in length and 2.5cm in diameter, which is approximately the distal esophagus scale. 具有以800nm为中心的波长和45nm 的带宽的光纤I禹合的2.0mff 超福射二极管200 (QSSL-790-2, qPhotonics, Chesapeake,VA),被配置成照射50/50单模光纤分束器405。 Having a center wavelength of 800nm to 45nm bandwidth of optical fiber and I bonded 2.0mff Super Fu Yu shot diode 200 (QSSL-790-2, qPhotonics, Chesapeake, VA), is configured to illuminate a 50/50 single-mode optical fiber splitter 405. 被传输通过分束器的一个端口的光被准直仪410校准,并且被传输通过光纤412到达聚焦设备415并到达光栅透镜对,该光栅透镜对包括:光栅420(17801pmm,Holographix, LLC, Hudson, MA);以及350230-B 非球面透镜425 (Thor Labs, Inc.,Newton, NJ),其具有4.5mm 的焦距f、5.0mm 的通光孔径和0.55 的NA。 Is transmitted through the beam splitter of the light is a collimator calibration port 410, and is transmitted through the optical fiber 412 reaches the focusing device 415 and reaches the grating lenses of the lenticular lens including: a grating 420 (17801pmm, Holographix, LLC, Hudson , MA); and 350230-B aspherical lens 425 (Thor Labs, Inc., Newton, NJ), which has a 4.5mm focal length f, aperture 5.0mm and 0.55 NA. 这种布置能够在圆柱形样品的内表面上产生聚焦的谱编码的斑点430的500 μ m纵向线性阵列或线。 This arrangement can produce a focused spectrum encoding spots on the inner surface 430 of the cylindrical sample longitudinal linear array of 500 μ m or lines. 光栅透镜对通过套440附着到马达435 (例如从MicroMo Electronics, Inc.,Clearwater,FL获得的1516SR、15mm直径马达)的轴。 Lenticular lens 440 through the sleeve is attached to the motor 435 (for example 1516SR obtained from MicroMo Electronics, Inc., Clearwater, FL, 15mm diameter motor) shaft. 随着马达435旋转,能够跨越圆柱形样品的内圆周扫描谱编码线。 With the rotation of the motor 435, to cross the inner circumference of the cylindrical sample spectral coding scanning line. 使用计算机控制的线性级445 (诸如像从Melles Griot,Rochester, NY获得的Nanomotion 11,2.5cm范围),在马达435的旋转期间沿着圆柱形样品的纵轴平移马达435、壳体440和光栅透镜对。 Use computer-controlled linear stage 445 (such as Nanomotion 11,2.5cm range obtained from Melles Griot, Rochester, NY), during the rotation of the motor 435 is translated along the longitudinal axis of the cylindrical sample motor 435, the housing 440 and grating lens pair. 这个过程产生了圆柱形样品的整个内表面的螺旋扫描。 This process produces a spiral scan the entire inner surface of the cylindrical sample.

[0101] 从样品反射的光被传输返回通过光学系统进入单模光纤412,并且被光纤412提供给分光计450和线性CXD 455,该线性CXD 455能够包括例如2048个像素并且具有30kHz的线速率(诸如像从Basler VisionTechnologies, Exton, PA 获得的Basler L104K)。 [0101] The light reflected from the sample is transmitted back through the optical system into the single mode fiber 412, and is supplied to the optical fiber 412 and the spectrometer 450 linear CXD 455, which can include, for example, linear CXD 455 2048 pixels and having a line rate of 30kHz (such as, obtained from Basler VisionTechnologies, Exton, PA Basler L104K). 计算机460能够用于存储、分析和显示分光计450和CXD 455提供的图像数据。 Computer 460 can be used to store, analyze and display image data 450 and CXD 455 spectrometer provided. 每周马达旋转大约有60,000点(以0.5Hz或30rpm)可以被数字化,以提供近似1.0 μ m的圆周采样密度。 Weekly motor rotation around 60,000 points (to 0.5Hz or 30rpm) can be digitized to provide approximately 1.0 μ m circumference sampling density. 马达的纵向速度能够近似为0.25mm/s,并且圆柱形样品的一个完整扫描所需的时间可以大约为100秒。 The longitudinal velocity of the motor can be approximately 0.25mm / s, and the time a complete scan of the cylindrical sample required may be about 100 seconds.

[0102] 光栅透镜对上的准直束的Ι/e2直径能够大约为4.0mm。 [0102] Ι / e2 diameter collimated beam on the grating lenses can be about 4.0mm. 结果,这个示范性设备的有效NA能够近似为0.4,这对应于近似1.2 μ m的理论斑点直径和近似2.5 μ m的共焦参数。 As a result, the effective NA of this exemplary device capable of approximately 0.4, which corresponds to a confocal parameter theory approximate spot diameter is approximately 1.2 μ m and 2.5 μ m in. 在没有光学像差的系统中,样品上的理论谱分辨率可以为0.8人,其能够跨越谱编码线430得到高达近似630个可分辨点。 In the absence of optical aberrations of the system, the theoretical spectral resolution on the sample may be 0.8 people, which can span the spectrum coding line 430 get up to approximately 630 distinguished points. 检测臂中的分光计450能够被设计成超过探针的预测谱分辨率。 Detection arms 450 spectrometer probes can be designed to exceed the predicted spectral resolution.

[0103] 在图5中示出了使用这种设备获得的1951USAF分辨率图表的SECM扫描。 [0103] In Figure 5 illustrates the use of this equipment 1951USAF resolution chart obtained SECM scans. 被分开2.2 μ m的这个图中的最小条被分辨。 Are separated by 2.2 μ m of this figure, the minimum bar is resolved. 使用扫描通过焦点的镜获得的横断线扩展函数半高宽(“FWHM”)和轴向FWHM函数分别被测量为2.1 μ m和5.5 μ m。 Transversal focus using a scanning mirror obtained by extension functions FWHM ("FWHM") and axial FWHM function were measured as 2.1 μ m and 5.5 μ m. 观察到视场大约为500 μ m。 Field of view to approximately 500 μ m. 这些测量结果略微低于相应的理论值,这可能归因于光路中的像差。 These measurements are slightly lower than the corresponding theoretical value, which may be attributed to aberrations in the optical path. 这些参数表明,在此描述的示范性设备能够提供足够的分辨率以用于生物组织中的共焦显微镜检查。 These parameters indicate that, in this description of the exemplary device can provide sufficient resolution for biological tissue confocal microscopy.

[0104] 在图6中示出了用于2.5cm体模样品的完全回拉图像的示范性SECM图像数据。 [0104] In Figure 6 illustrates an exemplary SECM image data for a complete pull back 2.5cm body image appearance of the product. 在生成这些显示的图像之前,将极坐标转换成直角坐标。 Before generating display these images, the polar coordinates into Cartesian coordinates. 使用附着到2.1cm内径的特氟隆(Teflon)管的内表面的镜头纸来制作体模样品。 Use attached to the inner surface of the inner diameter of 2.1cm Teflon (Teflon) tube lens paper to make the body look like goods. 在图6A示出的低放大率图像中,能够观察到纸的包括褶皱和空隙的宏观结构。 In FIG. 6A shows a low magnification image can be observed macroscopic structures include paper folds and voids. 可见的圆周条纹可能起因于存在于谱编码线的末端处或其附近的较低的谱功率和透镜像差。 Visible circumference stripes may result from the presence in or near the lower end of the spectrum of power and a lens aberration spectrum coding lines. 如图6B-6E所示,在以较高的放大率提供的这个数据集的区域中,能够清楚地分辨各个纤维和纤维微观结构。 As shown in FIG. 6B-6E, the data set in this region to provide high magnification, it is possible to clearly distinguish between the individual fibers and fiber microstructure.

[0105] 通过调整图4A中的聚焦设备415,在120 μ m的范围的5个离散聚焦深度处获取体模样品的圆柱形二维(“2D”)图像。 [0105] 415, to obtain a two-dimensional cylindrical body appearance product by adjusting the focusing device in Fig. 4A in five discrete focal depths at 120 μ m range ("2D") images. 图7中示出的这5个图像710-750然后被求和以产生综合图像760,其展示了体模样品表面的几乎完整的覆盖。 Figure 7 shows these five images 710-750 are then summed to generate integrated image 760, which shows the almost complete coverage of the surface of the body of product appearance.

[0106] 由于缺少用于光学扫描头的定心设备,使用如在此描述的SECM设备来成像生物样品能够被复杂化。 [0106] Because of the lack of a centering device for the optical scanning head, using the apparatus as described herein SECM imaging biological samples to be complicated. 为了提供进一步的改进以便生成宽视场显微图像和数据,在2.0cm直径的透明圆柱之上放置猪肠的样品。 In order to provide a further improvement in order to generate wide-field microscope images and data, over 2.0cm diameter transparent cylindrical sample is placed in the chitterlings. 在图8A中示出了I秒内获取的这个样品的360扫描。 In Figure 8A shows a second 360 scan I acquired within the sample. 成像的组织可能仅在圆柱形扫描的一个区段中出现,因为探针未被置于中心,并且样品没有完全缠绕在圆柱周围。 Imaging of tissue may only be one section of the cylindrical scan appears, because the probe is not at the center, and the sample is not completely wrapped around the cylinder. 图8B-8D示出了这个组织样品的一系列放大区域。 Figure 8B-8D shows a series of enlarged area of the tissue sample. 图SB中示出的图像是图8A中的打点矩形框出的1.5cm区段的扩展。 Figure SB image shown in Fig. 8A is an extension of 1.5cm-out RBI rectangle section. 类似地,图SC中的图像表示了图8B中框出的矩形的扩展,而图8D中的图像则表示了图SC中框出的矩形的扩展。 Similarly, Figure SC The image shows a rectangular box in Figure 8B expansion, and FIG. 8D shows a rectangular image is expanded view of the SC out of the box. 图SB中的组织的放大图像暗示了腺结构。 Figure SB enlarged image of the tissue structure implies gland. 图8C-8D中的放大图像展示了绒毛和核特征,它们类似于如图2和3所示的使用1300nm SECM系统观察到的绒毛和核特征。 Figure 8C-8D enlarged image shows the fluff and nuclear characteristics, which are similar to FIG. 2 and 3 using 1300nm SECM system observed in Figure fluff and nuclear characteristics. 图8A中的SECM扫描的其它区域示出了伪像(artifact),包括来自透明圆柱的镜反射和全信号丢失,这两者都可能起因于聚焦SECM束的不适当定位。 Other regions in Fig. 8A shows SECM scan artifacts (artifact), including a mirror reflection from a transparent cylinder and full signal loss, both of which can result from improper positioning focused SECM beam.

[0107] 对患者实施全面共焦显微镜检查提出了多种技术挑战。 [0107] for patients with comprehensive confocal microscopy proposed a variety of technical challenges. 这样的挑战可能包括例如增加成像速率、使探针光学部件和机械部件小型化、结合定心机构以及实施用于动态改变焦平面的技术。 Such challenges may include such as increased imaging speed, the probe of the optical and mechanical components miniaturization, combined with centering mechanism for dynamically changing technology and the implementation of the focal plane.

[0108] 与在上文描述的示范性系统相比,能够将SECM系统的图像获取速度改进为该示范性系统的例如大约2-4倍。 [0108] Compared with the above described exemplary system, the image acquisition rate can be improved SECM systems e.g. about 2-4 times that of the exemplary system. 通过提供某些修改能够实现这样的改进。 Certain modifications can be achieved by providing such improvements. 例如,更高功率半导体光源(诸如像超辐射二极管T-840HP:25mff,840nm, IOOnm谱带宽)能够提供例如近似1000个谱可分辨点。 For example, higher power semiconductor light source (such as super luminescent diode T-840HP: 25mff, 840nm, IOOnm spectral bandwidth) can provide, for example approximately 1000 spectra distinguished points. 光功率的这种增加能够改进灵敏度,并且较大的带宽可以拓宽视场,使得可以以近似两倍的速度扫描SECM束。 This increase in sensitivity can be improved optical power, and the larger bandwidth can widen the field of view, making it possible to approximately double the speed of the scanning beam SECM. 而且,使用光环行器诸如像0C-3-850 (Opticsfor Research, Caldwell, NJ)能够增加被传递到探针和从探针收集的光的效率。 Moreover, the use of optical circulator such as 0C-3-850 (Opticsfor Research, Caldwell, NJ) can be transmitted to the probe and increase the efficiency of collecting light from the probe. 使用更快更灵敏的线性CCD诸如像具有2048个像素和60kHz读出速率的AVIIVA M4-2048 (AtmelCorporation)能够提供两倍的数据获取速度和用于生成图像数据的波长范围的改进的谱响应。 Use faster and more sensitive, such as a linear CCD having 2048 pixels and 60kHz readout rate of AVIIVA M4-2048 (AtmelCorporation) provides twice the data acquisition speed and image data used to generate the wavelength range of the improved spectral response. 还可以通过使用例如Camera Link(摄像机链接)接口来改进性能,所述Camera Link接口能够以近似120MB/S的速率从摄像机向用于存储的硬盘驱动器阵列传送数据。 Also, for example Camera Link (Camera Link) interface to improve performance by using the Camera Link interface hard disk drive array data can be transmitted at a rate of approximately 120MB / S from the camera to be used for storage.

[0109] 被理解为指的是最小可检测反射率的灵敏度是影响共焦图像质量和穿透深度的系统参数。 [0109] is understood to mean the minimum detectable sensitivity affecting reflectance confocal image quality and depth of penetration of the system parameters. 当使用近红外RCM技术时,能够从一直到近似300 μ m的深度处的皮肤反射入射光的一小部分,其可能近似为10_4到10_7。 When using a near-infrared RCM technology to approximate the skin from up to 300 μ m at a depth of a small portion of the incident light is reflected, which may be approximated as 10_4 to 10_7. 基于在此描述的根据本发明的某些示范性实施例的示范性系统中使用的`物镜的NA以及皮肤比非角质化上皮黏膜更加显著地可以使光衰减的观察,在此描述的示范性SECM探针物镜可以收集近似3X 10_4到3X 10_7的从组织之内深处反射的照射光。 `Based on the objective demonstration of the system described herein in accordance with certain exemplary embodiments of the present invention used in the NA and horny skin than non-epithelial mucosa more significant optical attenuation can observe exemplary described herein SECM probe objective can be collected within the organization from the depths of the approximate reflected irradiation light 3X 10_4 to 3X 10_7 of. 25mW光源可以被分成例如近似1000个独立的射束。 25mW light sources can be divided, for example approximately 1000 independent beam. 最大双程插入损耗被估计为近似IOdB(其包括来自探针的6dB损耗以及来自光纤和分光计的4dB损耗)。 The largest two-way insertion loss is estimated to be approximately IOdB (which includes 6dB loss from the probe and 4dB loss from the fiber and spectrometer). 基于这些估计的参数,对于每线集成周期,从而可以用近似50到50,000个光子/像素来照射阵列中的每个像素。 These estimated parameters based on the integration period for each line, which may be approximately 50 to 50,000 photons / pixel to illuminate each pixel in the array.

[0110] 使用多模检测技术,可以实现10倍的信号增益,使得对于这样的配置每次扫描有近似500到500,000光子/像素。 [0110] Using multi-mode detection technology, can achieve 10 times the signal gain, so that for such an arrangement each scan has approximately 500 to 500,000 photons / pixel. 如果信号在以近似240个光子发生的暗电流波动之上,则例如Atmel AVIIVA M4摄像机上的单个像素能够可靠地检测光。 If the signal is above the dark current fluctuations at approximately 240 photons occurrence, such as a single pixel on the camera Atmel AVIIVA M4 can reliably detect light. 如果这个装置在这些波长处具有近似50%量子效率,则能够以每次扫描近似480光子/像素产生最小可检测信号。 If this means these wavelengths have approximately 50% quantum efficiency, it is possible to scan approximately every 480 photons / pixel to produce the minimum detectable signal. 基于这些近似,Atmel摄像机可以具有足够的灵敏度以允许较深的组织深度处的SECM成像。 Based on these approximations, Atmel camera may have sufficient sensitivity to allow SECM imaging deeper tissue depths. 通过使用多模光纤来收集或者通过增加源功率,能够实现对预测的最小反射率进行的量子噪声限制检测。 By using multimode fiber to collect or by increasing the source power to achieve quantum noise limit detection of minimum reflectivity forecast conducted.

[0111] 在图9中示出了根据本发明的某些示范性实施例的能够进行上皮器官的大面积微观成像的设备的示意图。 [0111] In FIG. 9 shows a schematic view of the device of a large area can be performed in accordance with certain epithelial organs exemplary embodiment of the present invention, microscopic imaging. 可以是宽带源或波长扫描源的光源900能够提供光,所述光可以被传送通过环行器910,或者可替选地通过光纤分束器。 May be a broadband source or a wavelength scanning light source 900 can provide light, the light can be transmitted through the circulator 910, or alternatively via fiber optic beam splitter. 然后能够通过扫描机构920将光传送到成像导管930。 It can then be transmitted to the imaging light 920 through conduit 930 scanning mechanism. 能够在导管外部或导管之内进行扫描。 Scanning can be performed within the catheter or catheters outside. 在某些优选示范性实施例中,可以在导管外部进行回拉扫描,并且可以在导管内部进行旋转扫描。 In certain preferred exemplary embodiment, can be pulled back to the external scan catheter, and the catheter can be rotated to scan inside. 然后可以用检测器940检测收集的反射光,如果使用宽带光,则所述检测器940例如可以是分光计。 Then the reflected light can be collected by the detector 940 detects if the broadband light, for example, then the detector 940 may be a spectrometer. 如果使用波长扫描源,则检测器940例如还可以是单个检测器。 If you are using wavelength scanning source, the detector 940 for example also be a single detector. 检测器940提供的数据可以由计算机950处理、显示和/或保存,该计算机950还可以配置成对扫描过程进行控制和同步。 Data detector 940 may be provided by a computer 950 processing, display and / or stored, the computer 950 may also be configured to control and synchronize the scanning process.

[0112] 拍摄大的内腔器官可以优选地利用将导管的远端部分置于内腔之内的中心的方式,以提供相对于组织的一致聚焦距离和/或深度,以及几个厘米的长度之上的周围图像的快速获取。 [0112] shoot large cavity organs may preferably use the distal portion of the catheter is placed within the central lumen of the way to provide with respect to the organization's consistent focus distance and / or depth, as well as a few cm in length above the surrounding images quickly accessible. 通过在定心装置之内结合圆周扫描成像探针,能够满足这些标准。 By means of the centering in circumferential scanning imaging probe binding to meet these criteria. 提供位于定心装置中间或其附近的成像光学装置能够提供几个额外优点,包括例如消除表面高度波动,这可以简化聚焦要求,以及将成像系统物理耦合到患者,这能够大大减少可能发生的运动伪像。 Providing a centering means located at or near the middle of an image forming apparatus capable of providing an optical several additional advantages, including, for example the elimination of highly volatile surface, which can simplify the requirements for focusing and imaging system physically coupled to the patient, which can greatly reduce the movement may occur artifacts.

[0113] 在图10中示出了根据本发明的某些示范性实施例的SECM导管的远端的示意图。 [0113] In FIG. 10 illustrates a schematic diagram of certain exemplary embodiments of the present invention, the distal end of the catheter SECM. 光能够被提供通过光纤1000,该光纤1000可以由光纤夹盘1005固定,然后使用准直透镜1010校准。 Light can be provided by an optical fiber 1000, the fiber 1000 can be fixed by a fiber chuck 1005 and 1010 using the collimating lens calibration. 这个光然后可以穿过可变焦机构1015和圆柱形透镜1020,其能够配置成预补偿光路以校正像散效应。 The light can then be passed through a cylindrical lens zoom mechanism 1015 and 1020, which can be configured to pre-compensating the optical path to correct astigmatism effect. 然后可以通过衍射光栅1025对光进行衍射,该衍射光栅1025能够配置成将光的中心波长衍射例如近似90度,然后由成像透镜1030将光聚焦到谱编码线1035 上。 Then by the diffraction grating 1025 diffracts light, the diffraction grating 1025 can be configured, for example, the center wavelength of the diffracted light is approximately 90 degrees, and then by the imaging lens 1030 focuses the light onto the line spectrum encoding 1035.

[0114] 通过增加与光纤1000相关联的针孔孔径的直径,使用多模检测可以减少斑点伪像。 [0114] By increasing the fiber 1000 associated with the pinhole aperture diameter, the use of multi-mode detection can reduce speckle artifacts. 这种技术能够提供增加的信号传输量和减少的斑点伪像,伴随的仅仅是空间分辨率的略微下降。 This technology provides increased signal transmission capacity and reduce spots artifacts, accompanied by just a slight decrease spatial resolution. 双包层光纤可以用于实施用于谱编码的这种技术,其中单模核心能够照射组织,而多模内包层则能够检测反射光。 Double-clad fiber can be used to implement this technique for spectral coding, which can be irradiated tissue core single-mode, multi-mode inner cladding and it is possible to detect the reflected light.

[0115] 成像透镜1030可以优选地具有例如能够近似为2_7mm的相对大的工作距离,并且维持近似0.25到0.5的大NA。 [0115] Preferably, the imaging lens 1030 can have, for example can be approximated as a relatively large working distance 2_7mm, and maintaining approximately a large NA 0.25 to 0.5. 另外,成像透镜1030能够很薄,优选地不超过大约5mm厚。 Further, the imaging lens 1030 can be thin, preferably no more than about 5mm thick. 传统透镜如非球面或消色差透镜可以用作成像透镜。 Traditional aspheric lenses or achromatic lens may be used as an imaging lens.

[0116] 内套1040可以包围各种光学部件和马达1045中的一些或全部,并且可以允许这些部件在外套1060之内的纵向定位。 [0116] the inner sleeve 1040 may surround the various optical components and motors of some or all of the 1045, and may allow the longitudinal positioning of these components within the jacket of the 1060. 内套1040能够包括如下的部分,该部分具有良好的光透射特性和低波前失真以允许高质量成像,同时仍然维持结构刚性以维持在探针之内被置于中心的马达轴1050。 1040 can include the following portion of the inner sleeve, the portion having good light transmission characteristics and low wave front distortion to allow high quality imaging, while still maintaining structural rigidity to maintain the probe is positioned within the center of the motor shaft 1050. 可以用于形成作为内套1040的一部分或全部的透明窗口的材料例如可以包括玻璃或塑料材料,诸如像Pebax和高密度聚乙烯(HDPE)。 Can be used to form the inner sleeve 1040 as a part or all of the transparent window may include materials such as glass or plastic materials, such as Pebax and high density polyethylene (HDPE).

[0117] 外套1060能够包围内套1040,并且能够配置成使用定心机构1065来相对于成像组织1080保持在固定位置。 [0117] 1060 can be enclosed within the outer sheath 1040, and can be configured to use a centering mechanism 1065 to 1080 relative to the imaged tissue maintained in a fixed position. 外套1060壁中的开口能够允许拉回线缆1065移动内套1040。 Jacket 1060 opening in the wall to allow movement back inside the cable jacket 1040 1065. 通过以下能够实施线性扫描:将内套1040附着到计算机控制的平移器(诸如可以例如由Newport Corp., Irvi ne, CA提供的平移器),同时相对于被成像的组织1080将外套1060维持在固定的位置。 The following can be implemented by a linear scan: the inner sleeve 1040 is attached to a computer controlled translation device (e.g., such as may be made Corp. Newport, Irvi ne, CA provides Panner), while with respect to the imaged tissue 1080 will remain at 1060 jacket fixed position. 这样的拉回技术例如可以用于获得纵向食道OCT图像。 Such techniques such as back to the esophagus can be used to obtain the longitudinal OCT image. 所有或部分的外套1060可以是透明的,以允许光从中透过。 All or part of the jacket 1060 may be transparent, to allow light to pass therethrough. 外套1060的透明部分的光学特性能够类似于内部光学窗口1055的光学特性。 The optical properties of the transparent part of the housing 1060 can be similar to an internal optical characteristics of the optical window 1055.

[0118] 圆柱形透镜1020、衍射光栅1025和成像透镜1030可以容纳在旋转壳体1070中,该旋转壳体1070可以附着到马达轴1050。 [01] The cylindrical lens 1020, a diffraction grating 1025 and the imaging lens 1030 may be housed in the rotary housing 1070, the rotary housing 1070 may be attached to the motor shaft 1050. 可以使用传统的马达1045,其能够具有小至约1.5mm以下的直径。 1045 can use conventional motor, which can have a small diameter of about 1.5mm or less. 使用编码器可以改进图像质量和配准,并且还可以将马达1045的直径增加到近似6-10mm。 Use encoder can improve image quality and registration, and also the diameter of the motor 1045 to approximately 6-10mm. 这样的马达例如能够由MicroMo Electronics, Inc.(Clearwater, FL)提供。 Such a motor such as the ability, Inc. (Clearwater, FL) is provided by MicroMo Electronics. 能够将马达线的尺度最小化以限制设备的视场障碍。 Motor line can be minimized to limit the scale of the equipment field obstacles. 通过使用马达1045经由马达轴1050来旋转内套1040之内的旋转壳体1070,可以进行圆周扫描。 By using the motor 1045 through 1050 to rotate the rotating motor shaft within the housing inner sleeve 1040 1070 circumference can be scanned.

[0119] 在图11中示意性图示了根据本发明的某些示范性实施例的导管,其配置成从导管远端外部的位置相对于外套1060提供内套1040的旋转。 [0119] In FIG. 11 schematically illustrates a catheter in accordance with certain exemplary embodiments of the present invention, which is arranged outside the distal end of the catheter position relative to the rotating inner sleeve coat 1060 provides 1040. 旋转运动能够被传输通过光学旋转结点1100,并且光可以被耦合到旋转光纤1110中。 Rotational motion can be transmitted through the optical rotation node 1100, and the light may be coupled to the rotary optical fiber 1110. 旋转结点还可以经由一个或多个电线1120维持电接触,并且经由可旋转拉回线缆1030维持机械接触,该可旋转拉回线缆1030能够配置成控制拉回和聚焦机构。 Rotating node can also maintain electrical contact via one or more wires 1120 and 1030 via the rotatable cable back to maintain a mechanical contact, which can be rotated back to the cable 1030 can be configured to control the back and the focusing mechanism. 在图11示出的示范性设备配置中,内套1140没有包围马达,这样一来它就能够更小并且更轻。 In FIG. 11 illustrates an exemplary device configuration, the inner sleeve 1140 does not surround the motor, so that it can be smaller and lighter.

[0120] 圆柱形透镜可以用于校正像散效应,所述像散效应能够通过气囊壁或别的定心设备产生,和/或通过内套和/或外套的透明窗口或透明片段产生。 [0120] The cylindrical lens may be used to correct astigmatism effect, the astigmatic effect can be produced by a centering balloon wall or other equipment, and / or produced by the inner sleeve and / or coat the transparent window or transparent fragments. 弯曲的玻璃能够以类似于负圆柱形透镜的方式引起像散。 Curved glass in a manner capable of causing similar negative cylindrical lens astigmatism. 例如,图12A中示出的两个弯曲透明壁引起的像散在光学上类似于朝向这个附图的右侧示出的负圆柱形透镜。 For example, as in FIG. 12A shows two curved transparent wall caused scattered like this figure to the right shows the negative cylindrical lens optically. 穿过图12A中示出的物体中的任何一个的中心虚线的光可以具有比穿过上虚线或下虚线的光更短的路径,这导致引起的像散。 FIG. 12A shows a central object of any dotted line passes through may have dashed through the upper or lower than the dotted line of light shorter path, which leads to induced astigmatism. 如图12B所示,例如通过在光路中放置与引起像散的窗口类似的弯曲窗口,能够实现这种光学失真的有效且准确的校正。 12B, for example, by placing in the optical path and causes astigmatism of the curved window similar to the window, it is possible to realize the optical effective and accurate distortion correction. 校正用弯曲窗口的弯曲轴应当垂直于弯曲套窗口的轴,以提供像散的光学校正。 The calibration curve of the window should bend axis perpendicular to the bending axis sets window to provide optical correction of astigmatism.

[0121] 在本发明的另一个示范性实施例中,能够提供内窥镜SECM系统,其能够对器官进行全面成像,而不用用户在获取图像数据期间进行干预。 [0121] In another exemplary embodiment of the present invention to provide an endoscope SECM system capable of imaging full organ without user data during image acquisition to intervene. 该系统能够虑及例如由心跳、呼吸和/或蠕动运动引起的移动。 The system is capable of taking into account, for example moving from the heart, respiratory and / or exercise-induced peristalsis. 定心机构的利用能够大大减少由被成像的组织的运动造成的伪像。 Use centering mechanism can greatly reduce motion artifacts from the imaged tissue caused. 例如,成像装置和被成像的组织之间的距离变化在一个全面扫描期间例如能够变化多达近似250μπι。 For example, the distance between the imaging device and the image changes between organizations such as during a full scan can vary up to approximately 250μπι. 这个距离变化相对于圆周扫描速度能够以慢的时间规模(例如几秒钟)发生,但是相对于在成像装置的纵向拉回期间扫描被成像的组织区域的长度所需的时间,它可能是显著的。 This distance changes with respect to the circumferential scanning speed can slow time scale (e.g., a few seconds) occurred, but with respect to the length of time during scanning of the image forming apparatus is pulled back longitudinally imaged tissue region required, it may be significant a.

[0122] 根据本发明的某`些示范性实施例,能够使用示范性技术来减少或消除采样期间的组织运动的影响。 [0122] According to a `some exemplary embodiments of the present invention, an exemplary technique can be used to reduce or eliminate the effects of tissue motion during sampling. 图13Α中图示的这种技术能够包括用于获得聚焦深度的较宽范围之上的图像数据。 This technique is illustrated in FIG 13Α can comprise means for obtaining the image data, the depth of focus over a wider range. 如果希望的总成像深度例如为200 μ m,并且组织离开成像装置的距离的变化例如为250 μ m,那么能够在大约700 μ m的聚焦范围获取图像数据。 If the total depth of the desired image, for example, 200 μ m, and organizational change distance away from the image forming apparatus, for example, 250 μ m, then the image data can be acquired in the focus range of about 700 μ m. 这个过程能够确保贯穿希望的组织体积获得图像数据。 This process can be ensured through a desired tissue volume image data is obtained. 尽管成像时的体积图像的许多部分可能不包含组织,但是很可能会从所关心的组织体积的大多数区域中获得至少一个好的图像。 Although many parts of the imaging volume image may not contain the organization, but are likely to get at least one good image of interest from most regions of the tissue volume.

[0123] 在图13B中图示了可以用于补偿成像期间组织运动的第二示范性技术。 [0123] In Fig. 13B illustrates a tissue motion compensation can be used during a second exemplary imaging techniques. 这个技术能够包括用于确定成像透镜和被成像的组织表面之间的距离的过程。 This technique can be used to determine the process includes an imaging lens and tissue from the surface to be imaged between. 能够跟踪这个距离,并且能够适应性控制透镜的焦点,以贯穿所关心的组织体积中的图像数据的获取来相对于组织表面提供已知的焦距。 Able to track the distance and focus of the lens can be adaptively controlled to get through to the tissue surface with respect to the focal length of organization providing a known volume of interest in the image data. 适应性聚焦能够减少需要的聚焦扫描的次数,并从而还可以减少获得所关心的组织体积的全面覆盖所需的时间。 Adaptability focus can reduce the number of focus scanning needs, and thereby also reducing the time to obtain full coverage of interest tissue volume required. 例如使用干涉测量信号、飞行时间信号、电磁辐射的强度等等能够控制射束的聚焦。 E.g., the interference can be controlled using the beam focus measurement signal, signal time of flight, and so the intensity of the electromagnetic radiation.

[0124] 用于应对被成像组织的运动的上述示范性技术能够利用用于调整成像装置的焦距的机构。 [0124] for the response to be imaged tissue motion technology to take advantage of the above-described exemplary mechanism for adjusting the focal length of the imaging device. 存在几种示范性技术可以用于调整被成像的组织体积之内的聚焦深度。 There are several exemplary technique can be used to adjust the focal depth of the tissue volume to be imaged within. 例如,包括聚焦透镜的成像装置的内套能够相对于外套被移动。 For example, the image forming apparatus includes a focusing lens with respect to the inner sleeve housing is moved. 为了实现这个移动,例如图14A中示出的多层双压电晶片压电执行器1410(例如D220-A4-103YB,Piezo Systems, Inc.,Cambridge, MA)能够在两端附着到例如金属板1420,这可以提供陶瓷材料的弯曲。 To achieve this move, e.g., FIG. 14A shows a multilayer piezoelectric bimorph actuators 1410 (e.g., D220-A4-103YB, Piezo Systems, Inc., Cambridge, MA) can be attached to both ends of a metal plate e.g. 1420, which may provide a curved ceramic material. 这些执行器能够背对背地放置,如图14A所示,这能够有效地加倍它们自由运动的范围。 These actuators can be placed back to back, as shown in Figure 14A, which effectively doubles the scope of their freedom of movement. 4个这样的执行器1430能够布置在外护套1440和组件1450之间,该组件1450能够包括马达和包围马达的聚焦光学部件,如图14B所示。 Four such actuators 1430 can be disposed between the outer sheath assembly 1440 and 1450, the assembly 1450 can include a motor and a focusing optical member surrounds the motor, shown in Figure 14B. 这些执行器1430能够用于通过可控地相对于外套1440移动组件1450来在需要的范围改变聚焦位置。 These actuators 1430 can be used by controllably moving relative to the housing assembly 1450 1440 to change the focus position in the desired range. 这种技术能够需要在探针之内存在高电压、可能横穿和中断视场的额外电线、和/或将包含成像装置的探针的总体直径增加例如几毫米。 This technology requires a high voltage in the probe memory, and interrupts may be additional wires across the field of view, and / or overall diameter of the probe comprises an imaging device is increased, for example a few millimeters.

[0125] 在图15中示出了可以用于调整成像装置的焦距的替换示范性技术。 [0125] In FIG. 15 shows an alternative that can be used to adjust the focal length of the image forming apparatus of the exemplary technique. 能够提供包围线缆1530的线缆套1510。 It provides cable jacket surrounding the cable 1510 1530. 线缆1530能够在一端附着到准直透镜1540,该准直透镜1540可以配置成相对于套1550在纵向方向上可移动。 1530 can be attached to one end of the cable to the collimator lens 1540, the collimator lens 1540 can be configured with respect to the cover 1550 is movable in the longitudinal direction. 准直透镜1540能够相对于套1550和其它光学部件移动以改变焦距。 Collimating lens 1540 with respect to the sleeve 1550, and other optical components move to change the focal length. 如图15所示,例如在成像导管外部使用线缆1530能够控制这种平移。 As shown in Figure 15, for example using a cable outside the imaging catheter 1530 can control the pan. 可替选地,例如通过能够在导管内部提供的电马达或压电马达,能够控制准直透镜1540的运动。 Alternatively, for example, by providing inside the conduit can be an electric motor or a piezoelectric motor, capable of controlling the movement of the collimator lens 1540. 通过相对于准直透镜1540移动光纤1520,所述光纤1520能够提供用于对组织进行成像的光,也能够改变焦距。 By 1540 relative to the collimator lens moving optical fiber 1520, the fiber 1520 to provide for tissue imaging of light, it is possible to change the focal length. 可替选地,光纤1520和准直透镜1540两者可以相对于彼此移动以改变焦距。 Alternatively, the optical fiber 1520 and a collimating lens 1540 the two can move relative to each other to change the focal length.

[0126] 通过将光纤1520和准直透镜1540之间的间隔改变近似M2 Δ z的距离,能够将焦距转移距离Λζ,其中M为成像设备的放大倍数。 [0126] By changing the spacing fiber 1520 and a collimating lens 1540 M2 Δ z between the approximate distance, the focal length can be transferred from Λζ, where M is the magnification of the image forming apparatus. 例如,示范性成像设备能够具有近似为3的放大倍数。 For example, the exemplary image forming apparatus capable of having a magnification of approximately 3. 为了获得近似450 μ m的焦距变化,光纤1520和准直透镜1540之间的距离会需要移动近似4.0mm,这是使用用于改变焦距的上述技术中的任何一种都能够实现的距离。 In order to obtain a change in focal length of approximately 450 μ m, the distance between the optical fiber 1520 and a collimating lens 1540 will need to be moved between approximately 4.0mm, which is the use of the above-described technique for varying the focal length of any one can be achieved from .

[0127] 用于改变焦距的进一步的示范性技术是利用电子可调谐的可变透镜。 [0127] for changing the focal length of the further exemplary technique is the use of electronically tunable variable lens. 例如,可以用在蜂窝电话照相机中的图16中示出的商业上可用的透镜1600 (VariopticAMS-lOOOLyon, France)可以用于改变根据本发明的示范性实施例的成像设备中的焦距。 For example, the camera can be used in cellular phones available in Figure 16 shows a commercially lens 1600 (VariopticAMS-lOOOLyon, France) can be used to change the image forming apparatus according to the focal length in accordance with an exemplary embodiment of the invention. 这个透镜1600使用电润湿(electrowetting)原理,并且能够提供大约_200mm和40mm之间的可变焦距,具有可以仅由衍射效应限制的光学质量。 This lens using electrowetting 1600 (electrowetting) principle, and can provide a variable focal length between about 40mm and _200mm, having optical quality can be limited only by the diffraction effect. 这个示范性透镜1600的当前有效通光孔径(CA)为3.0mm,并且总外径(OD)为10mm。 This exemplary lens 1600 currently valid aperture (CA) is 3.0mm, and the total outer diameter (OD) of 10mm. 可以生产具有4.0mm CA和6.0mm OD的类似透镜。 Can produce similar lens has 4.0mm CA and 6.0mm OD's. 这个示范性透镜1600的全范围响应时间大约为150ms,这能够快得足以用于跟踪光学部件和组织表面之间的距离并相应地调整焦距。 This exemplary lens wide response time of approximately 1600 150ms, which can be fast enough to track the distance between the optical member and the tissue surface and to adjust the focal distance. 可以生产具有大约IOms的响应时间的这种类型的透镜。 This type of lens can be produced with a response time of about IOms. 在准直仪和SECM光栅之间使用如上所述的可变透镜例如可以提供能改变大约300 μ m以上的焦距。 A variable lens as described above and in between the collimator SECM grating may be provided, for example to change more than about 300 μ m focal length.

[0128] 能够为根据本发明的某些示范性实施例的内套提供各种配置。 [0128] can be set within an exemplary embodiment in accordance with certain embodiments of the invention provide a variety of configurations. 例如,如图17A所示,能够使用由透明材料形成的套1700。 For example, as shown in FIG 17A, sleeve 1700 can be used a transparent material. 可替选地,能够提供包括透明窗口1710的套,如图17B所示。 Alternatively, sleeve 1710 can include providing a transparent window, shown in Figure 17B. 还可以提供如下的套,所述套包括两个壁之间的开口1720,如图17C所示,或者包括相邻于可以附着到套的马达1730的开口,如图17D所示。 Can also provide the following sets, said sleeve comprising an opening 1720 between the two walls, as shown in Figure 17C, adjacent to or including the motor 1730 may be attached to the sleeve opening, as shown in FIG 17D.

[0129] 在图18中提供了能够与图9中示出的示范性系统一起使用的控制和数据记录装置的示范性示意图。 [0129] provides the control and data can be shown in Fig. 9 an exemplary system for use with an exemplary schematic diagram of the recording apparatus in FIG. 18. 图18中示出的装置能够配置成记录射束位置同时获取成像数据1800,这能够提供成像数据1800的更加精确的空间配准。 The apparatus shown in FIG. 18 can be configured to record simultaneously acquire imaging beam position data 1800, which can provide a more accurate spatial imaging data 1800 registration. 如图18所示,通过数据获取和控制单元1810能够获取成像数据1800。 As shown in Figure 18, the data acquisition and control unit 1810 1800 able to obtain imaging data. 导管扫描仪装置可以扫描射束,例如使用旋转马达1820来提供射束的角运动,以及使用拉回马达1830来纵向移动射束。 Conduit means can scan a beam scanner, such as a rotary motor 1820 to provide the angular movement of the beam, and the use of the motor 1830 to move longitudinally back beam. 旋转马达1820能够由旋转马达控制器1840控制,并且拉回马达1830能够由拉回马达控制器1850控制。 1820 1840 rotary motor can be controlled by the rotation of the motor controller and motor back to 1830 can be controlled by 1850 back to the motor controller. 这些控制技术中的每一个可以使用闭环操作来进行。 Each of these control techniques can use a closed-loop operation to perform. 数据获取和控制单元1810能够指引马达控制器单元1840、1850以提供指定的马达速度和/或位置。 1810 data acquisition and control unit can direct the motor controller unit 1840,1850 to provide the specified motor speed and / or location. 马达1820、1830生成的编码器信号能够被提供给马达控制器单元1840、1850与数据获取和控制单元1810。 1820, 1830 generated a motor encoder signal can be supplied to the motor controller unit 1840,1850 and 1810 data acquisition and control unit. 用这种方式,当获取成像数据1800的线时,能够记录与每个马达1820、1830相关联的编码器信号,从而允许精确的射束位置与数据1800的每个线相关联。 In this manner, when acquiring imaging data line 1800, an encoder signal can be recorded associated with each of the motors 1820, 1830, 1800, thereby allowing each line associated with a precise beam position data.

[0130] 在图19中示出了可以在根据本发明的示范性实施例的成像导管中使用的各种扫描优先级。 [0130] FIG. 19 illustrates various scan priority can be used in an imaging catheter according to an exemplary embodiment of the present invention in. 例如,在图19A中示出了如下的示范性扫描技术,其中,作为第一优先级进行旋转扫描,并且作为第二优先级进行轴向(拉回)扫描。 For example, in FIG. 19A shows an exemplary scanning below, wherein, as a first priority scan rotation and axial (back) scanning as the second priority. 这种技术能够提供具有螺旋形几何形状的一组数据。 This technique provides a set of data having a spiral geometry. 在进一步的扫描技术中,能够以小增量进行轴向扫描,其中每个轴向增量跟随全旋转,如图19B所示。 In a further scanning technique, it is possible to perform an axial scan in small increments, each increment followed full axial rotation, as shown in Figure 19B. 可替选地,能够作为第一优先级进行轴向(拉回)扫描,并且能够作为第二优先级进行旋转扫描,这可以生成图19C中示出的扫描图案。 Alternatively, it is possible as a first priority for axial (back) scanning, and can be used as the second priority rotary scanning, which can generate a scanning pattern in FIG. 19C shown. 沿着第一扫描优先级的方向能够实现更高的成像质量。 Along the direction of the first scan priority to achieve higher image quality. 这样一来,扫描优先级的选择就可以取决于是横向(旋转)图像还是轴向图像为优选。 As a result, the scanning priority selection may depend on the horizontal (rotational) image or picture is preferably axially. 能够以几种方式进行可以具有不同对称的其它器官或组织的成像。 Imaging can be performed in several ways other organs or tissues may have different symmetry. 例如,在图19D中示出了可以用于对某些器官进行成像的圆形扫描图案。 For example, in FIG. 19D illustrates certain organs may be used for imaging a circular scan pattern.

[0131] 在本发明的进一步的示范性实施例中,如图10所示的气囊导管能够配置成使用引导线允许快速交换放置过程。 [0131] In a further exemplary embodiment of the present invention, the balloon catheter shown in Figure 10 can be configured to use a guide wire to allow rapid exchange placement process. 在快速交换放置过程中,引导线能够首先被放置到要被成像的器官中,然后导管能够沿着引导线向下穿线。 In a rapid exchange during placement, the guide wire can be first placed into the organ to be imaged, and then the catheter can be threaded downward along the guide wire. 这个过程能够允许导管在许多应用中更容易更精确地放置。 This process can allow the catheter in many applications more easily and more accurately place. 各种配置可以用于使用快速交换过程来引导导管。 Various configurations can be used to guide the process of using a rapid exchange catheter. 例如,图20A示出了示范性引导线2000,该引导线2000穿过外套2040的远端中的孔2010。 For example, FIG. 20A illustrates an exemplary guide wire 2000, the guide wire 2000 through 2040 of the distal end of the housing bore 2010. 在图20B示出的第二示范性配置中,引导线2000穿过附着到外套2040远端的管2020。 In FIG. 20B shows a second exemplary configuration, a guide wire 2000 through 2040 is attached to the distal end of the outer tube 2020. 可替选地,引导线2000能够配置成穿过可以附着到外套2040近端的管2020,如图20C所示。 Alternatively, guidewire 2000 can be configured to pass through the jacket may be attached to the proximal end of tube 2040 2020, shown in Figure 20C.

[0132] 在图21A-C中图示了可以用于定位导管的示范性过程,其使用了导管的中心内腔中的引导线。 [0132] illustrates an exemplary process can be used to locate the catheter in FIG. 21A-C, which was used in the central lumen of the catheter guide wire. 首先,能够将`引导线2100放置在器官2150之内,如图21A所示。 First, the `guide wire 2100 can be placed within the organ of 2150, shown in Figure 21A. 下一步,导管的外套2110与气囊2120 —起能够在引导线2100之上穿线,如图21B所示。 Next, coat the catheter 2110 and balloon 2120-- from the guide wire can be threaded over 2100, as shown in FIG. 21B. 最后,可以包含光学部件的内套2130能够沿着导管中心内腔向下穿线,如图21C所示,并且能够进行使用光学装置的成像过程。 Finally, the sheath may comprise an optical member 2130 can be threaded downward along the central lumen catheter, as shown in FIG. 21C, and the process can be performed using the imaging optical device.

[0133] 在图22中示出了气囊导管的两个示范性配置。 [0133] In FIG. 22 illustrates two exemplary balloon catheter configurations. 在图22A中,可以包括压缩空气或气体的源的装置2200能够用于使气囊2210膨胀。 In FIG. 22A, may include a source of compressed air or gas apparatus 2200 can be used to make the expandable balloon 2210. 能够提供管或其它小通道2230,其连接到包围导管的气囊2210,并且允许将压缩空气或气体传送到气囊2210。 Possible to provide a small tube or other channel 2230, which is connected to the balloon catheter surrounded 2210, and allows the compressed air or gas into the balloon 2210. 使用压力计2220能够监视被膨胀的气囊2210之内的压力。 2220 can be monitored using a pressure gauge pressure balloon is inflated within 2210. 这个压力能够用于使气囊膨胀最优化,并且通过监视可以与膨胀气囊2210接触的周围器官之内的压力来估计导管的放置。 This pressure can be used to optimize the air bag inflates, and to estimate the placement of the catheter by monitoring the pressure of the surrounding organs and may be expandable balloon 2210 within contact. 可替选地,能够沿着导管的外护套提供通道2240,其能够允许将压缩空气或气体传送到气囊2210,如图22B所示。 Alternatively, channels can be provided along the outer sheath of the catheter 2240, which allow compressed air or gas into the air bag 2210, shown in Figure 22B. 可以使用能够响应压力变化而改变其直径的气囊,其中通过以下能够控制聚焦深度:使得压缩空气或气体传送到气囊2210以改变气囊直径并从而相对于成像透镜移动周围组织。 Can be used to change in response to pressure changes in the diameter of the balloon, which can be controlled by the depth of focus: such that compressed air or gas into the air bag 2210 to change the diameter of the balloon and thereby move relative to the surrounding tissue imaging lens.

[0134] 在图23A-23C中示出了根据本发明的另一个示范性实施例的可以使用的示范性导管设计。 [0134] In FIG. 23A-23C illustrates an exemplary catheter design can be used in accordance with another exemplary embodiment of the present invention. 这个导管设计能够配置成使用一个或多个可扩展的绞合线2300,以使成像装置的内光芯在内腔器官之内置于中心。 The catheter design can be configured to use one or more extended strands 2300, so that the inner core of the optical imaging device including a built-in central lumen of an organ. 导管可以包括额外的护套2310和位于护套2310之内的一组可扩展的绞合线2300,所述护套2310可以提供在外套2320周围,如图23A所示。 Catheter sheath may include additional 2310 and located within the sheath 2310 of a set of extensible strands 2300, the sheath 2310 may be provided in the jacket around 2320, as shown in FIG. 23A. 在放置导管之后,能够将绞合线2300推挤通过护套2310以从其末端伸出,如图23B所示。 After placing the catheter, the strand can be pushed through the sheath 2310 to 2300 end extending therefrom, as shown in FIG 23B. 可替选地,能够将护套2310从外套2320缩回。 Alternatively, it is possible to coat the sheath 2310 is retracted from 2320. 足够长的绞合线2300能够暴露在外套2320周围,以允许绞合线2300扩展周围的器官或组织,如图23C所示,并且使套2320置于中心。 Sufficiently long strand 2300 can be exposed in the jacket around 2320, 2300 to allow the strand extended around the organ or tissue, as shown in FIG. 23C, and the sleeve 2320 at the center. 在执行成像过程之后,可以将绞合线2300拉回到护套2310中,并且能够去除导管。 After performing the imaging process, can be pulled back to the sheath strand 2300 2310, and the catheter can be removed.

[0135] 示范性OCT和RCM技术能够滤去或忽略从被成像的组织样品中接收的多重散射光,并从而检测可能包含结构信息的单独背散射的光子。 [0135] Exemplary OCT and RCM technology to filter out or ignore multiple scattering of light received from the tissue sample to be imaged in order to detect and may contain structure information alone backscattered photons. 然而,这些技术中的每一种都能够以不同的方式滤去多重散射光。 However, each of these technologies are filtered in different ways can be multiple scattering of light.

[0136] 例如,RCM技术可以使用从紧密聚焦的入射束中共焦选择由被成像的组织反射的光。 [0136] For example, RCM techniques can be used to select the light reflected from the tissue being imaged from a tightly focused beam into the confocal. RCM技术能够通过以下实施:在平行于组织表面的平面内快速扫描聚焦束,这可以提供组织的横断或表面图像。 RCM technology by the following examples: In the inner surface of the plane parallel to the organization to quickly scan a focused beam, which can provide cross-sectional surface of the image or organization. 能够与传统RCM技术一起使用的大数值孔径(NA)可以得到非常高的空间分辨率(例如近似1-2 μ m),这能够允许亚细胞结构的可视化。 A large numerical aperture (NA) can be used with conventional techniques RCM can be obtained together with a very high spatial resolution (e.g., approximately 1-2 μ m), which allow visualization of subcellular structures. 然而,使用高NA的成像过程能够对随着光传播通过不均匀的组织而出现的像差特别敏感。 However, the use of high NA imaging process can aberration as the light propagates through inhomogeneous tissue appears particularly sensitive. 因此,使用RCM的高分辨率成像可以被限制到大约100-400 μ m的深度。 Therefore, the use of high-resolution imaging RCM can be limited to a depth of about 100-400 μ m.

[0137] OCT技术能够使用用于光学分割的相干光栅原理,并且可以不依赖于高NA透镜的使用。 [0137] OCT techniques can be used for coherent optical resolution of the raster principle, and can not rely on the use of high NA lenses. 这样一来就可以使用具有相对大的共焦参数的成像透镜来执行OCT技术。 This way you can use the imaging lens having a relatively large confocal parameters to execute the OCT technology. 这能够提供进入到被成像的组织中的较大穿透深度(例如近似1-3_)和横截面图像格式。 This can provide access to the tissue to be imaged larger penetration depth (e.g., approximately 1-3_) and the cross-sectional image format. 这些优点可以以减少的横向分辨率为代价而得到,所述减少的横向分辨率能够典型地相当于大约10-30 μ mD These advantages can be obtained by reducing the expense of lateral resolution, the horizontal resolution can be reduced typically corresponds to about 10-30 μ mD

[0138] 这样一来,考虑到上述区别,示范性OCT和RCM技术就能够提供不同的成像信息,其可以是互补的。 [0138] Thus, considering the above distinction, exemplary OCT and RCM technology can provide different imaging information, which may be complementary. 例如,RCM技术能够提供亚细胞细节,而OCT技术则例如能够提供结构形态。 For example, RCM technique subcellular details can be provided, and OCT technology is such as to provide structure and morphology. 来自这两个尺寸体系的成像信息对于组织病理学诊断可以是决定性的,并且在许多情况下,不使用这两者而进行准确的诊断如果不是不可能,那也可能是困难的。 Imaging information from both sizing system for histopathologic diagnosis can be decisive, and in many cases, do not use both and accurate diagnosis, if not impossible, it may also be difficult. 尽管这些完全不同的成像技术的结合可能传统上利用广大的工程计划,这能够损害性能,但是SECM和SD-OCT技术能够共享某些部件。 Although the combination of these different imaging techniques may use the majority of the project Traditionally, this can hurt performance, but SECM and SD-OCT technology to share some parts. 因此,能够提供利用这两种成像技术的高性能多模态的系统,它并没有包括相对于可以单独使用任一技术的系统的复杂性或成本的显著增加。 Therefore, it is possible to provide the use of these two imaging techniques, high-performance multi-modal system, which did not include any of respect can be used alone significantly increase the complexity of a system or technology costs.

[0139] 在图24A中示出了根据本发明的示范性实施例的能够执行SECM技术和SD-OCT技术两者的示范性系统的概述。 [0139] In Fig. 24A shows an overview of SECM technology capable of performing both technical and SD-OCT exemplary system according to an exemplary embodiment of the present invention. 在这个示范性系统中,宽带光源带宽的一部分能够用于获得SECM图像数据,而带宽数据的进一步的部分则例如能够用于获得SD-OCT数据。 In this exemplary system, a portion of the bandwidth of the broadband light source can be used to obtain SECM image data, and additional data are e.g. fractional bandwidth can be used to obtain SD-OCT data. 例如,光源2400能够用于提供具有例如大于大约IOOnm的带宽的电磁能。 For example, the light source 2400 can be used to provide an example of a bandwidth of greater than about IOOnm electromagnetic energy. 可以用作光源2400的装置例如能够包括二极管泵浦超快激光器(诸如可从例如IntegralOCT, FemtolasersProduktions GmbH, Vienna, Germany得到的那种)或超福射二极管阵列(这例如可以从Superlum, Russia 获得)。 2400 can be used as a light source means, for example, can include a diode-pumped ultrafast lasers (such as for example from IntegralOCT, FemtolasersProduktions GmbH, Vienna, Germany can get kind) or super blessing shoot diode array (which for example can be obtained from Superlum, Russia) .

[0140] 可以用于SD-OCT数据的光源谱的一部分(例如具有大约810_900nm之间的波长的光),能够通过使用波分复用器(WDM) 2410而与可以用于SECM数据的谱的一部分分开,并被传送到导管2420和基准臂2445。 [0140] can be used for part of the source spectrum of SD-OCT data (for example, having a wavelength between about 810_900nm light), it is possible through the use of wavelength division multiplexing (WDM) 2410 and the data can be used for spectrum SECM part of the separated and transferred to the catheter 2420 and 2445 reference arm. 从导管2420通过SECM光纤2430和SD-OCT光纤2440返回的光能够被提供给分光计2450。 From 2420 through SECM fiber optic catheter 2430 and SD-OCT optical fiber 2440 returns can be provided to the spectrometer 2450. 分光计2450可以配置成图24B中示出的示范性CCD阵列2460中的元件的近似半数能够检测与SECM数据相关联的信号,并且CXD元件的近似半数能够检测与SD-OCT数据相关联的信号。 Approximately half is capable of detecting a signal associated with the spectrometer 2450 may be configured to 24B, an exemplary CCD array 2460 illustrated SECM data elements, and the signal is approximately half CXD element capable of detecting a SD-OCT data associated . 例如通过在从波长空间到k空间内插SD-OCT数据之后进行傅立叶变换,能够将SD-OCT数据转换成轴向结构数据。 For example, after insertion by SD-OCT data from the k-space wavelength space to Fourier transform, to convert the data into a SD-OCT axial structure data. 例如,如果分光计2450具有近似0.1nm的分辨率,则总的SD-OCT测距深度可以大于大约2.0mm0使用SD-OCT技术的轴向图像分辨率可以近似为5μηι。 For example, if the spectrometer has an approximately 0.1nm resolution 2450, the total of the SD-OCT ranging depth may be greater than approximately 2.0mm0 using SD-OCT technology axial image resolution can be approximated as 5μηι.

[0141] 在图25中示出了示范性SECM/SD-0CT探针的示意性概述。 [0141] In FIG. 25 illustrates an exemplary SECM / schematic overview SD-0CT probe. 这个探针类似于如图15所示的探针,并且进一步包括配置成提供SD-OCT射束路径的装置。 This probe is similar to the probe 15 shown in FIG, and further comprising means configured to provide SD-OCT beam path. 为了获得SD-OCT射束,OCT光纤2500能够与SECM光纤2510 —起插入到内套中。 To obtain SD-OCT beam, OCT optical fiber 2500 is capable of SECM fiber 2510-- starting inserted into the sleeve. OCT光纤2500能够配置成照射小透镜2520。 OCT optical fiber 2500 can be configured to illuminate the small lens 2520. 能够选择用于SD-OCT射束的共焦参数和斑点尺寸,以实现深度范围的横截面成像。 Can be selected for SD-OCT beam confocal parameter and spot size, in order to realize the depth range of cross-sectional imaging. 共焦参数斑点尺寸的示范性值例如能够分别近似为1.1mm和25 μ m。 Confocal spot size parameters such as the ability exemplary value of approximately 1.1mm respectively and 25 μ m. SD-OCT透镜2520的NA例如能够被选择为近似0.02,并且SD-OCT射束的准直射束直径例如能够被选择为近似200 μ m。 SD-OCT 2520 NA lens can be chosen, for example approximately 0.02, and the SD-OCT beam collimated beam diameter can be selected to be for example approximately 200 μ m. 分色镜2530能够放置在SECM光栅之前,以反射SD-OCT光束2540并透射SECM光束2550。 Dichroic mirror 2530 can be placed before SECM grating to reflect SD-OCT beam transmission SECM beam 2540 and 2550. 以相对于SD-OCT光束2540近似45度的角度布置图25中示出的分色镜2530。 With respect to 2540 SD-OCT beam angle is approximately 45 degrees to the arrangement shown in FIG. 25 dichroic mirror 2530. 通过在镜2530上使用合适的涂层,能够增加这个角度,这能够允许SD-OCT射束2540交迭SECM射束2550,用于两个图像的更加精确的空间配准。 By using a suitable coating on the mirror 2530, this angle can be increased, which can allow SD-OCT beam 2540 overlap SECM beam 2550, for a more precise spatial registration of the two images. 能够通过使用圆柱形元件来校正例如可以由弯曲窗口或气囊产生的SD-OCT射束2540的光学像差,以预补偿如图12B所示的像散。 Can be corrected by using a cylindrical element such as a window or balloon can be produced by the bending of the SD-OCT beam optical aberrations 2540, in order to pre-compensate for astigmatism 12B shown in FIG.

[0142] 在图26中示出了可以用于SECM成像和SD-OCT成像两者的导管探针的进一步的示范性实施例。 [0142] In Figure 26 shows a further exemplary SECM can be used for imaging and SD-OCT imaging catheter probe both embodiments. 宽带光可以被提供通过单个光纤2600而不是如图25所示的两个分开的光纤2500、2510。 Broadband light may be a single optical fiber 2600 and the two are not separated as shown in FIG. 25 is provided by an optical fiber 2500,2510. 使用分色镜2610可以将可以用于形成SD-OCT射束2640的光的一部分反射到SECM射束2650的光路以外。 Dichroic mirror 2610 can be used for SD-OCT beam 2640 formed part of the reflected light beam optical path SECM beyond 2650. 通过孔径2620,和/或通过使用透镜2630来聚焦SD-OCT射束2640,可以减少SD-OCT射束2640的直径。 Through the aperture 2620, and / or by using a lens 2630 to focus the SD-OCT beam 2640, SD-OCT can reduce the diameter of the beam 2640. SD-OCT装置还可以用于通过使用SECM技术来定位被成像的组织的表面,甚至其中SD-OCT深度分辨率在大约20-100 μ m之间。 SD-OCT device can also be used through the use of technology to locate SECM surface tissue being imaged, even where the SD-OCT depth resolution of between about 20-100 μ m. 即使SD-OCT射束2640的带宽不足以获得高质量SD-OCT图像,这也能够被执行。 Even SD-OCT beam bandwidth 2640 SD-OCT insufficient to obtain a high quality image, which also can be performed.

[0143] 从示范性SD-OCT图像获得的数据能够用于调整SECM射束的焦平面。 [0143] The data obtained from the exemplary SD-OCT image can SECM beam for adjusting the focal plane. 在图27中示出了图示这种技术的示范性流程图。 In FIG. 27 illustrates an exemplary flowchart illustrating the technology. 例如,SD-OCT图像数据可以从深度扫描中获得(步骤2700)并随后被处理(步骤2710)。 For example, SD-OCT image data may be obtained from the Deep Scan (step 2700) and then processed (step 2710). 图像数据可以被分析并显示为SD-OCT图像(步骤2720)。 Image data can be analyzed and displayed as SD-OCT image (step 2720). 这个图像数据还可以用于例如通过使用边缘检测算法来确定组织表面的位置(步骤2730)。 The image data can also be used to determine the location of the tissue surface, for example by using edge detection algorithm (step 2730). 一旦组织的表面位置已被确定,就能够使用可变焦机构来调整SECM装置的焦平面的位置(步骤2740)。 Once the tissue surface location has been determined, it is possible to use the zoom mechanism to adjust the position of the focal plane SECM apparatus (step 2740). 能够快速执行这种聚焦控制技术(例如在小于大约IOOms内),这可以允许实时跟踪和聚焦组织表面。 This focus can quickly perform control technology (for example, less than about within IOOms), which allows real-time tracking and focusing the tissue surface. 使用相对于SECM射束形成的角度,能够校准组织边缘的位置。 Use SECM beam angle relative to the formation, to calibrate the position of the edge of the tissue.

[0144] 在图28中示出了可以与本发明的某些示范性实施例一起使用的示范性导管线缆2800的横截面。 [0144] In FIG. 28 illustrates a cross-section of 2,800 cases of exemplary catheter cable can be used together with certain exemplary embodiments of the invention. 线缆2800例如可以包括拉回线缆2810、配置成向马达供应电力的多个线2820、聚焦控制线缆2830、配置成向可膨胀气囊或膜提供气体或其它流体的通道2840、SECM 光纤2850 和/ 或SD-OCT 光纤2860。 Cable 2800 for example, include a cable back to 2810, is configured to supply electric power to the motor of a plurality of line 2820, the focus control cable 2830, configured to provide an expandable balloon or membrane gas or other fluid channel 2840, SECM fiber 2850 and / or SD-OCT optical fiber 2860.

[0145] 在图29中示出了示范性SECM探针2900的示意性图示。 [0145] In FIG. 29 illustrates an exemplary SECM probe is a schematic illustration of 2900. 探针2900包括两个棱镜2910,其可以配置成在射束2920穿过光栅2930和成像透镜2940之前使射束2920偏转。 Probe 2900 includes two prisms 2910, which can be configured in 2920 before the beam passes through the grating and the imaging lens 2940 2930 2920 the beam deflection. 这种示范性配置能够为物镜2940在探针2900之内提供更多空间,这能够导致探针2900的更闻NA和/或尺寸减少。 This exemplary configuration can provide more space within the objective lens 2900 of the probe 2940, probe 2900, which can lead to more smell NA and / or size reduction. [0146] 使用图30A-30C中示出的示范性探针配置3000,能够实现探针长度的进一步减少。 [0146] FIG. 30A-30C using the exemplary probe configuration shown in 3000, and to achieve a further reduction in the length of the probe. 探针3000能够包括内套3010,该内套3010可以在探针3000被传递到成像位置时提供在外套3020之内,如图30A所示。 Probe 3000 can include a sleeve 3010 within the inner sleeve 3010 may be provided within the housing 3020 when the probe 3000 is transmitted to the imaging position, as shown in FIG. 30A. 在探针3000被放置并在要被成像的组织或器官之内被置于中心之后,内套3010能够滑动通过外套3020以提供伸出的拉回范围,如图30B和30C所示。 After the probe 3000 is positioned in the tissue or organ to be imaged is placed in the center of the inner sleeve 3010 can slide through the housing 3020 to provide a range extending back, as shown in FIG. 30B, and 30C. 例如,在内套3010的中心附近提供成像透镜3020能够在图30B和30C中示出的极端扫描位置处提供增加的位置稳定性。 For example, near the center of the inner sleeve 3010 to provide an imaging lens 3020 can provide increased stability at a position of extreme scanning position shown in FIG. 30B and 30C in.

[0147] 在图31中示出了示范性外套3100。 [0147] In FIG. 31 illustrates an exemplary coat 3100. 外套3100能够由刚性材料诸如像不锈钢或塑料制成。 Coat, such as stainless steel or 3100 can be made of a rigid plastic material. 它可以包括一个或多个间隙3110,其能够允许光从中穿过以生成图像数据而不会弓I入光学像差。 It may include one or more gaps 3110 which allow the light to pass therethrough to generate image data I into the bow without optical aberrations. 可选地,间隙3110可以包括透明窗口。 Alternatively, gap 3110 can include a transparent window.

[0148] 图32示出了根据本发明的某些示范性实施例的示范性探针。 [0148] FIG. 32 illustrates an exemplary probe in accordance with certain exemplary embodiments of the present invention. 探针3200可以提供部件的紧凑配置和小的总体探针尺寸。 Probe 3200 may provide a compact configuration and small parts of the overall probe size. 例如,圆柱形内套3210能够配置成在圆柱形外套3220之内自由地旋转和移动,允许准直透镜3230和光纤3240离开内套3210的中心轴放置。 For example, a cylindrical sleeve 3210 can be configured to rotate freely in 3220 of a cylindrical jacket and move, allowing the collimating lens and the optical fiber 3230 3240 3210 left the central axis of the inner sleeve is placed. 能够在外部进行要被成像的组织的区域的扫描,其中能够使用拉回线缆3250来控制内套3210的运动。 It can be externally scanning tissue to be imaged region, which can be used to set back a cable 3250 3210 motion within the control.

[0149] 在本发明的某些示范性实施例中,能够在成像透镜和要被成像的组织表面之间的空间中提供液体诸如像水或指标匹配的油。 [0149] In certain exemplary embodiments of the present invention to provide a liquid such as water or index matching oil in space imaging lens and the surface of the tissue to be imaged between. 提供这样的液体例如能够改善光学参数如NA和/或减少用于获得图像数据的光束的背反射。 To provide such a liquid, for example can be improved optical parameters such as NA, and / or reduce back-reflection of the light beam for obtaining the image data.

[0150] 在图33A和33B中示出了能够提供用于获得图像数据的高NA的示范性探针配置3300。 [0150] In FIGS. 33A and 33B are shown to provide high NA for obtaining image data of an exemplary probe configuration 3300. 例如,内套3310能够提供在外套3320中,外套3320还可以包括未膨胀的气囊3330。 For example, the inner sleeve can be provided in the jacket 3310 3320, 3320 may also include a jacket is not inflated airbag 3330. 未膨胀的气囊3330可以被膨胀,使得它能够从外套3320向前扩展。 Unexpanded balloon 3330 can be expanded, so that it can extend from the housing 3320 forwardly. 内套3310然后可以展开在外套3310之外和膨胀气囊3340之内。 The inner sleeve can be expanded in 3310 and then coat the outside of the balloon 3310 and 3340 expansion. 弹性装置3350能够以压缩配置的方式提供在内套3310和外套3320之间,如图33A所示。 Resilient means 3350 can be configured to provide compression between the inner and outer sleeve 3310 3320, shown in Figure 33A. 弹性装置3350能够配置成当内套3310被展开时对着膨胀气囊3340的`内壁安置内套3310,如图33B所示。 Resilient means 3350 can be configured such that when the inner sleeve 3310 when the dilatation balloon is expanded against the `inner wall disposed within the sleeve 3340 3310, as shown in Figure 33B. 内套3310能够配置成使用拉回线缆3360来扫描膨胀气囊3340气囊区域外部的组织的区域。 Inner sleeve 3310 can be configured to scan using back cable 3360 3340 balloon expandable balloon regional organizations outside the region. 线缆3360能够控制内套3310在膨胀气囊3340之内的旋转和纵向平移(例如拉回)。 Cables can be controlled within a sleeve 3310 3360 rotation and longitudinal translation (eg back) in the expansion of the airbag 3340. 隔离物3370可以用于改善成像光学装置和膨胀气囊3340的壁或相邻组织表面之间的接触。 Spacer 3370 can be used to improve the contact surfaces of adjacent wall or tissue imaging optical devices and inflatable balloon between 3340.

[0151] 在图34A和34B中示出了根据本发明的某些示范性实施例的进一步的示范性探针配置3400,其能够对着外气囊3420的内壁维持探针内套3410。 [0151] In FIG. 34A and 34B shows a further exemplary probe in accordance with certain exemplary embodiments of the present invention, the configuration of 3400, which is capable of facing the inner wall of the outer balloon 3420 is maintained within the probe sheath 3410. 例如,能够提供在图34A中示出为未膨胀的外气囊3420和内气囊3430,使得它们包围内套3410。 For example, in FIG 34A can be provided as shown unexpanded balloon 3420 and outer balloon 3430, 3410 so that they surround the inner sleeve. 每个气囊可以被膨胀,如图34B所示。 Each balloon may be inflated, as shown in FIG 34B. 在这个示范性配置中,内套3410可以附着到内气囊3430的一个面。 In this exemplary configuration, the inner sleeve 3410 can be attached to an inner surface of the airbag 3430. 通过相对于外气囊3420移动内套3410连同内气囊3430,可以进行内气囊3420之内的旋转和平移扫描。 By 3420 relative to the outer balloon moves within sleeve 3410 together with balloon 3430, can be scanned balloon rotation and translation within 3420.

[0152] 在图35A和35B中示出了根据本发明的某些示范性实施例的更进一步的示范性探针配置3500,其能够对着外气囊3520的内壁维持探针内套3510。 [0152] In FIGS. 35A and 35B shows a further exemplary embodiment of a probe in accordance with certain exemplary embodiments of the invention the configuration of 3500, which is capable of facing the inner wall of the outer balloon 3520 is maintained within the probe sheath 3510. 在图35A中示出为未膨胀的外气囊3520可以在要被成像的组织的器官或区域之内被膨胀。 Shown in FIG. 35A is unexpanded outer balloon 3520 may be inflated within the organ or tissue to be imaged areas of the. 在图35A中示出为未膨胀的内气囊3530可以提供在内套3510和外气囊3520之间。 Shown in FIG. 35A is unexpanded balloon 3530 may be provided between the inner sleeve 3510 and outer balloon 3520. 内气囊3530可以被膨胀,如图35B所示,并且内气囊3530提供的压力能够用于维持内套3510和外气囊3520的内壁之间的接触,如图35B所示。 The balloon 3530 may be inflated, as shown in FIG. 35B, and the pressure within the balloon 3530 can be provided for contacting the inner wall of the outer sleeve 3510 and maintained between the inner balloon 3520, as shown in FIG 35B. 分别在图34和35中示出的示范性探针配置3400和3500可以被使用而没有外套。 Respectively, in FIG. 34 and the probe 35 in the exemplary configuration shown in 3400 and 3500 can be used without the jacket. 可以在能够用于将探针3400、3500传递到预期位置的外部罩的内部包装未膨胀气囊3420、3430、3520和3530。 It can not expand in 3400, 3500 can be used to transfer the probe to the desired location inside the outer cover of the airbag package 3420,3430,3520 and 3530. 这样的外部罩能够可选地例如由可分解材料形成。 Such outer cover can optionally be formed of a biodegradable material, for example.

[0153] 在图36A-36D中示出了SECM探针3600的示范性配置,其能够提供与器官或气囊圆柱的轴垂直的谱编码线3610。 [0153] In FIG. 36A-36D is shown an exemplary SECM probe 3600 configuration, it is possible to provide an organ or balloon cylinder axis vertical spectral coding line 3610. 在图36A中提供了这个探针配置的底视图,并且在图36B中示出了相应的侧视图。 The probe configuration provides a bottom view in FIG. 36A, and FIG. 36B shows the corresponding side view. 图36C示出了进一步的侧视图,其中探针套3640在膨胀气囊3650之内被展开,与图33B中示出的类似。 FIG. 36C shows a further side view of a probe similar to 3640 set the expansion of the airbag is deployed within 3650, and shown in FIG. 33B. 在这个示范性配置中,纵向(例如拉回)方向能够是主要扫描方向,使得探针套3640以相对快的速率在这个纵向方向上移动。 In this exemplary configuration, the longitudinal direction (e.g., back) direction of the main scanning direction is possible, so that the probe sheath 3640 move relatively fast rate in the longitudinal direction. 与纵向速度相t匕,能够以相对慢的速率进行围绕纵轴的旋转方向上的扫描。 And longitudinal velocity phase t dagger, with relatively slow scan speed of rotation around the longitudinal axis direction on. 探针3600能够提供有定位装置,如图33-35中的任何一个所示。 Probe 3600 can be provided with positioning means, as shown in Fig any one of 33-35. 探针套3640能够包括镜3620,其可以配置成使光束朝向适当定位的光栅偏转,以提供如图36A和36D所示配置的谱编码线3610。 3640 probe sets can include mirror 3620, which can be configured so that the light beam deflected toward the proper positioning of the grating, to provide the configuration as shown in FIG. 36A and 36D spectral coding line 3610.

[0154] 探针之内SD-OCT和SECM成像装置的组合能够提供有用的设备,用于获得使用不同图像格式的不同标度的结构信息。 [0154] The combination of the probe and the SD-OCT SECM image forming apparatus capable of providing a useful means for obtaining structural information on different scales using a different image format. 因为两种成像技术的分辨率是不同的,因此能够同时获取为这两种成像技术获得的数据。 Because the resolution of the two imaging techniques are different, it is possible to simultaneously obtain the data obtained for both imaging techniques. 然而,用于这两种技术的有用扫描率可能彼此不兼容。 However, for a useful scan rate of these two technologies may not be compatible with each other. 例如,使用例如大约IHz的转速和例如近似lmm/s的纵向拉回速度,能够提供典型的SECM扫描率。 For example, for example, about IHz speed and for example approximately lmm / s longitudinal pullback speed, providing a typical SECM scan rate. 用于获得SD-OCT图像数据的典型扫描率能够是在旋转方向上例如近似为50-100HZ,并且在纵向方向上例如近似为0.2-0.5mm/s。 SD-OCT for obtaining the image data can be a typical scan rate in the rotational direction, for example approximately 50-100HZ, e.g., in the longitudinal direction and approximately 0.2-0.5mm / s.

[0155] 为两种技术恰当采样的可以用于获得全面图像数据的一种技术是在获取SECM数据集之后,适当采样,实施另外的全面SD-OCT扫描。 [0155] The two techniques can be used to obtain the proper sampling image data of a comprehensive technique after obtaining SECM data set, appropriate sampling, another embodiment of a comprehensive SD-OCT scan. 这种技术可以将用于组织区域的数据获取时间增加例如近似1-2分钟。 This technique may be used for the data acquisition time increases tissue region such as approximately 1-2 minutes. 为旋转和线性平移马达获得的编码器信号能够贯穿每次扫描被数字化。 The encoder signal of the motor rotation and linear translation can be obtained through each scan is digitized. 通过使SD-OCT图像定量地相关以便为每次扫描确定角度和旋转偏移,能够为气囊位置的转移对编码器信号进行校正。 In order to determine the angle and rotation deviation for each scan by SD-OCT image quantitatively relevant, able to shift the position of the balloon encoder signal corrected. 这种技术能够提供大约500μπι之内的SD-OCT和SECM数据集的准确空间配准。 This technique can provide accurate within the space of about 500μπι SD-OCT and SECM dataset registration.

[0156] 在本发`明的进一步的示范性实施例中,可以以简略的成像模式(例如“探察成像”)操作例如提供在探针中的成像装置,以确定可以用于传递探针的导管是否恰当地安置在要被成像的器官或组织区域之内。 [0156] In the present `invention further exemplary embodiment, the imaging mode may be simplified (e.g.," imaging detectors ") operations such as providing an image forming apparatus in the probe to determine the probe can be used to deliver whether the catheter properly positioned within the organ or tissue to be imaged area of. 在恰当的导管放置被确认之后,能够获得全面的一组图像数据。 After proper catheter placement is confirmed, it is possible to obtain a complete set of image data.

[0157] 在本发明的更进一步的示范性实施例中,可以使用除了空气之外的光学透明的材料诸如像水、重水(D20)、油等等使气囊定心导管膨胀。 [0157] In a further exemplary embodiment of the present invention embodiments may be used in addition to the air of an optically transparent material, such as water, heavy water (D20), oil, etc. so that the centering catheter balloon inflated. 润滑剂也可以用于辅助导管的插入。 Lubricants may also be used to assist in insertion of the catheter. 在本发明的某些示范性实施例中,可以在获得图像数据之前施加黏液去除剂以减少要被成像的器官中存在的黏液量,那里存在的这种黏液会降低图像质量。 In certain exemplary embodiments of the present invention may be applied mucus removal agent before obtaining image data to reduce the amount of mucus to be imaged organs exist, where the presence of this mucus can reduce image quality.

[0158] 前述仅仅表明了本发明的原理。 [0158] foregoing merely indicates the principles of the invention. 考虑到在此的教导,对所描述的实施例的各种修改和变更对本领域技术人员而言将会是明显的。 Taking into account the teachings herein, various modifications and changes to the described embodiments of the skill in the art will be apparent. 事实上,根据本发明的示范性实施例的装置、系统和方法,可以与任何OCT系统、OFDI系统、SD-OCT系统或其它成像系统一起使用,并且例如与2004年9月8日提交的国际专利申请PCT/US2004/029148、2005年11月2日提交的美国专利申请N0.11/266,779和2004年7月9日提交的美国专利申请N0.10/501,276中描述的那些一起使用,这些专利申请的整体内容通过引用结合于此。 In fact, according to the apparatus, system and method for an exemplary embodiment of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems used in conjunction with, and for example, submit and September 8, 2004 of the International Patent Application PCT / US2004 / 029148, US Patent November 2, 2005 filed N0.11 / 266,779 and US Patent July 9, 2004 filed those used with N0.10 / 501,276 described, the entire contents of these patents are incorporated by reference herein. 这样一来,将会意识到的是,本领域技术人员将会设计众多的系统、装置和方法,它们尽管没有在此明确地示出或描述,但却体现了本发明的原理,并从而处在本发明的精神和范围之内。 As a result, it will be appreciated that those skilled in the art will design a number of systems, devices and methods which although not explicitly shown or described, but it reflects the principles of the invention, and thus place within the spirit and scope of the present invention. 另外,就上面尚未明确地将现有技术知识通过引用结合于此而言,明确地以其整体结合于此。 Further, the above prior art has not been explicitly incorporated by reference herein in terms of knowledge, expressly incorporated herein in its entirety. 上面引用在此的所有公布都以其整体通过引用结合于此。 All the above-cited publication are herein incorporated by reference in their entirety.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US64854136 Mar 199826 Nov 2002The General Hospital CorporationMethods and apparatus for forward-directed optical scanning instruments
WO2002/38040A2 Title not available
WO2004/008952A1 Title not available
Legal Events
DateCodeEventDescription
11 Feb 2009C06Publication
8 Apr 2009C10Request of examination as to substance
11 Sep 2013C14Granted